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ABSTRACT

Many astrophysical and terrestrial scenarios involving magnetic fields can be approached in axial geometry. Although the
smoothed particle hydrodynamics (SPH) technique has been successfully extended to magnetohydrodynamics (MHD), a well-
verified, axisymmetric MHD scheme based on such technique does not exist yet. In this work, we fill that gap in the scientific
literature and propose and check a novel axisymmetric MHD hydrodynamic code, that can be applied to physical problems
which display the adequate geometry. We show that the hydrodynamic code built following these axisymmetric hypothesis is
able to produce similar results than standard 3D-SPMHD codes with equivalent resolution but with much lesser computational

load.

Key words: hydrodynamics — MHD — methods: numerical.

1 INTRODUCTION

In spite of the large success achieved by Cartesian smoothed particle
hydrodynamics (SPH) codes there is a scarcity of SPH calculations
taking advantage of the axisymmetric approach in computational
fluid dynamics (CFD). To cite a few of them: Herant & Benz (1992),
Petschek & Libersky (1993), Brookshaw (2003), Garcia-Senz et al.
(2009), Joshi et al. (2019), Sun et al. (2021). Much more dramatic is,
however, the case of axisymmetric magnetohydrodynamics (MHD)
simulations with SPH (SPMHD) because, as far as we know, there
is a manifest void of published material on that topic.

Nevertheless, implementing a consistent, well-verified, axisym-
metric SPMHD code may broaden the range of applications of
such technique. In astrophysics, the magnetic field around stellar
objects can often be described with dipole or toroidal geometries,
both consistent with axial geometry. Good examples are the study of
magnetized accretion discs around neutron stars and the gravitational
collapse of an initially spherical cloud of a magnetized gas, this last
closely related to the formation of protoplanetary discs. Another
potential scenario is the core collapse supernova, where magnetic
fields and rotation play an important role in the development of
the explosion (Matsumoto et al. 2020). Resolution issues add an
extra degree of difficulty when these studies are conducted in three
dimensions. In some cases, the axisymmetric approach is the only
plausible option to study these scenarios (see, for example, Zanni &
Ferreira 2009 concerning simulations of accretion on to a dipolar
magnetosphere with an Eulerian axisymmetric hydrodynamic code).
Furthermore, MHD experiments in terrestrial laboratories can benefit
from the joint virtues of the well-established SPMHD technique
(Price 2008; Rosswog 2009; Price et al. 2018; Wissing & Shen 2020)
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plus the inherent better resolution of the axisymmetric approach. A
paradigmatic example are the Z-pinch devices which aim to focus
magnetically driven strong implosions towards the symmetry axis
(Haines et al. 2000). Additionally, researchers can take advantage of
hydrodynamic codes with axial geometry to carry out convergence
studies of resolution of their own three-dimensional hydrodynamic
codes, or perform computationally affordable parameter explo-
rations.

In this work, we develop and test a novel axisymmetric magnetohy-
drodynamic scheme, called Axis-SPHYNX, consistent with the SPH
formulation. Our work extends the axisymmetric code developed by
Garcia-Senz et al. (2009) to the MHD realm by adding the magnetic-
stress tensor to the axisymmetric SPH equations. Furthermore, the
induction and dissipative equations are consistently written in such
geometry. We focus on the basic mathematical formulation of ideal
MHD, so that explicit current terms do not appear in the governing
equations. The involved physics is kept as simple as possible: ideal
equation of state (EOS), heat transport not included, and no chemical
or nuclear reactions. We show that, given an axial symmetry, our
MHD code is able to produce results similar to those obtained in 3D
with SPMHD codes, but with much lesser computational effort. The
numerical scheme has been verified with a number of standard tests in
ideal MHD, encompassing explosions/implosions, hydrodynamical
instabilities, and more complex problems involving self-gravity.

This paper is organized as follows: Section 2 introduces the
reader to the axisymmetric formulation of the SPH equations. Such
formulation is used to develop a suitable numerical scheme of
ideal MHD in Section 3. Section 4 is devoted to describe and
analyse the results of five numerical tests encompassing a variety
of physical scenarios. Finally, a discussion on the results, the
conclusions of our work, and future prospects are presented in
Section 5.
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2 AXISYMMETRIC FORMULATION OF THE
SPH EQUATIONS

2.1 Gradient calculation with ISPH

Gradients and derivatives are calculated with the Integral Approach
(IA) proposed by Garcia-Senz, Cabezén & Escartin (2012) and
adapted to the particularities of axisymmetric geometry. The IA leads
to an Integral SPH scheme (ISPH) which was shown to improve the
accuracy in estimating gradients (Cabezon, Garcia-Senz & Escartin
2012; Rosswog 2015; Cabezén, Garcia-Senz & Figueira 2017). Such
method is especially suited to handle axisymmetric hydrodynamics,
where a good estimation of gradients in points close to the Z-axis
is critical. Additionally, the ISPH formalism naturally incorporates
corrective terms which are helpful in removing the magnetic tensile-
instability. In the IA formalism, the gradient of any scalar function
f. associated to particle a in the axisymmetric plane, and defined by
coordinates s(r, z), with r = y/x2 + y2 s,

af/ax! 3 21 0
8f/8x2 ., - T21 T22 ., I? . .
From now on we use the notation x' = r; x> = z; x3 = ¢ (with

¢ being the azimuth angle) indistinctly." Coefficients t¥ (i, j = 1, 2),
and I' in equation (1) are,

np
ij Z My i iN(vd j
faj = 7(xb - xa)(-x}{ - x;)Waqub - sals ha)v (2)
P
np

I(ra) = Z %f(rb)(sb - Sa) Wab(lsb - Sa|7 ha)
b

np

—fe)Y %(sb — $Wan(I85 = Sul. ). 3)
b

where n;, is the number of neighbours of the particle, W, is the
kernel function, h,, my, are the smoothing length and the mass of the
particle respectively, and 7, is the surface density. The antisymmetric
properties of the gradient of the kernel ensure that the second term in
the RHS of equation (3) is close to zero. Thus, it is neglected. That
assumption gives rise to the conventional ISPH scheme (Garcia-Senz
etal. 2012; Rosswog 2015). An exception to that procedure, which is
connected with the magnetic tensile-instability problem, is discussed
in Section 3.4.

From now on, W,,(h,) = W(s, — S4|, h,), with |s, —s,| =
\/ (rp — ra)?* + (zp — z4)?, for the sake of clarity.

2.2 The Euler hydrodynamic equations in axisymmetric
geometry

Because the axisymmetric formulation of SPH is probably not too
familiar to many readers, we first describe the Euler hydrodynamic
equations and discuss the MHD formalism later. The basic Euler
ISPH equations in axisymmetric geometry can be directly written
from the well known 3D-Cartesian SPH schemes, but changing the
interpolating kernel to Wyp(s) and with the following relationship

!'Note that our index notation slightly differs from that in Garcia-Senz et al.
(2012). Coordinate indexes {i, j, k} (as well as {r, z, ¢}) are notated
superscript to make them compatible to the standard notation of the magnetic-
stress tensor. Also note the change in the order at which cylindrical coordinates
appear: {r, ¢, z} in the standard notation, and {r, z, ¢} in this work, which
emphasizes that the axisymmetric plane is mainly defined by the pair {r, z}.
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between the volumetric, p, and surface, n, densities,

n
=, 4
p=:_ “4)

which evidences that particles are not point-like entities but rings.
As a result, the mass of the particles is, in general, not constant in
axisymmetric schemes. The basic axisymmetric Euler equations used
in this work (Brookshaw 2003; Garcia-Senz et al. 2009; Relaiio 2012)
are shown in Appendix A. These equations are adapted to the 1A
formalism given by equations (1, 2). The derivatives of the kernel
are then calculated with (Cabezoén et al. 2012),

M Ailb(ha); i=1, 2’ (5)
ox;,
with,
| 2 o
Ay = 3 e ) xf — ) Wanha), ©

j=1

being ¢/ the coefficients of the inverse matrix in the IA given by
equation (1).

We stress that although the main Axis-SPH equations are hence-
forth written within the ISPH formalism, translating them to the
standard SPH scheme with expression 5 is straightforward (a calcu-
lation with traditional derivatives is shown in Section 4.2). According
to Appendix A, the Axis-SPH equations are as follows:

(1) Mass equation,

np
Na=Y_ & myWap(hy). @)
b=I
(i) Momentum equations,
P
al =2
Na
np
8b,1Pa|”a| 51;2Pb|rb| e
-2 Zmb (W o(he) + —S——A7 (hp) ), (8)
b=1 a b H

ny

. ep1 Palral 8b2Pb|"b|

a; =27 Zmb <72_: T AR (hy) +
Na nb b a

f,,,(hb)> -9

(iii) Energy equation,

du, P,
= 2r—uv,,
dr Na

a j : Ep,1
2 U
U b= My

where P, , u, are the pressure and specific internal energy, and vfl b =
v — v} . The binary parameter o [0, 1] allows to choose between the
two most widely used SPH schemes (see Appendix A),

o
7711

and the meanings of &, &, 1, and &, , are commented below.
Axisymmetric SPH schemes arising from the Euler—Lagrange
equations (¢ = 0 in equation 11) were discussed in Brookshaw
(2003), Garcia-Senz et al. (2009), and Joshi et al. (2019). On another
note, Cartesian SPH schemes built with 0 = 1 are more effective
in suppressing the tensile instability than schemes with ¢ = 0
(Read, Hayfield & Agertz 2010; Wadsley, Keller & Quinn 2017).
It is also feasible to make use of an adaptive sigma, so that the
scheme is Lagrangian compatible in a large fraction of the system
(Garcia-Senz, Cabezon & Escartin 2022a). In this work, we focus

ab ah(h )) (10)

Euler — Lagrange schemes
geometric — density averaged schemes,

an
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Table 1. Sign of axis-ghost particles in equations (7, 8, 9, 10) as a function
of the chosen SPH scheme, determined by o. Real particles have ¢, = &5, | =
ep2 = 1.

Scheme &p Ep,1 Ep,2
o=0 —1 —1 +1
o=1 —1 +1 —1
n
REFLECTED {n = 2nrp)
-, a —_\_\ o

GHOST PARTICLES REAL PARTICLES

INVERTED-REFLECTED

Figure 1. The use of inverted-reflected ghost particles along with the IA
method trivially avoids the singularity problems when calculating the density
1, near the symmetry axis. We show here surface density in the Y-axis, hence
inverted-reflected ghost particles have negative 7.

on the crossed-density scheme ¢ = 1 because it not only removes
the tensile instability but allows a direct comparison with the results
by Wissing & Shen (2020) in the verification tests in Section 4.
The parameter ¢, in equation (7) (see also Table 1) is,

+1
Ep = 1

which assigns a signature to the neighbour particle. According to
the discussion below, the introduction of the sign ¢, in the scheme
ensures that n, is correctly calculated with equation (7) in the
proximity of the singular axis.

The set of SPH equations above differs from those arising from a 2D-
Cartesian description in several ways. First, there are the first terms
on the RHS of equations (8) and (10), which are called hoop-stress
terms. These are specific of the axisymmetric formulation. Another
particularity are the multiplicative |r,|, |r;| elements appearing inside
the summations. As shown in Appendix A, these come after inverting
the volumetric density in the Euler equations. Finally, there is
a difference in the treatment of the particles moving around the
singular axis Z. Close to the Z-axis, the cylindrical symmetry enforces
pPr— 0 = po and therefore n = 27 |r|py — 0 a feature which is not
guaranteed when simple reflective ghost particles are used. Such
unwanted behaviour can be cured by multiplying n and Vn by a
corrective factor, so that the limit above is enforced (Garcia-Senz
et al. 2009). Another solution, sketched in Fig. 1, is to compute the
contribution to surface density of ghost particles as having negative
density (inverted-reflected particles). According to Fig. 1, this recipe
restores the linearity of 1(r), leading to exact interpolations close to

Real particles,

Axis — ghost particles, (12)
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the symmetry axis when equations (7) and (12) are used to compute
the surface density. A basic feature of ISPH is that the gradient of the
surface density of a particle is determined comparing the values of
n within the cluster of neighbouring particles. Thus, a good depiction
of n(r — 0) guarantees that Vn(r — 0) is well evaluated when the
IA, equation (1) is used to compute the gradient.

On another note, including sign-axis corrections in the momentum
and energy equations is also necessary, and it improved the results
in the studied test cases. The occurrence of ¢, in these equations is
due to the fact that inverted-reflected ghost particles have {m;, <
0; r, < 0; np, < 0}. Because equations (8), (9), and (10) work
with positive masses (m;), radial distances (|r,|, |rp|), and surface
densities (1,, 15), we need to include the signature ¢, to account for
the axis-ghost particles via the parameters €, ; and €, ,, as shown in
these equations. The value of ¢, 1; €5, » in the Axis-SPH equations,
as a function of the chosen SPH scheme, o, is shown in Table 1.

3 FORMULATION OF IDEAL MHD IN AXIAL
GEOMETRY

Adapting the axisymmetric ISPH equations to MHD is not too
complicated. The mass-equation, equation (7), does not change. In
the momentum equations, equations (8) and (9), the pressure terms
are replaced by the magnetic stress tensor (Price 2012),

. 1 . 1 .
S =~ (Pa—f——Bf) 8V + — (B.B]). (13)
2, Ho

where letters subscripts, {a, b}, refer to particles, and {i = 1,3; j =1,
3} are tensor components. Even though the scheme is basically two-
dimensional, with coordinates s(r, z), a third coordinate, associated
to the azimuth angle ¢, could be eventually necessary to describe
the toroidal component of the magnetic field and velocity. These
momentum equations must also include the magnetic contribution to
the hoop-stress term. The derivation of the axisymmetric SPMHD
equations, using the least action principle (Price 2012), is shown in
Appendix B. The axisymmetric equation of energy, equation (18),
remains unchanged.

We write the axisymmetric SPMHD scheme only in its density
averaged, ‘crossed’, form (i.e. ¢ = 1), because these are the
equations used in this work.

(1) Mass conservation

np

e =Y & myWap(ha) (14)
b=1

(i1)) Momentum equations

(Pu+ i — 22)

a; - 2 Ko
Na
np S” Fa ) Sri r .

+zn2mb( el gt ) + 20 ”'A;,,(hb>), (15)

=1 NaM Na b

np

al o Sy Il

_2712 ( Auha) +ep= = L —A ,,(hb)>, (16)

B’ BY
a? =2m <7“ “)
KoNa
+2nzm ( I

where repeated indexes in {i = r, z} are summed. Equation (17)
is only relevant in those applications involving {v¥, B¢ # 0}, as it

Sy Iy

a

Ay (ha) + €

a],(hb)> A7)
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is the case of scenarios combining rotation and toroidal magnetic
fields. Its impact in the simulations is discussed in Section 4.5.

(iii) Energy equation
du, P

P |ra| mp
dr n,, Na 5= M ( ab( )) as)

3.1 The induction equation

First, we write the induction equation in a similar manner as in Price
(2012),

dB

5= —B(V-V)+ (B V)y, (19)
where the non-ideal term associated with the current density J has
been removed from the expression. Secondly, we write B(V - v) and
the material derivative (B - V)v in cylindrical coordinates, assuming
% = 0. Finally, we have,

J[F] [FEsn w2
A
B o o ()
Br
x | B* (20)
B¢

dB O~
o= > riB], 1)

where B! is the i —component of the magnetic field acting on particle
a, and coefficients 7/ only depend on the velocity field around the
particle.”

3.2 Dissipation

As in Cartesian SPH, the axisymmetric approach demands some
amount of dissipation to handle shock waves. As it is usual in SPH,
this is done with the artificial viscosity (AV) concept. There are two
main sources of dissipation in MHD: those from the AV and those
arising from the induced currents in plasma sheets during collisions.
The former is purely hydrodynamical and is that implemented in
Axis-SPHYNX and described in Cabezon et al. (2017) with the
third spatial component removed. For the latter, we use the scheme
described in Tricco & Price (2013), Price et al. (2018), Wissing &
Shen (2020). We show here both for completeness. The viscous
acceleration is written as,

. 1 )

@AY — o > A{Vamy T, fu AL (ha)
4 p
+ Vo mg T, fi Aly(hs)} (22)
with,
—a g for ry, - Va < 0

H/ — 2 Vyp Wab ab ab 2

ab {0 otherwise, (23)

2The induction equation, equation (21), has been integrated explicitly in
this work. Nonetheless, it can also be approached implicitly by inverting the
matrix in equation (20). An implicit solver could be appropriate in those cases
where, for whatever reason, the system of differential equations governing
the induction equation become stiff.
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where V, = m,/n, is the 2D volume element and f,, f; are the Balsara
limiters (Balsara 1995):

[V -v|
IV-v|+ |V xv|+ 104 ¢, /h,

fa= 24
The signal velocity includes a quadratic term, which is adequate
to handle strong shocks (Price et al. 2018),

v;lbg - acab s ﬂwﬂbv (25)
where w,, = Vg - Tap and ¢, is the average of the sound speed
between particles a, b. The parameters o and § are kept constant
with default values @ = 1 and 8 = 2. Future developments of Axis-
SPHYNX will incorporate AV switches (Cullen & Dehnen 2010) to
better control the dissipation.

Regarding the magnetic dissipation, some amount is necessary to
smooth the transverse component of the magnetic field in shocks.
The adopted scheme was that described in Tricco & Price (2013),
Wissing & Shen (2020),

dB diss 5
T = £3V’B, (26)

with £ = ap v p h, mimicking a magnetic resistivity coefficient.
Vsig, 18 the characteristic signal velocity and ap 2~ 1. The numerical
analogue of equation (26) is rather complicated, hence we show it in
Appendix C. It contains a Cartesian part (but with coordinates r and

2),

diss,C np
(&), - = LR (50, ) 7

dr b |Sab|

where B, = B, — B, 54 is the unit vector joining the particles a, b
in the axisymmetric plane, and

~ 1. ,
Ay = 3 (AL (ha) + Ay (hy)] (28)

In cylindrical geometry, however, there are other contributions (see
Appendix C) to be added to the Cartesian part of equation (26). The
complete expression giving the evolution of each component of the
magnetic field is,

dB diss_ dB diss,C SB 9B
(&), =(&), (%),
—<1—8’)<$B > 29)

where 8% is the Kronecker-delta function.

The magnetic dissipation contributes to the rate of change of the
internal energy. The simplest way to estimate such contribution is to
neglect the non-Cartesian part of the dissipation, because it is usually
very subdominant. In that case, it is enough to use the expression by
Price et al. (2018) and Wissing & Shen (2020), but restricted to the
axisymmetric plane {r, z} (Garcia-Senz, Wissing & Cabez6n 2022b).
A more general procedure to build an energy equation, which takes
into account to all terms in equations (26) and (29) is to consider,

du diss
p(*) =& J-J. (30)

dr

where J = (V x B)/uo is the electric current density vector.
Equation (30) is simply governing the rate of heat (Joule-like)
losses per unit mass, and it is a positive definite magnitude. In axial
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geometry, the components of J are,

3 1 BB‘”A_’_ dB? N B¢ s dB" 9B%\ |
=—q—7F -+ — - - )
Lo 0z ar r ) 9z or ¢

€2y

where the derivatives are calculated with the standard SPH pro-
cedure. In practice, it is preferable to evaluate the combination
J: = S%J =(V x S% B)/ 1, rather than J, in the SPH summations,
because the resistivity is usually defined on pairwise basis, & g(ab).
The dissipation rate of magnetic energy is therefore (J: - Jz)/p.

In the tests below, the adopted value of & is,

1
SB = EaB vsig,BISabl- (32)

For the signal velocity, vy, we used the expression by Price et al.
(2018) in most of the tests below,

Usig,B = |vab X §abl- (33)

This showed to produce lesser dissipation than the Alfven velocity,
VUsig.B = Valfven = / B%/(op) far from shocks (Price et al. 2018).

3.3 Cleaning the div B

A big challenge of numerical MHD is to permanently fulfil the
Maxwell equation V - B = 0. In most of the existing SPH codes
this is achieved with divergence cleaning techniques. Here, we use
the hyperbolic/parabolic cleaning scheme by Tricco, Price & Bate
(2016) which has proven to be very satisfactory keeping div B at
acceptable levels (Price et al. 2018). Additionally, the method is
robust and easy to implement. Adapting such parabolic cleaning
scheme to the axisymmetric geometry is straightforward. Basically,
a term (dB/dt), is added to the induction equation, equation (19),
so that the magnetic field diffuses and non-zero divergence values
are rapidly smeared through the whole system. The i —component
of that contribution is.

dBi _ my T .
( i )w = —; " Wa+ ¥ A,  (=1,2), (34)

where the coefficients i evolve following the differential equa-
tion (Tricco & Price 2012),

d(w)=—chv.3—iﬂ—liv-v, (35)

dr \e,

and ¢, = fetean Vimha> With Unng = /€2 4+ 0374, a0d T4 = hal(Ch, a0 )
is a relaxation time. Following Wissing & Shen (2020), the free
parameters in the expressions above were set to fyean = 1 and o, =

1.

3.4 Magnetic tensile instability

Calculations where magnetic pressure largely exceeds the kinetic
gas pressure are prone to undergo the tensile instability (Phillips &
Monaghan 1985). Such instability concerns the harmful effect of the
magnetic-stress tensor elements B'B//1y, when they become large
enough. The tensile instability induces strong particle clustering
which leads to numerical troubles, especially when |div B| is large.
One of the firsts solutions to the tensile-instability problem was
suggested by Morris (1996), who subtracted the last term in the RHS
in equation (13) from the acceleration equation, equations (15) and
(16). Commonly used forms of such corrective term to the momentum

Axisymmetric SPMHD 4119
equation can be found in Bgrve, Omang & Trulsen (2001) and Price
(2012).

Itis worth to note that the ISPH scheme provides naturally a similar
corrective term to that by Morris (1996). According to Garcia-Senz
et al. (2012) such term, f};, 5 , is,

; 2 (B'BY), _.
fl' = mp v Wa (ha)' (36)
divB,a Lo ; DaPb a b

The corrective term is applied wherever the magnetic pressure
exceeds the gas pressure (% > P). To smooth the transition

between the weak and strong field regimes, we use the interpolating
function by Wissing & Shen (2020),

2 B, <1
Ha =14 22— Ba) I1<B, <2 (37)
0 Otherwise,

with B, = %. Equation (36), is easily adapted to the axial-ISPH
formalism,

27 H, BiB/), |r,
Zmb( Ja |74l

7y (). (38)
Ko b NaNp

fz;ivB,a =

The magnitude £, . 0 equation (38) is added to equations (15)
and (16) to obtain the acceleration of the SPH-particles.

3.5 Boundaries

Arranging boundary conditions in axisymmetric geometry is del-
icate. On the one hand, the o rl dependence of divergence-like
expressions, which often appear in cylindrical geometry, makes the
Z-axis singular. On the other hand, considering ghost particles across
the Z-axis is necessary to adequately reproduce the surface density
in the axis neighbourhood. Adding reflective ghost particles (r —
—r,z — Z,V, = U, etc.) is probably the best option, but it has two
shortcomings. The first is that the surface density, 1, is not correctly
reproduced when r — 0 (see Section 2.2). The second is that particle
penetration through the axis line is not completely avoided.

Interpolating kernel functions with cylindrical geometry can be
used (Omang, Bgrve & Trulsen 2005) to overcome the first problem
above. Another option is to apply a suitable correction function to
n(r — 0), as in Garcia-Senz et al. (2009). Particle excursions to the
negative region, r < 0, of the plane can be blocked with the addition
of ad hoc repulsive damping forces in the axis neighbourhood (Li
et al. 2020).

In this work, we used common reflective ghost particles, with
the exception of the surface density, for which we have introduced
the notion of inverted-reflected ghost particles to exactly reproduce
n when r — 0 (see Fig. 1). The introduction of inverted-reflected
particles makes the profile of n(r — 0) linear, so that interpolations
are exact owing to the second-order accuracy of the SPH technique.
Furthermore, the chances of a SPH particle crossing the singularity
axis are greatly reduced when considering the arithmetic average of
the radial velocity of a particle, v/, moving close to the Z-axis,

r Ta r 1 r
v, (E < 2> — (V) = n—b zb:vb. (39)

Replacing v" by its average, if /h < 2, enforces the correct limit of
radial velocity, < v (r >~ 0) >— 0, and largely overcomes particle
penetration through the Z-axis. A similar recipe can be used to
smooth other magnitudes, as for example the r-component of the
magnetic field B,.

MNRAS 518, 4115-4131 (2023)
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Periodic boundary conditions are used on the top and bottom sides
of the cylinder, while reflective ghost have been used on the lateral
surface. Small variations of these default boundary conditions are
explicitly stated in some of the tests below.

3.6 Conservation properties

The formulation of the SPMHD technique is essentially conservative.
Conservation of momentum and energy is, however, not complete
in the strong field regime due to the collateral effect of the fy,p
correction (Price et al. 2018), which is needed to elude the onset of
tensile instability.

The conservation properties of axisymmetric SPH codes are not
as good as those shown by Cartesian formulations of SPH. The
conservation of linear, angular momentum, and energy in the real
semiplane, (r > 0), is not perfect. First, there is an exchange of
momentum and energy across the Z-axis with the mirror ghost
particles. Secondly, and more important, the hoop-stress term in
the momentum equation (first term in the RHS of equation 15),
does not preserve the linear momentum in the r —direction. Nev-
ertheless, when the whole plane [—r, +r] is taken into account,
the contributions of the hoop-stress force on both sides balance
out and linear and angular momentum are in fact conserved. In
the tests presented below, the total energy is preserved to better

than € = <%> < 0.3 per cent in the axisymmetric models. The

h div B
IB|

div B = 0, remained €,4;,5 < 2 per cent in all the studied cases.

magnitude €;;,5 = < >, bound to the divergence constraint

3.7 Equivalent resolution and computational effort

The difference between axisymmetric and full 3D calculations in the
amount of particles needed to resolve a specific resolution can be
highlighted with the concept of equivalent resolution. The particle
density resulting from homogeneously distributing N particles in a
volume V'is n = N/V. The inverse of n, v = 1/n, represents the volume
of the cell occupied by a single particle. The inter-particle distance
is b = v""P, with D being the dimension of the space. Taking b as
the minimum achievable resolution, and assuming that axis-2D and
full 3D calculations have equivalent resolutions, i.e. bop = bsp, we
write:

1% 3
—L N, (40)
(Vap)?2

In cylindrical geometry, it is common to consider V,p = RZ and
Visp = wR2Z, where R is the radius of the cylinder and Z its altitude.
Thus,

N3p =

R\?
N3D=71(E> N, @1)

Many of the calculations reported in this work have Z = 2R so that
N3p =~ 2N23 {)2. For a similar spatial resolution, the equivalent number
of particles is, in general, much higher in a 3D calculation and, so it
is the required computational effort. It is worth to note, however, that
some 3D scenarios can be simulated in boxes where one of the sides
of the box can be taken smaller than the other two. In these cases, and
according to equation (40), any reduction in Vs, would significantly
reduce the equivalent number of particles N3p. A further advantage of
axial calculations is that they manage to work with fewer neighbour
particles, n;,, within the kernel range. The default setting is n, = 60
and, occasionally n, = 100 (the advection loop and cloud collapse
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Table 3. Number of SPH particles (N), and minimum value of Ay in the
different tests in this work.

Test SPH scheme N ho
Advection Loop Axis-SPHYNX 3622 8.0 x 1073
Advection Loop GDSPH 1283 2.7 x 1072
Sedov Axis-SPHYNX 3622 8.0 x 1073
Sedov GDSPH 2563 1.3 x 1072
Z-Pinch Axis-SPHYNX 3622 8.0 x 1073
Z-Pinch GDSPH 5122 x 24 6.7 x 1073
KH Axis-SPHYNX 3622 8.0 x 1073
KH GDSPH 2563 1.3 x 1072
Cloud-Collapse [1] Axis-SPHYNX 1782 1.1 x 10 cm
Cloud-Collapse [1] GDSPH 763 1.0 x 10'°cm
Cloud-Collapse [2] Axis-SPHYNX 3562 6.0 x 10 cm
Cloud-Collapse [2] GDSPH 5123 6.1 x 10" cm

tests), which is a factor ~ 2-3 lesser than n;, >~ 200-300 typically
used with Wendland interpolators in 3D.

Additionally, when self-gravity is included in the calculation, the
algorithm used to compute the gravitational force also has an impact
in the performance of the codes. The ring-like nature of particles in
axial symmetric calculations makes it difficult to compute gravity
with standard hierarchical methods, such as the Barnes—Hut scheme
(Barnes & Hut 1986; Hernquist & Katz 1989). As commented
in Section 4.5, gravity can be calculated by computing the direct
ring-to-ring interaction (Garcia-Senz et al. 2009) which, properly
parallelized, is enough to carry out many applications with good
performance.

In practical terms, we performed a comparison of the average
wall-clock time per iteration between our 2D and 3D calculations
for two scenarios that will be discussed below: the Z-pinch and the
cloud collapse (see Table 3). The former is a pure hydrodynamical
simulation, while the latter includes self-gravity. All four simulations
were compiled with the same compiler, similar compiler options, and
carried out in the same 128-cores AMD Epyc 7742 computing node.
As a result the 2D calculations were in average about x 33 faster
than the 3D calculation in the Z-pinch case, and about x 58 faster in
the collapse case. Such comparisons should, nevertheless, be taken
as purely indicative, as we are not only comparing the geometry
of the calculation, number particles, and number of neighbours,
but also parallelization paradigms, coding infrastructure, memory
management, programming languages, and other elements that can
speed up or slow down a code considerably. In any case, unless an
efficient and scalable algorithm to calculate gravity in 2D-Axial is
developed, the advantage of the 2D code will dilute as the number of
particles increases when self-gravity is included because of its current
scaling order O(N?). Note, however, that in some astrophysical
scenarios gravity can be handled as arising from a point-like mass,
as for example in accretion discs related studies.

4 TESTS

The performance of the axisymmetric formulation is analysed in light
of the comparison between the hydrodynamic code Axis-SPHYNX?
and the well-verified 3D SPMHD code described in Wissing &
Shen (2020), which we call GDSPH afterwards, for a suite of test

3The Axis-SPHYNX code takes advantage of many features of the Cartesian
3D code SPHYNX Cabezon etal. (2017), Garcia-Senz et al. (2022a), although
it does not yet include some sophisticated issues, such as generalized volume
elements, grad h terms, or AV switches.

€20z Aieniga4 g uo Jasn wniuosuo) [endsoy Buipnjoul 0jsQ 10 Ausiaalun Aq GH9LE8Y/S L L 1/E/8 L S/a1oNIB/SBIUW/WOD dNo-olWwspeoe//:sdny wolj papeojumoq



Table 2. Default value of relevant parameters controlling the simulation with
Axis-SPHYNX. Columns are: number of neighbours n,, index n of the sinc
kernel W,, AV coefficients, heat diffusion coefficient («,) in AV, magnetic
dissipation coefficient (ap), and cleaning parameters controlling the divB =

0 constraint.

np n (Wyi) (aAVs ﬂAV) oy ap ﬁ:lean O clean

60 (100) 5(6) (1,2) 0.05 0.5 1 1

cases. GDSPH is the result of implementing ideal MHD into the
code Gasoline2 following the geometric density average scheme. To
this end, we have run several MHD standard tests, but with fully
axisymmetric initial conditions, and compare the results obtained
with both codes for the same initial conditions. As we will see,
the match between Axis-SPHYNX and GDSPH is satisfactory, with
minor differences in the results attributable to the initial particle
setting, resolution issues, and implementation details.

The tests that we chose are representative of different physical
regimes:

(i) Advection and divergence-cleaning: in the advection loop test
we aim to explore the robustness of the code to simulate the evolution
of magnetized structures on time-scales larger than the characteristic
sound-crossing time. It is also a good test to analyse the performance
of the divergence-cleaning algorithm (Section 4.1).

(ii) Explosions: we simulate the evolution of a point-like explosion
in a magnetized medium (the magnetic Sedov test). This test is well
suited to check the ability of the axisymmetric MHD code to deal
with strong shocks (Section 4.2).

(iii) Implosions: we present the implosion induced by a toroidal
magnetic field acting on a plasma sheet moving in an orthogonal
direction to it. This test aims to analyse the performance of the
code when strong shocks are launched towards the symmetry axis
because of the Lorentz-force induced by an azimuthal magnetic field
(Section 4.3).

(iv) Instabilities: we simulated the growth of the Kelvin—
Helmholtz instability in a magnetized gas (Section 4.4).

(v) The collapse of a magnetized and rotating cloud of plasma:
this is a rather complete and demanding test, which involves many
pieces of physics. Besides a barotropic EOS, gravitational and inertial
forces have to be incorporated to the numerical scheme (Section 4.5).

Unless explicitly stated, the default values of the different param-
eters steering Axis-SPHYNX are those shown in Tables 2 and 3. The
EOS was that of an ideal gas with y = 5/3 in all tests, except in the
collapse of a magnetized cloud in Section 4.5, where a barotropic
EOS was considered. Because axial calculations are prone to suffer
from numerical noise and pairing instability, the use of high-order
kernels is recommended. By default, Axis-SPHYNX uses the W,
sinc family of kernels by Cabezén, Garcia-Senz & Relaiio (2008),
Cabezon et al. (2017) to carry out interpolations. In particular, we use
the W3, W¢ kernels in calculations with n;, >~ 60, 100 neighbours,
respectively. The former performing similarly to the quintic, Ms
spline. We used the Wendland kernel C4 combined with n;, >~ 200 in
the GDSPH calculations.

4.1 Advection and diffusion of a magnetic loop

In this test, a weak magnetic loop is advected by a fluid stream moving
at constant velocity (Gardiner & Stone 2005; Hopkins & Raives
2016). Grid-based codes have difficulties to describe the evolution
of the magnetic loop on many box-crossing periods, owing to the
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Table 4. Relevant magnitudes used in the advection-loop test. Columns
are: computed model, initial magnetic vector, adopted value of the cleaning
parameter, relative change of the magnetic energy of the loop and normalized
valueof divBatr=5T.

Model By fclean ‘%g:l < k \d;v 5] >
La 1073 ¢ 1.0 1072 0.0
Lg 1073 /2 ¢+ @) 0.2 0.11 9.01073
Le 1073/V2 (2 + @) 1.0 0.16 1.4 1073
= T T T 1
t=1 t=4 t=5
Wy
<
N © 0.5
il
<
- L ) ) | 0
0 0.5 1
R B/B,

Figure 2. Magnetic field strength (normalized to the initial value By) of the
magnetic loop with B = B¢ (model L in Table 1), after t = T, 4T, 5T
complete periods (7= 1).

intrinsic dissipation during advection. Nevertheless, the Lagrangian
nature of SPH codes makes them ideally suited to this kind of
problems and good results for this test have been reported in recent
literature (Price et al. 2018; Wissing & Shen 2020).

We consider a cylinder with radius R = 1 and height H = 2. The
cylinder is filled with an homogeneous, p = 1, flow of plasma moving
upwards with uniform velocity v* = 2, and constant pressure P = 1. A
spherical magnetic bubble with Ry = 0.3 and uniform magnetic field
B = B¢$, with BY = 1073, is settled at the centre of the cylinder
(model L, in Table 4). Outside of the bubble the magnetic field
vanishes, BY (r > Ry) = 0. The spherical magnetic loop is simply
advected with the plasma current and nothing is expected to happen.
Thus, the loop should keep its initial morphology unchanged during
many sound-crossing times.

Periodic boundary conditions were set on top and bottom of the
cylinder, whereas reflective conditions were implemented on its
lateral surface and across the symmetry axis. The v component of
the velocity of particles with » 2~ 0 (those with r < h) was kept zero
during the calculation. With that setting and the initial conditions
above, the magnetized bubble periodically returns to the centre of
the cylinder at times t=n 7T (n=1,2,3...), with T = 1.

Fig. 2 shows the colour map of |B| at times r = T, 47, 5T of model
L4 in Table 4. As we can see the magnetic loop preserves its identity
until # ~ 57. At larger times the numerical noise alters the strength of
the magnetic field, especially close to the symmetry axis (rightmost
panel of Fig. 2). That result is not as good as that in the three-
dimensional calculation by Wissing & Shen (2020), who managed
to keep the bubble identity until 7 >~ 207, but only a little worse than in
Price et al. (2018), where the bubble evolved neatly well until > 5T.
The results with Axis-SPHYNX would improve if a different, more
stable, initial distribution of particles is arranged, as for example a
Voronoi-like particle setting, which is left for future developments
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Figure 3. Same as Fig. 2 but adding a vertical component to the magnetic field, B = B¢ + B*Z, which makes divB # 0 at the bubble edge (models Lg, L¢
in Table 1). Upper panels depict the diffusion of the magnetic field during the divergence cleaning process, as calculated with Axis-SPHYNX with fejeq, = 0.2
and feean = 1, respectively. The same is shown in the lower panels but with GDSPH.

of the code. As commented in Section 3.5, particles were spread in a
simple square lattice to better handle with the boundary conditions.
The smoothing length, Ay, is updated at each iteration, so that the
number of neighbours per particle it is kept approximately constant
around 7;, = 100 in this test.

The first row in Table 4 gives more information regarding model
L4. The loss of magnetic energy of the magnetic bubble after five
cycles, t = 5T, is rather low, ~~ 1 per cent, with the error in div B
being completely negligible. The second and third rows provide the
same information as in model L4 but for models Lg and L¢, which are
not divergence free from the outset. Specifically, in models Lg, L¢ the
Z component of the magnetic field has dB*/dz # 0 close to the edge
of the magnetic bubble. Fig. 3 shows the diffusion of the magnetic
field during the process of the div B cleaning at t = 17, 5T and for two
values of the cleaning parameter f.;..,. The colour maps of B(r, z)
obtained with Axis-SPHYNX and GDSPH are qualitatively similar,
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with the three-dimensional calculation showing a bit more diffusion.
The geometry of the magnetic field around the bubble, shown by the
vector arrows in Fig. 3, is neatly dipolar and remarkably similar in
both calculations.

Fig. 4 depicts the temporal evolution of the magnetic energy in
the loop, Uy (in 10~° units, right-hand panel), and the magnitude
<%>. As shown in the figure, the evolution of these magnitudes
in model L, is practically flat while the evolution of models Lg, L¢
strongly depends on the adopted value of the cleaning parameter
Jeiean- The default choice, f .., = 1, gives more diffusion but is much
more efficient than f,, = 0.2 to keep div B =~ 0, as expected. The
magnetic energy content of the loop in model L evolves similarly
in the GDSPH calculation, although it stabilizes slightly earlier. The
absolute value of </ div B/B > is almost ten times larger in the
3D calculation but both, axial and Cartesian, decay fast with similar
characteristic times.
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Figure 4. Advection loop test. The left-hand panel depicts the evolution of
div B error for models in Table 4 until # = 57. The right-hand panel shows
the magnetic energy content, Uy (in 10~ units), of the bubble for the same
models.

4.2 The magnetic Sedov test

The axisymmetric version of the MHD Sedov test is easily set by
considering an initially spherically symmetric explosion subjected to
an external magnetic field B(s, z) = B.Z. We compare the evolution
computed with Axis-SPHYNX to that obtained with GDSPH for the
same initial conditions. To seed the explosion, we assume a Gaussian
initial profile of internal energy:

u(s) = uo exp[—(s/8)*1 + up, (42)
with,

_ Etut 43
RCEErTRY “

where E,,; = 5 is the total initial energy of the explosion, § = 0.1,
and B = 10 Z. The medium is homogeneous with py = 1 and the
plasma is an ideal gas with y = 5/3 and background internal energy
up = 1.

An unexpected problem in this test was the large amount of
numerical noise present at late times in the central volume of the
box, clearly seen in Fig. 5 (panel c). Such particle disorder is not
present in the GDSPH calculation. The noise originates from the
feedback between the initial setting of mass points in a lattice and
the strong magnetic field. In axial geometry, the initial grid is not as
stable as in Cartesian calculations because of the uneven distribution
of mass within the kernel range. Even more, any tiny amount of
noise in the unshocked region is magnified by the magnetic field.
Unfortunately, raising the number of neighbours without increasing
the total number of particles did not solve this issue.

To face this problem, we introduce a magnetic noise-trigger, N 73,
which keeps the AV sufficiently high to counter-balance the residual

magnetic force in the unshocked region. In our case, it is sufficient to
P . 2
steer the Balsara limiters, with ¢ = nfﬁ’

of the S-plasma parameter:

where ¢ is the the inverse

1 if ¢ > 0.5,
NTg: fo=<{max[f2, 2(5¢ —1)] if0.2<¢ <05, (44)
1o ifs <0.2,

where f0 is the limiter given by equation (24) and f, is the final
adopted value. The impact of including or not /"7 in the simulations
is shown in Fig. 5, which depicts the colour map of velocity at t =
0.048 in four cases. These have been calculated with AT switched
on (panel a), off (panel ¢) and without Balsara corrections (panel b),
whereas panel d was obtained with traditional derivatives and N/ T
switched on. The results convincingly show that the inclusion of a
magnetic noise trigger significantly reduces the particle disorder. For
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(a) ]

<V >

© Y

Figure 5. Velocity colour-maps at = 0.048 with/without a magnetic noise
trigger. The upper-left panel (a) is for the adaptive noise trigger described in
the text. The upper-right panel (b) only considers the maximum value of the
trigger (i.e. no Balsara corrections). Panel (c) was obtained switching-off the
trigger. The lower-right panel (d) is the same as panel (a) but calculated with
traditional derivatives instead the IA.

this problem, calculating the derivatives with the IA or with the tradi-
tional scheme leads to similar results, but the latter is slightly noisier.

Fig. 6 summarizes the results of the calculations and Table 3 shows
additional information regarding the total number of particles used in
this test and on the resolution. Simulations with Axis-SPHYNX make
use of the magnetic noise-trigger, equation (44), to keep the system
more ordered before the arrival of the shock wave. The colour maps
depicting the density, pressure, modulus of velocity, and magnetic
field at r = 0.048, do not show significant differences between the
simulations carried out with Axis-SPHYNX (leftmost sub-figures)
and GDSPH (rightmost sub-figures). They qualitatively agree with
the results published by Rosswog & Price (2007), who simulated
a similar explosion but inside a weaker magnetic field. The shock
front is slightly ahead in the axisymmetric case, which is due to the
higher resolution in that calculation. The colour maps of the velocity
modulus (third panels) show extended regions with low velocity
at r < 0.5, well captured in both cases. The relative error of total
energy is low, ez ~ 1072 per cent, at all times. The estimator € ;5
measuring the averaged deviation of the constraint div B was always
€qivg < 0.2 per cent.
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Figure 6. Point-like explosion in a magnetized medium calculated with AxisSPHYNX (leftmost sub-figures in each panel) and GDSPH (rightmost sub-figures in

each panel).

4.3 Z-pinch like implosion

The so-called Z-pinch devices were among the first to explore the
feasibility of having controlled nuclear fusion on Earth (for a review
Haines et al. 2000; Shumlak 2020). They have also been applied
to conduct many laboratory astrophysics experiments (Ciardi et al.
2004; Bocchi et al. 2013). In the Z-pinch machines a strong toroidal
magnetic field, B is created by a mega-ampere electric current pulse
(=~ 1 us) moving in the axial direction. The Lorentz force exerted by
B¢ on the plasma, which initially moves in the Z-direction, impels it
towards the Z-axis. The compression of the plasma at the symmetry
axis can be strong, provided that the initial conditions have a good
degree of axial symmetry.

To sketch the basic physics of a magnetic Z-pinch process in a
simple numerical experiment, we consider an initially homogeneous
plasma with p = 1, P = 1 in a cylinder with radius R = 1 and
height Z = 2. The plasma is initially moving with v, = —1. A
toroidal magnetic field, B¢, with maximum strength By = 3 and with
a Gaussian profile,

BY = By exp [—(r —r0)*/8] . (45)
which is set at around coordinate ry = 0.5 with characteristic width

6 =0.01. The boundary conditions are periodic on top and bottom of
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the cylinder and reflective on the lateral surface. As in the point like
explosion test, we aim to compare the results with Axis-SPHYNX to
those obtained with GDSPH and identical initial conditions. Table 3
shows the number of SPH particles and initial resolution, .

We present the main results of this numerical experiment in Fig. 7.
That figure depicts the profiles of the r-averaged magnitudes of p, B,
V', at different elapsed times. The first and second rows correspond to
the axisymmetric calculation, whereas the other two resulted from the
full three-dimensional calculation with GDSPH. As we can see, the
match between the results obtained with both codes is excellent. The
main difference is that the density peak around the point of maximum
compression at = 0.18 is a slightly larger in the axisymmetric
calculation. The toroidal component of the magnetic field evolves
very similarly in both simulations. The profile of the radial velocity
is particularly sensitive to the magnetic part in the hoop-stress term
in equation (15). Nevertheless, the v” profile at the supersonic shock
front is sharp and well captured by both codes. The evolution after the
rebound, > 0.18, is also very similar. The profiles of v” obtained with
Axis-SPHYNX are not as smooth as those calculated with GDSPH,
owing to the lesser number of neighbours used to carry out the
interpolations (1, >~ 60 in the former and n;, >~ 200 in the latter). In
this test, the total energy was preserved up to AE—f < 0.4 per cent and
the constraint div B = 0 was fulfilled to machine precision.
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Figure 7. Implosion in a magnetized medium (Z-pinch test) calculated with Axis-SPHYNX (first and second rows) and with GDSPH (third and fourth rows).
The figure shows the shell-averaged values of density (p), azimuthal component of the magnetic field (B?), and radial velocity (v").

4.4 Magnetic Kelvin—-Helmholtz instability

The growth of the Kelvin—Helmholtz instability across the contact
layer between fluids with different densities is a challenging test
for hydrodynamic codes. Resolution issues limit the growth rate of
the instability during the initial linear stage to, later on, hinder the
development of small wavelengths in the non-linear phase (McNally,
Lyra & Passy 2012). Modern SPH codes are able to cope with the
KH instability, even when a relatively low number of particles are
used (Rosswog 2020), but provided the density contrast is not very
large. Adding a magnetic field to the plasma turns this test into an
interesting, albeit more complex, MHD problem, where we expect

some alignment of the billows with the dominant direction of the
magnetic field.

Three-dimensional SPH simulations of the growth of the KH
instability in a weakly magnetized medium have been reported by
Hopkins & Raives (2016), Wissing & Shen (2020). The main effect
of the magnetic field is to uncoil and stretch the vortexes during
the non-linear stage, so that the instability looks rather different
from that of non-magnetized systems. The axisymmetric realization
of these 3D-MHD experiments is similar to that described in the
papers above. It consists of two interacting fluids moving along two
concentric cylindrical pipes but in opposite directions. An uniform
magnetic field, B*, pointing along the axis of the pipe, is added so
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< density >

Figure 8. Particles distribution in the KH experiment at two elapsed times, r = 1.5 and 7 = 2.8, for models calculated with AxisSPHYNX (first two panels) and

calculated with GDSPH (XZ slices in the two rightmost panels).

that it interacts with the radial component of the velocity, v,, of the
unstable layer via the Lorentz-force.

We consider a cylinder with radius R = 1 and longitude L = 2.
A fluid with density p;, = 2 moving with v* = +0.5 fills the inner
half, » < R/2, of the cylinder. The outer part of the cylinder is filled
with a lighter fluid, p,,, = 1, moving with v* _ —0.5. Both fluids
share the same pressure, P = 2.5, and are immersed in a magnetic
field B* = 0.1. The inner and outer fluids are simulated with two
square lattices with sizes according to the density contrast. The fluid
interface was not smoothed, and it was altered by adding a small
radial perturbation to v",

—-0.5
v = AV exp (_|r071|) sin (4mz), (46)

with Av” = 0.05. Table 3 shows the total number of particles and
initial maximum resolution.

Fig. 8 depicts the colour-map of the density at two times, t = 1.5
and r = 2.8, which are representative of the early and evolved non-
linear phase, respectively.* The density maps at t = 1.5 are rather
similar, with the axisymmetric calculation showing more structure
owing to the higher resolution and more sensitive estimation of
gradients. During the advanced non-linear stage, r = 2.8 in Fig. 8§,
the cumulative effect of the magnetic force stretches the vortex along
the symmetry axis of the cylinder and the morphology of the billows
differ. The axial calculation shows more distorted billows than the
Cartesian simulation and with less rounded tips. This is due to the
different sensitivity of the numerical schemes used to compute the
gradients. The IA is more sensitive to the initial setting of particles
in two square grids of different size around the interface. Smaller
initial asymmetries grow more efficiently during the non-linear stage
in the axial calculation. A way to exert control on such sensitivity
was to raise the floor value of the Balsara limiters from its default
setting, £,/ = 0.05 to £/1°" = 0.3 to better retain the identity of
the billows.’

A zoom of the particle distribution around the two central billows
at t = 2 is shown in Fig. 9. The contact surface between the dense
and light fluids is clean and continuous, showing no gaps or any trace
of the tensile instability.

The suitability of using a Lagrangian method to describe in-
stabilities in presence of magnetic fields is further highlighted in
Fig. 10, which depicts the geometry of B" (upper panels) and B*
(lower panels) at + = 2. The magnetic field is well threaded along

4The characteristic growth-time in the plane—parallel approximation can be
taken as a rough reference, gy =~ 1.08.

5A plot depicting the evolution during the non-linear phase with £/ =
0.05, showing more asymmetrical billows at # = 2.8 can be found in Garcia-

Senz et al. (2022b)
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0.7 Axis-SPHYNX at t=2

Figure 9. Zoom showing the distribution of particles at t = 2 as calculated
with Axis-SPHYNX. The fluid inter-phase is smooth and free of gaps, with
no indications of tensile instability.

the distorted plasma stream-lines and vortexes, with the radial and
axial components drawing lines in phase opposition. There is a good
agreement between the axial and the three-dimensional calculation.

4.5 Collapse of a rotating-magnetized cloud

The collapse of a rotating and magnetized dense cloud of gas
embedded in a more dilute medium has become a standard test to
verify MHD hydrodynamic codes (Hennebelle & Fromang 2008;
Hopkins & Raives 2016). Outflows from gravitationally collapsing
magnetized dense gas clouds were obtained for first time with
SPH by Price, Tricco & Bate (2012). This test involves many
physical ingredients of astrophysical interest such as gravity, rotation,
and magnetic fields. Because the collapse of the cloud basically
proceeds with axial geometry (except in those cases where there is
fragmentation), this scenario can be approached with axisymmetric
MHD codes.

The initial setting is the same as in Wissing & Shen (2020). A
cloud with mass M = 1 Mg, and density pc = 4.8 x 1078 gcm™3,
rotates around the Z-axis with wy = 4.24 x 1073 s~!. The cloud is
surrounded by background interstellar medium (ISM), with a radius
ten times larger and density pism = p¢/300. The whole system is
inside a magnetic field B = %2 uG aligned with the rotation axis
of the cloud, where p is a parameter steering the intensity of the
magnetic field. Three-dimensional simulations of the collapse, with
a barotropic EOS,

7
P=copfi+(2)
=c o\/1+ , 47
' Po

with pg = 107" gecm™3and ¢, o = 0.2kms™!, have shown that

the implosion of the cloud would produce a narrow jet only if
the parameter p is neither too large, nor too small: 2 < u < 75
(Hopkins & Raives 2016; Wissing & Shen 2020).
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Figure 10. Colour-map depicting the distribution of the radial (upper panels) and axial (lower panels) components of the magnetic field at # = 2 in the KH

simulation.

This test is challenging for an axisymmetric SPH code because
the collapse is strong and impels the particles towards the singularity
axis. The central density increases five orders of magnitude and the
Courant criterion enforces the time-step to be extremely small. In
this test, we want to check if Axis-SPHYNX is able to reproduce
the main features of the collapse of the cloud, as for example the
maximum achieved density, the equatorial flattening of the cloud,
and the jet emergence at around the free-fall time of the cloud,

trr =1/5 3~ 1.2 x 10'%s. We carried out three simulations of
7Gpc

this scenario with © = oo, u = 20, u = 10, from the initially
spherically symmetric conditions until the formation of the disc, and
the beginning of the jet launch at >~ 1.1 x 10'%s.

The gravitational force, g, is calculated using the scheme described
in Garcia-Senz et al. (2009) and is added to the acceleration. Basi-
cally, self-gravity is calculated with direct ring-to-ring interactions,
first computing the gravitational potential, V,, to later make the SPH
estimation of its gradient g = —V V,. Obviously, this results in a
larger computational effort than in the previous, gravity-free tests, but
it is still lower than that invested by GDSPH for the same scenario,
owing to the large differences in the number of particles in both codes
(Table 3) and average number of neighbours (x 2 in GDSPH).

For this problem, it is better to calculate the specific angular
momentum £° = rv¥, rather than v?, so that in absence of azimuthal
forces the angular momentum is conserved. The momentum equa-
tions, equations (15), (16), and (17), become,

dv” (ZZ)Z

a _ r r . 48
a tt r3 (“8)
dv

a _ .z z 49
5 Gt (49)
1 d¢?
Z i 50
r dr “ 0

Fig. 11 shows the density colour map of the innermost region

of the cloud at r = 1.1 x 10'%s, when the jets, if any, are born.
That time is close to the free-fall time 77 >~ 1.2 x 10'?s. The upper
row of panels depict the calculation with Axis-SPHYNX and the
lower row is for the GDSPH calculation, both evolved from the
initial models with lower resolution in Table 3. The colour map
from the GDSPH calculation was built taking a slice in cylindrical
coordinates with width Ag = 0.05rads. Both panels look similar,
with the axisymmetric calculation being a bit less evolved than its 3D
counterpart. At#= 1.1 x 10'? s the cloud has already collapsed into a
disc with similar central densities, ~ 10~'> gcm™3, in both cases. The
two codes indicate the same qualitative trend with decreasing values
of the u parameter. A high value, © — oo (i.e. B* 2~ 0) there is no jet

p=0o

z[10%cm]

z[10%cm]

R[10%cm]

Figure 11. Density colour-maps of the core of the collapsing cloud at
common elapsed time 7 = 1.1 x 10'2s for the low resolution calculations
(Cloud Collapse [1] in Table 3). The upper panels show the results with Axis-
SPHYNX for three values of the magnetic field, B* = 610 ;fl. The same is
shown in the lower panels, but calculated with the code GDSPH.

at all, whereas suitable conditions for jet formation are seen for u <
20, which is encouraging. Nevertheless, no collimated jets attached to
the rotation axis were observed in these low-resolution calculations
with Axis-SPHYNX. Simulations with enhanced resolution follow a
similar trend, but this time, clear collimated jets develop, especially
with o < 10. This is shown in Fig. 12, which emphasizes the colour
intensity around the axis region so that the jets are better highlighted.
As it can be seen, the calculation with u = 10 gives birth to a
jet, albeit lesser developed than its 3D counterpart (last snapshot in
Fig. 12). On another note, choosing ;+ = 5 produces a more robust
and well-developed jet. Although these results suggest that for this
kind of problem some improvement of the axial calculation is still
necessary, the outcome is roughly consistent with the calculations by
Hopkins & Raives (2016), who did not find collimated jets in their
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Figure 12. Emergence of collimated jets at the core of the collapsing cloud
at elapsed time 7 = 1.1 x 10'2s and u = 10, = 5, obtained with enhanced
resolution (Cloud Collapse [2] in Table 3). The last panel shows the results
with GDSPH at the same elapsed time and © = 10 and depicting a slice cut
in plane XZ.
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Axis-p=10 ——
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Figure 13. Maximum magnetic field By, versus maximum p;,q, for the
case u = 10 calculated with Axis-SPHYNX (magenta line) and GDSPH
(blue line).

low-resolution SPH calculations, needing from low p-values (u <
10) to observe well-developed jets with higher resolution.

Several causes can contribute to the difficulties in building the jet
in the Axis-SPHYNX calculation and to the observed dissimilitudes
at t >~ tp. The first could be attributable to the slightly different
representation of the azimuthal velocity field at the very centre of
the collapsed cloud between the axial and the 3D simulations. In
three-dimensional calculations the velocity v¥ is smoothed by the
AV close to the centre of the disc, which approaches rigid rotation.
In axial geometry, however, the AV only works in the {r, z} plane and
v¥ is not smoothed. A plausible remedy to that behaviour is to add
some amount of shear viscosity to a?, with the scheme developed
by Sijacki & Springel (2006) for example, which is left to future
extensions of the code. It could also be possible that the mixing
of particles with different masses during the anisotropic collapse
leads to a build up of the numerical errors in the central region.

MNRAS 518, 4115-4131 (2023)

In this respect, a possibility worth to explore is to consider SPH
formulations which are less dependent on the mass of the particles
(Ott & Schnetter 2003).

The follow-up of the maximum strength of the magnetic field,
By, versus the maximum density, 0.y, 1S @ good indicator of the
collapse process (Wurster, Bate & Price 2018). Fig. 13 shows the
profile of B, as a function of the maximum density at common
elapsed times for i = 10. The match between the 2D-axial and the
3D calculation is pretty good until . ~ 3 x 107'* gecm™3, when
non-linear effects take over. The agreement is qualitative hereafter.
But both calculations follow the same trend, showing a similar large
increase of the slope of the profile at o, > 3 x 107'* gcm ™. Near
Pmax = 10712 gem™ there is a factor 3-5 difference between both
calculations, which is not a surprise given the sensitivity of B,
on implementation details, as for example the amount of magnetic
dissipation. Such strong dependence of the B, (0max) trajectory
on implementation details (Ohmic and ambipolar diffusion, Hall
effect) was also reported by Tsukamoto et al. (2015) and Wurster
et al. (2018) although with different initial conditions, EOS, and in
simulations spanning a wider density range.

5 CONCLUSIONS

In this work, we propose a novel SPH formulation of ideal magne-
tohydrodynamics with axial geometry and provide the basic pieces
to build an axisymmetric SPMHD simulation code. The main goal is
to tackle problems with higher resolution and lower computational
effort than standard SPMHD codes. Such computational tool can
be of interest not only to astrophysicists but to plasma researchers
in general. The proposed scheme and its associated hydrodynamic
code, called Axis-SPHYNX, have been verified by direct comparison
with the results of the three-dimensional SPMHD code by Wissing &
Shen (2020).

On the whole, there is a good match between both hydrodynamic
codes in the performed tests, with the axial approach showing
a bit more numerical noise, especially close to the symmetry
axis. Axisymmetric SPH calculations are intrinsically noisier than
Cartesian, owing to the uneven distribution of mass within the
kernel range, even in homogeneous systems. Furthermore, they are
more prone to undergo pairing instability, and the use of high-order
interpolators is recommended. In calculations involving low plasma-
B values (i.e. in the strong field regime), the use of a magnetic noise-
trigger, such as that in equation (44), helps to prevent the growth of
the numerical noise. Looking for both more stable initial models
and procedures to control particle disorder deserve future work.
The agreement with GDSPH is excellent in the case of simulating
explosions and implosions in magnetized systems, which could be
of interest to understanding the physics of plasma compression
in terrestrial laboratories. The axisymmetric code is also able to
simulate the growth of instabilities in magnetized plasmas, such as
the Kelvin—Helmholtz instability, which involves longer time-scales
than explosions. Even though the axial formulation of SPMHD does
not guarantee complete conservation properties, we found that energy
and momentum in the Z-direction (not affected by hoop-stress forces)
are preserved < 0.1 per cent. The averaged divergence constraint
(h div B/B) remained below 2 per cent in all the tests.

Axis-SPHYNX can handle more complex scenarios, such as
those involving gravity and rotation, of indisputable interest to
astrophysics. As shown in Section 4.5, with the collapse of a
magnetized cloud, the proposed scheme is able to successfully cope
with that scenario. There is a quantitative agreement between the
two codes during the nearly free-fall phase of the collapse and
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further formation of the high density, rotating disc at the equator.
Nevertheless, in more advanced stages the agreement between both
codes is basically qualitative and work has to be done to enhance
the calculations. For example, one should consider the role of the
shear viscosity in the evolution of the azimuthal component of the
velocity, v¥. Immediate prospects are to incorporate grad-h effects,
AV switches, as well as to improve the initial model generation, and to
refine the treatment of particles that move close to the singularity axis.
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APPENDIX A: DERIVATION OF THE
AXISYMMETRIC SPH EQUATIONS

A simple procedure to obtain different flavours of the SPH equa-
tions of momentum and energy is to consider the following identity
(Read et al. 2010),

d 1 P 1 P
Y lyp=— [—f’v (ﬁ) +-V <—¢)] (A1)
dr P P o] ¢ p

The axisymmetric analogue of the momentum equation is obtained
from,

Ui
p=5" (A2)
Tr
Expressing the nabla operator in cylindrical coordinates {r,
z} and differentiating the expression (A2), putting the result into

equation (A1), and approaching the derivatives with summations in
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the usual SPH way leads to,

dv” P,
(U> :271—”—2712@
dr a Na b b

Pagalral my OWap ¢y Pylrs| IWe
x | ePalal Db & . (A3
Ma ¢b ar d)a N ar
and,
(E) . Z @ |:Pu¢a2|ru| ﬁ E‘)VVab + @ Pblrb| E‘)VVab:| )
dr a b b P qjh 0z ¢a Ui 0z
(A4)

Choosing ¢ = 1 above leads to the standard axisymmetric SPH
momentum equations, which are the same as those obtained with
the minimum action principle in Brookshaw (2003). Picking ¢ =
7 leads to the geometric density averaged schemes, which are better
suited to suppress the tensile instability (Read et al. 2010). As
shown in Section 2.2, both families of equations can be reduced to a
single expression steered by a binary parameter ¢ [0, 1]. The ensuing
momentum equations are those given by equations (8) and (9). Note
that the radial component of the acceleration, equation (A3), has a
term which does not depend of the gradient of the kernel. Such term,
called the hoop-stress, is an outstanding feature of the axisymmetric
geometry.

A suitable expression for the energy equation is,

d P,
( d ) = 2 —v,,
dr /, Na

Pudpalral o= m
+2m SN N Sy, DWa(h), (A5)
N o P

where D = %f‘ + a‘%i is the 2D-axisymmetric form of the V opera-
tor. Making use of the parameter o [0, 1], equation (AS) is written as
equation (10) in Section 2.2.

APPENDIX B: DERIVATION OF THE
AXISYMMETRIC SPHMHD EQUATIONS

A rather common, and perhaps the most natural procedure to
formulate the SPHMHD equations, is to make use of the variational
principle §S = f S6Ldt = 0 (Price 2004, 2012), where the physical
action, S, is minimized. In the following, we closely follow the
demonstration in Price (2012), but adapting it to the peculiarities
of axial symmetry, and we refer the reader to that paper for the
details. The variation of the Lagrangian of the system, 6L, including
the magnetic energy is,

SL = myv, - dv, — Zmb

duy 1 /By 1 B,
x | —280p ) + — (=2) 8pp+—By-8(—2)].
app 21y \ P» Ho P

(BI)
Using equation (4), the density variation in axial geometry is,
b 1
Spp = ——088, + ——38
P 27r} " 2mr, "
b 1
= ———=0s, + — ¢ (8sp — 88.) - DpWye(hy). B2
2?0 Mme (855 — 850) - Dy We(hs).  (B2)
Direct substitution of §p, above, besides % = % and p, =
4 b

zz—”” in equation (B1) leads to identical contributions to the acceler-
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ation as in Price (2012), except those arising from the hoop-stress
force:

2
Pb + Bb

. 2
(ahoop)b = ZNTMO' (B3)

‘We now evaluate the contribution of the last term on the RHS in

equation (B1) separately. The magnitude §(22) is obtained from the

b
o . . Pb
magnetic induction equation,

v (5)=()
— | —=)=(—--V]v, (B4)
dr \ p p

which, once expressed in cylindrical coordinates, and with d/d¢ =
0, becomes,

d (B\ _ B’Bv’+
dt\p/) \p or p 0z pr

n B"sz_f_BzavZ R
p or p 0z ¢

B" 9v?  B*ovY BV
+|—+——+ Q.
p or p 0z pr

B gv” B‘”v‘”) .
;

(B5)

The expression above has contributions from the velocity of the
particle and from the derivatives of the velocity (noted next with
superscript Dvel). With SPH summations, the latter are,

d B Dvel B
a (;)h = - XL: mc(vc - Vh) {,07:%7 . DhWb('(hh)} s (B6)

and,

B Dvel Bh
8 (*) =- ch(tSRc —48R,) {7 : DbWbc(hb)} . (B7
P /b c Pp

where § R = (§ 1, 8 z, § ) stands for a three-dimensional virtual
displacement (but note that D = (%, 3%, 0) is the nabla-operator
restricted to the axisymmetric plane). The scalar product,

B B Dvel
wo(n) o

is formally the same as that in Price (2012), with one coordinate
changed to ¢, thus leading to a similar contribution to the acceleration
via the variational principle. It is worth noting that if the azimuthal
velocity is not zero, or has non-zero derivatives, it induces an
acceleration a’ orthogonal to the axisymmetric plane.

Finally, the terms —% and &r"r in equation (B5) lead to
additional hoop-stress contributions to the accelerations a¥ and

a’, respectively,

(B*)? (B¢)?
- = -2 ,
Hopr Hon

r —
hoop —

B9)

which comes from a virtual displacement along the r —direction and
has to be added to equation (B3) to compute the total hoop-stress
force. Similarly, a virtual displacement in the ¢-direction leads to,
B" B¢ B"B*

— =2n , (B10)
Hopr Hon

ahzmp =

which in some particular scenarios will make its way to contribute
to the tangential acceleration a¥ of the particle.

€20z Aieniga4 g uo Jasn wniuosuo) [endsoy Buipnjoul 0jsQ 10 Ausiaalun Aq GH9LE8Y/S L L 1/E/8 L S/a1oNIB/SBIUW/WOD dNo-olWwspeoe//:sdny wolj papeojumoq



To summarize, the different components of the momentum equa-
tion, written in ISPH notation, read:

B (8)
<dv’> 5 (Pa 21 [ )
) Zon

a

dr Na

o (L

St .
() + 220 '”" ;,,<hb>> ,

(B11)

(dv‘) _27_[% <S< |74l

The momentum equation in the ¢ direction arises from the last
term on the RHS in equation (B1),

() =2 ()

dr a HoMNa
ral S¢ sl
T AL (ha) + 2 AL () |
u nb

+ 27 Zmb (
(B13)

P () + 22t Sl :;,,(hb)> .
77};

(B12)

with i = r, z in all equations, and repeated indexes are summed up.
After minor modifications, to account for axis corrections and to
reduce the magnetic tensile instability, equations (B11) and (B12)
turn into equations (15) and (16) described in Section 3. These
take over the evolution in the tests described in Sections 4.1 to 4.4.
The equation (B13) is useful to simulate magnetized systems with
non-zero initial angular momentum, such as the rotating cloud test
described in Section 4.5.

APPENDIX C: AXISYMMETRIC FORM OF THE
MAGNETIC DISSIPATION

Some amount of magnetic dissipation is necessary to handle shock
waves. We make use of the expression by Price et al. (2018),

dB diss )
Fr =& V'B, (CD

where £ is a resistivity parameter. Equation (C1) is adapted to the
axisymmetric geometry by writing the vector Laplacian on the RHS
in equation (C1) in cylindrical coordinates,’ with the constraints

Shttps://mathworld.wolfram.com/VectorLaplacian.html
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3/ =0, 3%/3¢p> =0,
VB — [<323’ N 823f> +£88* 3 37’} .
ar? 72 r or r2
3’B*  9’B* 1 9B*
Gk
13BY B

0°BY  9’B¢
A ) c2
+{(8r2+8z2>+r or rz](p )

The second derivatives in parenthesis in the RHS of equation (C2)
are the Cartesian 2D-Laplacian of each component of the magnetic
field, D?B’, which are computed in the standard SPH way,

N>

Z v, §pa + égbBt,-lb (%bv&éb) ) (©3)

[San |

(65 D*B'

The first derivatives at the RHS of equation (C3) are estimated with,

np

9B’
(53 8r> —§BaZVb

The expression giving the magnetic dissipation in axial geometry is
therefore written,

dBi\ " R 1 9B
(dz ) = (& DB, + (53? o )
i2 Bl
—(1 =487 gBrT , (C5)

3) ALy (ha). (C4

where i = {1, 2, 3} correspond to components {r, z, ¢} and §? is
the Kronecker-delta.

This paper has been typeset from a TEX/I&TEX file prepared by the author.
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