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1. Foreword

Music possesses the peculiar ability to move us emotionally and physically. But why

don’t all sounds evoke these profound effects? After all, few people enjoy static noise or start

nodding their head to the rhythm of a whirring microwave. While musical experiences are vast

and varied, music cognition researchers believe that part of the answer to this question lies in our

ability to detect and apply structure, and thus meaning, to rhythms. However, while some

perceived structure may be necessary, it is not sufficient; otherwise, we’d dance along to all sorts

of periodic sounds like car motors, so what makes musical rhythms special? This has generated

decades of investigations into how humans find and interact with the beats in music, a trait that

appears quite rarely in the animal kingdom.

This work by no means seeks to definitively answer this question in its entirety, but it

does aim to shed more light upon the topic and continue the march of progress in rhythm

perception and synchronization research. Specifically, it attempts to do this by measuring the

pleasurable urge to move to music and the beat perception abilities necessary for producing it.

The first two studies do this by manipulating rhythmic complexity while recording changes in

pupil size to assess cognitive effort, which is theorized to be necessary for reducing prediction

error surrounding the beat. The second study also recorded the variability and intensity of

participants’ foot taps as a measure of how precisely and confidently they could synchronize to

the musical beat, respectively. The third study explored how beat perception ability (which

impacted the results of the first two studies) is shaped by experience and expertise. Namely, it

examined whether inactive musicians retain the heightened beat perception abilities of their

regularly practicing counterparts.

This dissertation first lays out the theoretical background necessary for understanding the

three studies, outlining key concepts and definitions before moving into their explanatory

frameworks. Afterwards, the motivations for conducting the current work are provided with each

study’s rationale and results summarized in brief. Subsequently, the outcomes and implications

of the entire dissertation are critically assessed and its overall contribution to the broader

scientific community are discussed. Finally, the papers comprising this work are furnished in full

for readers to make their own judgments. With that, let’s keep things groovin’ forward.
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2. Abstract

This dissertation investigates the predictive and dynamic mechanisms underlying rhythm

processing and groove. It accomplishes this by measuring the pleasurable urge to move to music

(groove) and the beat perception abilities necessary for producing it. The first two studies do this

by manipulating rhythmic complexity while recording changes in pupil size to assess cognitive

effort, which is theorized to be necessary for reducing prediction error surrounding the beat. The

second study additionally recorded the variability and intensity of participants’ foot taps as a

measure of how precisely and confidently they could synchronize to the musical beat,

respectively, to examine their relationship to groove. The third study explored how beat

perception ability (which impacted the results of the first two studies) is shaped by experience

and expertise. Namely, it examined whether inactive musicians retain the heightened beat

perception abilities of their regularly practicing counterparts. In this work, I demonstrate that: 1)

the pupil drift rate indexes groove ratings, 2) pickups elicit greater pupil dilations while 3)

syncopations elicit greater groove ratings, 4) synchronizing to the beat increases groove ratings

and pupil dilations, 5) tapping becomes softer and less precise with increasing complexity, 6) the

inverted U-shaped curve between rhythmic complexity and groove is stronger for real music than

synthetic drumbeats, and 7) greater beat perception is associated with more musical training,

more precise tapping, and more prominent inverted U-shaped curves. In summary, this

dissertation contributes a number of novel findings, extensions, and replications to the rich

literature on beat perception and groove.
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4. Theoretical Background

3.1 Groove

Groove is a musical concept that has fascinated researchers from a variety of disciplines

ranging from musicology and phenomenology to psychology and neuroscience more recently. It

should come as no surprise then that ‘groove’ as such has been defined in a number of related,

but different, ways. Câmara and Danielsen (2018) have proposed three different understandings:

1) groove as a type of rhythmic pattern and performance style, primarily used by musicologists;

2) groove as the pleasurable urge to move, most commonly adopted by music psychologists and

neuroscientists; and 3) groove as a pleasing, effortless, and timeless state of playing music

described mostly by phenomenologists. For the sake of this dissertation, only the second

understanding of groove as the pleasurable urge to move to music will be used.

Madison first broadly operationalized groove as “wanting to move some part of the body

in relation to some aspect of the sound pattern” (2006) and Janata, Tomic, and Haberman

expanded this definition to include its connection to pleasure in a series of perceptual and

tapping studies (2012). Both studies stress the importance of rhythmic features like having a

clear or strong beat on which to base one’s movements, which has been substantiated by a large

number of subsequent groove studies (Burger et al., 2013; Cirelli & Trehub, 2019; Madison et

al., 2011; Madison & Sioros, 2014; Stupacher, Hove, et al., 2016; Stupacher, 2019). This has led

many groove researchers to manipulate rhythmic features to investigate how they relate to

groove. These features include syncopation (Matthews et al., 2022; Sioros et al., 2014; Skaansar

et al., 2019; Witek et al., 2014, 2017), pickups (Sioros et al., 2022), microtiming (Davies et al.,

2013; Frühauf et al., 2013; Senn et al., 2016; Skaansar et al., 2019), and pulse clarity

(Gonzalez-Sanchez et al., 2018; Stupacher, Hove, et al., 2016; Stupacher, Wrede, et al., 2022).

What seems to connect all of these different rhythmic features is that they all impact the

predictability, certainty, or complexity of the rhythm, where groove tends to exhibit an inverted

U-shaped relationship (Matthews et al., 2019, 2022; Sioros et al., 2014; Stupacher, Wrede, et al.,

2022; Witek et al., 2014). Before discussing why groove exhibits this pattern, it is important to

elaborate how these different rhythmic features relate to rhythmic complexity and expectations.
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3.2 Rhythmic Complexity

As already noted, many different rhythmic features associated with groove seem to relate

to complexity and indeed many of these studies discuss rhythmic complexity as interchangeable

with the feature being manipulated. According to Pressing, complexity is multifaceted and can

be defined and quantified in a number of (not mutually exclusive) ways (Pressing, 1999) so it

isn’t surprising that its application to rhythm would be composed of multiple auditory features.

Central themes that emerge time and again deal with structure and order that incur some sort of

cognitive cost either in terms of perceptual processing or behavioral production, with greater

complexity incurring greater costs (Pressing, 1999). This can, for example, be the “cognitive

costs incurred in maintaining the metrical framework” (Pressing, 1999) which leads to the first,

and perhaps most popular way of quantifying rhythmic complexity, syncopation.

To understand syncopation, one must first have a basic grasp of musical meter. At its

simplest, meter is the hierarchical organization of strongly and weakly accented notes (Lerdahl &

Jackendoff, 1983). Key to this is the idea that the meter is an internal structuring of expectations

about when musical notes will occur. In Justin London’s words, “meter involves our initial

perception as well as subsequent anticipation of a series of beats that we abstract from the

rhythmic surface of the music as it unfolds in time” (emphasis mine) (London, 2012). So in light

of this, syncopations have been defined as “rhythmic events which violate metric

expectations…when onsets occur on metrically weak accents and rests or tied notes occur on

metrically strong accents” (Vuust & Witek, 2014). Thus, syncopations derive their rhythmic

complexity directly from their more unexpected nature, at least until the point that they violate

the meter so much that the listener can no longer perceive it (the upper end of rhythmic

complexity). However, some researchers have claimed that syncopations can, perhaps

paradoxically, reinforce the meter through their violations by making listeners “even more aware

of the ‘missing’ beat” (Câmara & Danielsen, 2018). This leads to the next rhythmic feature:

pickups.

Pickups, like syncopations, occur at metrically weak timepoints but differ in that the

subsequent strong beat is present rather than omitted (Kennedy & Kennedy, 2013; Sioros et al.,

2018, 2022). This has the effect of directly cueing that subsequent strong beat, perhaps even

making it sound illusorily louder in the process (Irwin & Zwislocki, 1971; Scharf, 1978). So in

contrast to syncopations which can subvert metric expectations or indirectly draw attention to



8

strong metric locations, pickups fulfill metric expectations. This may potentially reduce the

overall amount of rhythmic complexity by directly reinforcing strong beats.

The next rhythmic feature, microtiming, also plays with our metric expectations but in a

more subtle way. Rather than shifting a musical event all the way to the next strong or weak

metric position, microtiming deviations are typically only shifted by tens of milliseconds where

they may not even be consciously noticed by the untrained ear (Câmara & Danielsen, 2018; Senn

et al., 2016). This can make a rhythm more complex by introducing variability to metric

locations, especially if the goal is to precisely synchronize one’s movements to those locations.

This is perhaps why perceptual experiments with microtiming tend to report decreases in groove

(Davies et al., 2013; Frühauf et al., 2013; Skaansar et al., 2019), although this may differ

depending on the musical style (like jazz where microtiming is more expected), degree of

microtiming, and listeners’ musical experience (Davies et al., 2013; Senn et al., 2016).

If microtiming muddies one’s perception of a steady rhythmic structure, pulse clarity can

be thought of as the opposite, instead reflecting “how easily…listeners can perceive the

underlying rhythmic or metrical pulsation” (Lartillot, Eerola, et al., 2008). As one might guess

from the name, high pulse clarity implies a predictable rhythmic structure (and thus, less

rhythmic complexity) (Alluri et al., 2012; Stupacher, Wrede, et al., 2022; Toussaint & Trochidis,

2018). Unsurprisingly and most related to groove, this has been shown to facilitate more

synchronous movements (Kantan et al., 2021; Stupacher, Hove, et al., 2016) and more movement

overall (Burger et al., 2013; Cirelli & Trehub, 2019; Gonzalez-Sanchez et al., 2018).

Computationally, pulse clarity can be estimated with a single line of code in the MIRToolbox in

Matlab (Lartillot, Toiviainen, et al., 2008). This algorithm works by first detecting the onsets of

different musical events in the audio file. Depending on the settings, pulse clarity can then be

directly computed from this information (e.g., the ‘ExtremEnvelope’ estimates the total

amplitude variability of the onset detection curve). However, more commonly researchers use

one of the settings based on the autocorrelation of this curve which measures the periodicity of

the detected rhythms (i.e., how repetitive or regular the detected musical events are). One of

these settings, the ‘EntropyAutocor’ heuristic, calculates the entropy of the autocorrelation curve

which has been used to quantify uncertainty (or predictability) in a wide variety of domains

(Shannon, 1948).
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In information theory, Shannon entropy is a mathematical estimation of uncertainty

(Shannon, 1948). Put simply, entropy measures how surprising an event is based on the

probabilities of all possible outcomes for that event given some sequence of events. When

flipping a coin, for example, a fair coin with equal odds of heads or tails would have greater

entropy than a biased coin that has a greater probability for heads; when flipping the fair coin,

the outcome is more random (or uncertain). Because music is structured sound, entropy can be

used to calculate just how structured it is. This has therefore made entropy a useful tool for

quantifying the predictability or complexity of many different aspects of music (Daikoku, 2018;

De Fleurian et al., 2014; de Fleurian et al., 2017; Eerola et al., 2006; Gold et al., 2019; Hansen &

Pearce, 2014; Lumaca et al., 2019; Margulis & Beatty, 2008; Milne & Herff, 2020;

Quiroga-Martinez et al., 2019; Quiroga‐Martinez et al., 2020; Quiroga-Martinez et al., 2021;

Temperley & others, 2007). Applied to rhythm, a completely uniform, isochronous sequence of

tones would have low entropy while a sequence of randomly occurring tones would have high

entropy. Under this quantification then, greater entropy is associated with higher rhythmic

complexity.

Regardless of how it is quantified, increased rhythmic complexity is generally assumed to

result in less predictability, at least for the purposes of this thesis. As hinted at throughout this

section, some predictability is necessary to both perceive the beat structure and synchronize our

movements to it. The next section discusses this in more detail.

3.3 Sensory Precision and Sensorimotor Synchronization

The ability to synchronize our movements to external rhythms is critical for interacting

with music (Repp, 2005; Repp & Su, 2013). In order to accurately synchronize our movements

to music, it is generally assumed that we first need to perceive the rhythmic structure of the

music (an ability known as beat perception) to base our movements on (although this may not

always be the case, see Bégel et al., 2017 and Fiveash et al., 2022). If the structure is less clear to

us because it is too complex, then our movements will be less precise; they will be less stable or

more variable. This has been replicated in multiple labs (Chen et al., 2008; Franěk et al., 1987,

1988; Mathias et al., 2020; Skaansar et al., 2019; Snyder et al., 2006) and may explain why

musicians, who are presumably better at extracting rhythmic structures from music, tend to be

more stable synchronizers (Fiveash et al., 2022; Franěk et al., 1991; Repp, 2010; Repp &
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Doggett, 2007). These results have been explained in terms of two popular theories: dynamic

attending theory and predictive coding theory.

3.4 Dynamic Attending Theory

Dynamic attending (or dynamic systems) theory posits that internal oscillators in the

brain synchronize to external rhythms, enhancing attention at the peaks of these oscillations and

effectively structuring our perception of the music (Jones, 2018; Jones & Boltz, 1989; Large,

2008; Large & Jones, 1999; Large & Snyder, 2009). While there is some debate about whether

these oscillatory enhancements are a boost in attention (Large et al., 2015) or a reduction due to

processing fluency (O’Connell et al., 2015), these are not necessarily incompatible since they

could both be context- and/or task-dependent. These oscillators need not be linear; indeed,

nonlinear oscillator models have been able to account for such complex phenomena as metric

hierarchies and natural music performances without the need for explicit, top-down predictions

(Large & Palmer, 1996, 2002; Palmer & Demos, 2022). However, these oscillators have a limit

and their synchronization grows increasingly worse with increasing rhythmic complexity (Henry

& Herrmann, 2014; Large & Jones, 1999; Nozaradan et al., 2016; Snyder et al., 2006). This

seems to be due, at least in part, to these oscillators’ endogenous nature.

Because these synchronized oscillators are internal, their activity continues to briefly

“resonate” at the same synchronized frequencies through periods of silence even when the

external rhythm is not present (Tal et al., 2017). This has been used to explain why, among other

things, people are able to continue steadily tapping at the rate they had synchronized to for a

short while before returning to their natural rate (Bégel et al., 2022; Stupacher, Witte, et al.,

2016; Tranchant et al., 2022). Importantly for this thesis, the properties of these internal

oscillators seem capable of adaptation, particularly with musical experience (Bigand, 1997;

Drake et al., 2000; Jones & Yee, 1997; Matthews et al., 2016; Scheurich et al., 2018; Tranchant

et al., 2022).

3.5 Predictive Coding Theory

Predictive coding takes a different but not mutually exclusive approach to explaining

sensory precision and sensorimotor synchronization (Palmer & Demos, 2022). As the name

suggests, predictive coding asserts that the brain is constantly generating and updating predictive
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models comparing expected sensory inputs to the actual sensory inputs it is receiving (Clark,

2015; Friston, 2010; Hohwy, 2013), first represented with computational models of the human

visual cortex by Rao & Ballard in 1999 (Rao & Ballard, 1999). These models are hierarchical,

with lower level perceptual information being compared and fed forward (along with error

information) to higher levels that assess, for example, how reliable (or certain) this information is

based on prior predictions. These models are quite flexible with more weight being placed on the

importance of either the incoming perceptual information or the top-down prior predictions

depending on the context, quality of the incoming information, and past experience, among other

factors.

To better illustrate this, imagine being at a noisy concert that’s about to begin. In this

scenario, the brain is exposed to lots of auditory information like other attendees’ conversations,

people shuffling towards the stage, and speaker buzz from the overhead monitors. Most of this

information is too unpredictable and behaviorally irrelevant to warrant updating top-down

predictions, especially because past experience has proven it to be uninformative. Now imagine

the first note of the opening act ringing out. This very clear and loud auditory information

immediately stands out among the background noise, generating a large prediction error between

top-down predictions which expected more uninformative background noise and the new lower

level percept for the music beginning. This signals an update to top-down predictions, shifting

them from expecting background noise to expecting higher fidelity musical input.

This general process can be applied to musical rhythms as well (Lumaca et al., 2019;

Vuust et al., 2009). Simple, isochronous rhythms cultivate strong top-down predictions about

when the next beat will occur (after the same amount of time has passed since the last beat).

Because these expectations are so strong, even a small deviation from isochrony can result in a

large prediction error signal. For highly complex rhythms, this effect is reversed; since the

rhythm is too complex, top-down predictions are quite weak and so small deviations are more

expected, resulting in little prediction error.

There are situations, however, when these top-down predictions cannot be tuned by

simply adjusting perceptual expectations. In these cases, predictive coding theorists argue that

the brain can utilize another strategy – changing the sensory inputs themselves by moving in a

process called active inference (Friston, 2010). This is postulated to be optimal at moderate

levels of rhythmic complexity where top-down predictions expect when their violations will
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occur since they can then be suppressed by moving one’s body to match the top-down

predictions. In this way, action and perception are viewed as two sides of the same coin, where

the prediction errors between expected and perceived sensations during both action and

perception propagate bidirectionally through the nervous system so that the resulting errors can

be minimized. In perception, the precision of sensory information (i.e., how informative it is)

regulates how much the internal model should be adjusted; in more variable conditions,

perception is informed more by top-down predictions rather than the noisier sensory inputs

whose effects are dampened due to low precision. On the flip side, action spurs us to move such

that our ensuing sensory inputs are exactly what we predicted, enhancing precision in a

self-fulfilling prophecy.

At this point, it should be stressed that minimizing prediction error could be achieved by

an oscillatory process of dynamic attending since predictive coding is rather agnostic about how

exactly this is implemented in the brain. For instance, large updates to top-down predictions

about the meter could realign internal oscillators to better process rhythms after a time signature

change. Indeed, when movement is used to guide oscillations in the dynamic attending

framework, it has been termed ‘active sensing’ which seems analogous to predictive coding’s

‘active inference’ (Morillon et al., 2014, 2015). Similarly, the internal model of top-down

predictions could itself be oscillatory. This is, however, less parsimonious; see Palmer & Demos

(2022) for a more detailed comparison of the two theories (Palmer & Demos, 2022).  In any case,

using movement to reduce prediction error forms the basis of groove under predictive coding.

3.6 How Rhythmic Complexity Relates to Groove

As briefly noted in Section 3.1, the literature reports an inverted U-shaped relationship

between rhythmic complexity and groove where the highest ratings of groove are in response to

moderately complex musical rhythms (Matthews et al., 2019, 2022; Sioros et al., 2014;

Stupacher, Wrede, et al., 2022; Witek et al., 2014). Since 2014 when this relationship was first

reported, a number of papers have explained this result in terms of predictive coding (Foster

Vander Elst et al., 2021; Gebauer et al., 2015; Koelsch et al., 2019; Stupacher, Matthews, et al.,

2022; Vuust, 2018; Vuust et al., 2014, 2018, 2022; Vuust & Witek, 2014). The general argument

is as such: rhythmic complexity introduces commensurate amounts of uncertainty to our sensory

systems and consequently, we make more errors trying to predict when the next musical note will
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occur. Concurrently, as rhythmic complexity increases, our sensory precision (and thus our

ability to very accurately perceive and move to the rhythm’s structure) decreases. However,

moderate amounts of rhythmic complexity strike a sweet spot where there are prediction errors

(unlike at very low levels of rhythmic complexity), but not so many that we can’t make sense of

them (like at very high levels of rhythmic complexity). That is to say, the prediction errors in

moderately complex contexts are highly precise; these prediction errors are expected (through

both repetition and enculturation) and can thus be corrected. This correction is carried out

primarily by using our internal model of the rhythm’s structure to guide movements which

simultaneously reinforce the moments where movements occur, directing attention away from

deviant events that occur between movements and suppressing their influence on the model.

Through the lens of predictive coding, groove is merely active inference at work while listening

to moderately complex rhythms. The pleasurable aspect is theorized to follow from either

participatory affordances (Witek, 2017) or by the rewarding value of the prediction itself because

it is (speculated to be) evolutionarily adaptive (Clark, 2015; Huron, 2006). A visual depiction

summarizing the assumptions of the theory is shown in Figure 1 (adapted from Koelsch, Vuust,

& Friston (2019).

Figure 1. Schematic illustrating the predictive coding model of groove. The x-axis labels

describe the abstract mental processes theorized to be occurring while the y-axis labels represent

measurable variables that have been ascribed to them.
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While the predictive coding account makes a compelling case, it is not without its

shortcomings. Supporters of this view concede that its explanation of pleasure is rather weak

(Vuust & Witek, 2014) and more general critics of predictive coding in music have argued that

predictive coding alone is probably insufficient to account for the variety of pleasures derived

from music (Schaefer et al., 2013). Some researchers take it a step further and argue that humans

actually prefer novelty rather than the familiarity that predictive coding depends upon, an account

that can also be modeled computationally (Schmidhuber, 2009).

The other major critique deals with stylistic enculturation and familiarity, both of which

highly correlate with groove (Senn et al., 2018, 2021). Most Western music employs moderately

complex rhythms and this could have arisen for reasons unrelated to prediction that subsequently

became encultured and preferred over time. In line with this, recent work has demonstrated that

similarly complex rhythmic patterns randomly generated by an algorithm evoke less groove

pleasure than their human-composed counterparts (Sioros et al., 2022). The critique most

relevant for this work, however, is the scant neurophysiological evidence.

3.7 Attention Modulation and Pupil Dilation

Both dynamic attending and predictive coding hinge on attention modulation, differing

primarily on the mechanisms and goals of these modulations. While attention and its modulation

could be a dissertation on its own, it’s still important to have a working definition. For this

purpose, no thesis from a psychology department would be complete without the classic

definition from William James: “Every one [sic] knows what attention is. It is the taking

possession by the mind, in clear and vivid form, of one out of what seem several simultaneously

possible objects or trains of thought. Focalization, concentration, of consciousness are of its

essence. It implies withdrawal from some things in order to deal effectively with others, and is a

condition which has a real opposite in the confused, dazed, scatterbrained state which in French

is called distraction, and Zerstreutheit in German.” (James, 1890). The reason why this definition

is so often quoted today is because it succinctly captures so many of the important aspects of

attention that continue to be studied today. Namely, it explains how attention enhances the

processing of our environment and that certain things are selected over others, implying that its
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capacity is limited (see Posner & Boies, 1971 and Posner & Petersen, 1990 for a more detailed

discussion of these components of attention). In the context of groove, attention is directed

toward (or away from) different rhythmic features to enhance (or suppress) their influence on

internal models of the temporal structure. Thus, to elucidate the neural mechanisms underlying

groove, it’s useful to measure how attention changes over time in variously complex musical

contexts.

One useful and convenient way to achieve this is by measuring changes in the pupil size,

pupillometry. The pupil dilates with sympathetic nervous system arousal which is mediated by

acetylcholine and, more importantly, norepinephrine (Laeng & Alnaes, 2019). It should come as

no surprise then that pupil dilation is highly correlated with locus coeruleus activity since the

small brainstem nucleus is the brain’s chief producer of norepinephrine (Alnæs et al., 2014;

Endestad et al., 2020; Joshi et al., 2016; Murphy et al., 2014). Thus, pupillometry offers

researchers a quick, non-invasive way to track noradrenergic mental processes like cognitive

effort (Kahneman, 1973; Kahneman & Beatty, 1966; Laeng et al., 2012; Laeng & Alnaes, 2019),

attention deployment (Dahl et al., 2020; Grueschow et al., 2020; Mather et al., 2016; Oliva,

2019), physiological arousal (Joshi et al., 2016; Wang et al., 2018), and cognitive surprise

(Kloosterman et al., 2015; Lavín et al., 2014; Preuschoff, 2011). Furthermore, because music

does not possess luminance properties that confound dilation responses via the pupillary light

reflex, pupillometry is particularly well-suited for measuring attention modulations while

listening to music. Indeed, this has already proved fruitful with studies demonstrating greater

dilations for syncopated (and groovy) rhythms (Bowling et al., 2019), music with larger

microtiming asynchronies (Skaansar et al., 2019), and melodies that were more liked and

predictable (Bianco et al., 2019). Therefore, pupillometry seemed the best tool to investigate the

predictive and dynamic mechanisms of rhythm and groove.

5. Research Questions and Goals

The main goals of this thesis were to investigate whether groove is a product of

predictive processes and to better understand human beat perception more broadly. This was

accomplished over the course of three studies. The first study attempted to find
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neurophysiological evidence that supports the theory, namely that the pupil dilation response

would exhibit the same inverted U-shaped relationship with rhythmic complexity as groove.

Given the pupil’s established relation to cognitive effort (Kahneman, 1973; Kahneman & Beatty,

1966), it could reflect the active process of correcting prediction errors said to occur when

participants experience feelings of groove. The second study sought to directly test one of

predictive coding’s primary assumptions – that movement corrects prediction errors and thus,

should increase feelings of groove relative to passively listening to the music without movement.

The final study explored the factors relevant to sharpening the beat perception skills that

influenced the other studies.

4.1 Pupil Drift Rate Indexes Groove Ratings

The first study found neurophysiological evidence for the predictive coding of groove by

recording changes in participants’ pupil sizes while they listened to drumbeats of varying

rhythmic complexity. The pupil dilates with sympathetic nervous system arousal mediated

primarily by norepinephrine (Alnæs et al., 2014; Laeng & Alnaes, 2019). Thus, it should come as

no surprise that pupil dilation has been highly correlated with the activity of the locus coeruleus,

the brain’s primary producer of norepinephrine, in both invasive studies of primates (Joshi et al.,

2016) and functional studies of humans (Alnæs et al., 2014; Endestad et al., 2020). This seems of

particular relevance for this study since norepinephrine has recently been hypothesized to encode

the precision of sensory predictions (Yon & Frith, 2021).

Therefore, if the predictive coding account is correct, then changes in noradrenergic

arousal indexed by the pupil should correspond to groove ratings along an inverted U-shaped

curve with rhythmic complexity. We found that the pupil drift rate (e.g., the rate that the pupil

size changed over time) did precisely that, indicating that groovier (moderately complex)

rhythms sustained attention longer. This effect appeared more prominent in participants with

higher beat perception ability scores.

Furthermore, this study also characterized rhythmic complexity not just in terms of

syncopation (as is common with drumbeat stimuli) but also pickups to independently explore the
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effects of both on groove. We found distinct roles for each rhythmic feature. Pickups were

associated with greater pupil dilations, likely in a process of priming attention toward the strong

beats relevant for establishing the meter. Notably, pickups had no direct effect on groove ratings.

Syncopations, on the other hand, elicited greater feelings of groove but did not influence pupil

dilation alone.

4.2 Sensorimotor Synchronization Increases Groove

As discussed in Sections 3.5 and 3.6, predictive coding posits that groove is an embodied

correction of sensory prediction errors arising from rhythmic complexity. Thus, it stands to

reason that if this is true, actual movement should increase feelings of groove relative to passive

listening where movement can only, at best, be mentally simulated. This second study tested this

by asking subjects to either tap their foot to the beat or passively listen to clips of real music that

varied in rhythmic complexity (quantified as pulse entropy) while we recorded their pupil sizes.

They then rated each musical clip in terms of groove.

We found support for predictive coding’s assumption that synchronous movements

increase feelings of groove, and possibly by reducing prediction errors as evidenced by greater

pupil dilations while synchronizing. Extending past findings of the inverted U-curve of groove

from simplified auditory stimuli to more ecologically-relevant music clips, we also showed that

both tap stability and intensity decreased with increasing rhythmic complexity, indicating that

participants became less confident in their less precise movements.

4.3 Use It or Lose It: Actively Playing Music Increases Beat Perception Ability

The final study explored how beat perception is impacted by individual differences. We

aggregated psychoacoustic and demographic data collected from three different experiments

(two of which are presented here in Sections 3.1 and 3.2) and analyzed whether musicians who

regularly practiced their instrument(s) exhibited better beat perception than their counterparts

who no longer practiced. Put another way, we investigated whether fine-grained beat perception

is a use-dependent ability that degrades with neglect.
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Beat perception abilities were assessed using the Computerised Adaptive Beat Alignment

Test (CA-BAT), a reliable and validated psychoacoustic test (Harrison & Müllensiefen, 2018b,

2018a). The CA-BAT presents subjects with pairs of short musical clips with overlaid beep

tracks, one of which is on the beat and one that is misaligned. Participants must report which

beep track was aligned to the beat and depending on the correctness of their response, the

difference in beep tracks becomes smaller (if the response was correct) or larger (if the response

was incorrect). This adaptive design allows the CA-BAT to obtain an estimate of beat perception

ability in just 25 trials, lasting around 10 minutes.

We found that musicians who actively practiced their instruments scored higher on the

CA-BAT than both musicians who no longer practiced weekly and nonmusicians. However, our

groups differed in their years of musical training and so we attempted to control for this with

both traditional linear as well as several non-parametric, nonlinear, machine learning-based

regression analyses. This revealed that once years of musical training were accounted for, regular

rehearsal no longer had any impact on beat perception ability. This suggests that beat perception

is not a use-dependent ability but rather remains stable once sufficiently trained.

6. General Discussion

This work has lent support to the predictive coding model of groove and expanded the

study of use-dependent plasticity in musical expertise to beat perception. That said, it does not

definitively rule out alternative explanations or influences on our work, chiefly dynamic

attending for the first two studies and the role of genetic predispositions in the third.

While the study designs in the first two experiments did not allow nonlinear oscillator

models to be fit to the data in order to directly test this, it remains possible that the stimuli drove

some endogenous entrainment processes that gave rise to our groove findings. The relative

sluggishness of the pupil dilation response and uncertainty about how its peak latency changes in

more repetitive environments like music, combined with the overall short length of our pupil

recordings (particularly the second study) all prevented us from exploring this possibility more

fully. That said, the sensorimotor synchronization results in the second study are perfectly

consistent with a mental process of dynamic attending and past work has indeed validated linear
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oscillatory mechanisms in the pupil (Fink et al., 2018). A critical next step could employ longer

trials and additionally collect electroencephalography (which has finer temporal resolution) to

address this possibility.

Similarly, the third study was not suited to answer questions relating to the influence of

genetic predisposition on beat perception because no genetic data was collected from our

participants. That said, a genome-wide association study confirmed that there are many genes

that factor into rhythmic abilities like beat perception and synchronization (Niarchou et al.,

2022). It would thus be interesting to investigate whether certain genes interact with both neural

plasticity and musicians’ playing habits. For instance, one could examine whether some genes

encode more enduring neural plasticity or if certain genes predispose one to stick to more routine

rehearsal over the lifespan. So despite these limitations, this work has extended past findings and

provided a basis for continued progress in rhythm research.

Specifically, the work has broadened the scope of rhythmic complexity to be more

inclusive in both theoretical and practical ways. While the overwhelming trend for groove

research in music psychology is to manipulate or measure syncopation, this work highlights the

importance of accounting for pickups since they play a different (and perhaps even

counteractive) role to syncopations. Future research could manipulate pickups and more directly

investigate their effects on both perceived complexity and groove. Finally, calculating pulse

entropy using the MIRToolbox offers a convenient way to quantify the rhythmic complexity of

real musical clips, opening the door for researchers to use a massive library of ecological stimuli

in future studies. In fact, when comparing the pupil responses of the first two studies, this work

has demonstrated that more ecologically-relevant clips of real music (widely held to be too noisy

and uncontrolled for psychology and neuroscience research) actually produce more robust results

than the simplified rhythmic stimuli typically regarded as the gold standard in the lab.

Regarding methodology, the first study contributes to the wider pupillometry literature by

illustrating the useful role of a different aspect of the pupil time series analysis, the pupil drift

rate. Drift measures could yield promising results when traditional approaches averaging the

entire time series either don't work or aren't appropriate. Similarly, the second study emphasizes

the importance of recording not just the timing of taps when subjects are synchronizing to

movement, but the forcefulness of their taps as well, something often neglected in both the

sensorimotor synchronization and groove literature. In our case, analyzing tap intensity yielded
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interesting insights related to subjects’ certainty. More generally, this work exemplifies the

rewards of adopting a plurality of methodologies since supplementing our ratings task with

pupillometry, psychoacoustics, and sensorimotor synchronization yielded such comprehensive

findings.

Building off of this last point, this work should also encourage researchers to embrace a

plurality of disciplines and engage in interdisciplinary work. Without the crucial support of

musicologists and music technologists, the stimuli used throughout this work may have been

severely limited in terms of confounds and interpretation. Similarly, without the cognitive

psychology methodologies and computational modeling analyses, the work’s theoretical

arguments would have suffered equally. To develop a truly critical perspective, one needs to

reach across conventional epistemological boundaries in academia.
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The peculiar ability for music to enjoyably compel us to move in synchrony with 
its rhythm has generated considerable academic interest over the  years1–3. This enjoyable urge to move (here-
after referred to as “groove” for simplicity’s sake) to music seems to be linked, at least in part, to the rhythm’s 
 complexity4–7. Recently, this has been framed within predictive coding models of the mind, positing that groove-
induced movements help to resolve sensory ambiguity regarding musical pulse and meter, thus minimizing 
prediction errors stemming from structural deviations like  syncopation8,9. This is proposed to occur along an 
inverted U-shaped  curve10. At low levels of complexity, there is little prediction error to resolve so movement 
isn’t needed to reinforce our metric model since it is already closely aligned with the rhythm. At more mod-
erate levels of complexity, the body can be moved in synchrony with the basic beats of the groove, allowing 
proprioceptive inputs to reinforce the perceived pulse and meter of the rhythm and thus eradicate the sensory 
prediction errors. (Pulse here refers to the tempo in which you would tap your feet to the music, and meter to 
the way in which you would group these beats). In a more phenomenological approach, this body movement has 
been suggested to result in “participatory pleasure” by filling in the expected  beat11. However, in highly complex 
rhythms, meter may become unclear, the prediction about the timing of notes may be weakened, and synchro-
nous movements  hindered12. Therefore, the greatest ‘precision’ in prediction errors (i.e., the most “predictable” 
prediction errors) occurs at moderate levels of metric complexity where these errors can be corrected by moving 
in a process of active  inference8.

The above theory is also compatible with dynamic attending theory (DAT)  accounts13 where active sensing 
(using movement to change sensory inputs) can entrain neural oscillations to relevant parts of the rhythm, 
selectively enhancing or suppressing their processing with  attention14,15. While the elegance and plausibility of 
this account is enticing, strong evidence mapping behavior (i.e., the experience of groove) to neurophysiological 
processes using musically-relevant stimuli has remained elusive.

If predictive coding underlies the enjoyable urge to move in response to music, 
then some neurophysiological marker of precision-weighted prediction errors should be found alongside the 
experience. One likely candidate is the neurotransmitter norepinephrine which has been hypothesized to 
encode the reliability (i.e., precision) of sensory predictions and enhance the signal-to-noise ratio of incom-
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ing  information16. Pupillometry offers a convenient way to investigate this given its tight correlation to locus 
coeruleus activity, the brain’s primary norepinephrine  producer17–19. Consequently, the pupil dilation response’s 
association with cognitive effort and attention allocation is well-documented20–22 and previous research shows 
that the pupil can index the deployment of attentional  resources23–27. Since actively modulating the precision 
of prediction errors is likely to require  attention28, it stands to reason that this process—if it is crucial to the 
experience of groove—could be observed using pupillometry. Initial findings are encouraging. Bowling, Graf 
Ancochea, Hove, and Fitch recorded greater pupil dilations in response to syncopated (and groovy) rhythms 
compared to unsyncopated (and less groovy)  rhythms29 while Skaansar, Laeng, and Danielsen found that larger 
microtiming asynchronies elicited greater pupil  dilations30. Thus, the question does not seem to be whether 
noradrenergic arousal is related to groove, but rather how it is related to groove and if this is consistent with the 
existing theories.

We hypothesized that if the experience of groove is associated with an active process 
of suppressing prediction errors, then it should be reflected in stronger pupillometric arousal at moderate levels 
of syncopation where precision-weighted prediction error is highest and active inference is needed (and able) to 
correct it. To accomplish this, we decided to record participants’ pupil responses while listening to drumbeats 
varying in the amount of deviations from isochrony (and thus predictability). They also rated the drumbeats in 
terms of how much they wanted to move, how much they enjoyed them, and how energetic they were. Unique to 
our study, we characterized the deviations from isochrony in two orthogonal ways to investigate groove: events 
on unstressed or weak beats followed by subsequent strong beat events (pickups) and events on unstressed beats 
not followed by subsequent strong beat events (syncopations). The standard musicological definitions of pickups 
(also called anacruses or upbeats) and syncopation (see definitions in Refs.31,32) indicate that each deviation type 
has a different musical function: (a) pickups cue the following strong beat event and then fulfill it; (b) syncopa-
tions break this bond by omitting the strong beat  event32,33. In other words, or psychological terms, pickups 
could be analogous to a priming stimulus prior to a temporal event while a syncopation seems more akin to 
its omission. Such a role of pickups in the experience of groove has been previously  hypothesized5,6 although it 
was not investigated independently of syncopation. We predicted that pickups would elicit weaker pupil dila-
tions than syncopations because syncopations lack a subsequent strong beat, making them more surprising and 
requiring more cognitive resources to suppress. For the purposes of this paper, we treat both pickups and synco-
pation as deviations that increase the rhythmic complexity of our stimuli (relative to rhythms without weak beat 
events) even if they may do so in different ways.

Many studies in cognitive psychology have employed simple drumbeats (e.g., kick-snare-hihat) to investi-
gate rhythmic properties’ relation to  groove4,7,29,34–36. However, these foundational studies tended to be more 
exploratory in nature and so several factors and parameters were uncontrolled, like event order, metric levels, 
perceived musicality, and the potential effect of pickups. To ensure that rhythmic complexity is the driving 
factor behind groove, the order of rhythmic events needs to be consistent in each condition since a kick-snare 
and snare-kick sound are qualitatively different and could therefore impact the urge to move. Moreover, the 
syncopated drumbeats in these studies tend to rely more heavily on faster metric levels whereas their lower or 
unsyncopated counterparts tend to remain at slower subdivisions, that is, subdivisions that are one level higher 
in the metric hierarchy. If these variations are systematic, they may introduce additional cognitive demands (e.g., 
attending to another metrical level) that scale in parallel to the amount of syncopation. Another pitfall is that 
stimuli sound nonmusical or cease to sound musical after being subjected to rigorous manipulation. If certain 
rhythmic conditions systematically sound less musical than others, this could affect the experience of groove and 
create or exaggerate differences that could then falsely be attributed to metric complexity; indeed, experienced 
familiarity with the music has been shown to play a role in  groove34. Finally, while prior groove studies rigorously 
accounted for syncopations, none explicitly examined the predictive role of pickups and its effect on groove.

Because individual differences in beat perception could affect the way subjects model the rhythms, and 
therefore their experience of groove, we also administered the Computerised Adaptive Beat Alignment Test 
(CA-BAT)37,38. With this information, we hoped to extend previous findings that demonstrated a more promi-
nent inverted U-shaped relationship between groove and syncopation in  musicians39 by directly probing beat 
perception abilities that have been linked to synchronizing to high- and low-groove  music40, without necessarily 
identifying such ability with musicianship. Specifically, we expected to find divergent results between high and 
low beat perception performance at the upper end of rhythmic complexity. Since good beat perception would be 
necessary to generate a predictive model of the most complex repeating drumbeat, this should result in greater 
groove ratings for high performers on the CA-BAT but not the low performers.

We recruited 30 participants (seven women) with varying degrees of musical experience and 
expertise as assessed by a custom-made questionnaire and the CA-BAT. All participants provided informed con-
sent in accordance with the Declaration of  Helsinki41 and were compensated with a 100 NOK (~ €10) gift card. 
Ethical approval was granted by the Department of Psychology’s internal research ethics committee at the Uni-
versity of Oslo (reference number 8131575). The average age of our sample was 26.8 (range 18–42, SD 5.07 years) 
and the average time spent listening to music was 24.03 h per week (range 1–84, median 21). Eleven of our sub-
jects reported no musical training while the remaining 19 had trained for an average of 8.47 years (range 1–20, 
SD 6.22 years). Of these, 11 of 19 subjects played multiple instruments, with eight playing stringed instruments, 
four percussion, two brass instruments, seven piano, one voice, and five other/electronic instruments for an 
average of 5 h per week (range 0–27, standard deviation 6.59 h). A summary of each subject’s demographics and 
performance can be found in Table 1 of the Supplementary Materials.
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To ensure that our behavioral and pupillometry results reflected rhythmic complexity, each drum-
beat followed the same order of events (alternating kicks and snare hits over a zeitgeber hihat, with an extra 
kick in the second bar) at the same metric level (that of the quaver) using the algorithm proposed by Sioros 
et al.32. Furthermore, we designed each stimulus with musicality in mind, starting with a standard back-beat rock 
drumbeat. It should be stressed here that our operationalization of Rhythmic Complexity narrowly treats any 
deviation from isochrony as an increase in complexity. While differing somewhat from the previously used Syn-
copation  Index7 in that it distinguishes between pickups and syncopations and avoids assigning scalar weights, it 
orders our stimuli in the same manner. How this maps onto psychological perceptions of complexity is an open 
question.

We settled on six different drumbeats: (1) a low complexity pattern with no pickups or syncopations (Low), 
(2) a pattern made moderately complex with pickups (Pickups), (3) a pattern made moderately complex with 
syncopation (Syncopation), (4) a pattern made moderately complex with both pickups and syncopation (Pickups 
and Syncopation), (5) a pattern made highly complex with more pickups and syncopations (High Complexity), 
and (6) a random condition where the event placements were pseudorandom (meeting our control criteria) and 
did not loop (Random). Except for the random condition, each drumbeat consisted of four two-bar patterns at 
100 beats per minute for a total duration of 19.2 s. At the end of each two-bar pattern a kick drum stroke on the 
last eighth note position, that is, a pick-up to the first beat in bar 1, signals the start/end of a new pattern. The 
“random” condition was different from the others in that the pattern was randomly generated and varied with 
each repetition. Notations of each drumbeat are presented in Fig. 1 and sound files can be found here: https:// 
osf. io/ sd5up/? view_ only= fa6bd 354eb 21436 8b77d a9d5f 18abc f1.

All stimuli were composed in Ableton Live, using MaxForLive devices for the automation of transformations, 
and produced in Reaper and then edited to appropriate lengths with  Audacity42.

Pupil diameters were continuously sampled at 60 Hz using a SensoMotoric Instruments (SMI) 
RED250 eye tracker mounted beneath a 22-inch LED monitor in a dimly lit room situated 70 cm away from the 
subject. After a five-point (arranged in a cross) calibration and validation procedure, participants were instructed 
to passively listen to each drumbeat and immediately after rate each by how much they felt compelled to move 
(“I did not want to move at all” vs. “I wanted to move a lot” with movement being specified to include tapping 
or nodding), how much they liked the drumbeat (“I did not enjoy it at all” vs. “I enjoyed it a lot”), and how 
energetic the drumbeat sounded (“The drumbeat was very calm” vs. “The drumbeat was very excited”) using 
visual analogue scales that spanned half the width of the monitor with each key press corresponding to a jump 
of seven pixels. This scale granularity was not visible to the subject and the sensitivity was titrated to feel natural 
during piloting. The first two questions were used to measure groove while the last acted as a catch question and 
to control for perceived energetic arousal of the stimuli. During each trial, subjects fixated on a black fixation 
cross presented on a gray background generated with Psychtoolbox-3 for  MATLAB43. The first three seconds of 
fixation were silent, serving as a baseline. Subsequently, a stereo drumbeat stimulus was played at a comfortable 
volume from two Genelec speakers (model 8030 W) flanking the screen with a subwoofer beneath the desk to 
enhance the bass since previous research suggests that it plays an important role in groove and establishing the 
beat for sensorimotor  synchronization44–47. Each stimulus was presented ten times in a pseudorandom order 
such that no stimulus could repeat back to back. Thus, all subjects completed 60 trials and were permitted to take 
self-paced breaks every five trials. After the main portion of the experiment, each participant then completed the 
CA-BAT with the entire experiment lasting about one hour.

All subjects’ ratings of Urge to Move, Enjoyment, and Perceived Arousal were z-scored 
to control for individual differences in the way that subjects used the visual analog scales. The z-scored ratings 
of each trial were averaged for each drumbeat for each subject and then summary statistics were calculated at 
the group level for each drumbeat. To investigate beat perception, we grouped participants into High (N = 15) 

Figure 1.  Musical notation for our drumbeat stimuli. Pickups are circled in blue while syncopations are circled 
in orange.
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and Low (N = 15) Performance using a median split on their ability scores from the CA-BAT. The distribution 
of Beat Perception Ability scores as well as its significant correlations with our demographics measures are plot-
ted in Supplementary Figs. 1–3. Differences between the High Complexity and Random drumbeats were com-
pared using a mixed analysis of variance (ANOVA) with Beat Perception Performance group (High or Low) as 
a between-subjects factor and Rhythmic Complexity (High Complexity or Random) as a within-subject factor.

To replicate past findings of an inverted-U relationship between rhythmic complexity and groove, we fit 
mixed effects models to our subjects’ ratings (Urge to Move, Enjoyment, Perceived Arousal). In keeping with 
standard practice, we first fit intercepts-only models with random effects of Subject and Stimulus Repetition 
and compared them to models with Rhythmic Complexity as linear slopes (linear model) as well as linear and 
quadratic slopes (quadratic model). Model comparison was conducted via likelihood ratio tests and both the 
Akaike (AIC) and Bayesian information criterions (BIC)48. Follow-up t-tests using Satterthwaite’s method were 
carried out for best-fitting significant models.

To explore the possibly different effects of pickups and syncopation on perceived groove, we also organ-
ized our first four rhythms in a 2 × 2 design for a repeated measures ANOVA with factors Pickups (Present or 
Absent) vs. Syncopation (Present or Absent). The High Complexity and Random patterns were excluded from 
this analysis because they would unbalance the design. All behavioral plots and analyses were carried out using 
custom scripts in R (version 3.6.049) and functions from the “dplyr”, “readr”, “ggplot2”, “lme4”, “lmerTest”, “effsize”, 
and “ez” packages.

Data were exported using SMI BeGaze™ to a format suitable for preprocessing and 
analysis using custom scripts in R (version 3.6.049) as well as functions from the “pupillometry”  package50. First, 
the pupil time series for the right eye were locked to the stimuli onsets. Blinks were removed along with the pre-
ceding and succeeding 100 ms to eliminate edge artifacts resulting from partial occlusions of the pupil. Each trial 
was then smoothed using a 500 ms Hann window at 60 Hz and gaps smaller than 750 ms were interpolated with 
cubic splining. Next, the median pupil value from the last 1000 ms of each trial’s baseline period was subtracted 
from the rest of its time series to correct for random trial-to-trial fluctuations in a way that is less contaminated 
by noise than divisive baseline  correction51. Finally, trials with more than 33% missing data were excluded and 
the remaining data was averaged in 100 ms bins for plotting and statistical analysis with the packages “ggplot2” 
and “ez”, respectively. Overall, this left us with 96.94% of valid pupil samples for analysis.

In addition to the pupil traces for individual trials, we were also interested in the rate at which these traces 
decayed since they could represent “decreasing attentional engagement”22. This is of particular importance to us 
because if norepinephrine is involved with suppressing precision-weighted prediction errors, then its firing would 
be more sustained while listening to groovier rhythms. Conversely, attention would disengage more rapidly to 
both simpler rhythms (which do not produce many prediction errors to suppress) and more complex rhythms 
(where prediction errors cannot be suppressed). Thus, for each of the four stimuli repetitions within a trial, we 
calculated the slope between the average pupil size in the first and last beats (300 ms) and took this pupil drift 
rate to represent attentional maintenance (at higher values) or fatigue (at lower values).

Finally, the same repeated measures ANOVA with Pickups (Present or Absent) and Syncopations (Present 
or Absent) as factors was computed with average Pupil Size as the dependent measure. Significant effects were 
then localized to time windows corresponding to the rhythmic manipulations of interest (i.e., the moments sur-
rounding the pickups or the syncopations) by repeating the test in those windows.

As expected, adding slopes for Rhythmic Complexity improved the model fit for all 
ratings. However, the quadratic slope significantly improved the fit for Urge to Move ( 2(1) = 14.643, p < 0.001) 
and Enjoyment ( 2(1) = 20.774, p < 0.001) while our control question, Perceived Arousal, only trended toward 
a significantly better fit ( 2(1) = 3.429, p = 0.064). Follow-up tests revealed significant negative quadratic (i.e., 
inverted U-shaped) trends for both Urge to Move (b(29) = − 3.167, 95% CI [− 4.643, − 1.691]) and Enjoyment 
(b(29) = − 2.659, 95% CI [− 3.64, − 1.675]), but not Perceived Arousal (b(29) = − 0.694, 95% CI [− 1.432, 0.043]). 
The significant quadratic predictors for Urge to Move and Enjoyment ratings are plotted in Fig. 2a.

Adding Beat Perception group to the mixed effects models yielded similar significant quadratic trends for 
Urge to Move (b(28) = − 3.738, 95% CI [− 5.804, − 1.672]) and Enjoyment (b(28) = − 2.664, 95% CI [− 4.055, 
− 1.27]) that better fit their linear equivalents (Urge to Move: 2(2) = 15.253, p < 0.001; Enjoyment: 2(2) = 20.774, 
p < 0.001). However, Beat Perception did not significantly impact any ratings except as an interaction with Enjoy-
ment’s linear trend which thus resulted in a slightly better model fit ( 2(3) = 9.247, p = 0.02). Follow-up tests 
revealed this was driven by the Low Beat Perception Performance group exhibiting a significant negative linear 
trend (b(14) = − 3.618, 95% CI [− 6.044, − 1.193]) that was absent in the High Beat Perception Performance 
group. This indicates that while both High and Low Beat Perception groups showed prominent quadratic trends 
for both Urge to Move and Enjoyment, only the Low Beat Perception Performance group had a significant linear 
trend that improved model fit for Enjoyment. This is plotted in Fig. 2b.

The mixed ANOVA comparing High and Low CA-BAT Performance groups’ Urge to Move ratings to the 
High Complexity and Random drumbeats yielded a marginally significant interaction between the two factors 
(F(1,28) = 4.492, p = 0.043, η2G = 0.022) driven by a small effect in the High Beat Perception Performance group 
(F(1,14) = 5.189, p = 0.039, η2G = 0.077) showing higher ratings for the High Complexity relative to the Random 
drumbeat that was absent in the Low Beat Perception Performance group (F(1,14) = 0.115, p = 0.740, η2G < 0.001). 
For Enjoyment, a similarly marginal increase in ratings for the High Complexity compared to the Random 
drumbeat was found for both High and Low Beat Perception Performance groups (F(1,28) = 5.490, p = 0.026, 
η2G = 0.025) alongside a slightly larger group difference where High Performers rated both drumbeats somewhat 
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higher than Low Performers (F(1,28) = 6.108, p = 0.020, η2G = 0.160). No significant main effects or interactions 
were found for Perceived Arousal. Given the inconsistency between Urge to Move and Enjoyment ratings, these 
results should be taken with some caution.

Using the 2 × 2 design, a two-way repeated measures ANOVAs with within-subjects factors Pickups 
and Syncopation revealed that Syncopation, but not Pickups, significantly boosted ratings of Urge to Move 
(F(1,29) = 4.781, p = 0.037, η2G = 0.045), Enjoyment (F(1,29) = 10.515, p = 0.003, η2G = 0.095), and Perceived 
Arousal (F(1,29) = 8.665, p = 0.006, η2G = 0.085) with no significant interaction between the two factors. These 
results are depicted in the boxplots in Fig. 3 below.

Binned and averaged pupil traces of each rhythm with within-subject confidence 
intervals are plotted in Fig. 4. All conditions demonstrate a sudden dilation consistent with the classic stimulus 
onset effect in the first repetition out of four, potentially masking effects of interest. To ensure that our drift rate 
results are untainted by such startle effects, this first repetition window was excluded from further analyses.

The pupil size’s drift rate, representing the degree of attentional maintenance or fatigue, is plotted over the 
remaining three repetitions of the drumbeats in Fig. 5. A repeated measures ANOVA on the pupil drift rate with 
within-subject factors Rhythm and Repetition revealed a significant modest effect of Repetition (F(1,29) = 26.774, 
p < 0.001, η2G = 0.105) and a smaller but significant interaction between the two factors (F(5,145) = 2.434, 
p = 0.038, η2G = 0.044). Post-hoc tests revealed this interaction to be driven by a main effect of Rhythm found 
only in the second repetition (F(4.517,130.994) = 3.104, p = 0.0139, η2G = 0.067, Huynh–Feldt corrected) and a 
trend in the third repetition (F(5,145) = 2.009, p = 0.081, η2G = 0.054). For this reason and from visual inspection 
of the entire pupil trace time series, we chose to focus further analyses on the second repetition alone. Remark-
ably, the pupil’s drift rate during the second repetition mirrors the Urge to Move and Enjoyment ratings in the 
behavioral portion of the experiment. Using the same mixed effects modeling procedure as the behavioral data, 
we found that a quadratic model fits the pupil drift rate data significantly better than a linear model ( 2(1) = 9.721, 

Figure 2.  Quadratic models of the behavioral results across Rhythmic Complexity. (A) Quadratic models 
for Urge to Move, Enjoyment, and Perceived Arousal with individual subject predictors. Urge to Move and 
Enjoyment displayed significant quadratic trends. (B) Groove ratings across Rhythmic Complexity split by 
performance on the CA-BAT. There was a significant interaction between Beat Perception and the linear 
relationship between Rhythmic Complexity for Enjoyment.
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p = 0.002). Follow-up contrasts showed that this quadratic trend for Rhythm was significant (b(148) = − 0.349, 
95% CI [− 0.557, − 0.140]), demonstrating an inverted U-shape. This is depicted in Fig. 6a.

Adding beat perception as a fixed effect like we did with the behavioral data improved model fit for the 
pupil drift rates as well ( 2(2) = 15.939, p < 0.001). Follow-up tests revealed a main effect of the quadratic trend 
(b(146) = − 0.605, 95% CI [− 0.890, − 0.321]) and a significant interaction with Beat Perception (b(146) = 0.513, 
95% CI [0.111, 0.915]). This interaction was driven by a significant quadratic trend that was only present in the 
High Beat Perception Performance group (b(14) = − 0.428, 95% CI [− 0.619, − 0.237]), indicating this group 
exhibited an inverted U-shape while the Low Beat Perception Performance group did not. This is plotted in 
Fig. 6b.

Next, we repeated our analysis of pickups vs. syncopations using average pupil size data on the entire time 
window. Here, a repeated measures ANOVA with the factors pickups (Present or Absent) and syncopation (Pre-
sent or Absent) revealed a significant main effect of pickups (F(1,29) = 4.421, p = 0.044, η2G = 0.011). To confirm 
that this effect was indeed driven by the actual presence of the pickups, we ran this analysis on time windows sur-
rounding the pickups. Given the temporal resolution of the pupil dilation response, we chose 1500 ms windows 
starting with the standard kick and ending 300 ms after the downbeat of the second bar to ensure each window 
had the same number of events (two kicks and a snare). This is illustrated in Fig. 7a. The repeated measures 
ANOVA corroborated this suspicion: there was a significant main effect of Pickups (F(1,29) = 4.626, p = 0.040, 
η2G = 0.013) with no effect of Syncopation or interaction, indicating greater pupil dilations in the two conditions 
with pickups. This is plotted in Fig. 7b.

In this study, we aimed to investigate pupillometric arousal in the context of groove and its relation to rhythmic 
complexity using a broad range of rigorously controlled drumbeat stimuli with the novel distinction between 
pickups and syncopations. We replicated previous behavioral results demonstrating an inverted U-shaped rela-
tionship between rhythmic complexity and groove, a relationship that seems less linear with rhythmic expertise 
as assessed by a beat perception test. We found that rhythms rated groovier were associated with more sustained 
attention as measured by the pupil size’s drift rate and that this also mapped onto groove ratings split by beat 
perception ability. Finally, pickups evoked greater pupil dilations while syncopations did not, whereas syncopa-
tions resulted in higher groove ratings while pickups exerted no effect on ratings.

First and foremost, groove ratings confirmed previous  findings4,5,7,29,34,35. However, our 
results also go beyond replication and add nuance by investigating pickups orthogonally to syncopation. While 

Figure 3.  Ratings with pickups (present or absent) and syncopations (present or absent) analyzed orthogonally. 
The presence of syncopations results in greater ratings of urge to move, enjoyment, and perceived arousal 
regardless of pickups’ presence. Large dots and triangles represent averages. Single asterisk is p < 0.05, two 
asterisks p < 0.01.
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syncopation is certainly one way of manipulating rhythmic expectations, we discovered that their combination 
with pickups, that is, unstressed notes that reinforce the following strong beat (pulse) or the beginning of a new 
measure (meter)31, is what produced maximal groove in our sample of drumbeats, as was previously hypoth-
esized by Sioros et al.5,6. This characterization of groove is in line with both the descriptive musicological model 
proposed by Sioros et al.32 and predictive coding as we will discuss further in the following subsection.

Our analyses using beat perception performance as an individual difference also fit neatly within the predic-
tive coding framework. Qualitatively, High Performers on the CA-BAT displayed inverted-U curves centered 
closer to the moderate levels of rhythmic complexity whereas ow Performers exhibited a significant negative 
linear trend that the High Performers did not. At upper levels of complexity, groove ratings are only enhanced 
by repetition in subjects with high CA-BAT performance, implying that the enjoyable urge to move to rhythms 
is indeed related to global predictions about their structures should they be perceived. Low Performers also 

Figure 4.  Pupil trace plots for all rhythm conditions over time. Ribbons represent within-subject 95% 
confidence intervals. Dashed vertical lines represent the boundaries where the first five rhythms looped. (A) 
Pupil traces for all rhythm conditions plotted against each other. (B) Pupil traces for each individual rhythm 
condition plotted separately for better visibility.
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appeared to find the Low Complexity rhythm groovier than high performers, likely because our Low Complexity 
rhythm was still complex enough to produce prediction errors for them to suppress. The high performance group, 
however, would not have this experience since their global model of the beat is strong enough to automatically 
suppress these smaller errors without the need for active inference. This is supported by studies like those of Mat-
thews et al.39 where experienced musicians displayed more pronounced quadratic effects in their groove ratings. 
These findings, however, should be taken with some caution given the inconsistent and marginal nature of our 
results, especially when comparing ratings of the High Complexity and Random drumbeats between groups. 
Further, using the entire distribution of CA-BAT scores as a linear predictor in our models was not significant, 
likely because our sample size was not particularly large or widely dispersed which may have adversely impacted 
our effect sizes. Thus, more focused work is needed to definitively support these claims.

Our groove ratings were most closely mirrored by the pupil drift rate, sug-
gesting that more sustained attention is associated with greater groove. This relationship persisted, albeit with 
similarly small effect sizes, when subjects were split by their CA-BAT performance as well. This is consistent 
with the hypothesis that an active process of correcting prediction errors with attentional resources underlies 
the enjoyable urge to move to music. We believe that this better maintenance of attention was the product of the 
interplay between pickups and syncopations in our stimuli. This drift, however, seems to approach floor with 
our musical stimuli after around 10 s, indicating that habituation can occur and mask these differences over 
extended periods of time.

Analyzing groove ratings and 
pupil size data with syncopations and pickups as separate factors exposed a dissociation where syncopations, 
but not pickups, significantly boosted ratings but pickups, not syncopations, evoked greater pupil dilations. 
While this may seem puzzling at first, in the context of our stimuli and the predictive contexts they created 
together, this can be explained by their different musical functions and the information that they feed to higher-
order predictions about the metric structure. Syncopations, by generating prediction errors that challenge global 
predictions of pulse, create the primary tension that compels us to actively correct them with our movement. 
Pickups, on the other hand, may strengthen global predictions regarding pulse and meter by immediately fulfill-
ing the expectation that events occur on strong beats, that is, they point out important beats by leading up to 
and anticipating them, in accordance with the previous hypotheses of Sioros et al.5,6. This covert deployment of 
attentional resources to the pickups occurs regardless of the presence of syncopations and is thus reflected in 
greater pupil size.

Figure 5.  Pupil drift rates by condition across the remaining three within-trial drumbeat repetitions. Drift rates 
were calculated by averaging the pupil sizes in the first and last three time bins of each repetition with each trial 
and then computing the slope between these two averages. Large dots represent averages.
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To support the arguments above, we linked pupil dilations to the specific window where the pickups manipu-
lation occurred in our stimuli; this effect endured through all repetitions within the trials. Because the time 
window’s onset corresponded to 300 ms before the pickup in the Pickups and Pickups and Syncopation rhythms, 
it seems possible that the pupil may have dilated in anticipation of the beat to strengthen global predictive mod-
els of the metric structure. This explanation adds support to the predictive coding literature where the brain 
is theorized to construct top-down predictions about future sensory experiences that are then used to update 
those  predictions52,53.

Pickups are especially intriguing because they might be thought to reinforce the pulse and meter rather than 
challenge it, and thus compensate for the subversive effect of syncopations which lack the subsequent event on the 
strong  beat33,54. In predictive coding terms, both pickups and syncopations may produce local prediction errors 
since they fall on weak beats (i.e., they violate isochrony), but they propagate different information to higher-
order predictions about the metric structure. Because pickups are paired with strong beat events that confirm 
predictions of the global rhythmic structure, the local prediction errors from the pickups are more precise than 
those arising from the more unexpected syncopations that lack immediate clarification and consequently call 
the global rhythmic structure into question. That is, rather than being perceived as unexpected events, pickups’ 
close proximity to a strong beat event immediately resolves the challenge to isochrony and strengthens the global 
model whereas this challenge goes unchecked for syncopations. Neurophysiologically, the brain may release 
norepinephrine to increase the gain of the picked up strong beat and strengthen the metric model, whereas the 
omission of this strong beat in syncopations needs to be suppressed with movement because it calls the metric 
model into question. Thus, while syncopations generate the metrical uncertainty that may demand resolution 
through movement, pickups strengthen the internal model that could be used to guide movements. These move-
ments are then used to reinforce the metric model itself in a feedback loop.

While we believe our results are consistent with predictive coding, 
the inverted U-shaped relationship found in the groove ratings and pupil drift rate could potentially be a result of 
familiarity since most music composed in the Western musical traditions contains moderate amounts of rhyth-
mic complexity (e.g., a mixture of both pickups and syncopations). Predictive coding elegantly posits that music 

Figure 6.  Quadratic fits for the pupil drift rate across rhythmic complexity for Repetition 2 where the 
significant interaction was found. (A) Quadratic predictor of pupil drift rates by rhythm condition during the 
second repetition of the drum pattern within the trials. Large dots represent averages. (B) Pupil drift rates with 
quadratic predictors by high and low beat perception performance. High performers displayed a significant 
quadratic relationship with rhythmic complexity while low performers did not.
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was composed this way because of predictive processes, but it is entirely possible that this occurred for other 
reasons that then became encultured and familiar. This hypothesis would be consistent with recent evidence 
presented by Sioros et al.6, where algorithmically-generated random syncopation patterns were less effective in 
evoking groove than the original syncopating patterns of the music excerpts that had a similar degree of synco-

Figure 7.  Pupil Size analysis by pickups (Present or Absent) and syncopations (Present or Absent) in 
the window of interest where the pickup manipulation occurred. (A) Window of interest for further 
analysis. Dashed lines represent hihat hits while Ks represent kick drum hits and Ss represent snare 
drum hits. Low = Pickups absent, Syncopations Absent, Pickups = Pickups Present, Syncopations Absent, 
Syncopation = Pickups Absent, Syncopations Present, Pickups and Syncopation = Pickups Present, Syncopations 
Present. (B) Boxplots showing pupil size in the window of interest by Pickups and Syncopation. Large dots and 
triangles represent group averages.
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pation but were created by musicians. We did not assess familiarity in this study because we composed our own 
stimuli (thus, the participants should not have explicitly recognized any of our drumbeats), but cross-cultural 
work should be done to disentangle the effects of enculturation and rhythmic complexity.

An alternative explanation for why pickups elicited greater pupil dilations is that the pickups created phe-
nomenal accents on the subsequent strong  beat55. That is to say, the pickup primed the following beat so that 
it sounded illusorily louder than other notes, which then evoked a dilation in the pupil. Indeed, past psychoa-
coustics research has reported small enhancements in perceived loudness of secondary tones with paired sound 
sequences around the same time interval as our stimuli (300 ms)56,57. Since physical loudness differences have 
been shown to result in greater pupil  dilations58,59, this account seems plausible and indeed we cannot rule out 
this possibility with the data presented here. However, because accents direct attention, we take this interpreta-
tion to be complementary to our own that pickups cue attention to strong beats to emphasize the metric model 
in a sort of attentional  priming60.

Another reason why pickups resulted in greater pupil dilations is potentially because of the number of events. 
Although we controlled for this as best as we could by ensuring that there were equal kick, snare, and hihat hits 
in each condition, it is possible that the pupillary response to syncopations occurs at a longer timescale than 
for pickups. Because syncopations can only be appraised as such after the omitted strong beat has passed, the 
response for syncopations may have extended beyond our window of interest while the more immediate dila-
tion for pickups was captured. While this confound may have been mitigated by the additional 300 ms after the 
downbeat in our window of interest (600 ms after the kick in the syncopated conditions), we nevertheless contend 
that any potential dilation delay is captured by the drift rate analyses.

On a related note, a shortcoming of pupillometry is that the temporal resolution is limited and we cannot 
directly probe the evoked responses to individual pickups and syncopations. Many researchers have cleverly 
found ways to remedy this with  deconvolution61–64. However, as Fink et al.65 note, estimating the delay between 
stimuli and the pupil responses is not always so straightforward and has been shown to differ depending on 
whether motor responses are  required63. Temporal alignment may prove even more difficult when using musical 
stimuli where anticipation changes response latency over time. Moreover, this temporal alignment may also vary 
with different types of musical anticipation (e.g., for syncopations vs. pickups). Fink and colleagues’ forward 
modeling method avoids this issue, but the interpretation shifts from evoked pupil responses to fitting predictive 
models. In order to more directly measure both rhythmic entrainment and quick, evoked responses without 
introducing theoretical assumptions, we plan to record EEG in further investigations of groove for its greater 
temporal resolution. In addition to entrainment, event-related potentials to on- and off-beat notes in different 
rhythmic contexts could elucidate finer differences between pickups and syncopations.

We further plan to extend our behavioral findings regarding the effect of repetition at high levels of rhythmic 
complexity by beat perception ability to lower levels of complexity. Does repeating a rhythm continue to result in 
higher groove ratings for only those with strong beat perception abilities or does it generalize to everyone when 
the beat is easier to perceive? In this way, we can directly modulate global predictions through repetition at every 
level of metric complexity to disentangle pure predictive processes from musicological ones.

To our knowledge, this is the first rigorously controlled study of pupil size changes over a broad range of rhyth-
mic complexity that encompasses both pickups and syncopations in order to investigate the neurophysiological 
correlates of groove. Previous studies either did not fully explore the upper end of complexity or did not clearly 
distinguish the role of pickups. Here we replicate the canonical inverted U-shaped relationship between rhythmic 
complexity and groove ratings, including that this effect is enhanced by musical ability using a psychoacoustic 
test rather than participant demographics. These results seem consistent with the pupil drift rate, suggesting that 
groovier rhythms hold attention longer than ones rated less groovy. Moreover, we found divergent but comple-
mentary effects of syncopations and pickups on groove ratings and pupil size, respectively, extending previous 
findings by discovering a distinct predictive role for pickups. Specifically, while syncopations may demand our 
movement to enforce the metric model, pickups evoke greater pupil dilations and cue our attention to strong 
metric positions without our own movement. This thus lends correlative support to the predictive coding account 
where groove is envisioned as an embodied resolution of precision-weighted prediction  error8,9
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1. Abstract

The ability to perceive the beat in music is crucial for both music listeners and players

with expert musicians being notably skilled at noticing fine deviations in the beat. However, it is

unclear whether this beat perception ability remains stable once trained or whether it diminishes

with disuse. Thus, we investigated this by comparing active musicians’, inactive musicians’, and

nonmusicians’ beat perception ability scores on the Computerised Adaptive Beat Alignment Test

(CA-BAT). 97 adults with diverse musical experience participated in the study, reporting their

years of musical training, number of instruments played, hours of weekly music playing, and

hours of weekly music listening, in addition to their demographic information. The analysis

showed that there was no significant difference between active musicians’, inactive musicians’,

and nonmusicians’ CA-BAT scores once differences in musical training had been accounted for.

Regression analysis confirmed that years of musical training was the only significant predictor of

beat perception ability. These results suggest that expertly perceiving fine differences in the beat

is not a use-dependent ability that degrades without regular maintenance through practice or

musical engagement. Instead, beat perception appears to be a stable ability once sufficiently

trained.

Keywords: {beat perception, active musicians, inactive musicians, nonmusicians, machine

learning, musical training}
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2. Introduction

2.1 Background

Practice makes perfect, but do you remain perfect after all that practice or do you lose it if

you don’t use it? Humans’ ability to master a variety of skills has fascinated psychologists and

neuroscientists for decades, culminating in a vast domain in and of itself (Chi et al., 2014;

Ericsson & Charness, 1994; Feltovich et al., 2006; Sternberg & Grigorenko, 2003), spanning

everything from sports (Shea & Paull, 2014) to chess (Charness, 1991). These impressive

abilities are often described as the result of extensive practice and effort (Lehmann et al., 2018;

Sloboda et al., 1996). Of particular interest to this work is how these factors impact musical

expertise (Lehmann et al., 2018; Sloboda, 1991) and more importantly, whether they have a

lasting effect once the practice comes to an end.

Musicians refine a number of different perceptual, motor, and cognitive skills to play

their instrument(s) with fluency (Lehmann et al., 2007; Sloboda, 1991). Psychologically, this

manifests in musicians outperforming nonmusicians in discriminating different pitches

(Kishon-Rabin et al., 2001; Micheyl et al., 2006; Tervaniemi et al., 2005), tapping to rhythms

(Chen et al., 2008; Franěk et al., 1991; Repp & Doggett, 2007; Skaansar et al., 2019), and

remembering auditory stimuli (Cohen et al., 2011; Pallesen et al., 2010; Talamini et al., 2018).

With the advent of neuroimaging tools, many studies have now shown that these differences

manifest in a host of functional and anatomical changes to the brain as well (Amunts et al., 1997;

Brattico et al., 2001; Criscuolo et al., 2022; Dawson, 2014; Imfeld et al., 2009; Jäncke, 2009).

While there are clearly many investigations in the literature comparing musicians and

nonmusicians, fewer break the dichotomy down into different types of musicianship and when

they do, the results are often mixed. For instance, some studies have compared professional to
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amateur musicians and nonmusicians (Appelgren et al., 2019; Gaser & Schlaug, 2003; Hove et

al., 2010; Kauffman & Carlsen, 1989; Krause et al., 2010; Mikutta et al., 2014; Repp, 2010),

early- vs. late-trained musicians (Bailey et al., 2014; Bailey & Penhune, 2010, 2013; Shenker et

al., 2022; Steele et al., 2013; Watanabe et al., 2007), and active vs. inactive musicians (Bonde et

al., 2018; Hanna-Pladdy & Gajewski, 2012; Romeiser et al., 2021). This last classification of

active vs. inactive musicians is especially important for investigating how ingrained these

musical abilities truly are – do they dull without regular maintenance or are they set in stone

once perfected?

One foundational musical ability is beat perception, the ability to detect temporal

periodicities in musical rhythms (Nguyen et al., 2018; Schulze, 1978). The behavioral literature

comparing beat perception in musicians and nonmusicians is somewhat mixed (Grahn & Rowe,

2009; Madsen, 1979; Rammsayer & Altenmüller, 2006) with clear individual differences present

(Grahn & McAuley, 2009; Grahn & Schuit, 2012). Specifically, musicians have been shown to

be more accurate in judging tempo (Madsen, 1979) and beat alignment (Grahn & Schuit, 2012)

as well as displaying better rhythm perception (Rammsayer & Altenmüller, 2006) and greater

subjective experience of the beat, but only when one was present (Grahn & Rowe, 2009).

Conversely, other researchers found no difference between musicians and nonmusicians on

rhythm discrimination (Grahn & Brett, 2007), temporal generalization (Rammsayer &

Altenmüller, 2006), or (after an outlier was removed) beat strength tasks (Grahn & McAuley,

2009). This could be due to the multidimensionality of rhythmic abilities in general, with many

different perceptual, cognitive, and genetic factors contributing (Fiveash et al., 2022; Niarchou et

al., 2022). One factor that could potentially distinguish differences in beat perception between
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musicians that has remained largely unexplored is whether active maintenance of rhythmic

abilities change through continued music playing or devolve when discontinued.

2.2 The Present Study

Therefore, the present study was conducted to investigate possible differences in beat

perception between active and inactive musicians and nonmusicians. We hypothesized that

trained musicians who continue to play music regularly would be able to discriminate finer

deviations from the beat than nonmusicians and, to a lesser degree, inactive musicians who no

longer play their instruments. A working hypothesis based on the ‘use it or lose it’ principle of

brain plasticity (e.g., Shors et al., 2012) further suggests that inactive musicians may simply

revert to a previous stage of the ability, though it is unclear whether this stage is comparable to or

more advanced than nonmusicians. Alternatively, sufficient musical training may cement

heightened abilities regardless of regular rehearsal or other metrics of musical engagement.

3. Methods

3.1 Participants

To this end, we analyzed beat perception ability scores obtained with the Computerised

Adaptive Beat Alignment Test (CA-BAT) (Harrison & Müllensiefen, 2018b, 2018a) for previous

studies by Spiech and colleagues (Spiech et al., 2022; Spiech et al., 2022; Spiech et al., 2022, in

prep). Data from 97 unique participants recruited for three past studies on beat synchronization

to challenging ‘groovy’ beats (Spiech et al., 2022; Spiech, et al., 2022, submitted; Spiech et al.,

2022c, in prep) was used in this analysis. The participants included 46 women, of which 7 were

left handed and 50 men. One individual did not report demographic information and we used the

mlim R package (Haghish, 2022) to impute the missing observations. Participants were 27.2
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years old on average (range: 18-56, SD: 6.1 years) and listened to music for an average of 17

hours per week (range: 1-84, SD: 15.1 hours).

First, we classified participants into Active Musicians, Inactive Musicians, and

Nonmusicians using their self-reported instruments played, musical training, and weekly music

playing. Active Musicians (N=48) were classified as any subjects who reported playing music

weekly (M: 5.7, range: 1-27, SD: 5.9 hours). Active Musicians reported receiving 10.4 years of

musical training on average (range: 0-34, SD: 7.6 years) and played a variety of instruments (29

stringed instrumentalists, seven percussionists, four brass instrumentalists, 18 pianists, 11

vocalists, and nine other instrumentalists including electronic music producers). Inactive

Musicians (N=27) were classified as any subjects who reported not playing music weekly but

had either received some musical training or reported being able to play an instrument. Inactive

Musicians had an average of 5.4 years of musical training (range: 0-20, SD: 5.033 years) with

nine playing stringed instruments, two playing percussion, five playing brass instruments, 12

playing piano, and one singing. The remaining participants (N=21) reported having no musical

training nor having learned to play any instrument and were thus classified as Nonmusicians

(N=21). These group characteristics are depicted in Table 1 below.

Musicianship
Group

Number of
Participants

Hours Played
Weekly

Years of Musical
Training

Number of Instruments
Played

Active Musicians 48 5.7 (1-27) 10.4 (0-34) 1.7 (1-4)

Inactive
Musicians 27 0 5.4 (0-20) 1.1 (0-2)

Nonmusicians 21 0 0 0

Table 1. Summary statistics of the different Musicianship groups. For hours played weekly, years

of musical training, and number of instruments played, the first values represent the group

average while the values in parentheses are the range.
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3.2 Procedure

For the purposes of comparing uniform data, only the information from the custom-made

musicianship questionnaire (results of which are summarized in the Participants section) and

from the CA-BAT were used. The CA-BAT is a reliable and valid psychoacoustic test that

measures participants’ ability to discriminate fine differences in the timing of a musical beat

(Grahn & Schuit, 2012; Harrison & Müllensiefen, 2018a, 2018b; Iversen & Patel, 2008; Leow et

al., 2014; Ross et al., 2018; Spiech et al., 2022; Spiech, Connor et al., 2022; Tranchant et al.,

2021). The CA-BAT achieves this by playing 25 short musical clips with overlaid beep tracks.

Each clip is played twice, once with the beep track aligned to the beat and once where the beep

track is misaligned (by a constant proportion) to some extent. Participants are then asked to

select the clip where they thought the beep track was aligned to the beat. These beep tracks can

be misaligned by Owing to item response theory and its adaptive design (i.e., correct responses

result in smaller differences between beep tracks while incorrect responses result in greater

differences), the test itself only takes around 10 minutes to estimate a participant’s beat

perception ability.

3.3 Statistical Analysis

First, a one-way analysis of variance (ANOVAs) with Beat Perception Ability as the

dependent variable was used to assess Musicianship (Active vs. Inactive vs. Nonmusician) group

differences. Follow-up two-tailed Welch’s independent samples t-tests were then used to test for

differences in Beat Perception Ability between groups because the variances between groups

were expected to be unequal (Delacre et al., 2017). These tests were corrected for multiple

comparisons using the false discovery rate (FDR, Benjamini & Hochberg, 1995). Second, to
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investigate the degree to which any of these differences could be related to disparities in musical

training, we repeated the same tests with Years of Musical Training as the dependent variable.

Data analyses were carried out in R version 4.1.3 (R Core Team, 2013) using the ‘ez’ and

‘effectsize’ packages (Ben-Shachar et al., 2020; Lawrence, 2011) and results were visualized

using the ‘ggplot2’ package (Wickham, 2016).

Lastly, to fully explore the relationships between demographic and music-related

variables with Beat Perception Ability, we performed a generalized linear regression with

participants’ age, gender, handedness, years of musical training, number of musical instruments

played, number of hours of weekly music playing, and number of hours of weekly music

listening as independent variables to predict beat perception ability score. Because we expected

the music-related variables to be highly correlated with one another, we employed a

non-parametric and non-linear regressions with Gradient Boosting Machine (GBM, Friedman,

2001), Random Forest (RF, Breiman, 2001), and Extreme Gradient Boosting (XGBoost, Chen et

al., 2015; Chen & Guestrin, 2016) algorithms. Tree-based algorithms such as GBM, RF, and

XGBoost are not prone to collinearity and, unless the correlation between the predictors is very

high, they can effectively rank the importance of the predictors based on reduction of residual

deviance or gains in other loss functions, while taking interactions between the variables into

account. In this way, we sought to identify the most important factors related to beat perception

ability by extracting estimated variable importance from the model to further examine whether

state-of-the-art non-parametric machine learning models also confirm the results of the linear

regression analysis. The variable importance was estimated by the loss function gains in the

process of constructing the trees and next, to simplify the interpretation, we scaled them to range
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from 0 to 1. We used the h2o.ai software to carry out the machine learning analysis (Click et

al., 2017).

4. Results

The one-way ANOVA with Beat Perception Ability as a dependent variable revealed a

significant effect of Musicianship (F(2,93)=4.123, p=0.019, η2G=0.081). FDR-corrected

follow-up two-tailed Welch’s independent samples t-tests revealed that Active Musicians

exhibited moderately greater Beat Perception Ability than Inactive Musicians (t(39.442)=2.213,

p=0.050, d=0.56) and even greater Beat Perception Ability than Nonmusicians (t(33.82)=2.337,

p=0.050, d=0.63). Inactive Musicians’ Beat Perception Ability, on the other hand, did not differ

from that of Nonmusicians (t(46)=-0.087, p=0.931). These results are displayed in Figure 1

below. However, when this same analysis was conducted with three outliers removed (subjects

with Beat Perception Ability scores more than ±2.5 standard deviations from the dataset’s mean),

this effect was extinguished so this result should be taken with caution.
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Figure 1. Raincloud plots displaying Beat Perception Ability scores by Musicianship. Dots are

individual subject scores and are scaled in size relative to years of musical training while large

diamonds are group averages. Error bars represent standard errors of the mean. Asterisks depict

statistical significance at p<0.05.

Unsurprisingly, Years of Musical Training also differed between Musician groups as

revealed by a one-way ANOVA (F(2,93)=22.506, p<0.001, η2G=0.326). FDR-corrected

follow-up two-tailed Welch’s independent samples t-tests demonstrated that all groups differed

from each other with the largest differences being both musician groups having substantially

more musical training than Nonmusicians (Active Musicians: t(47)=9.448, p<0.001, d=1.93;

Inactive Musicians: t(26)=5.621, p<0.001, d=1.53), indicating that our grouping factor accounted
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for a difference. However, Active Musicians also had more Years of Musical Training than

Inactive Musicians (t(70.997)=3.378, p=0.001, d=0.77), potentially confounding our findings

about music playing and necessitating the subsequent regression analyses.

The regression analysis had an R2 of 0.147 and mean residual deviance of 0.820 and

showed that only Years of Music Training was a significant positive predictor of Beat Perception

Ability. Table 2 presents the coefficients, standard errors, p-values, and standardized coefficients

of the GLM predictors.

Predictor Coefficient Standard Error p-value Standardized Coefficient

Age 0.006 0.019 0.322 0.036

Handedness 0.322 0.382 0.400 0.084

Gender -0.207 0.219 0.348 -0.103

Years of Musical
Training 0.046 0.020 0.024* 0.335

Hours Played
Weekly -0.002 0.020 0.938 -0.009

Hours Listened
Weekly 0.006 0.007 0.406 0.087

Number of
Instruments

Played 0.022 0.134 0.871 0.021

Table 2. Output of the generalized linear model. Only Years of Musical Training was significant,

indicating that with more years of musical training, beat perception increased and that once this

was accounted for, no music-related or demographic variables had any impact.

Fine-tuning the GBM, RF, and XGBoost models provided similar evidence as the linear

model, demonstrating that Years of Music Training was the most important predictor of Beat

Perception Ability. The Mean Residual Deviance of the fine-tuned GBM, RF, and XGBoost

models were 0.65, 1.00, and 0.70, respectively (lower values indicate lower prediction error).
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Extracting and rescaling the variable importance measure from the model revealed that Years of

Musical Training was the most important predictor of Beat Perception Ability, explaining more

of the variance compared to Number of Instruments Played, Hours of weekly music listening,

and particularly, Hours of Weekly Music Playing. Table XX shows the scaled variable

importance of all the predictors.

Variable GBM RF XGBoost

Years of Musical
Training 1.00 1.00 1.00

Age 0.65 0.92 0.60

Hours Listened
Weekly 0.61 0.83 0.88

Hours Played
Weekly 0.33 0.53 0.60

Gender 0.14 0.24 0.07

Number of
Instruments

Played 0.12 0.31 0.45

Handedness 0.01 0.08 0.09

Table 3. Scaled variable importance of GBM, RF, and XGBoost models. The analysis also

indicates that number of music instruments played has no relation with beat perception ability,

once years of training and music playing are taken into account.

5. Discussion

In this study, we compared the beat perception abilities of active musicians to those of

inactive musicians and nonmusicians. We found that active musicians possessed significantly

greater beat perception abilities than both inactive musicians and nonmusicians who performed

similarly on the CA-BAT. However, all groups differed in their years of musical training,

indicating that this may have confounded the observed beat perception differences. Subsequent
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regression analyses using machine learning algorithms confirmed this was the case; years of

musical training dwarfed all other music-related and demographic factors. These findings

suggest that with adequate musical training, beat perception remains elevated even without

regular maintenance.

This explanation falls in line with common notions of expertise where practice enhances

ability (Ericsson & Lehmann, 1996; Sloboda et al., 1996). Active musicians received more years

of musical training and likely accrued more hours of beat perception refinement through their

continued engagement with their instruments, resulting in better performance on the CA-BAT

than both their inactive counterparts and nonmusicians. However, these marginal effects of

continued practice were superfluous for sharpening beat perception since the regression analyses

demonstrated that years of musical training sufficiently explained differences in CA-BAT scores.

Thus, it seems that with enough training, the neural circuits for beat perception become

hardwired and continued musical engagement is not necessary to preserve the ability.

Alternatively, it also seems plausible that people with better beat perception ability are

more motivated to stick with musical training for more years, further exercising their rhythmic

skills. This is supported by Albert Bandura’s self-efficacy theory where one’s beliefs about one’s

competencies influences subsequent motivation and performance (Bandura, 1982, 1997). This

has already been shown in the context of music performance (Hendricks, 2016; McPherson &

McCormick, 2006) and so it could potentially apply to lower level musical abilities as well. It

seems logical that better beat perception could result in more of Bandura’s “mastery

experiences” while training, which then motivates them to pursue more formal musical education

and learn more rhythmically challenging pieces in a virtuous circle.
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Another explanation could be that the CA-BAT may not be sensitive to finding beat

perception differences that could arise from musical engagement factors like regular playing. The

CA-BAT measures the ability to detect fine-grained phase offsets and this is often not necessary

for many instruments in a variety of musical traditions. Indeed, the perceptual center (when a

sound’s onset is perceived) has been shown to vary considerably depending on a number of

musical qualities (Danielsen et al., 2019), how it’s measured (London et al., 2019), and genre

expertise (Danielsen et al., 2022). It’s possible that only highly trained musicians develop an

enhanced beat perception ability that generalizes across sounds well enough to be observed with

the CA-BAT. Said another way, the CA-BAT may not be ecologically valid for untrained

listeners.

Additionally, the CA-BAT’s two-alternative forced choice design introduces cognitive

demands on working memory that may explain dissociations with beat tapping and production

abilities (Bégel et al., 2017; Fiveash et al., 2022). These cognitive demands could be correlated

with latent educational or genetic variables that could not be studied here; more years of musical

training could be associated with more years of education in general or certain genetic

predispositions. With genetics alone explaining roughly 13-16% of beat synchronization abilities

(Niarchou et al., 2022), for example, this may explain why the predictors in our generalized

linear model only explained about 15% of the CA-BAT scores’ variance.

A substantial limitation of this study is that our dataset did not contain potentially

important details about participants’ musicianship because it was not the focus of the original

studies where the data was collected. One such detail is the age that musical training began. A

sensitive period for musical ability has been proposed (Bailey & Penhune, 2013; Penhune, 2011);

early-trained musicians have been found to exhibit greater sensorimotor synchronization



PLAYING MUSIC INCREASES BEAT PERCEPTION 15

performance (Bailey et al., 2014; Bailey & Penhune, 2010; Watanabe et al., 2007) and executive

functioning (J. Chen et al., 2022) alongside neuroanatomical differences (Amunts et al., 1997;

Bailey et al., 2014; Imfeld et al., 2009; Shenker et al., 2022; Steele et al., 2013). It could be

possible that only early-trained musicians (who could then accrue more years of musical training

overall) develop an enduring beat perception while those who began their training outside of the

sensitive period may either fail to cultivate better beat perception than nonmusicians or lose any

gains they may have made after they stopped playing music. In our study, it is unclear to what

extent our results are driven by early training so further experiments are needed to rule this out.

Given that musical training was the single most important predictor of beat perception, it

would be interesting to explore the quality of this training in future studies. For instance, it’s

conceivable that more intense training (i.e., more hours spent practicing) could induce more

enduring beat perception abilities later in life. Furthermore, some types of musical training (e.g.,

private lessons, training in large or small ensembles, rigorous self-teaching) may be better or

worse at enhancing beat perception. Finally, certain musical styles and traditions require more

precise beat timing than others (e.g., math rock requires better timing abilities than ambient

soundscapes) so musicians trained in these genres could plausibly develop enhanced beat

perception to meet their needs. Longitudinal and intervention-based studies manipulating and

controlling for these various factors should thus be carried out to conclusively rule out the

influence of these variables.
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