Impact of faulting in depocentres development, facies assemblages, drainage patterns, and provenance in continental half-graben basins: An example from the Fanja Basin of Oman

Camilla L. Würtzen | Alvar Braathen | Miquel Poyatos-Moré | Mark J. Mulrooney | Lina H. Line | Ivar Midtkandal

Abstract

Fault throw gradients create transverse folding, and this can influence accommodation creation and sedimentary routing and infill patterns in extensional half-graben basin. The Fanja half-graben basin (Oman) offers an excellent outcrop of an alluvial fan succession displaying cyclical stacking and basin-scale growthfold patterns. These unique conditions allow for an investigation of fault-timing and accommodation development related to fault-transverse folding. Our study combines geological mapping, structural analysis, sedimentary logging and correlation, and bulk mineralogical compositions. Mapping reveals that the basin is bounded by a regional-scale fault, with local depocentres changing position in response to transverse syncline and anticline development ascribed to fault-displacement gradients. The alluvial Qahlah Formation (Late Cretaceous) is unconformably overlying the Semail Ophiolite, and is in turn overlain by the marine Jafnayn Formation (Late Palaeocene). Facies and stratigraphic analysis allows for subdivision of the Qahlah Formation into four informal units, from base to top: (i) laterite in topographic depressions of the ophiolite, (ii) greenish pebbly sandstones, deriving from axially draining braided streams deposited in the low-relief half-graben basin. This green Qahlah grades vertically into the red Qahlah, formed by alluvial fanglomerates and floodplain mudstones, with drainage patterns changing from fault-transverse to fault-parallel with increasing distance to the main fault. The red Qahlah can be divided into (iii) the Wadi al Theepa member, found in a western basin depocentre, with higher immaturity and sand: mud ratio, suggesting a more proximal source, and (iv) the Al Batah member, located in the eastern part of the basin. The latter shows better sorting, a lower sand: mud ratio, and more prominent graded sub-units. It also shows eastward expansion from an orthogonal monocline, ascribed to accommodation developed in a relay.
1 | INTRODUCTION

Fault-bound extensional basins are sensitive to fault-displacement development, since extensional faulting and related folding exert a control on the location, shape and size of sedimentary basins, and the distribution, thickness and preservation of the sediments filling them (Friedmann & Burbank, 1995; Gawthorpe & Leeder, 2000; Schlische, 1995; Schlische et al., 1996; Serck & Braathen, 2019). Such basins are very common in the geological record, and often host abundant natural resources in the subsurface. Accordingly, their architecture has been extensively studied, and our current understanding of rift basins resides in a toolbox of well-constrained models, hinged on combinations of seismic analysis supported by well data, and outcrop studies. These span from fault-growth models (e.g. Rotevatn et al., 2019; Walsh et al., 1998), to models of fault-controlled catchment systems and their sedimentary sinks (e.g. Gawthorpe & Leeder, 2000; Leeder & Gawthorpe, 1987).

The production and availability of sediments infilling extensional basins, particularly in continental examples, are highly dependent on catchment bedrock lithology (Blair, 1999b; Leveson & Rutter, 2000) as well as climate, which control precipitation and weathering, both within the basin and in catchment areas (Nystuen et al., 2014). As such, alluvial fan systems are highly sensitive recorders of tectonic movements, provenance changes and climate (Blair, 1987; Harvey et al., 2005). However, establishing a general model for alluvial fan deposition considering several controls (i.e. tectonic, climatic, provenance, and base-level) has caused difficulty and controversy (Lecce, 1990). To some extent, classical conceptual models may be biased towards examples from arid conditions (e.g. Blair, 1999a, 1999b, 1999c, 2000; Brooke et al., 2018; Clarke, 2015; Parker, 1999), although they develop in all climatic belts (e.g. De Haas et al., 2015; Mather et al., 2017; Nott et al., 2001; Saito & Oguchi, 2005). Furthermore, catchment lithology and precipitation patterns also control alluvial depositional processes, which range from gravity to hyperconcentrated and sheet flows, to channelised stream flows and aeolian reworking (Calhoun & Clague, 2018; Ghinassi & Lelpi, 2018; Jo et al., 1997; Moscariello, 2018;
North & Davidson, 2012; Ridgway & Decelles, 1993; Sohn et al., 1999). Another misconception concerns the general assumption of overall coarsening-upwards alluvial fan succession profiles (e.g. Lin et al., 2022; Mack & Rasmussen, 1984; Steel et al., 1977; Steel & Ryseth, 1990). Alluvial fan deposits frequently aggrade in their proximal environments (Evans, 1991; Harvey, 1997), and the onset of fan deposition is often abrupt compared with the following abandonment, which may happen gradually, forming fining-upwards profiles (e.g. Mack & Leeder, 1999).

In order to further understand the formation and development of continental rift basins and how their structural control affect sedimentary architecture, the Fanja half-graben basin in the Al Hajar Mountain, NE Oman (Figure 1), is analysed by combining sedimentary interpretations and correlations, bulk mineralogical compositions and structural geometries. The Fanja Basin offers a unique outcrop of a Late Cretaceous tropical alluvial fan succession displaying a cyclical stacking and basin-scale growth-fold patterns allowing for investigation of fault-timing and accommodation development related to fault-transverse folding. To be able to predict the heterogeneities in stratigraphy and sedimentology in fault-influenced basins, it is important to understand how faults grow and what the basin-geometric effects of this are besides the sedimentary response to varying accommodation. Important models for the growth and infill of fault-bounded basins, like those of Schlische (1995), Schlische et al. (1996), Gawthorpe and Leeder (2000), Peacock and Sanderson (1994), and Prosser (1993), just to mention some, have paved the way for this field of research. However, these articles are mostly conceptual. The novelty of our study resides in the outcrop example forming the study case: the reasonable size, good exposure and high degree of preservation enables analysis of the distribution of facies in continental deposits in close connection with faults. The link between sedimentology and fault-displacement events controlling fault-perpendicular (orthogonal) folding offers spatial control on depocentres and thereby depositional loci. This is an approach only recently considered in seismic analysis (e.g. Serck & Braathen, 2019), but rarely analysed in outcrop studies, which increases the potential application of this study to subsurface reconstructions.

2 | GEOLOGY AND STRATIGRAPHY

2.1 | Basin setting

The principal structure of the studied basin is the regional range-front fault (Braathen & Osmundsen, 2019; Mattern & Scharf, 2018). This steeply north-dipping extensional fault shows km-scale extensional offset of the Semail ophiolite, with the Fanja half-graben situated to its northern hanging wall (Figure 1). The Fanja Basin forms part of an array of preserved basins in the hanging-wall to the range-front fault, e.g. the Sa‘al, Falaj and Bandar Jissah basins as shown in Figure 1 (Alsharhan & Nasir, 1996; Serck et al., 2021). Recent work addressing extensional collapse of the ophiolite adds new perspectives on the overlying fault-bound basins (Braathen & Osmundsen, 2019; Serck et al., 2021). For example, Serck et al. (2021) have highlighted the interaction of a low-angle extensional detachment and steep normal faulting impacting the sedimentary infill of the Bandar Jissah Basin along the hanging-wall of the same regional fault that bound the Fanja Basin, suggesting similar tectonic histories.

The Al Hajar Mountains of northern Oman feature a world-class example of an ophiolite complex (e.g. Searle, 2019; Searle & Cox, 1999) and accordingly, significant attention has been directed to the Semail Ophiolite, which forms the uppermost unit above a stack of continental margin nappes. Regional tectonostratigraphy spans Precambrian and Permian to Upper Cretaceous rocks, which are either autochthonous below the nappes or obducted onto the Arabian Neo-Tethys margin in the Late Cretaceous as allochthonous units (Cooper et al., 2014; Searle, 2007, 2019). During final south to SSE emplacement of the ophiolite, in the Campanian to Maastrichtian stages of the Late Cretaceous, extensional faulting started influencing the region, leading to a long-lived phase of extensional collapse of the ophiolite with substratum (Braathen & Osmundsen, 2019; Serck et al., 2021), lasting at least to the Late Eocene as manifested by for instance the Range-front fault. Initial Maastrichtian basins, including the Fanja Basin, were mainly continental (Searle & Cox, 1999) prior to regional uplift and erosion, followed by regional subsidence and marine transgression in the Late Palaeocene (Braathen & Osmundsen, 2019) progressing to an Eocene marine carbonate platform with localised faulting (e.g. Serck et al., 2021). Regionally, extension is demonstrated by wide-spread normal faulting above major extensional detachments, with significant extension unroofing deeper units including eclogites from the former subduction zone, as manifested at the surface by the Jebel Akhdar and Saih Hatat domes. Unroofing was fast and nearly isothermal, a common trait of extensional collapse (e.g. Brun et al., 2018), starting in the Maastrichtian and ending in the Eocene (Hansman et al., 2017). In current map-view, these domes encompass (1) Precambrian (sedimentary) basement (e.g. Hatat and Amdeh formations), and (2) Middle Permian to Cenomanian shelf-carbonates (e.g. Muti Formation), bound by (3) Late Permian to Late Cretaceous Tethyan oceanic sediments of the Sumeini and
Hawasina nappe complex, and (4) the Semail Ophiolite (Figure 2; Searle, 2007). These units are potential source terranes for sediments when provenance of basin-fill is examined, substantiating descriptions. There is limited work addressing the sediments deposited after the obduction of the ophiolite (e.g. Abdelghany, 2006; Alsharhan
to basal terrigenous sediments directly overlying an unconformity and express the Late Cretaceous palaeogeographical setting of the northern Oman peninsula with a continental interior and a surrounding coastal environment (Nolan et al., 1990).

2.3 | Fanja Basin configuration

As mentioned, the Fanja Basin forms an elongated, east–west striking half-graben in the hanging-wall of the Range-front fault, located to an along-fault syncline with a gently south-dipping to sub-horizontal northern flank and a steeper southern flank up towards the fault (Figure 3a,b). The first-order fault consists of several curvilinear segments (Figure 3a), with two segments converging in a noticeable jog along the eastern basin boundary. Further, a smaller jog central to the basin suggests linkage of segments in this area. These two linkage areas, or breached relays (Peacock & Sanderson, 1994; Rotevatn et al., 2007), indicate the presence here of fault-perpendicular (orthogonal) anticlines (Figure 3a) inherited from fault-displacement gradients (e.g. Serck & Braathen, 2019). Similarly, areas of larger fault-throw host orthogonal synclines, which is particularly striking in the eastern part of the basin (Figure 3a). These folds are reflected in both thicknesses and facies-belt distributions of the basin succession, which further constrain their timing and propagation. In addition, there are numerous steep, extensional faults impacting the basin-fill, of which those of greater extend and throw tend to be subparallel to the Range-front fault, as shown in Figure 3a,b, and described below. These faults control growth-sections on the metre (m) to 10-m scale, substantiating that active faulting created accommodation in the basin during deposition.

Preserved stratigraphy in the Fanja basin starts with the widespread Maastrichtian Qahlah Formation, overlain by the Late Palaeocene Jafnayn Formation, the latter only preserved in the east (Figures 2 and 6). The Qahlah Formation consists at its base of isolated occurrences of a few metres of laterite (the Laterite member) overlain by up to 35 m of green fluvial sandstones and conglomerates of the Green Qahlah member, thickest in the east at Al Batah and in the immediate hanging-wall to the Range-front fault in Fault Valley (Figure 3d). The Green Qahlah member is conformably
overlain by 35–210 m thick cyclically interbedded orange-red alluvial conglomerates and red floodplain mudstone of the Red Qahlah members (Figure 3c). Of these, the Wadi al Theepa member (lower Red Qahlah) is thickest in the western basin and thins towards the central part, whereas the Al Batah member (upper Red Qahlah) fills the basin in the east around the synclinal structure expressed orthogonal to the major fault-jog (Figure 3a,d). In the eastern basin, the Qahlah Formation is capped by a transgressive lag of the Jafnayn Formation, either an oyster-bed (Al Batah) or a beach conglomerate (near cross-road). This lag is overlain by up to 50 m of deltaic sandstone and marl and finally capped by 90 m of shallow marine ramp carbonates (Olaussen, Midtkandal and Stemmerik, pers. com. 2020).

3 | DATA AND METHODS

3.1 | Fieldwork and sedimentological analysis

Data for this study were collected during two field seasons in 2020 and 2022, respectively. Fieldwork was carried out conventionally by mapping of the basin with collection of structural data, and logging of sedimentological sections in scale 1:200. The latter emphasises grain size variations, sedimentary structures, architectural elements, and palaeocurrent indicators. About 157 palaeocurrent (PC) measurements were obtained in the Green Qahlah member and 111 PC measurements in the Red Qahlah member interval distributed between eight measuring points (Figure 3a). PC measurements were corrected to dip of beds and plotted using GeoRose 0.5.1 software, whereas fault orientations are plotted in Move. With overall gentle dips of bedding in the basin, PC and fault orientations are plotted as recorded. A dataset consisting of photographs and high-resolution photomosaics and field-sketches were applied in the analysis of facies, architecture and structural influence on cm to km-scale. Several facies were defined representing depositional processes (Table 1). These were further divided into associations representing depositional environments (Table 2).

3.2 | Mineralogical petrography

Sampling throughout the Qahlah Formation succession was conducted for petrographic analysis with the intention of tracing the sediment source and possible changes in this, which is already indicated on a sedimentary scale by the change in colour and clast-type up through the succession. This analysis was anticipated to reveal any link in mineralogical compositional changes to changes in facies, and in fault-intensity. Twenty samples collected from the Qahlah Formation were included in this study, 17 from sandy fluvial to alluvial (channel-, splay- and fan-) facies and three floodplain mudstone samples. Samples were
collected at every 20–40 m interval through the succession with closer sampling over the transitional interval from Green to Red Qahlah. Fourteen samples are from the eastern basin at Al Batah and Naffa and three samples are from the western basin at Wadi al Theepa.

3.2.1 | XRD bulk analysis

The 17 sandy samples were analysed with conventional powder X-ray diffraction (XRD) using a D8 Bruker Powder X-ray diffractometer. Identification and relative quantification of mineral phases were modelled and analysed by Rietveld refinement through the software BGMN-Profex (version 4.3.1). With XRD results, the average mineral composition was established, and sandstones were classified according to a QRF plot diagram. The XRD results interpretation is summarised in Figure 4.

Of the three mudstone samples, two were sampled from the Red Qahlah members and one from the Green Qahlah. Due to the complexity in the structures of clay minerals, quantitative measurements of specific clay phase abundances were treated and analysed separately from the bulk.

3.2.2 | Elemental distribution analysis (SEM)

Thin sections of the 17 sandy samples were prepared at the Department of Geosciences (University of Oslo) for analysis of mineralogical and textural characteristics. Monogranular
<table>
<thead>
<tr>
<th>Code</th>
<th>Picture</th>
<th>Lithology and Texture</th>
<th>Sedimentary Structures</th>
<th>Depositional Process</th>
<th>Facies Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>Pale orange-pink to pale-red or green-grey conglomerate (very coarse sand to cobble grade); clast-supported; poorly-sorted; sub-angular to sub-rounded clasts</td>
<td>Ungraded to inverse graded; A-axis imbrication (arrowed); outsized clasts: 10-100 cm thick beds with gradational boundaries or occurring as small clusters; transitional lower contact (except when overlying mudstone)</td>
<td>Gravelly (low-viscous), diluted debris flows (Collinson, 2006; Miall, 2010)</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>Pale orange-pink conglomerate (granule to pebble grade); clast-supported; polymict; moderate/poorly-sorted; sub-angular to sub-rounded</td>
<td>Ungraded to normal graded (marked); random or flat clast orientation; 10-150 cm thick beds, often repetitive in several meter thick sequences; transitional to sharp lower contact</td>
<td>Pseudoclastic, dilated flash floods or traction carpets deposited through traction currents into turbulent suspension (Nemec & Steel, 1984; Nemec & Muszynski, 1984; Collinson, 2006)</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>Pale orange-pink to grey-yellow conglomerate (very coarse sand to pebble grade); clast-supported; polymict; moderate/poorly-sorted; sub-rounded clasts</td>
<td>Massive or normal graded; structureless to sporadic crude horizontal to low-angled cross-stratification with clasts lining foresets (marked); preferably in upper part; transitional to sharp lower contact</td>
<td>Bedload transport into suspension (horizontal stratification) and lower (cross-stratification) flow-regime through migration of coarse-grained bars in mid-fan channels (Nemec & Muszynski, 1984; Sohn et al., 1999)</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>Pale grey-pink to white (sharp colour transitions) fine- to medium-grained pebbly sandstone; moderate/well-sorted</td>
<td>Normal graded (marked); lenticular beds (0.1-0.5 m thick) with clast (granule to pebble grade) intercalary in scoured clusters (marked) or as coarse tails; horizontal to low-angle cross-stratification with clast clinching on foresets (imbrication); sharp surrounding contacts</td>
<td>Stream-flow deposition (good sorting, grain-size separation, localization of scour); through short-lived bedload traction currents (Sohn, 1997; Daugapte, 2006)</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>Pale red to grey-orange medium-grained pebbly sandstone; moderate-sorted</td>
<td>Diffuse horizontal- to low-angle cross-lamination; dark-draping on foresets (arrowed) with increasing angle of dips; sporadic clasts (granule to pebble grade); transitional surrounding contacts; lens-shaped bed geometry</td>
<td>Sub-aqueous upper flow-regime flat beds into lower flow-regime migration of straight-crested dunes and ripples with high sediment load</td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>Pale grey-orange to pale green fine- to medium-grained sandstone; well-sorted</td>
<td>Convolute bedding; tabular bed geometry (0.2-1 m) with sharp lower boundaries to conglomeratic facies (marked) and gradational upper boundaries</td>
<td>Disruption of liquefied sediment layering (Collinson, 2006)</td>
<td>3</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>Pale grey-orange or pale green fine-grained sandstone; well-sorted</td>
<td>Overturned/recumbent cross-beding (marked); multiple 10-20 cm beds</td>
<td>Shearing of upper part of tabular cross-beds (subaqueous migrating sinuous-crested dunes in lower flow-regime) by overriding currents. Caused by fluctuations in flow conditions and (high) sediment load (Stokes, 2007)</td>
<td>3</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>Pale grey-pink to yellow-white, fine-grained sandstone; well-sorted</td>
<td>Low-angle cross-lamination (sub-critical) marked in otherwise structureless to crudely thin (cm) bedded matrix</td>
<td>Sub-aqueous migration of ripples and small dune-beds forms in lower flow-regime</td>
<td>3</td>
</tr>
</tbody>
</table>

Sand-rich flash flood and minor stream deposits

TABLE 1.1 Summary of 21 lithofacies (A–U) observed in the Fanja Basin with representative pictures, descriptions of lithology, texture and sedimentary structures, and the depositional processes inferred from these. The lithofacies are combined into facies associations 1–8 summarised in the right-hand side.
grains (e.g. quartz, K-feldspars, micas) are distinguished from polygranular grains (e.g. microcrystalline chert, igneous/volcanic rock fragments, mica schist and sedimentary mudrock fragments). Recrystallised framework grains (pseudomorphous replacements) and completely dissolved particles (secondary porosity) are treated as part of the rock fragment assembly. The relative amount of allogetic matrix, authigenic cements (e.g. quartz, chlorite, kaolinite, illite and various carbonate minerals) and intergranular porosity defines the intergranular volume (IGV) of the sample. The thin sections were analysed through microscopy point counting (in plane- and cross-polarised light) combined with SEM scans to map the elemental distributions in the samples. The thin section interpretations are summarised in Figure 5.

<table>
<thead>
<tr>
<th>Code</th>
<th>Picture</th>
<th>Lithology and texture</th>
<th>Sedimentary structures</th>
<th>Depositional process</th>
<th>Facies association</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Pale orange-pink or pale grey-green fine- to medium-grained sandstone; moderate/well-sorted</td>
<td>Structureless or crudely laminated with sporadic clusters of clasts or floating clasts (granule grade); erosional lower contact</td>
<td>Rapid deposition in high sediment load, preventing bedform development. Minor tractional processes (gravel lag); (Miall & Jones, 2003; Horn et al., 2018)</td>
<td>Based on grain size, amalgamation, structure, and lack of preserved overbank deposits, the facies are inferred to represent a shallow braided stream system (Nichols & Fisher, 2007) with locally well-developed subaqueous dune-fields (K) (Sadler & Kelly, 1993). Interchannel bars (L) and channel base lags, and aggradation-low-relief longitudinal bars (J) (Jo et al., 1997; Miall, 1997a,b; Rust, 1978; Puy-Alquiza et al., 2017). The mature state indicated a distal sediment-source</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>Dusky dark green to orange conglomerate (very coarse sand- to cobble- grade); clast- to matrix-supported (varying bands); polymictic; moderate/poorly-sorted; sub-rounded</td>
<td>Ungraded; flat clast orientation; tabular bed-geometry; horizontal to low-angle bedding (marked) (5-15 cm beds in 15-50 cm thick beds); flat clast orientation; sharp lower contact</td>
<td>Gravel sheet deposited as bedload or traction carpets (Hein & Walker, 1977); Ashmore, 1985; Reid & Frostick, 1986; Whiting et al., 1988; Jo et al., 1997; Suresh et al., 2007; Calhoun & Cagle, 2016)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Pale green to gray-orange medium- to coarse-grained sandstone and gravel; well-sorted</td>
<td>Trough-cross bedding (marked) with basal lags (granule to pebble grade); normal grading: single- (tens of cm) or multiple sets (50-100 cm); reactivation surfaces</td>
<td>Sub-aquous migration of sinuous-crested dunes in the lower flow-regime of channels (Hjellvik, 1997; Collinson, 2006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Pale green to gray-orange medium- to coarse-grained sandstone; well-sorted</td>
<td>Planar cross-bedding with normal grading; single- or multiple sets (20-100 cm); reactivation surfaces; sporadic clasts on foresets and mud-draping</td>
<td>Sub-aquose migration of straight-crested dunes in the lower flow-regime or deposition off the distal end of intra-channel bars in the upper flow-regime (Hjellvik, 1997; Collinson, 2006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Pale orange-pink fine- to medium-grained sandstone; moderate sorted</td>
<td>Structureless; crudely acrting bed-sets (marked); wedge-shaped geometry with sharp scoursing bases; load-structures into underlying mudstone (marked)</td>
<td>Rapid sedimentation where sand is loaded through crevasse splays onto waterlogged mudstones of floodplains (Gulliford et al., 2017). Accretion may be caused by sideway growth (Collinson, 2006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Heterolithic yellow-brown to purple-red very fine-grained sandstone and yellowish-white to reddish-brown siltstone and mudstone</td>
<td>Thinly interbedded heterolithic units; overall coarsening and thickening upwards; asymmetric and symmetric ripple cross-lamination; dark red rootlets; horizontal tube-shaped “meander” bioturbation traces (Gordis Marina (sp. pers. com.; arrowed)</td>
<td>Crevasse splay or lacustrine deltaic deposition. Interchanging suspension fallout (sh) and stream-flow (sand). Combined flow-ripple migration dominated by unidirectional currents (stream-flow with a wave component; Collinson, 2006). Progradation causing upwards-coarsening.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continues)
<table>
<thead>
<tr>
<th>Code</th>
<th>Picture</th>
<th>Lithology and texture</th>
<th>Sedimentary structures</th>
<th>Depositional process</th>
<th>Facies association</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td></td>
<td>Red-brown very fine- to fine-grained sandstone to medium-grained pebbly sandstone; moderate/well-sorted</td>
<td>Thin (5-20 cm) sheets often in multiple sets; horizontal-, low-angle cross lamination or trough-cross stratification (marked) into ripple cross-lamination</td>
<td>Shallow sheet stream-flows</td>
<td>Deposited at wet floodplain through suspension settling (P, Q) at interchannel mudflats and lacustrine environments with overbank spills and shallow streams (O). Typical for outer fan/fan fringe zone or adjacent to active fan. The inactive fan areas may experience non-deposition for longer time intervals with exposed surfaces where hard pans form.</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td>Red-brown mottled (white to okker-coloured) very fine- to fine-grained sandstone and siltstone</td>
<td>Structureless to faint undulating lamina tions</td>
<td>Suspension fallout with secondary migration of ripple-scale bedforms; mottled horizons represent kaolinitic soils</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td></td>
<td>Dark red-brown to purple silt and mudstone; sporadic ochre-coloured mottling in horizons or stains (Rhyoliths; arrowed)</td>
<td>Homogeneous, structureless or with faint lamina tions; thick (up to 20 cm) intervals between conglomeratic facies units or in faulted depressions in tops of these with growth features; concreted horizons; thin silt beds with ripple marks</td>
<td>Suspension faulolout of clay particles; Mottled rhyoliths indicate pedogenesis and low sedimentation rates (Ridgeway & Decelles, 1993; Sanderholm & Tirsgaard, 1998; Schieber, 1999; Kraus, 1999; Hampton & Horton, 2007; Zhang et al., 2021)</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
<td>Orange to red-brown ironized siltstone</td>
<td>3-10 cm thick hard horizons on top of conglomeratic beds (marked); may contain granule grade basal clasts and exhibit normal grading; sharp boundaries; tabular or filling cracks and scours</td>
<td>Oxisols formed by oxidation and precipitation of ferric iron oxides in alluvial gravel (i.e., hardpans; Blair & McPherson, 2009). Equivalent to latelitic soils forming on the ophiolite.</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>Grey oyster shells in yellow-orange silty cement; poorly sorted</td>
<td>Structureless; chaotic distribution of oyster shells; 0.5 m thick; restricted to top of Qalah Fm in Al Batah</td>
<td>Wave reworked oyster bank</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td>Purple-grey fine- to medium-grained pebbly sandstone; moderate/well-sorted</td>
<td>Low-angled cross-stratification (marked) with flat alignment of oyster shells; sharp boundaries; 0.3-0.5 m thick; only observed on top of Qalah Fm at cross-road section</td>
<td>Deposition by wave reworking</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td></td>
<td>Yellow-red silt to fine-grained sand and greenish marks; well-sorted</td>
<td>Thinly interbedded overall repetitive coarsening- and thickening upwards (marked) units arranged in a larger scale coarsening upwards succession; wave ripples; cross-bedding; observed only in the eastern part of the basin</td>
<td>Prograding marine deposition</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.3: Facies description and inferred depositional processes
4 | RESULTS

4.1 Structural analysis: Outcrop geometry and fault patterns

As outlined above, the Fanja Basin exhibits an elongate, longitudinal syncline that parallels the Range-front fault (Figure 3). There are two transverse synclines and one transverse anticline perpendicularly intersecting the longitudinal syncline in the present-day outcrop geometry (Figure 3a,d). One of these transverse synclines correspond to a curvilinear portion of the Range-front fault towards the east of the basin (Al Batah). Pervasive faulting (1 to >10 m displacement) intersects all outcrops in the Fanja Basin and approximately parallels the Range-front fault’s E-W to WNW-ESE strike (Figure 3a). Faults dip steeply NNE (synthetic) or SSW (antithetic), but dip angles of synthetic faults are more varied. Kinematic indicators (offset of beds and slickensides) conform to dip-slip, normal movements, especially by larger faults paralleling the Range-front fault. There is, however, faults that display a minor component of lateral movement (mostly sinistral), mainly proximal to the eastern jog in the Range-front fault. Several growth packages are recognised, especially in the Red Qahlah members where fine-grained facies fill hanging-wall accommodation above faulted, tabular conglomeratic sequences (Figure 6). With some small growth packages observed in the Green Qahlah member, besides growth-sections in the Jafnayn Formation, it is envisaged that faulting took place throughout the development of the Fanja Basin. Therefore, timing of fault-growth encapsulates the Maastrichtian to Late Palaeocene.

In the central part of the outcropping basin, relationships between the Al Batah and Wadi al Theepa members are displayed in a key section longitudinal to the range-front fault (Figure 3d). Beds of the Wadi al Theepa member are folded into a gentle monocline, seen as a change in strike from easterly to south-easterly directions. Farther southeast, Wadi al Theepa member beds can be traced to the Range-front fault where they are truncated. Of significance is the observation that the Al Batah member wedges upwards over the constantly thick units of the Wadi al Theepa member, within the limb of the N-S trending, east-facing gentle monocline. The composite or transitional contact along the base of the Al Batah member is slightly truncating and downcutting south-westward into Wadi al Theepa member (Figure 3d), locating an unconformity surface. The two members are of comparable thicknesses (Figure 7), but notably, there is a distinct change in facies at the boundary between the Wadi al Theepa and Al Batah members, with significant increase of fine-grained interbedded facies and normal-grading sandstone units in Al Batah member, compared with mainly structureless coarse clastic deposits towards the western end of the basin.

Key in understanding the basin is that the Wadi al Theepa member to the west predates the Al Batah member to the east. The latter succession is overlying a truncation of the Wadi al Theepa member in the monocline, coupled with an eastward thickening of the Al Batah member, signifying Al Batah member growth during folding. The main depocentre for Al Batah member is in the orthogonal syncline oposing the major jog in the Range-front fault.
20-one facies (named facies A to U) were defined in the Qahlah Formation based on observations of grain size, texture, and sedimentary/biogenic structures, which were used to infer the depositional processes responsible (summarised in Table 1). These facies combine into six major facies associations (FA) that are described and interpreted in detail in the following section and summarised in Table 2. The sedimentological analysis suggests that the Qahlah Formation was deposited in broadly three depositional environments: (i) axial draining braided streams, (ii) transverse draining alluvial fans (inner to...
Abbreviations:

CaC = Calcite cement; Che = Chert; FeC = Ferric cement; Fs = Plagioclase/orthoclase; KaC = Kaolinite cement; LRF = Lithic rock fragment; MCC = Magnesium-Calcite cement; Mi = Mica; MQz = Mono-quartz; PQz = Polyquartz
outer zone), and (iii) floodplains with the facies associations defining the elements characteristic to each of these environments. The Green Qahlah member is mainly defined by braided streams (FA4), floodplain and lacustrine environments (FA6) with more rare intermittent small gravity-dominated fault-scarp fans (FA1) (Figure 8b). Deposition in the overlying Wadi al Theepa member was characterised by alluvial fans dominated by gravity- (FA1) and hyperconcentrated flows (FA2) and minor floodplain deposition (FA6), whereas the Al Batah member saw extensive floodplain deposition (FA6) and fans dominated by hyperconcentrated- (FA2) to stream flows (FA3) and some overbank splay deposition (FA5) (Figure 8c). A high lateral and vertical heterogeneity is characteristic to continental basins (Martinius et al., 2014; Sharp et al., 2003), and these environments may have existed contemporaneously to each other, even if only a succeeding relationship is preserved in the succession. In the Fanja Basin, the outcrop resides in a proximal position to the basin-bounding fault. The distal expression of the system is lacking,

FIGURE 6 Representative pictures of faulted sections in the Qahlah formation from 100-m scale (a) to 1-m scale (b–e). (a) S-N cross-sectional view through the Al Batah outcrop displaying intensive internal normal-faulting both synthetic and antithetic. Particularly striking is a 2–3 m thick clay smear (inset photo) in the south-hinge of a horst-structure in the central part of the outcrop. (b–d) Metre-scale faulting in tops of conglomerate beds hosting mini-deposits filled by finer-grained facies, some exhibiting clear signs of growth (a). (e) Faulting at base of sand-section into underlying fine-grained unit with clay smear. Refer to Figure 3a for locations.
probably due to lesser preservation-potential as accommodation was less in distal areas, and due to more erodible, distal sediment-types (i.e. mudstones and silt) (e.g. Davies et al., 2011; Evans, 1991).

4.2.1 | FA1: Gravel-rich hyperconcentrated flow deposits

4.2.1.1 | Description
The conglomerate-dominated facies association 1 (FA1) occurs in metre-thick units consisting of 20–150 cm-thick coalesced interbeds of predominantly facies A and B and D, with subordinate Facies C (Table 1; Figure 9a). Transitions between the interbeds are diffuse and FA1 may appear structureless with lateral and vertical grading. Internally, interbeds are most commonly tens of cm in thickness and tens of cm to a few metres in lateral extent. The beds may occur isolated within finer grained facies (e.g. FA6) with sharp lower contacts and sharp to transitional upper boundaries, or, more commonly, interstratified with FA2 with diffuse transitions between the two, defined by variations in clast concentration (Figure 9b–e). Where FA1 occurs in combination with FA2 and FA3, FA1 appears as thin, in places repetitive, more clast-rich, poorly sorted, disorganised intervals. Where distinguishable in association with FA2, FA1 beds have a tabular to irregular geometry with laterally cuneate shapes in places, commonly exhibiting a stacked layer-cake stratigraphy. Together, FA1, FA2 and FA3 may form thick, laterally extensive units (Figure 9). There is a wide variability in sediment transport direction between western and eastern outcrops but with an overall northward transport direction (Figure 10b).

4.2.1.2 | Interpretation
The gravity to hyperconcentrated flow regime processes responsible for deposition of FA1 (Table 1) is in combination characteristic to high slope areas in the inner to medial zone of alluvial fans (Table 2; Blair, 1999a; Gao et al., 2020; Miall, 2010; Sohn et al., 1999). The immaturity of the sediment is expected due to the proximity to the source in the footwall and the rapid depositional processes with discontinuous flows giving rise to minor wash-out and a low sorting degree (Blair, 1999c).

4.2.2 | FA2: Mixed gravel- to sand-rich stream flow deposits

4.2.2.1 | Description
The mixed conglomerate- to sandstone-dominated facies association 2 (FA2) occurs in up to 25 m-thick units with lateral extent up to hundreds of metres. Internally, FA2 consists predominantly of closely interstratified facies B and C and minor facies A and D (Table 1; Figure 9a,c). Interbed boundaries lack sharp contacts and appear as transitional changes in clast abundance and colour (Figure 9c). FA2 most commonly occur as amalgamated units interbedded with thick red mudstone intervals of facies association 6 (Figures 3d and 9a). Lower boundaries to FA6 are distinctly sharp and erosive, whereas upper boundaries may be transitional into FA6. Some upper contacts are faulted forming small (a few metres scale) depocentres form in the tops of the conglomeratic beds, filled by FA6, with evidence of growth (Figure 6b). Similar palaeodrainage directions as FA1 are recorded in FA2 with a northward dominance (Figure 9b).

4.2.2.2 | Interpretation
The prevalence of stream-flow generated structures (Facies C; Table 1.1) over gravity-driven ones along with better sorting compared with FA1 suggests deposition in an area of shallower slope on alluvial fans (Evans, 1991; Jo et al., 1997; Miall, 2010). However, being dominated by Facies B (Table 1.1), FA2 is positioned in the transitional regime between turbulent flow and traction-flow (Sohn et al., 1999). The combination is by some termed ‘hyperconcentrated flows’, which are common in the medial fan-zone where the fan slope decreases significantly and the streams of the active fan lobe splits into smaller, shallower streams (Table 2; Gao et al., 2020; Siegenthaler & Huggenberger, 1993; Sohn et al., 1999). Much of the sedimentation here takes place through flashy, widespread, sheet-like deposition (Blair, 2000). The facies D likely result from scour pool fills, which are common features in alluvial fan surfaces (Gao et al., 2020).

4.2.3 | FA3: Sand-rich flash flood and minor stream deposits

4.2.3.1 | Description
The sandstone-dominated facies association 3 (FA3) occurs in up to 5 m-thick, thinly-bedded units with a sheet-like geometries (Figure 11d–f). Facies E, F, G, H, I, and less commonly Facies B and C, represent the main constituents in FA3 (Tables 1.1 and 1.2). FA3 occurs in close association with FA1 and FA2, interbedded between these, commonly in stratigraphic or structural lows (depocentres) of these (Figure 6b–e), with transitional boundaries except when fault-bounded. The occurrence of FA3 may also mark a grading transition from FA1 and/or FA2 into FA6. Furthermore, a trend is observed where FA3 occurs interbedded with FA5 with either sharp or transitional contacts between these (Figure 11d).
4.2.3.2 | Interpretation

FA3 was deposited by flash floods and minor streams primarily in the outer fan zone (Table 2; Gao et al., 2020), according to the sheet-like geometries, rapid depositional features (i.e. soft sediment deformation; Burns et al., 2017), and the higher proportion of sand relative to clasts compared with FA1 and FA2, but in close relation to these two facies associations. These types of deposits are common...
to upper-flow-regime flash floods and reworking of these during overland flows through longer periods between floods (Blair, 2000). Another common constituent of the dried-out fan surface during inactivity is aeolian deposition (Facies H; Table 1.1), where dunes develop in the topographic lows of the rugged fan surface (Blair, 2000; Leleu & Hartley, 2018).

4.2.4 FA4: Sand-rich braided stream deposits

4.2.4.1 Description
Facies association 4 (FA4) dominates the lower part of the Qahlah Formation in the Fanja Basin (Green Qahlah member) and is composed of tens of cm to few metres thick beds of dominantly by the sandy facies’ J, K and L (Table 1.2), and secondarily facies’ A and F (Table 1.1), interbedded in 1–20 m thick units. Beds are amalgamated with rare occurrences of fine-grained deposits (FA6) in between (Figure 12c). Laterally, reactivation surfaces and erosive contacts divide internal beds and bedsets. When Facies A is present within FA4, it is localised (Figure 3a; Figure 12a) and has sharp to erosive contacts to surrounding facies. The sedimentary transport direction is west-northwest in the units dominated by facies J, K and L, whereas azimuths in beds of Facies A trend northeast (Figure 10a).

4.2.4.2 Interpretation
The grain size spectrum (medium- to coarse-grained sandstone, gravel and conglomerate), sedimentary structures (e.g. trough cross-beding and downstream accretion bars), multi-storey stacking with no preserved overbank deposits, lack of lateral accretion elements, and incomplete upward fining channel profiles in FA4 in combination suggests that these are deposits of high-discharge braided streams (Table 2; Ashmore, 1985; Hjellbakk, 1997; Jones et al., 2001; Miall, 1997a, 1997b; Nichols & Fisher, 2007). The presence of Facies A may result from activation along the Range-front fault and the rapid input of coarse clastics consequently hereof, inferred by the predominant direction of sedimentation perpendicular to the Range-front fault in a unit otherwise characterised by parallel-to-fault drainage.

4.2.5 FA5: Heterolithic overbank deposits

4.2.5.1 Description
Facies association 5 (FA5) occurs locally in 1–5 m thick units of repeated thin bedded sandstone and silt (Facies N; Table 1.2) stacked in coarsening and thickening upwards units Figure 11a–d. The facies either occur as repetitively stacked heterolithic beds of Facies N, or the more structureless, slumping Facies M, and is commonly observed in association with FA5 and FA3 or FA2, with sharp, in places erosive, boundaries to these.

4.2.5.2 Interpretation
FA5 may represent crevasse- and overspill splay sands deposited onto wet substrates such as the floodplain or into standing bodies of water (Table 2). This interpretation reflects the thinly bedded architecture, inversely-graded- and upwards-thickening-trend, and sedimentary structures representative to the facies combination in FA5 (Table 1.2). These are all factors common to prograding depositional elements, such as crevasse spays (Facies M; van Toorenenburg et al., 2018) and small lacustrine deltas (Facies N) (Burns et al., 2017; Gulliford et al., 2017).

4.2.6 FA6: Fine-grained floodplain deposits

4.2.6.1 Description
Facies association 6 (FA6) occurs either in thick laterally extensive units between coarser-grained fan (FA1, 2, 3) or fluvial (FA4) strata, or as intermittent thin “pockets” between these with a marked lateral pinchout (Figure 13a). FA6 varies in character between structureless red mudstone to grey-red silt with very fine to fine-grained sand interbeds (Figure 13d). FA6 may have a graded profile from fine-grained planar...
bedded sandstone (Facies O) over rippled silt (Facies P) into red mudstone (Facies Q), commonly containing abundant rhizoliths and occasional yellow-white horizons (Table 1.3; Figure 13). Lower contacts may be transitional from FA2 or FA3 into FA6, or sharp when filling in a faulted depression in the coarser units (Figure 6b,c), or forming sharp surfaces (e.g. at 78 m in Log 4). Upper contacts to coarser facies are erosive and sharp (Figure 13a–e). Lateritic soils are also included in FA6 but these occur only locally at the base of the succession and are poorly exposed.

4.2.6.2 | Interpretation
FA6 are deposits of wet, vegetated floodplains with minor flow-activity (Table 2). This conclusion is based on the presence of continental depositional indicators within the mudstone-dominated intervals (e.g. rhizoliths) and the intimate association with alluvial deposits.
(FA1-3). Root-traces indicate soil-forming processes operating during deposition (Schieber, 1999; Zhang et al., 2021). The presence of silt and sand lenses within FA6 indicate erosional bedload transport or minor spill deposits from nearby channels, but the dominating structureless mudstone facies (Q) suggests that flow velocities rarely exceeded the threshold of motion for silt and sand (Schieber, 1999). The fining-upwards is consistent with a gradual abandonment where flow-processes decrease, coarse sediment input ends, and deposition shifts to suspension (Ghosh et al., 2006), likely related to the common shifting position of alluvial fan lobes (Blair & McPherson, 2009). The red colouration reflect haematite pigmentation (Eren et al., 2015), which is often associated with continental environments as process requires oxidising conditions.

4.3 | Boundaries

Boundaries or transitional sections between homogenous units commonly represent changes in the basin configuration (e.g. Steel, 1993). In the Fanja Basin, the lower unconformable boundary to the ophiolite is not exposed, but studies of equivalent successions in other basins around the Al Hajar Mountains show an irregular unconformative contact (e.g. Abbasi et al., 2014; Alsharhan & Nasir, 1996; Nolan et al., 1990), which is sharp except when overlain by laterite. The overlying green Qahlah member has a sharp and erosive contact to the underlying laterite (Figure 14a,b).

In the east, the boundary between green- to Red Qahlah is marked as a gradual transition in colour over 2–7 m through sandy braided stream facies (FA4; Figure 14c) capped by a sharp contact to the orange-red alluvial conglomerates characteristic of the Red Qahlah members (Figure 14d). This boundary, exposed at Al Batah, marks the eastern pinch-out (Figure 7) of the Wadi al Theepa member (gradual colour change), which otherwise dominates the western basin, and the base of the Al Batah member (sharp contact). In the western part of the basin, the boundary between the two members of the Red Qahlah discloses a prominent barren surface on top of conglomeratic units of the Wadi al Theepa member, marking a low-angle truncation of these (Figure 14e). Similar surfaces divide conglomeratic bodies (FA1 and FA2) and fine-grained intervals (FA6) throughout the red Qahlah units, with common duricrust formation in conglomerate tops (Facies R, Table 1.3). The presence of rhyoliths, duricrusts, and palaeosol horizons related to these surfaces all conform to these being (continental) omission surfaces, as described by Kraus (1999) and Del Papa et al. (2010). Duricrusts reflect hardpan formation, indicative of long-exposure surfaces of non-deposition, and are thus important indicators for prevailing climatic conditions and fluctuations in accommodation- and sedimentation rate (e.g. Martinius et al., 2014). This conforms to omission surfaces representing minor breaks in sedimentation without any significant erosion (Bromley, 1975). Overlying beds of the Al Batah member are concordant to the contact, but on 100-m scale can be seen to thin westwards up along the limb of the mentioned N-S trending, east-facing monocline situated in this area.

There is an angular unconformity between the Qahlah and Jafnayn formations, seen as nearly flat beds above the longitudinal syncline of the underlying basin. The boundary is only present in the eastern end of the Fanja Basin and either occur as a sharp contact to beach conglomerates or an oyster lag (Figure 14f,g). Fault contacts on the north and south side of the Jafnayn Formation outlines a graben superimposed on the synclinal Qahlah basin.

4.4 | Vertical and lateral variations

The prominent lateral changes in outcrop geometry (5.1; Figure 3d) are accompanied by notable variations in
thickneses and facies distribution within the units, as summarised in Figure 7.

The Green Qahlah member is highly variable from <2 m to 35 m, with parts of the basin (central and distal/north) lacking this unit. Besides well-exposed mountainsides, sandy intervals appear as patchy outcrops in mounts scattered across the valley floor, indicative of dominating fine-grained floodplain facies (eroded) with scattered sandstone channels (preserved). From east, the thickness decreases towards the central part where the Green Qahlah member disappears but reappears furthest to the west in mounts of 1–5 m in thickness.

FIGURE 9 Representative photos of FA1 and FA2. (a) Cyclic interbedded tabular FA2 and thick FA6 at Al Batah. (b) Closely stacked, amalgamated beds of facies A, B, C, D (FA1-2) at Wadi al Theepa. (c) Details of FA2 from (a). (d) Facies A, B, and C (FA1-2) interchanging through grain size changes and clast colour variations (middle section). (e) Detail of (b) showing the spatial variation between facies A, B and C. Refer to Figure 3a for locations.
FIGURE 10 Summary of palaeodrainage directions at Al Batah, Naffa, middle section and Wadi al Theepa for (a) the green Qahlah member ($N = 157$) and (b) the red Qahlah members ($N = 104$). Directions are summarised in rose-diagrams for each location. Overall, the green Qahlah member (a) drained averagely WNW, fault-parallel. The red Qahlah members (b) drained averagely northward, fault-transverse, with a larger spread. The Al Batah member (Al Batah and Naffa locations) drainage trended more NNE, whereas the Wadi al Theepa member (middle section and Wadi al Theepa locations) drainage shows a larger spread NNE-NNW.
The thickest measured units are in the eastern basin (Al Batah) and in the Fault Valley, closest to the Range-front fault (Figure 7). Furthermore, the Fault Valley section deviates from the commonly braided stream sandstone facies, characteristic for the Green Qahlah member, by hosting large quantities of thick green floodplain mudstone intervals (FA6) and interbedded coarse gravity-driven conglomerates (FA1) (Figures 7 and 12e).
The Wadi al Theepa member of the Red Qahlah is characterised by a dominance of coarse-grained deposits (>75%) relative to fine-grained deposits (<25%), whereas the Al Batah member exhibits a much higher concentration of fine-grained deposits (28%–49%) relative to coarse-grained deposits (51%–72%) (Figure 7). The Wadi al Theepa member is thickest (210 m) furthest west in the basin at Wadi al Theepa and thins gently eastward before it pinches out between the Green Qahlah and Al Batah members into the eastern depocentre. The Wadi al Theepa member is dominated by stacked beds of interbedded FA1 (25%) and FA2 (37%) between thinner intervals of FA6 (25%) with minor FA3 and FA5 (13%) (Figure 7). The Al Batah member is concentrated in the eastern basin with the thickest succession measured at Al Batah (243 m) and thins westward pinching out in the western part on top of Wadi al Theepa member. At the thickest point, the unit is dominated by FA6 (45%) interbedded with stacked beds of FA2 (19%) and FA3 and FA5 (15%) with minor FA1 (7%) (Figure 7).

In summary, the Fanja Basin is overall made up of a basal succession of green braided stream deposits (Green Qahlah member), concentrated in the east and towards the central fault segment. Notably, thicker sections of the Green Qahlah locates in two areas where the Range-front fault offers former relays, a common entry point for sediments into hanging wall basins (e.g. Gawthorpe & Leeder, 2000). The overlying Wadi al Theepa member contains a coarse-sediment dominated succession with secondary fine-grained intervals concentrated in the western basin. A fine-sediment dominated succession with secondary coarse-grained intervals in between, the Al Batah member, concentrates in the eastern basin. Finally, the succession is capped in the eastern basin by a transgressive surface followed by deltaic sandstone and marl deposits, and topped by a thick limestone succession (Figure 7).

4.5 | Palaeodrainage directions

Palaeocurrent (PC) trends provide important information on the overall trend of drainage through a basin, where the entry points for drainage into the basin was, and furthermore indicate the dominant facies.
type according to the spreading of the measurements (Tucker, 2003). Figure 10 summarises the PC data collected for this study.

The Green Qahlah member shows an average eastward PC trend along and slightly towards the Range-front fault with dominant directions WNW to WSW (Figure 10a). In the eastern part (Al Batah), there is a clear dominance of east to ENE trending azimuths. In the central basin (Naffa and Middle section), the PC’s trend more southeast, whereas a wider spreading from south to northwest dominates the western basin (Wadi al Theepa) (Figure 10a). In accordance with the facies analysis, the along-fault PC trend with a crescent spreading is typical for (braided) stream deposits (High & Picard, 1974; Miao et al., 2008). The average PC trend indicate an entry point in the eastern basin, whereas the western basin may have been less confined, as suggested by the greater PC divergence combined with scattered sandstone channel facies in between (eroded) fine-grained floodplain deposits.

The Red Qahlah members show a radical change in azimuth direction to an average northerly trend, perpendicular to the Range-front fault (Figure 10b). Individually, measurements have a large spread from NE to NW but with
FIGURE 14 Boundaries between formations and members in the Fanja Basin. (a,b) The sharp, erosive boundary between the laterite at Al Batah (a) and at the cross-road section (b). In the latter, the green Qahlah member is erosively overlain by red alluvium of tertiary age. (c) The colour transition from green to red marking the gradual transition in mineralogy between the green and red Qahlah members and marking the pinchout of the Wadi al Theepa member in the eastern Fanja Basin at Al Batah. (d) The sharp lithological boundary between the green Qahlah member green fluvial sandstones and Al Batah member red alluvial conglomerates at Naffa. (e) The striking omission surface at middle section marking the pinchout of the Al Batah member into the Wadi al Theepa member in the western Fanja Basin. (f,g) The unconformable boundary between the Qahlah Formation and overlying Jafnayn Formation. At the cross-road section (f) this is a sharp contact between alluvial conglomerates of the Al Batah member and wave reworked sandstones again sharply overlain by prodelta sand and silt. At Al Batah (g), the boundary is a sharp, faulted contact between red alluvial sandstones of the Al Batah member and marine siltstone with abundant oyster shells. See the log (Al Batah) to the right for location of the different boundaries in the succession (numbered). Refer to Figure 3a for locations and Figure 2 for log legend.

dominating north trend in the Al Batah member, northwest in the central basin (Middle section) and NNE in the Wadi al Theepa member (Figure 10b). The perpendicular trend to the Range-front fault with a crescent spreading is indicative of alluvial fans, which develops from water-gaps in the immediate footwall (Blair & McPherson, 2009). The facies belt
analysis substantiate spreading in a crescent shape out into the hanging-wall (Viseras & Fernández, 1994).

4.6 | Mineralogy

The mineralogical observations elaborated in this section are summarised in Figures 4 and 5.

4.6.1 | Mineralogical character of the Green Qahlah member

4.6.1.1 | XRD bulk analysis of sandstones and conglomerates

The Green Qahlah member sandstones show an abundance of quartz and chlorite, together comprising 83%–97% of the bulk (Figure 4). Microcline occurs in minor amounts (1%–3%). One sample contains 7% muscovite/illite, >2% pyroxene, 4% rutile and >2% haematite. Kaolinite minerals are absent throughout the section. Traces (>1%) of goethite was recorded in one sample, but this mineral is otherwise absent. The only carbonate mineral detected is calcite (>1%–14%).

4.6.1.2 | Thin section and SEM analysis

The sampled Green Qahlah member sandstones contain sub-angular to rounded grains of very fine- to medium-grained sandstone (Figure 5a). An intermedial to good sorting and a low to medium degree porosity characterises most samples. The preponderant silica component occurs mainly in the form of monocrystalline quartz grains (55%), secondarily in polycrystalline quartz grains (8%), and sporadically in chert grains (1%), which appears to become more abundant stratigraphically upwards. Lithic rock fragments are abundant (20%) and often occur as larger clasts than the average monocrystalline quartz grains. The lithic clast portion is enriched in mafic elements (e.g. Fe and Mg), potassium and igneous minerals (e.g. pyroxene) and metamorphic minerals (e.g. Spessartine garnets). Feldspar grains are few (<2%) and unweathered, whereas sparsely occurring micas (e.g. Muscovite/Illite) (<2%) occur as smeared particles between grains. The remaining minerals traced in the XRD analysis occur together with a large proportion of the mafic and igneous minerals as cement. The cement may either be dominated by Calcite, Iron or Magnesium (Figure 5a).

4.6.2 | Mineralogical character of the green-red transition

4.6.2.1 | XRD bulk analysis of sandstones and conglomerates

Three out of four samples from the green/red transition display a mixture of the green and red mineralogical assemblies, with both chlorite (5%–7%), goethite (2%–3%) and kaolinite (12%–13%) represented (Figure 4). These samples also contain ankerite (7%–8%) and traces of calcite, whereas dolomite is absent. The fourth sample is dominated by quartz (70%) and kaolinite (19%) with minor haematite (2%). Herein, chlorite is absent and ankerite replaced by dolomite (5%), and the fourth sample thus shares mineralogical characteristics with the Red Qahlah above (Figure 4).

4.6.2.2 | Thin section and SEM analysis

At the green-red transition, a poorer sorting, larger grain size (fine- to very coarse-grained), and higher grain-angularity characterises the samples. The silica-component occurs predominantly in the form of polycrystalline quartz and chert with a lesser amount of monocrystalline quartz. The lithic rock fragment portion is lower than in the Green Qahlah (<15%), but still forms a significant component of the bulk. Ferric minerals (e.g. Chlorite, Haematite, and Ankerite) and Calcite are concentrated mainly as cement. The increased Kaolinite content documented in the XRD (Figure 4) occurs both as pseudomorphs (dissolved grains) and as pore-filling cement.

4.6.3 | Mineralogical character of the red Qahlah

4.6.3.1 | XRD bulk analysis of sandstones and conglomerates

The most abundant minerals in the Red Qahlah samples are quartz and kaolinite, accounting for 74%–94% of the bulk samples (Figure 4). The carbonate mineral assemblage is more diverse in the Red Qahlah, where dolomite and ankerite are the most common phases. Together with minor amounts of calcite (1%–2%), these carbonate minerals account for 1%–17% of the bulk. The remaining bulk is composed largely of goethite (2%–3%), muscovite/illite (2%), calcite (1%–2%), and haematite (averagely 1% except one sample with 6%), with traces of microcline and chlorite in some samples. No traces of igneous minerals (e.g. pyroxene, amphibole, and epidote) were encountered.

4.6.3.2 | Thin section and SEM analysis

The Red Qahlah samples exhibit very poor sorting with grains ranging in size from very fine to very coarse-grained with a high grain angularity. Kaolinite fills the pore space and most likely reduced any former porosity significantly (Figure 5b). The high silica content in the Red Qahlah is mainly concentrated in (radiolarian) chert grains (>60%) and minor amounts (<5%) in the form of poly- and monocrystalline quartz. The remaining minerals...
inferred from the XRD (Figure 4) are mainly concentrated in cement, dominated by Iron, Calcite and Magnesium (Figure 5b).

4.6.4 | Mineralogical character of mudstones (XRD)

Among the three mudstone samples collected from the Qahlah Formation, kaolinite is the dominating clay mineral. Chlorite, and possibly interstratified chlorite/illite, were also detected in the lowermost mudstone sample. Silica occurs in all three mudstone samples.

5 | DISCUSSION

The Fanja Basin represents an excellent opportunity to study how a small basin develops during early stages of extension as reflected by (i) basin-scale growth-faults and folds representing synclines and anticlines that link to fault-segments of higher- and lower displacement, (ii) basin internal faults and bedding-scale growth wedges, (iii) vertical and lateral variations in sediment infill-patterns, and (iv) lateral mineralogical changes reflecting a provenance shift. Linked with the contemporaneous changing drainage directions, fault-displacement, and facies changes, the observations interweave a development-story for the Fanja Basin linked to the growth of fault segments in the Range-front fault. However, the timing of segmented basin growth and exact correlations remains an issue to resolve due to limited age-restricting data. Scattering of outcrops and extensive faulting and folding further challenges correlation and localisation of formational boundaries. Furthermore, as stratigraphy is only preserved in immediate proximity to the Range-front fault, distal basin deposition necessitates conceptual explanation. The reasoning for conclusions of fault-timing and sedimentary response, and potential evolution scenarios is discussed in the following sections.

5.1 | Rift-basin development stages

5.1.1 | Pre-rift: The laterite member

The varying thickness and laterally discontinuous distribution of the lateritic basal Qahlah Formation (Figure 7) is a common trait of basal terrigenous sequences resting directly on a topographically complex unconformity (Nolan et al., 1990). The distribution of the laterite does not necessarily coincide with the location of fault-bounded basins (Alsharhan & Nasir, 1996), and probably reflects deposition in a pre-rift, rugged ophiolite landscape. Weathering profiles distribution was controlled by topography, and most likely, the laterite-rich horizons were better preserved in the topographic lows of the ophiolite surface. Higher ground became selectively eroded (e.g. Thorne et al., 2012), with sediment transport towards the lowest point in the landscape, being rerouted around topographic highs on the way. This pattern conforms well to an early-rift scenario (Gawthorpe & Leeder, 2000; Smyrak-Sikora et al., 2019, 2020, 2021) and, further acknowledges the observation of fault-bound growth-sections in the overlapping Green Qahlah member.

5.1.2 | Rift initiation: The Green Qahlah member

The localised occurrences of deposits of the Green Qahlah member in footwall regions (i.e. Fanja and Sa’al basins; Figure 1), combined with axially trending drainage (Figure 10a), verify that faulting had initiated when this unit was deposited (Prosser, 1993; Würtzen et al., 2022) (Figure 15). Faulting ascribes to orogenic collapse by extension in the Maastrichtian-Palaeocene, when faults above detachments exerted control on local topography and localised vertical movements. As tectonic domes evolved, faulting focused on dome-margins, such as the Range-front fault (Braathen & Osmundsen, 2019). The Fanja Basin records some of this evolution. Generalised models of rift evolution forecast an initial stage of extension, in which pre-existing drainage trends will prevail but start to modify as uplifted footwalls next to down-faulted depressions evolve in the landscape (e.g. Smyrak-Sikora et al., 2019). Substantially deep drainage basins in footwall regions had not yet developed, as mirrored by the confined alluvial fan deposits within the Green Qahlah member in the east, in Fault Valley (Figure 7), representing small fan cone deposits along the fault scarp (Figure 16a). The interaction with fine-grained thick deposits in this location (Figure 12e) suggests that these fans dispersed into wet substrate westward, such as a shallow lacustrine or swamp environment in the immediate hanging-wall (Figure 8a). Shallow lakes commonly develop in structurally isolated half-grabens during the earliest stages of rift evolution as seen for example in the East African Rift system (e.g. Chorowicz, 2005).

The laterally discontinuous distribution and varying thickness of Green Qahlah member deposits within the Fanja Basin might reflect depositional troughs from
persistent inherent topography in the underlying surface (Figure 15; Opluštil & Vízdal, 1995). Alternatively, sediment routing into the basin from the footwall of the Range-front fault took place through gaps or relays during early, low-displacement fault evolution. With the two areas of thicker Green Qahlah corresponding to two jogs in the fault, indicative of former segment-linkage areas, there appears to be inherited fault control on the early basin evolution. In any case, scattered sandstone ridges in the modern valley reflect channel sandstone deposits, whereas the areas in between mimics localised erosion that favoured zones of more erodible fine-grained deposits (Moosdorf et al., 2018; Williams et al., 2011). Thus, we consider the distribution of Green Qahlah member sandstones to reflect the position of concentrated channel elements, which dominated in the east. Western valley floor areas that exhibit scattered Green Qahlah member sandstone ridges reflect areas that were dominated by flood-plain fines and secondarily scattered channel elements (Figure 8b; Williams et al., 2011). This provides an image of initial stages of regional faulting, with entry-point for sediments proximal to early fault-gaps or relay zones, the main one being near the eastern large jog in the Range-front fault (Figures 3a and 10).

Figure 15 Summary of step-wise basin development at times of deposition for each stratigraphic unit up until the present-day configuration presented in E-W fault-parallel panel and S-N fault-transverse cross-sections. Max-throw (max-T) location along the range-front fault is marked for the units at time 3 (Wadi al Theepa member) and time 4 (Al Batah member). In the cross-sections, the internal faults are estimated and not to be scaled. The location of the cross-sections and logged sections are marked on the inset mapper in the upper right corner.
Concerning the Red Qahlah, significant changes in bedding dip (Figure 15), a noticeable increase in fine-grained interbedded facies towards the east, coupled with PC observations (Figure 10b), endorse two fan complexes building out from the southern footwall and across the Range-front fault. These fan complexes were sourced from water-gaps in the Range-front allowing sediment transport through the uplifted footwall crest (Figure 16b). Between the fans, a gentle N-S-oriented orthogonal syncline adjoins a gentle bend in the fault, ascribed to former curvilinear fault segments (Figure 3a). Overall, this pattern is suggestive of maximum fault throw (Tmax) in the west during deposition of the Wadi al Theepa member, with minimum throw towards the east where it wedges to a minimum (Figure 15). Tmax on the fault during deposition of Wadi al Theepa member was likely accumulating on the segment behind Wadi al Theepa (Figure 15), as this coincides with the thickest measured section in the western part of the basin (Figure 7). The dominance of immature coarse-grained sediment with a high concentration of gravity- and hyperconcentrated flow facies in the fault-proximal and western sections (Figure 7) points to an inner to medial fan zone (Blair, 1999b; Gao et al., 2020; Sohn et al., 1999), consistent with a high sedimentation rate (S) relative to the rate of accommodation (A) (Huerta et al., 2011; Rogers et al., 2016). Despite the low percentage of fine-grained interbeds in the western section (Figure 7), the thickness of the succession conforms to considerable accommodation creation. During low A/S, subsidence variations are considered to have minor effects on alluvial architecture and facies development (Hickson et al., 2005). Besides, if sediment input exceeded the accommodation creation, the formation of deep and long-lasting standing-water bodies may have been prevented (Huerta et al., 2011; Rogers et al., 2016), confirmed by our data in the western section (Figure 7). On a different note, fluctuations in climate with drier conditions during deposition of the Wadi al Theepa member could also result in a more sand-rich succession due to increased mechanical weathering (Nystuen...
et al., 2014; Würtzen et al., 2022), minor formation of fine-grained deposits due to dry-out of the system, and a possible prevalence of transverse over axial sedimentation (Fordham et al., 2010). Climatic studies suggest two global warming events in the Maastrichtian (Abramovich et al., 2010) overall humid seasonal to perennial but with one dry seasonal period recorded in the Late Maastrichtian (Abramovich et al., 2003; Adatte et al., 2005; Keller, 2004). This arid climate event could potentially correlate with the Wadi al Theepa member.

5.1.4 Eastern syn-rift phase: Al Batah member (Red Qahlah)

The Al Batah member is located to the east, in a distinct orthogonal synclinal basin rooted in the major jog of the Range-front fault (Figure 3a). An anticline in the eastern basin end (Figure 3), where the ophiolite is juxtaposed with the fault, is considered the expression of a former low-displacement relay ramp in the area. On the other side, the western boundary of the Al Batah sub-basin is expressed as a gentle orthogonal monocline in the Wadi al Theepa member. There, the Al Batah member abruptly wedges out and upper beds of the Wadi al Theepa member are truncated along omission surfaces (Figure 15). At this stage, the basin configuration conforms to significant focusing of throw accumulation on the major jog in the Range-front fault, consistent with segment linkage/breaching and subsequent focused throw on the former linkage area.

The lesser amount of gravity-flow deposits (FA1) relative to hyperconcentrated- and stream-flow deposits (FA2) in the Al Batah member compared with the Wadi al Theepa member (Figure 7) is consistent with different, possibly interplaying, scenarios. Firstly, a higher accommodation rate relative to the rate of sedimentation prevailed during deposition, as is necessary for the preservation of such thick mudstone intervals in continental basins (Würtzen et al., 2022). Secondly, several trends (e.g. higher maturity, better sorting, more distal facies, thicker, more continuous floodplain deposits in between conglomeratic units; Figure 7) in the eastern section can be ascribed to deposition in the medial to outer zone of alluvial fans (Blair, 1999b; Gao et al., 2020). The sediment must have had a larger transport distance from the source, which coincides with the presence of an initial relay ramp in the eastern end of the basin, suggested from the jog in the range-front fault at this location (Figure 3; Peacock & Sanderson, 1994; Rotevatn et al., 2007). A water-gap would have established as the relay was rejuvenated, creating a source for sediments. Further, recycling of older fan sediments from the uplifted Wadi al Theepa member (Figure 15) may have added to the improved sorting of the Al Batah member conglomerates. A provision of sediment from west is supported by palaeocurrent trends in the Al Batah member, which show a large spread with some measurements indeed trending eastward (Figure 10b). A more humid climate than during deposition of the Wadi al Theepa member could also inflect conditions resulting in more water-laid flows and higher concentration of mudstone (Moscariello, 2018; Nystuen et al., 2014). Besides, during increased humidity, chemical weathering will prevail in the hinterland, favouring the production of clay over sand (Nystuen et al., 2014). Palaeoenvironmental studies of Late Maastrichtian rocks of Israel, Madagascar, and Tunisia document a warm-humid period in the latest Maastrichtian (Abramovich et al., 2003, 2010; Keller, 2004).

5.1.5 Graben-formation: Jafnayn formation

Geometrically, the Jafnayn succession is bound by south and north-dipping faults on opposite sides, setting up a symmetric graben (Figure 15). A basal transgressive lag followed by a southeast-building deltaic succession in the lower Jafnayn Formation show that the latest(?) Maastrichtian to Late Palaeocene hiatus was transgressed, likely from the southeast in what could have been a fjord-style basin. This part of the basin evolution is however outside the scope of this contribution and will therefore not be further entertained.

5.2 Punctuated faulting and depositional response

According to Gao et al. (2020), (ephemeral) alluvial fans commonly develop through stages of lobe building, channel building and abandonment. The lobe building stage is characterised by sheet- and unconfined stream-flows, and surficial ponds on the distal fan, whereas the channel building stage is characterised by the development of gravelly stream-flows. During the abandonment stage, surficial secondary processes, like wind and overland flows, are dominant (Gao et al., 2020). The Red Qahlah fans were likely of perennial type, according to climatic studies (e.g. Keller, 2004), and as such, the frequency of flood discharge events may have been high and the intermittent periods of inactivity low, compared with ephemeral alluvial fans phases. These phases of lobe-building and abandonment produce recognisable boundaries and facies sets, which are strongly linked to fault movement and accommodation creation (Figure 16a). During increased
fault linkage, and the connected merging- and enlargement of drainage basins, drainage is redirected into the catchments (Mather et al., 2000). Clevis et al. (2003) shows that sediments may be captured for tens to hundred thousand years in catchment areas before being dispersed into the basin thus advocating that periods of fan progradation happen long after termination of localised faulting, whereas times of active faulting are characterised by retrogradation of gravel lobes and thus more widespread deposition of finer-grained sediment. This suggests that fault events in the Fanja Basin coincide with the sharp boundary between conglomeratic units and overlying overbank deposits (FA5 and FA6) (Figure 7). This scheme is supported by (i) the rapid creation of accommodation reflected by the sharp shift into fine-grained successions, often of significant thickness (Figures 7 and 13), (ii) the abundant presence of small-scale faults in the conglomerate top surfaces, hosting metres thick sub-depocentres filled with growth packages in FA5 and FA6 (Figure 6b,c), which furthermore show abundant convolute bedding and load structures, indicative of syn-depositional seismicity (Figure 11e; Evans, 1991), and (iii) how surfaces of significant facies shifts may appear sediment starved, supported by the presence of duricrusts (Facies R; Table 1.3) (Blair & McPherson, 2009). Accommodation likely outpaced sedimentation during the active faulting, and these rapidly created depocentres commonly accumulated fine-grained sediments (e.g. Prosser, 1993). This is especially expected under perennial conditions, where chemical weathering produce abundant clay particles (Nystuen et al., 2014), which settle through suspension and form thick mudstone units, as noticed in the Red Qahlah members (Figure 13).

Periods of faulting are short relative to episodes of increased tectonic activity (e.g. Embry et al., 2019). The deposition following faulting may for extended periods happen through suspension settling of fine-grained lithologies until the uplifted footwall crests are cut by water-gaps through which coarse sediment fill the basin (Clevis et al., 2003). Periods of low fault activity thus result in landscape degradation and fan advance as gradually more mature composite catchments carry more water and sediment into the basin (Figure 16b). The lower topographic gradients during these periods may also lead to the basin being overfilled which show in the stratigraphic record as coarsening upwards (Prosser, 1993). Oppositely, during periods of high fault-activity, water-gaps may sustain near fault-tips, but more commonly become wind-gaps to small catchments, as the footwall is uplifted, and relays become the main fairways for sediment input (Figure 16c; Densmore et al., 2009; Friedmann & Burbank, 1995). The landscape-building and resulting cut-off of water-gaps means that the basin may have been periodically underfilled (Gawthorpe & Leeder, 2000; Prosser, 1993), conforming to the observation that omission surfaces followed by overbank fines (Figure 7) represent long-time intervals of low fault-activity (Figure 16c). The coarse-grained intervals in the Red Qahlah members thus represent the end of each fault cycle, before initiation of new fault movement and renewed deposition of fine-grained deposits (Figure 16a).

Climatic fluctuations have also been documented to control fan aggradation/incision by Terrizzano et al. (2017), who correlated these events to periods of climatic instability (mainly transitions from wet to dry conditions) with only local aggradation/incision being linked to a tectonic component. The more cyclic deposition with longer periods of low sediment supply in the Al Batah member compared with the Wadi al Theepa member could relate to a strong climatic control with fluctuations where the floodplain dominated (Sadler & Kelly, 1993).

5.3 Palaeoclimate

Published palaeoclimate studies generally agree that a tropical climate prevailed at equatorial latitudes during the Maastrichtian, based on biostratigraphy (Schlüter et al., 2008), palaeosol analysis (Kumari et al., 2021), and palynology (Mishra et al., 2022). In the Qahlah Formation of the Fanja Basin, this is supported mineralogically, first of all by the presence of laterite, which reflect chemical weathering of exposed surfaces and near-surface rocks during tropical-subtropical conditions (Al-Khirbash, 2020; Nolan et al., 1990). The high proportion of chlorite in the Green Qahlah member (Figure 4) is, however, somewhat contradicting, as chlorite weather easily and transform into other clay minerals, e.g. smectite, under tropical conditions (Garzanti et al., 2014). Chlorite may though also stem from alterations of weathered mafic/ultramafic minerals, which is not uncommon in tropical climates (van de Kamp & Leake, 1995). The large concentration of kaolinite cement in the Red Qahlah members (Figures 4 and 5b) further conforms to a warm climate with high constant precipitation (Garzanti et al., 2014). Stable humid conditions are also inferred from the prevalence of goethite in each of the Red Qahlah members, which forms through weathering of iron-rich minerals that concentrate in soils of swamps and lakes (Brenko et al., 2020). As a consideration, not readily identified in our data, there are variations in the overall tropical climate in the Maastrichtian Tethys Sea with alternating seasonal to perennial humid periods and a seasonally dry period in the Late Maastrichtian (Keller, 2004).
5.4 | Provenance

The transition in mineral assemblage from Green Qahlah to Red Qahlah (Figure 4) resembles an inverted mineralogical stratigraphy of the regional tectonostratigraphy, as encountered around the Saih Hatat and Jabal Akhdar domes with surrounding thrust-nappe rocks, with early basin fill sourced from structurally higher nappes (Abbasi et al., 2014; Bauer et al., 2018; Mattern et al., 2020; Mattern & Scharf, 2018; Searle, 2019).

5.4.1 | Green Qahlah member and laterite member

The high Ni-concentration previously recorded in the laterite (Al-Khirbash, 2020) matches the mafic/ultramafic protolith in the Semail Ophiolite, which overall encompasses harzburgite (mantle sequence), dunite and wehrlite (Moho transition zone), and gabbro (crustal sequence) (Dilek, 2003; Searle, 2019). The mafic/ultramafic composition of the ophiolite is also reflected in the bulk mineralogy of the Green Qahlah member, reflect in the high concentrations of chlorite and other ferric minerals, and traces of pyroxene (Figure 4). Chlorite is a common alteration product of olivine and pyroxene during intensive weathering of ultramafic to mafic igneous rocks (van de Kamp & Leake, 1995). These minerals are abundant components in the peridotites (e.g. Harzburgite and Dunite) and gabbros surrounding the Fanja Basin (Figure 1; Tamura & Arai, 2006), and the Semail Ophiolite is therefore counted as the main source for the Green Qahlah sediments (Figure 17c). The large content of monocristalline quartz crystals indicates an additional metasedimentary/quarzitic source. Quartz appears in a wide spectre of rocks and there are several potential sources in the Al Hajar Mountain stratigraphy that could have provided quartz; the abundant metasediments in the thrustnappes below the ophiolite (i.e. Hawasina) represent the most obvious source (Figure 1). The Amdeh and Hatat formations quartzites and schists (Mattern et al., 2020) have been evaluated as potential sources, but uplands for Maastrichtian sediments in the domes are contested by the fact that these rocks overall started uplift from deep, metamorphic levels in the Maastrichtian and approached the surface in the Eocene (Hansman et al., 2017). The garnets in the Green Qahlah may indicate sourcing from garnet-amphibolite and schist in the metamorphic sole of the ophiolite (Gnos, 1998; Gray et al., 2004; Searle & Cox, 2002; Warren & Waters, 2006), which at present time is exposed just south and east of the Fanja Basin (Figure 17a).

5.4.2 | Red Qahlah members

The striking change in mineralogical composition between the green and red Qahlah (Figure 4) reflects a shift in source unit, probably as a consequence of significant change in basin configuration with new sediment entry-points (Figure 17). The predominance of radiolarian chert in the bulk of the Red Qahlah members (Figure 5b) verifies a source in the Hawasina Nappe Complex (Blechschmidt et al., 2004). A thin sliver of Hawasina radiolarian chert outcrops around the western edge of the Saih Hatat dome, along with patches in the footwall to Red Qahlah (Figure 4) resembling an inverted minerological succession with an available source for sediments. Combined with the PC directions radiating outwards directly from the footwall of the basin (Figure 10b), it seems plausible that footwall uplift would have exposed the Hawasina stratigraphy to erosion and subsequent transport into the Fanja Basin. Additional source units providing chert may include the Muti Formation forming part of the Hajar Supergroup, which stratigraphically underlies the Hawasina nappe (Figure 2), and is exposed just ESE of the Fanja Basin (Figure 17a). It may have been exposed during unroofing of the Saih Hatat dome and presented a source unit, at least for the Al Batah member (Figure 17b). Abbasi et al. (2014) indicates that an increasing amount of carbonate content upwards in the Fanja Basin stratigraphy reflects material derived from the Hajar Supergroup limestones. However, carbonates are abundant throughout the Al Hajar Mountains stratigraphy (Figure 1). Source units north and east of the basin during deposition of the Al Batah member are consistent with the PC measurements in the eastern part of the basin, trending NW, and supported further by the presence of a relay ramp in this area, which would have been a major sediment pathway into the basin at that time.

6 | CONCLUSIONS

This study documents for the first time the tectonostratigraphic development of the Late Cretaceous Fanja continental half-graben basin (northern Oman). The observations provide valuable insights into how extensional fault and fold growth impact accommodation development, drainage patterns, and sedimentary infill in continental half-graben basins by combining structural, sedimentological, and mineralogical analyses. The main findings of the study are summarised as follows:
FIGURE 17 (a) Map of the central Al Hajar Mountains and Fanja region with relevant provenance units’ distribution marked in their present-day location with main lithologies summarised for each. The drainage directions (Figure 10) for each member indicate approximately from which direction the sediments were sourced through time and combined with vertical mineralogical variations through the sections, the source units can be pinpointed. During deposition of the green Qahlah (c), sediments where sourced mainly from the ophiolite surface, which covered the Al Hajar Mountains. Metasediments of the metamorphic sole might have been exposed around the Al Hajar Mountains and represent a contributory source unit. The red Qahlah members (b) were sourced mainly from the Hawasina nappe complex as the Semail Ophiolite cover had been largely eroded in the interior Al Hajar Mountains. The Hajar Supergroup might have been exposed too, at least in the central domal structures, representing an additional source. The sediments were transported into the basin across the Range-front fault from south to north and from an eastern inlet (relay section). Furthermore, the Range-front fault footwall uplift exposed underlying allochthonous units in the footwall to the Fanja Basin.
1. Evolving displacement gradients, especially at the breaching-point of relay zones, form fault-orthogonal folds, which control basin accommodation and hence fillarchitecture, as evidenced from observations along the Range-front fault and contemporary infill in the Fanja Basin.

2. The Red Qahlah is sub-divided into two members, the lower Wadi al Theepa member, concentrated in the west, and the upper Al Batah member, concentrated in the east. The distinction is based on a noticeable reduction in fine-grained interbeds towards west wedging onto former conglomerates of the Wadi al Theepa member in a gentle fault-orthogonal monocline.

3. Changes in facies type and distribution, mineralogy and bedding geometries in combination with structural observations reflect transitions in rift phases. In the Fanja Basin, the dataset documents the evolution from an early to mature rift through five phases: pre-rift phase (Laterite member), rift-initiation phase (Green Qahlah member), western syn-rift phase (Wadi al Theepa member), eastern syn-rift phase (Al Batah member), and graben formation (Jafnayn Formation).

4. Continental rift basins commonly fill initially by axially draining braided streams (i.e. Green Qahlah member) during the early rift phase where the basin has low-relief, and later during the syn-rift phase by footwall sourced alluvial fan deposition (i.e. Red Qahlah members) as footwall relief increase in response to focused fault-movement. During growth and linkage of basin bounding fault-segments, the Tmax may shift between segments, as in the Fanja Basin where locus shifted from a western- to an eastern fault segment.

5. The timing of alluvial fan dispersal may be strongly controlled by faulting as the footwall is lifted and catchments evolve to deliver sediment, exemplified by the cyclic interbedded fine and coarse-grained units in the Al Batah member. Fault-initiations may be marked by omission surfaces in tops of conglomerates overlain by thick floodplain fines, reflecting accommodation outpacing sedimentation in the rift climax. Outbuilding of alluvial fans finalises each fault-cycle, represented by amalgamated coarse-grained intervals.

6. Smaller growth-faults (characterised by infill of fine-grained sediments into metre-sized fault-bounded ‘micro-basins’) in conglomerate tops at the boundary between these and thick fine-grained floodplain units reflect the initiation of faulting-events. These horizons conform to the shift in depositional setting from coarse alluvial fans prograding into an overfilled basin to sudden accommodation creation and footwall uplift resulting in A>S and an underfilled basin filled by lacustrine and floodplain deposits.

7. Climatic fluctuations may strongly influence facies distribution by affecting weathering patterns in the hinterland and thereby the sand: mud ratio in the sediment input. In the Fanja Basin, a tropical climate, as documented in climatic studies, is reflected in facies-indications for high run-off rates as well as in the mineralogy, which is rich in goethite and kaolinite.

8. Sediment provenance may change with the evolution of a basin-bounding fault, such as the Range-front fault in the Fanja Basin, suggesting unroofing of the footwall in conjunction with fault-driven topography-enforced sediment routing. This is recorded in the Fanja Basin through mineralogical analysis, which shows a distinct change from the quartz and lithic (ophiolite) detritus dominating the Green Qahlah to the chert, kaolinite and dolomite-dominated Red Qahlah. Combined with palaeodrainage trends, a potential source for the Green Qahlah may be the Semail ophiolite cover and schists of the metamorphic sole east of the Fanja Basin. The Red Qahlah was sourced mainly from the underlying Hawasina Nappe Complex, exposed in the footwall south of the basin.

The stratigraphic architecture of the Fanja continental half-graben basin reflects fault growth and dynamic depocentre-development during fill. This study demonstrates that depositional loci and resultant accumulation of depositional sub-environments are a direct consequence of this and is valuable in deterministic evaluation of a basin and its reservoirs. Linking sedimentology and fault-displacement events controlling fault-perpendicular folding, and its influence on depocentre generation and resulting stratigraphic architecture is an approach rarely considered in subsurface analysis and outcrop studies. This places the results from this study among the key outcrop-based contributions to the field.

ACKNOWLEDGEMENTS
The authors thank the NCCS Centre, performed under the Norwegian research programme Centres for Environment-friendly Energy Research (FME), for financial support for this study. Partners (Aker Solutions, Ansaldo Energia, Baker Hughes, CoorsTek Membrane Sciences, EMGS, Equinor, Gassco, Krohne, Larvik Shipping, Lundin, Norcem, Norwegian Oil and Gas, Quad Geometrics, Total, Vår Energi, and the Research Council of Norway (257579/E20)) are acknowledged for their contribution. Additionally, authors thank the Suprabasins project (Research Council of Norway grant no. 295208) and industry collaborators for support. Siri Simonson (UiO) and Henrik Hansen (UiO) are thanked for assistance on petrographic sample analysis. We are grateful for engaging discussions and insightful comments during
manuscript maturation from the Tectonostratigraphic Research Group at the University of Oslo. Finally, the authors wish to thank the reviewers for their revisions of the manuscript, which improved in many ways from this.

PEER REVIEW
The peer review history for this article is available at https://publons.com/publon/10.1111/bre.12731.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID
Camilla L. Würtzen [https://orcid.org/0000-0001-7813-8868]
Alvar Braathen [https://orcid.org/0000-0002-4507-288X]
Miquel Payot-Moré [https://orcid.org/0000-0001-7813-8868]
Ivar Midtkandal [https://orcid.org/0000-0002-4507-288X]

REFERENCES

GeoRose 0.5.1. Yong Technology Inc. www.yongtechnology.com

Miall, A. D. (1977a). A review of the braided-river depositional environ-

Huerta, P., Armenteros, I., & Silva, P. G. (2011). Large-scale ar-

Huerta, P., Armenteros, I., & Silva, P. G. (2011). Large-scale ar-

Huerta, P., Armenteros, I., & Silva, P. G. (2011). Large-scale ar-

Huerta, P., Armenteros, I., & Silva, P. G. (2011). Large-scale ar-

Huerta, P., Armenteros, I., & Silva, P. G. (2011). Large-scale ar-

Huerta, P., Armenteros, I., & Silva, P. G. (2011). Large-scale ar-

Huerta, P., Armenteros, I., & Silva, P. G. (2011). Large-scale ar-

Huerta, P., Armenteros, I., & Silva, P. G. (2011). Large-scale ar-

Huerta, P., Armenteros, I., & Silva, P. G. (2011). Large-scale ar-
