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 “Do the best you can until you know better. Then when you know better, do better” 
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Abstract 

Environmental risk assessment frameworks are a crucial element of many chemical 

legislations and essential to inform risk management decisions. Risks posed by environmental 

stressors such as chemical pollutants are expected to increase and diversify. This has led 

scientists and regulators to request an adaptation and improvement of the current risk 

assessment frameworks to communicate uncertainties better and consider future global 

changes. Improvements in handling uncertainties related to emissions, exposure and effects 

of chemicals, and their mixtures now and in the future are essential when pursuing policy 
targets such as a toxic-free environment in 2050 (e.g., European Green Deal). 

To this end, there is a need to combine knowledge of future global changes and their 

influence on the behaviour and effect of chemicals to forecast future risks to the ecosystem 

better. As future projections of environmental conditions and chemical emissions are highly 

uncertain, the need for risk assessment methods to quantify and propagate these uncertainties 

is evident. 

Despite their apparent advantages, probabilistic methods still have limited application in 

environmental risk assessment in practice. The use of Bayesian networks for probabilistic risk 

assessment has increased in recent years. They better communicate uncertainties than most 

currently used probabilistic methods and can be used as a meta-model combining various 

sources of information in a single model. Exploring the use of this highly versatile tool to 

improve current risk assessment has been the focus of this synthesis. A core model for the 

probabilistic risk characterisation of pesticides was developed. For a Norwegian case study, it 

enabled retrospective assessment that uses distributions fitted to monitoring data and toxicity 

tests to parameterise the core model. 

This PhD project also explored the application of Bayesian networks for prospective risk 

assessment under future climate and land-use scenarios. The core model was adapted to 

integrate scenarios for changes in climate and agricultural practices for another Norwegian 

case study. This Bayesian network model was parameterised with probabilities for predicted 

exposure concentrations derived from a process-based exposure model (WISPE - World 

Integrated System for Pesticide Exposure) and probability distribution that were fitted to data 

from toxicity tests.  

The latest developed Bayesian network model integrated inputs from a case-based effect 

model (PERPEST - Predicts the Ecological Risks of PESTicides) that estimated effects on 

various biological endpoints and the aquatic community. Also, it linked future scenarios to the

exposure assessment using output from another process-based exposure model (RICEWQ - 

Rice Water Quality Model) for a Spanish case study. In general, the developed Bayesian 

networks produce output that can easily be communicated and aid better-informed and 

targeted risk management decisions through transparent uncertainty assessment for all model 

compartments.  
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Preface 

This synthesis is submitted in partial fulfilment of the requirements for the degree 

of Philosophiae Doctor at the University of Oslo. The presented research was conducted at 

the University of Oslo and the Norwegian Institute for Water Research (NIVA) under the 

supervision of S. Jannicke Moe, Merete Grung, Knut Erik Tollefsen, Marianne Stenrød, and 

Ketil Hylland. 

The presented work was carried out between 2019 and 2022 and supported by 

ECORISK2050, which has received funding from European Union's Horizon 2020 research 

and innovation program under grant agreement No. 813124 (H2020-MSCA-ITN-2018).  

This synthesis is a collection of three papers within the domain of ecotoxicology. These 

papers all use Bayesian network models as a tool for the probabilistic risk assessment of 

pesticides. The papers proceeded with a background chapter putting the synthesis into 

context. The following chapter describes the research aim of this synthesis and a state-of-the-

art chapter describing existing frameworks, methods, and applications of the existing work. 

They were followed by the main contribution of the papers being presented. Finally, the 
discussion and concluding remarks turn the work into context and describe further 

improvements.  

Acknowledgments 

I want to thank my supervisors for their support and encouragement during my PhD. Also, I 

want to raise special gratitude to Jannicke and Merete, who had given me considerable help in 

times when the world went crazy, and without whom, this PhD would not have been possible. 

During the three years working there, my employer, NIVA was most supportive and 

facilitated the work environment I needed. Thank you to all my NIVA colleagues and friends 

for helping me during my PhD keeping me motivated and making lunch my favourite time of 

the day. To my section, I can only quote our leader; you are indeed - “the best of the best of 

the best”. Furthermore, I like to thank my secondment hosts, the Norwegian Institute of 

Bioeconomy Research (NIBIO), Wageningen University & Research (WUR), and Instituto 

Madrileño De Estudios Avanzados (IMDEA) water for their hospitality and support in 

improving my research. Also, I thank Randi Bolli and Roger Holten for their discussions and 

support on exposure modelling and pesticide application. In addition, I like to express special 

thanks for the discussions and help with Bayesian network modelling to Wayne Landis and 

John Carriger. To everybody in the ECORISK2050 project, thank you all for the great work, 

help, and support during the last few years, and all the effort that went into the workshops and 

conferences. To all my fellow ESRs, especially Sam, it was great to make this PhD journey 

together with you not only as colleagues but also as friends. You guys made this project a 

great experience and so much fun. I enjoyed every virtual coffee break and all the in-person 

get-togethers we were able to have– may there be more to come. Moreover, I want to thank 

the Mentzel side of my family for their support and for cheering me on during all the years of 

studying and PhD work. Grandma Rosemarie and my brothers - Paul, Steffen, and Ian - I am 

forever grateful for your love and for always believing in me even when I could not. To all 

my friends, thank you for putting up with my stress and anxiety, I am so lucky to have you all 

in my life. Chloe, pretty Maria, Rachel, and Christina, thank you so much for keeping me 

sane and for helping me grow as a person. Last but not least, mevrouw Wanke, mijn 

Suikerklontje, and Sonja, I appreciate all our years of friendship, you guys are always there 

for me, even though we are hundreds of kilometres apart.  

Oslo, October 2022 

Sophie Mentzel 





ix 

List of papers 

Paper I: Development of a Bayesian network for probabilistic risk assessment of 

pesticides 

Sophie Mentzel, Merete Grung, Knut Erik Tollefsen, Marianne Stenrød, Karina Petersen, and 

S. Jannicke Moe. 2022a. Development of a Bayesian network for probabilistic risk assessment

of pesticides. Integrated Environmental Assessment Management; 18: 1072–1087 .
(doi: 10.1002/ieam.4533)

Paper II: Probabilistic risk assessment of pesticides under future agricultural and 

climate scenarios using a Bayesian network  

Sophie Mentzel, Merete Grung, Roger Holten, Knut Erik Tollefsen, Marianne Stenrød, S. 

Jannicke Moe. 2022b.Probabilistic risk assessment of pesticides under future agricultural and 
climate scenarios using a Bayesian network. Frontiers in Environmental Science.
(doi: 10.3389/fenvs.2022.957926)  

Paper III. Using a Bayesian network model to predict effects of pesticides on aquatic 

community endpoints in a rice field - A southern European case study 

Sophie Mentzel, Claudia Martínez-Megías, Merete Grung, Knut Erik Tollefsen, Paul van den 

Brink, Andreu Rico, and S. Jannicke Moe. 2022c. Using a Bayesian network model to predict 
effects of pesticides on aquatic community endpoints in a rice field – A southern European 

case study. bioRxiv. [preprint]
(doi: https://doi.org/10.1101/2022.10.19.512688) 

Note: 
Within Paper II and Paper III, Mentzel et al. (2022a) (Paper I) has been referred to by the 
online publication year (2021) instead of the publication in volume year (2022) within Paper 
II and Paper III.





xi 

Content 

Abstract ...................................................................................................................................... v
Preface ..................................................................................................................................... vii
Acknowledgments .................................................................................................................... vii
List of papers ............................................................................................................................ ix
List of figures .......................................................................................................................... xiii
List of tables .............................................................................................................................xiv
Abbreviations ........................................................................................................................... xv
Introduction ............................................................................................................................... 1 

I Background ..................................................................................................................................... 1 

II Objective and aim ......................................................................................................................... 2 
2.1 ECORISK2050 project objective ......................................................................................................... 2 
2.2 Research objective and tasks ................................................................................................................ 2 

III State of the art.............................................................................................................................. 4 
3.1 Regulatory risk assessment of pesticides ............................................................................................. 4 
3.2 Role of uncertainty in current environmental risk assessment ............................................................. 7 
3.3 The impacts of climate change on pesticide fate and integration into environmental risk 

assessment.............................................................................................................................................13 
3.4 Communication of uncertainty ........................................................................................................... 14 
3.5 Probabilistic risk assessment .............................................................................................................. 16 
3.6 Bayesian networks: introduction and application .............................................................................. 20 

IV Data and method ........................................................................................................................ 23 
4.1 Previous risk assessment approaches using Bayesian networks ........................................................ 23 
4.2 Development of the Bayesian networks– from risk quotient to effect based approach ..................... 23 

V Results .......................................................................................................................................... 26 
5.1 Paper I – Using Bayesian networks for probabilistic risk assessment of pesticides........................... 26 
5.2 Paper II – Integrating exposure prediction model output into a Bayesian network ........................... 27 
5.3 Paper III – Integrating exposure and effect prediction model outputs into a Bayesian network ........ 28 

VI Discussion and future outlook .................................................................................................. 30 
6.1 Implications of Bayesian networks use in environmental risk assessment ........................................ 30 
6.2 Technical improvements for the developed Bayesian network .......................................................... 31 
6.3 Further application of Bayesian network modelling for mixture risk assessment .............................. 32 

VII Conclusion ................................................................................................................................ 34 

References ........................................................................................................................................ 35 

Paper I-III ................................................................................................................................ 47





xiii 

List of figures 
Figure 1 Conceptual environmental risk assessment. AF = Assessment factor, MEC = 

Measured environmental concentration, PEC = Predicted environmental concentration, PNEC 

= Predicted no effect concentration, RQ = Risk quotient (Modified from Paper I) ................... 4 
Figure 2 Species sensitivity distribution for the pesticide azoxystrobin based on means for 

multiple toxicity test values for the same species. The dotted line indicates the derived 5% 

hazard concentration (HC5) used to derive the PNEC concentration in this study. (modified 

from Paper I Supplement material I) .......................................................................................... 6 
Figure 3 Example Bayesian network components (modified from Paper I) ............................ 20 
Figure 4 Generic methodology for the construction of a Bayesian network. Bold font are data 

sources used in the three papers of this synthesis (adapted from Pollino and Henderson 

(2010)) ...................................................................................................................................... 22 
Figure 5 Development of conceptual models of the Bayesian network approaches used in 

Paper I – III. ............................................................................................................................. 25 
Figure 6 Intermediate probabilistic approaches. Approach A displays how to derive a risk 

quotient distribution from a exposure concentration distribution and a single value PNEC. 

Approach B shows how a risk quotient distribution is derived from a single vale PEC and an 

effect concentration distribution (adapted from Paper I). ........................................................ 26 
Figure 7 Example of a parameterized seasonal and fully probabilistic Bayesian network model 

for metribuzin. The risk quotient distribution was predicted for autumn season using a 

precautionary factor of 10 (adapted from Paper 1 Supplement material I) .............................. 27 

Figure 8 Example of risk quotient distribution shift from 2000 to 2100, for Fluroxypyr-

meptyl. The BN predicted the risk quotient distribution for Climate model 1, the 

baseline+50% application scenario and for a precautionary factor of 10 in this example 

(adapted from Paper II). ........................................................................................................... 28 
Figure 9 Example of risk quotient distribution shift due to increase in pesticide application, 

for Fluroxypyr-meptyl. The BN predicted the risk quotient distribution for Climate model 1, 

time-period 2070-2100 and for a precautionary factor of 10 in this example (adapted from 

Paper II). ................................................................................................................................... 28 
Figure 10 Example BN predictions of the effect on the aquatic community by the selected 

pesticides. The BN predicted the effect on any of the biological endpoints in the endpoint 

group and community for the climate conditions in 2050 with a baseline+50% application 

scenario (adapted from Paper III). ............................................................................................ 29 

Figure 11 Conceptual model for mixture assessment for three chemicals and exemplary 

taxonomic groups. It displays how toxic units and sum of toxic units (TU) are derived, and 

possible applications for a Mixture Assessment factor (MAF). Expo = Exposure 

Concentration, Eff= effect concentration, TU = Toxic Unit, STU = Sum of toxic Unit, alg = 

Algae, crus = Crustacean, fish = Fish, P = Pesticide. ............................................................... 33 



xiv 

List of tables 
Table 1 Overview sampling active and passive sampling methods, also detailing advantages 

and disadvantages (Bundschuh et al., 2014; Morrison et al., 2016; Poulier et al., 2014; 

Spycher et al., 2018; Zhang et al., 2016). ................................................................................... 8 
Table 2 Overview effect modelling for ERA of PPPs. (Q)SAR = Quantitative structure-

activity Relationship, DR = Dose-Response model, TKTD = ToxicoKinetics-ToxicoDynamic, 

GUTS = General Unified Threshold models of Survival, DEBtox = Dynamic Energy Budget 

applied to ecotoxicology, BCF = Bioconcentration factor (adapted from Larras et al. (2022))

 .................................................................................................................................................. 11 
Table 3 Overview of climate change impacts on the agriculture sector for Boreal and 

Mediterranean region (adapted from EEA (2019)) .................................................................. 14 
Table 4 Overview of some of the currently existing probabilistic risk assessment approaches. 

AUC = Area under curve, SSD = Species sensitivity distribution.) ........................................ 18 



xv 

Abbreviations 

AF Assessment Factor 

AOP Adverse Outcome Pathways 

AUC Area Under Curve 

BN Bayesian Network 

CA Concentration Addition 

CDF Cumulative Distribution Function 

CPT Conditional probability Table 

DAG Direct Acyclic Graph 

DEBtox Dynamic Energy Budget Applied to ecotoxicology 

DR Dose Response Model 

EAP Environmental Action Programme 

EC European Commission 

EC50 50% Effective Concentration (concentration effective in producing 50% of the 

maximal response) 

EQS Environmental Quality Standard 

ERA Environmental Risk Assessment 

EU European Union 

GC Global Change 

GUTS General Unified Threshold Models of Survival 

HCx Hazard Concentration for x% of the species 

HC5 Hazard Concentration for 5% of species 

IA Independent Action 

IPCC Intergovernmental Panel on Climate Change 

JPC Joint Probability Distribution 

LC50 Half Maximal Lethal Concentration 

LOAEL Lowest Observed Adverse Effect Level 

LOD Limit of Detection 

LOEC Lowest Observed Effect Concentration 

LOQ Limit of Quantification 

MEC Measured Environmental Concentration 

NGO Non-Governmental Organization 

NOAEL No Observed Adverse Effect Level 

NOEC No Observed Effect Concentration 

NOEL No Observed Effect Level 

OECD Organization for Economic Cooperation and Development 

PAF Potential Affect Fraction 

PEC Predicted Environmental Concentration 

PERPEST Predicts the Ecological Risks of PESTicides 

PNEC Predicted No Effect Concentration 

PRZM Pesticide Root Zone Model 

QSAR Quantitative Structure Activity Relationship 

RAC Regulatory Acceptable Concentration 

REACH Registration, Evaluation, Authorisation, and Restriction of Chemicals  

RICEWQ Rice Water Quality Model 

RIVWQ RIVerine Water Quality model 

RQ Risk Quotient 

SSD Species Sensitivity distribution 



xvi 

STU Sum of Toxic Unit 

TGD Technical Guidance Document 

TKTD Toxicokinetic-toxicodynamic  

TU Toxic Unit 

TWA Time Weighted Average 

WISPE World Integrated System for Pesticide Exposure 

WFD Water Framework Directive 



1 

Introduction 

I Background 

Pesticides are vital for the protection of crops and food security, although their use can have 

harmful effects on non-target species. Future global changes are related to shifts in land-use 

and weather patterns. These are expected to affect the emission of pesticides as well as their 

fate, transport, and effect on the environment. Examples of these impacts include the 
increased frequency of extreme weather events such as droughts, floods, and heat waves. 

Disruption through climate conditions will directly impact the agricultural sector's 

productivity, which is one of the socio-economic sectors that most depend on climate (EEA, 

2019). In the European Union  (EU), climate change impacts are expected to lead to a 

significant loss for the agricultural sector, with up to a 16% of loss of agricultural income

(with considerable variations between regions) (EEA, 2019). 

Looking into the future, the following vision was formulated in the 7th Environmental Action 

Programme (EAP): “In 2050, we live well, within the planet’s ecological limits. Our 

prosperity and healthy environment stem from an innovative, circular economy where nothing 

is wasted and where natural resources are managed sustainably, and biodiversity is 

protected, valued and restored in ways that enhance our society’s resilience. Our low-carbon 

growth has long been decoupled from resource use, setting the pace for a safe and 

sustainable global society” (EC, 2014). The 7th action in EU EAP also recognizes the

potential opportunities for economic growth and societal well-being through environmental 

and climate change. At the same time, it recognized that there are remaining challenges 

associated with uncertainties that can cause worldwide environmental degradation. The EU 

has thorough regulation of pesticides and other chemicals when they are placed on the 

market, even though, up to date, 46 % of  EU surface water bodies do not achieve a good 

chemical status (EEA, 2018). Recently, European Commission (EC) published a new 

strategy, “the EU Green Deal”, building up on the 7th EAP, with the intention for Europe to 

be the first climate-neutral continent that conserves, enhances, and protects the environment 

by 2050. For the aquatic environment, chemical pollution of water is addressed, and it is 

stated that there is a need to restore the natural functions of ground and surface water (EC, 

2019; van Dijk et al., 2021). 

Safeguarding ecosystem biodiversity and human health requires a better understanding of the

current and future impacts of food production, for example, pesticide impact on non-target 

biota. Current environmental risk assessment models and methods were not designed to 

incorporate future global changes. Therefore, they need better implementation of changes into 

environmental risk assessment (Gagnon et al., 2016; Landis et al., 2013; Stahl et al., 2013). 

Some other shortcomings are associated with a lack of spatial and temporal consideration 

when predicting risk to the aquatic ecosystem (Topping et al., 2020). To accomplish the 7th 

EAP vision and policy targets by the EU Green Deal, new approaches and technologies are 

needed to minimise the risk posed on the environment.  
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II Objective and aim 

2.1 ECORISK2050 project objective 

This PhD project is one out of thirteen PhD projects in the Environmental risks of chemicals 

in the future (ECORISK2050) Innovative Training Network (www.ecorisk2050.eu). It was 
established to help meet the aforementioned EU’s 7th EAP vision that seeks to protect

biodiversity, enhance society’s resilience and aims for a safe and sustainable global society 
until 2050. An interdisciplinary consortium of research institutes, universities, regulators and 

industry were brought together in this project.  

The intention was to evaluate the effects of global change (GC) on the use and emission of 

emerging chemicals, their ecotoxicity and risk to aquatic organisms, as well as their transport 

and fate in agricultural and urban-dominated catchments. This was achieved by combining 

innovative and novel modelling-based approaches and experimental investigations. Overall, 

the focus was on chemical emission pathways related to rural (such as pesticides and 

veterinary medicines) and urban land-use (such as personal care products and 

pharmaceuticals) (Welch et al., 2022). Moreover, as there are apparent differences in 

climate, demography, management practices, and wastewater treatment, chemical emission 

scenarios were evaluated in three biogeographic regions in Europe: Northern (boreal), 

Central (Atlantic), and Southern (Mediterranean). 

Its project aims were: 

- To assess how the inputs of chemicals from agriculture and urban environments and

their fate and transport will be affected by GC for different European scenarios in

order to assess the likely increase in the ecological risks arising from these changes

for human and ecosystem health;

- To identify potential adaptation and mitigation strategies, which can be implemented

in the short and medium term, to abate unacceptable changes in risks, and use the GC

scenarios to develop robust implementation pathways for these strategies;

- To develop a set of tools for use by industry and policymakers, which allow the

impacts of a range of GC-related drivers on chemicals risks to be assessed and

managed (Welch et al., 2022).

The innovative training network consisted of four interlinked main work packages (Scenarios, 

Exposure, Effect, and Risk & Mitigation). This PhD project was part of the risk assessment 

and mitigation work package that focused mainly on the risk assessment for emerging 

chemicals from agricultural and urban sources, separately and in mixtures, under current and 

future scenarios (Welch et al., 2022).  

2.2 Research objective and tasks 

This PhD project explores developing and applying a modelling tool for risk assessment of 

agricultural chemicals (initially titled: “Novel tools for forecasting chemical risks in 

agricultural systems in the future”). Environmental risk assessment (ERA) paradigms are 

often limited by an ineptitude to account for spatial and temporal variation in chemical 

exposure (EUFRAM, 2006; Verdonck, 2003). Furthermore, the currently used probabilistic 

approaches pay little attention to the visualisation of risk output and uncertainty (Verdonck, 

2003). Changes on the implementation of ERA are required due to changing stressors, 

sources, habitats, and toxicological effects related to changing climate conditions and 

agricultural practices (Landis et al., 2013; Stahl et al., 2013). 
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Bayesian networks (BN) can overcome some of these limitations of ERA, as they are able to 

incorporate probability and probability distributions and have flexibility in data sources 

(Hamilton & Pollino, 2012; Kaikkonen et al., 2021).  

Therefore, the main objective of this PhD was to explore BN application as a tool for 

pesticide risk assessment and the development BN models that could integrate future 

scenarios. Hence, the main tasks of this PhD project were to explore the following: 

- the development and application of a BNs for probabilistic risk assessment of

pesticides on the aquatic environment in northern Europe (Paper I),

- the application of a BN model for risk assessment of pesticides that integrates future

scenarios (Paper II), and

- the application of BN model for pesticides effect on various biological endpoints in

Southern or Central European (Paper III)
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III State of the art 

3.1 Regulatory risk assessment of pesticides 

In Europe, environmental risk assessment evaluates the complex impacts of chemicals on the 

environment while applying a comprehensive, straightforward, and reproducible set of 

protocols (Brühl & Zaller, 2019; EU, 2019; Hunka et al., 2015; Newman et al., 2006). It is an 

essential tool to inform decision-makers and a key element of the EU’s chemical legislation. 

To ensure the reliability, quality, and integrity of study data, rules known as good laboratory

practices were implemented by the Organization for Economic Cooperation and Development 

(OECD) (EU, 2019). In principle, today’s ERA usually incorporates exposure and effect 

assessment to characterize a substance's risk to the environment and, more specifically, the 

exceedance of a safe threshold (van Leeuwen & Vermeire, 2007) (Figure 1). Exposure 

assessment is the evaluation of predicted concentration through scenarios and models 

(prospective) or measured concentration through monitoring studies (retrospective) of a 

compound in the environment. In contrast, effect assessment focuses on the response of

species exposed to a chemical (standard toxicity tests) and is usually based on one or more 

endpoints.  

Figure 1 Conceptual environmental risk assessment. AF = Assessment factor, MEC = Measured environmental 

concentration, PEC = Predicted environmental concentration, PNEC = Predicted no effect concentration, RQ = 

Risk quotient (Modified from Paper I) 

Broadly divided, ERA has two paradigms, prospective and retrospective assessment. 

Prospective assessment is carried out prior to chemicals entering the market, such as 

Registration, evaluation, authorisation, and restriction of chemicals (REACH) (EC 

1907/2006). Retrospective assessment is carried out for chemicals already in the environment, 

for example, the water framework directive (WFD). Most of the currently used frameworks 

are built upon a fundamental concept of comparing a predicted (PEC) or measured 

environmental exposure concentration (MEC) to a hazard/ effect threshold concentration 

(Jørgensen & Fath, 2011; Syberg & Hansen, 2016; van Dijk et al., 2021). Prospective 

assessment for the market placing of pesticides uses a tiered approach to carry out an aquatic

risk assessment. The prospective assessment usually applies predicted environmental 
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concentrations (PEC) in relation to the potential hazard caused by using newly manufactured 

substances. Prospective risk assessment is based on the tiered approach concept, begins with

a simple and conservative assessment and tries to efficiently use resources. Usually, the first 

and second tiers are based on standard toxicity tests. These are commonly carried out as

single species and single substance laboratory tests deriving effect or lethal concentration 

based on dose-response (DR) model. An organism’s response to chemical exposure is 

dependent on the duration and magnitude of the exposure; usually, toxicity tests are 

differentiated between acute and chronic tests. Acute tests focus on the occurrence of adverse 

effects within a short time after a single dose (or multiple doses within 24 hours) exposure to 

the chemical (e.g., half maximal effective concentration (EC50)). Contrarily, chronic tests 

refer to repeated dosing for a longer duration of time (e.g., 90 days for some test species). 

These tests can establish a dose-response relationship and determine no effect levels (e.g., no 

effect concentration (NOEC)) (van Leeuwen & Vermeire, 2007).  

If a compound fails the first tier by exceeding the safety threshold, additional and more 

precise studies are carried out. Some tier 2 assessments can also be complemented with 

toxicokinetic-toxicodynamic models (TKTD). The two higher tiers combine experimental 

data and modelling that assesses population and community-level responses. In tier 3, 

population/community-level experiments and models may be used, whereas tier 4 contains 

field studies and landscape-level models (EFSA, 2013). The general approach in prospective 

pesticide risk assessment in the EU can be considered bottom-up as it encourages more 

industry involvement. In contrast, retrospective assessment is carried out for the post-market 

monitoring of chemicals, where measured concentrations in the environment are compared to 

pre-defined hazard-based thresholds for the substances. An example of a retrospective 

assessment paradigm is the WFD (Directive 2000/60/EC) that guides surface water 

assessment and management in Europe. It applies a one-out-all-out principle that assumes a 

water body does not have good chemical status if one chemical exceeds the hazard threshold

– environmental quality standard (EQS). It focuses on 45 priority and some national river-

basin-specific substances (Backhaus et al., 2019; Munthe et al., 2019). Two EQSs are used

for the evaluation of the maximum allowable concentration and the annual average MAC

described in the Directive 1013/39/EU amending WFD and Directive on EQS (EC, 2013).

The technical guidance document (TGD) supports legislation such as Commission Directive 

93/67/EEC, Commission Regulation (EC) No 1488/94, and Directive 98/8/EC. TGD 

mentions two approaches to carry out ERA, deterministic and probabilistic (De Bruijn et al., 

2002). The deterministic approach is based on point estimates (Rai et al., 2002) referred to as 

PNEC, derived by applying an assessment factor (AF) to the lowest credible toxicity value 

available (Figure 1). Vermeire et al. (1999) defined AFs as a “general term to cover all 

factors designated as safety factor, uncertainty factor, extrapolation factor, etc and the 

composite thereof”. For a freshwater environment, the AFs range from 1 to 1000 (in the 

TGD). If a base set of data containing acute 50% effective concentration (EC50) values for 

algae, aquatic invertebrates, and fish is used, an AF of 1000 can be applied. When conducting

additional ecotoxicological tests, the AF can be lowered as uncertainty is reduced (ECHA, 

2008). Some alternative to SSD and NOEC approach is the benchmark dose. It is based on 

single-species dose-response data for a particular endpoint (EFSA et al., 2017). For the 

benchmark dose, usually, a dose where the change in response is smaller than 5%, the AF is 

applied in the same manner (EFSA et al., 2017) 

The probabilistic method currently mentioned in TGD is the species sensitivity distribution 

(SSD) which uses ranked reliable toxicity data (e.g., NOEC or EC50) for a set of species and 

fits a distribution (minimum 8 taxonomic groups, 10 species, adverse effect-based) (De Bruijn 
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et al., 2002). An example is shown in Figure 2; here, the PNEC is derived by using the lower

bound of the confidence of a hazard concentration (HCx), which is considered ‘safe’ for a 

certain percentage of the population (usually 95%) (Brock et al., 2004; De Bruijn et al., 2002; 

Posthuma et al., 2001). Then an AF (in the range 5-1) is applied to HC5 to account for 

uncertainty related to modelling and experimental toxicity data (e.g., laboratory studies, 

extrapolation) to derive a PNEC value.  

Apart from toxicity, other chemical properties are assessed, such as persistence and 

bioaccumulation (De Bruijn et al., 2002), and more recently, mobility has become of more 

interest (Hale et al., 2020). 

Figure 2 Species sensitivity distribution for the pesticide azoxystrobin based on means for multiple toxicity test 

values for the same species. The dotted line indicates the derived 5% hazard concentration (HC5) used to derive 

the PNEC concentration in this study. (modified from Paper I Supplement material I) 

ERA is usually focused on single compound exposure, even though ecosystems and humans 

are exposed to a mixture of chemicals.  (Backhaus et al., 2010; Van den Brink et al., 2018). 

Chemical mixtures can be divided into three types (following Kienzler et al. (2016)):  

• intentional: formulated products that are put on the market,

• unintentional: originating from the same source (e.g., discharge during transport or

disposal of goods)

• coincidental: originate from countless sources.

Intentional mixtures often have well-known compositions. During the prospective assessment, 

the properties of the components and their toxicity have been studied under regulations 

related to their purpose, for example, plant protection products and biocides (at least in 

Europe). Unintentional mixtures are regulated through WFD or waste-related regulations. 

Their composition can be known and analysed to some extent through whole mixture 

approaches when coming from specific effluents. On the other hand, the composition of 

coincidental mixtures is mostly unknown as they vary temporally and spatially. So far, 

assessment of this type of mixture is often optional (Kienzler et al., 2016).  

There are two mathematical methods for calculating risk when assuming non-interaction 

mixtures: Concentration addition (CA) and independent actions (IA). CA is applied as the 

sum of the toxicity of the individual components is equal to the whole mixture toxicity.   

IA  or response addition calculates the combined effect of an individual component response 

by applying the independent random event concept (Backhaus et al., 2010; Heys et al., 2016; 

Kienzler et al., 2016). Standard mixture toxicity models, such as CA and IA cannot always 

reflect the “real world” where interaction between mixtures occurs. These interactions can be 
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assumed as antagonism, synergism, or potentiation (Heys et al., 2016). According to Van den 

Brink et al. (2018), identifying combinations of chemicals that are deviating from the CA or 

IA is still a challenge and needs further exploration. 

3.2 Role of uncertainty in current environmental risk assessment 

In this PhD project, risk is referred to as the risk of pesticides to the aquatic ecosystem and 

describes the likelihood of a negative effect (event) occurring (McCarty et al., 2018). A 

hazard is usually considered as a source of danger. For example, a pesticide becomes a hazard

if it is exposed to non-target biota in the environment. Usually, risk is characterised by its

severity (magnitude) of the occurring adverse effects and by the probability (likelihood) of 

the occurring effects (Maertens et al., 2022; Solomon, 2010). Risk identification is carried out 

by determining the source and consequence of an event (Stenzelmueller 2018).

Uncertainty is based on the lack of knowledge one has on a true value or relation between 

quantities (Maertens et al., 2022) and is defined rather generally in ERA (Larras et al., 2022) 

 “Variability and uncertainty have the potential to result in overestimates or underestimates 

of the predicted risk” (USEPA, 2014). Usually, uncertainty can be categorised and defined in 

several ways, one of the more common distinctions between sources of uncertainty is the 

differentiation between aleatory and epistemic sources. Aleatory uncertainty is related to 

natural variability and not reducible, whereas epistemic uncertainty is associated with the 

lack, insufficient or inadequate knowledge that are reducible (EFSA, 2018; Hora, 1996; 

Kennedy et al., 2015; Skinner et al., 2014a; Skinner et al., 2014b). These different categories 

of uncertainties are present in the different risk assessment process steps (Sahlin et al., 2021). 

For exposure assessment, uncertainty is often related to the variability in data and parameters 

in connection to environmental conditions, such as the behaviour linked to exposure potential 

or the conservativeness in estimations of emission (ECHA, 2012). Here, spatial and temporal 

variations are caused by many factors, such as changing environmental characteristics and 

contamination sources (Artigas et al., 2012), and can lead to uncertainty in applied scenarios. 

Regulatory frameworks deal with these uncertainties by MEC based on “worst-case 

scenarios”; the measured maximum (peak) concentration is used for pesticides. More realistic 

exposure assessment is frequently hindered by incomplete knowledge of fate, behaviour, and 

transport. In addition, inaccurate measurements through sampling methods, e.g., undetected 

peak concentrations or concentrations below the limit of quantification (LOQ) and limit of 

detection (LOD) (EFSA, 2013). Other sources of uncertainty, especially when it comes to 

measured concentrations, are historical concentrations, naturally occurring substances, and 

other existing stressors (Artigas et al., 2012; Rasmussen et al., 2015). For retrospective 

assessment (e.g., monitoring carried out under the WFD), the sampling methods used can 

significantly impact the representativeness of the measured concentration (Table 1). It can be 

influenced by factors such as the good practice of handling samples (procedures during 

transport and storage of the samples) (Bundschuh et al., 2014) or by planning-related factors 

of the sampling campaign. The latter could often be overcome by adapting the frequency of 

samples to the temporal variation of the occurrence of chemical concentration (Poulier et al., 

2014). In general, higher frequency leads to better estimates of peak concentrations (Morrison 

et al., 2016). 
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On the other hand, prospective exposure assessment often relies on fate and transport 

prediction models. Different models for various types of environments can be calibrated with 

site-specific properties. Some examples of currently used exposure prediction models: 

• FOCUS Pesticide Root Zone Model (PRZM) Surface water

• RICE Water Quality model (RICEWQ)

• Riverine Water Quality model (RIVWQ)

• World Integrated System for Pesticide Exposure (WISPE) - for Norway

The certainty of their predictions is influenced by the assumptions and scenarios used to run 

the prediction models. In Nordic countries, some source of uncertainty is related to the 

degradation rates. They are often overestimated since calibration studies are usually 

performed in more temperate regions (higher temperatures) where degradation is faster 

(Benoit et al., 2007; Stenrød et al., 2016; Stenrød et al., 2008). 

In the first tier, effect assessment is often based on DR models. Uncertainties in these models 

are infrequently or not systematically reported, which is connected to either old habits or a 

lack of computer resources (in previous decades) (Larras et al., 2022). Other related 

uncertainties can be linked to the selection of data, data set size or extrapolation from 

laboratory to field or inter-intraspecies variation (EC, 2011; ECHA, 2012; EFSA, 2018; 

Gustavsson et al., 2017; Rai et al., 2002). The current effect assessment heavily relies on 

single-species and single-stressor toxicity tests and can hinder realistic ERA. It is 

questionable if the responses of a few species sufficiently represent the responses of many 

species in the ecosystem to exposure (Posthuma et al., 2001; Van den Brink et al., 2018). 

Other factors that influence the uncertainty in toxicity testing are the duration of exposure, 

modifying factors for toxicity (e.g., factors influencing toxicokinetics), dose metrics, and 

causality (e.g., often, why and how effects occur is not investigated) (McCarty et al., 2018).  

Furthermore, Zijp et al. (2017) pointed out that the current decision criteria using risk ratios 

(e.g. PEC/PNEC) cannot be interpreted as reliable quantitative estimators of actual risk.  

The basis of the effect assessment in which NOECs and No Observed Effect Level (NOELs) 

are applied is frequently and for a long time being criticised, for example “A warning: NOECs 

are inappropriate for regulatory use” by Chapman et al. (1996), or “What level of effect is a 

no observed effect?” by Crane and Newman (2000). Landis and Chapman (2011) stated that 

NOEC's similar endpoints reflect “a poor application of environmental statistics and 

laboratory testing”. Some of their more vigorous criticism states that these no observed effect 

endpoints can be considered as “merely exposures selected by those doing the testing and are 

inconsistent between studies” (Landis & Chapman, 2011), these biotests and experimental 

designs lead to a failure of statistical significance (some more details can be found in Fox 

(2008), Nelder (1999), Suter (1996)). Other criticism is related to the usage of safety factors 

(e.g., AF) that are not based on scientific findings (Ahlers et al., 2006; Brühl & Zaller, 2019; 

Landis & Chapman, 2011; Malkiewicz et al., 2009; van Dijk et al., 2021). 

Some uncertainties that are related to selecting a single effective or lethal dose from a DR 

model (e.g., lowest NOEC or EC50) can be overcome by using an approach based on SSDs. 

As they are based on multiple (eco)toxicity tests of different species, they can reflect some 

interspecies differences in sensitivity to a chemical (Belanger et al., 2017; EC, 2011). Some 

uncertainties cannot be overcome when using SSDs that are partly related to technical 

prerequisites, such as the non-representativity or lack of data and limited taxa diversity 

(Belanger et al., 2017). Current effect assessments do not require a detailed and relevant site-

specific assemblage of species which in cases of retrospective risk assessment may lead to a 

site-specific exposure concentration being compared with a generic SSD (Grist et al., 2009). 



10 

Uncertainties are also related to SDD model construction: in-transparent of model choices, the 

selection of appropriate confidence intervals and appropriate distribution shape (Forbes & 

Calow, 2002), and the level of protection (Forbes & Calow, 2002; Grist et al., 2009). Even 

though different species’ sensitivity is accounted for, they are not weighted within the 

distribution (Forbes & Calow, 2002). There is a general discussion from an ecological point 

of view regarding the relevance of a single-chemical SSD with an incentive to address more 

possible pressures and consequently place the risk posed by pollutants into a more meaningful 

context (Belanger et al., 2017). 

An improvement could be to extrapolate effects across different levels of the ecosystem and 

different life stages. This can be achieved by using mechanistic effect models that Larras et 

al. (2022) has divided in six main categories: Quantitative structure-activity Relationship 

((Q)SAR), DR and TKTD, population, multi-species, landscape, and mixture models Table 2. 

These models could enable more in-depth knowledge about the interactions and effects in an 

ecosystem and may increase the availability of data for key protection goals for species (Van 

den Brink et al., 2018).  
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In Europe, handling uncertainty is based on the precautionary principle to safeguard both 

human and environmental health. It is defined as “Where there are threats of serious or 

irreversible damage, lack of full scientific certainty shall not be used as a reason for 

postponing cost-effective measures to prevent environmental degradation" (UNEP 1992), or 

in other words “better safe than sorry” (EC, 2017). However, there is growing evidence lot of 

protection that goals are not met, even though worst-case-scenarios are used, and the current 

risk assessment schemes not being sufficient to assess realistic risks of chemicals (Brühl & 

Zaller, 2019; Schäfer et al., 2019; Weisner et al., 2021). The use of worst-case assumptions 

and applying assessment factors to account for uncertainty and extrapolation could lead to 

improbable and unrealistic assessments of the actual risk that have been criticized for not 

being efficient nor transparent (Jager et al., 2001; Landis & Chapman, 2011; Van den Brink et 

al., 2018). The risks posed to the environment by chemicals and other stressors are expected 

to increase and diversify, and some scientists have requested an adaptation of the current

frameworks (Fairbrother et al., 2016; Topping et al., 2020).  

3.3 The impacts of climate change on pesticide fate and integration into 

environmental risk assessment 

Climate change is expected to affect weather conditions and land-use practices indirectly in 

the future. Through regularly carried out predictions and modelling efforts, one can inquire 

about the extent and variability of Climate change in plenty of the reports by the 

Intergovernmental Panel on Climate Change (IPCC), European Commission, and more 

regional-focused governmental reports. However, the extent of possible changes and their 

effect tends to be connected to uncertainty (Bloomfield et al., 2006). ERA is already 

challenged to predict actual risk posed to the and lacks accounting for the complexity of the 

environment; consideration of the climate change magnitude of uncertainty and variability is 

an additional challenge (Brühl et al., 2013; Di Guardo et al., 2018; Köhler & Triebskorn, 

2013; Van den Brink et al., 2018). When focusing on pesticides, the exposure of an ecosystem 

is influenced and depends on various site-specific properties, e.g., topography, soil 

characteristics, agricultural practices, climate conditions, chemical properties, crop and pest 

type (Di Guardo & Hermens, 2013; Gagnon et al., 2016; Leonard, 1990; Wauchope, 1978). A 

good overview of expected changes in chemical exposure, agricultural responses and the 
identification of essential research needs are described in Hader et al. (2022) (or (Bloomfield

et al., 2006; Delcour et al., 2015; EEA, 2019)). The most important impacts of climate change 

on agriculture for the two climate zones relevant to this project are described in Table 3.  
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Table 3 Overview of climate change impacts on the agriculture sector for Boreal and Mediterranean region 

(adapted from EEA (2019)) 

Climate region Increase in Decrease in 

Boreal region  

(e.g., South-east 

Norway) 

Heavy precipitation events Snow, lake and river ice cover 

Precipitation and river flow 

The potential for forest growth and 

risk of forest pests 

Risk winter storm damage 

Crop yield 

Mediterranean 

(e.g., Spain) 

Heat extremes Precipitation and river flow 

Risk of droughts Crop yield 

Risk of Biodiversity loss 

Risk of forest fires 

Water demand and competition 

between water users 

Risks for livestock production 

Climate change may result in changes in persistence and transformation of pesticides, which

can respond to microbial ecology, soil moisture and their aerobic/ anaerobic status, and 

degradation pathways and kinetics. Furthermore, pesticide transport and fate may be shifted 

due to changes in climate conditions or agricultural practices and technology. That can lead to 

changes in the physiochemical properties of the soil, in runoff, and volatilizations (Hader et 

al., 2022). Still, the extent of expected changes is often unknown and can hinder modelling 

efforts and assumptions made for ERA (Di Guardo et al., 2018; Di Guardo & Hermens, 

2013). Some efforts have been undertaken with catchment-based modelling studies that were 

carried out with a range of climate change scenarios, thereby providing insights into pesticide 

behaviour, fate, and transport in the future (Bloomfield et al., 2006; Bolli et al., 2013 ; 

Christen et al., 2006). 

One of the indirect effects of climate change is the adaption in agricultural practices. The 

emission of agricultural chemicals will be influenced by dietary changes, diseases, and pest 

pressure, temperature and precipitations changes, technological and policy advances. These, 

in turn, will respond to a change in land use and crop type, pesticide type, and use agricultural

technologies (Bloomfield et al., 2006; Hader et al., 2022; Kattwinkel et al., 2011; Noyes et al., 

2009). The development of appropriate scenarios considering these possible changes need to 

be incorporated in such scenarios. For example, some studies suggest the use of regression-

based analysis to derive more appropriate pesticide emission scenarios, which can be used to 

predict exposure concentrations (Chiu et al., 2017; Kattwinkel et al., 2011). 

3.4 Communication of uncertainty 

Overall, uncertainty is part of risk assessment as it needs to account for natural variability as 

well as complex relationships. This limitation in knowledge about risks may lead to 

conflicting interpretation of what happens and cause irritations about precision and claims of 

scientists in the field. Uncertainty can be interpreted in various ways by the public and can be 

viewed as a lack of evidence or an indicator of ignorance. Instead of seeing uncertainty as an 
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improvement in precision, frequently, it is understood as a sign of weakness (SAPEA, 2018). 

To quote Pariès (2017), “A paradigm shift is needed. Another approach to safety is possible. 

Uncertainty is not necessarily bad. Actually we are immerged in uncertainty, we live with it, 

and we need it to deal with the world’s complexity with our limited resources. We have 

inherited cognitive and social tools to manage it and deal with the associated unexpected 

variability. We need to better understand these tools and augment their efficiency in order to 

engineer resilience into our socio-technical systems”.  

The communication of risks and uncertainty associated with pesticides is influenced by 

stakeholders’ interpretation and opinion. Different opinions are derived from the differences 

in interest, views and understanding of environmental protection or underlying ideologies and 

values. Generally, for risks to be acceptable, it is vital to develop and carry out a relevant risk 

assessment for stakeholders. A shared vision is also important to improve policies that are 

excepted containing clear and well-defined views (EC, 2018). Zero risk is impossible to 

ensure, and therefore, only a high level of certainty can be achieved by risk assessors to 

hinder the occurrence of harmful effects and aid informed decision-making. However, minor 

adverse effects are accepted and considered sufficiently small (EC, 2018). Clear messages are 

needed to avoid confusion and ensure risks are communicated adequately. It is difficult for 

specialists to communicate the outcomes of laboratory and field studies in a way that the 

general public understands it (Van den Brink et al., 2018). Hence, the awareness and 

behaviour of the public, as well as stakeholder involvement, should be further studied and 

integrated into ERA (Artigas et al., 2012). Nevertheless, communication of risk should not 

ignore uncertainties and needs to be truthful to ensure trust in the risk assessment process. 

Otherwise, stakeholders' beliefs may shift even further toward mistrust in scientists and

industry-paid studies.  

Maertens et al. (2022) stated, “As we will see, embracing uncertainty can free us to adopt a new 

toxicity testing paradigm”. The current ERA process is not perfect, and there is a high 

necessity to gain more knowledge. “Availability and transparency of data is necessary to 

provide scientists and policy makers with all the information needed. Finally involvement of 

social scientists together with chemists and ecologists is also a key to the provision of a sound 

comprehensive knowledge to the policy makers.” (Artigas et al., 2012).  

Unfortunately, unanticipated catastrophic events can still occur due to the misuse of 

chemicals that potentially can threaten human and ecosystem health and can lead to mistrust 

in assessment and processes in place (SAPEA, 2017). For the current decision-making in 

regulatory ERA, safe concentrations need to be defined, so regulators can determine if the use 

of a chemical should be allowed. New development and assessment methods need to be 

adapted in ERA more rapidly to enable better protection of the environment and humans. 

Nevertheless, ERA is a valuable tool that helps to minimize threats caused by pesticides. The 

communication of uncertainty and risk can help earn the trust of involved stakeholders is one 

of the most challenging tasks for the future.  
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3.5 Probabilistic risk assessment 

The traditional risk characterisation is usually referred to as “deterministic” and is primarily 

based on point estimates (Rai et al., 2002). In contrast, probabilistic approaches can enable 

risk assessors to include uncertainty estimates and stochastic properties in both exposure and 

effect assessments (Fairbrother et al., 2016; Solomon et al., 2000). Probabilistic risk 

assessment can quantify one or more sources of variability in effect and exposure and their 

resulting risk by using probabilities or probability distributions (EUFRAM, 2006). The 

EUFRAM project has defined probabilistic risk assessment as a “term used in pesticide risk 

assessment to describe ‘quantitative risk analysis’ or ‘uncertainty analysis’. In essence it is 

the use of probability theory to characterize both toxicity and exposure. It is usual to consider 

the description of toxicity and exposure in terms of distributions.” The challenges related to 

interpreting the outcome of probabilistic risk assessment can be one of the most influential 

factors of them not being more commonly used in legislation. As Jager et al. (2001) put it, 

“Of course, there is always a discomfort in risk assessment when the scientific process meets 

the legal one; decision makers are usually not statisticians and may feel ill at home with 

probability distributions. Instead of focusing on the statistical technicalities for uncertainty 

analysis, due attention should be paid to transparency, presentation and interpretation of 

uncertain end results to allow the risk managers to make informed decisions.” 

In ERA, the risk estimation is often simplified to a single value that displays a simple 

“yes/no” message to the risk assessor. On the other hand, probabilistic approaches use 

distribution throughout the whole assessment process instead. Anyhow, some uncertainties 

can be better accounted for in exposure assessment through distributions when using 

probabilistic approaches (Regan et al., 2003; Verdonck, 2003). Traditional risk assessment-

based approach that, to some extent, uses a probabilistic approach is the SSD. As mentioned, 

they are based on multiple toxicity tests of different species and therefore reflect interspecies 

differences in sensitivity to a chemical (Belanger et al., 2017; EC, 2011). Moreover, they can 

be used to develop a community threshold (Belanger et al., 2017). Some examples of 

probabilistic approaches are joint probability distribution, probabilistic risk quotient, 

quantitative overlap, and Bayesian regression modelling (see Table 4). 

The following describes some of the probabilistic approaches, their strength, and weaknesses.

Quantitative overlap characterises risk as the extent of overlap between two curves (e.g., 

exposure and effect distributions). In other words, the overlap indicates the probability of 

exceeding the exposure concentration, thereby allowing for the estimation of the likelihood of 

impact that is potentially posed on the ecosystem (Hall et al., 2000; Manz et al., 1999; 

Poletika et al., 2002; Solomon et al., 1996; Solomon et al., 2000). Another probabilistic 

approach is the joint probability curve. For any given concentration, an effect distribution’s 

cumulative probability (ordinate) is usually plotted against an exposure distribution’s 

cumulative probability (abscissa) (Verdonck, 2003). One of this method’s advantages is that 

it is easy to construct while providing more information than a simple risk quotient. However, 

a downside commonly associated with this method is the difficulties for decision-makers and 

risk managers to interpret and understand its output (Cardwell et al., 1999; Dreier et al., 2020; 

Giddings et al., 2000).  

An example of how to visualize the outcome of this probability approach is better presented 

by Fairbrother et al. (2016), displaying a colour-schemed joint probability distribution. 

Another probabilistic approach is the probabilistic risk quotient, which is basically an 

exposure distribution divided by an effect distribution (e.g. SSD or SSD point estimate). This 
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probabilistic approach is easy to calculate and considered helpful for estimating of risk 

ranking and establishing priorities between different risk scenarios. (Campbell et al., 2000; 

Duvall & Barron, 2000; Verdonck, 2003). Another probabilistic approach is Bayesian 

regression modelling, an example was displayed by Wolf and Tollefsen (2021), who fitted 

MECs of three monitoring campaigns to derive a PEC distribution. The distributional 

regression model can separate temporally and spatially specific variation from latent 

background concentration while incorporating LOQ and LOD. 

Some arguments frequently used against probabilistic approaches are data requirements and 

their output, often deriving distributions that are hard to interpret for decision-making (or 

other stakeholders) (Dreier et al., 2020; Giddings et al., 2000). Also, few studies pay attention 

to the visualization of risk and uncertainties (Verdonck, 2003) 
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3.6 Bayesian networks: introduction and application 

During the previous decade, BNs have been recognized as an effective tool for dealing with

environmental problems and decision-making under uncertainty, and recently their use has 

increased (Hamilton & Pollino, 2012; Kaikkonen et al., 2021; Landis et al., 2013; Moe et al., 

2021; Sperotto et al., 2017).  

BN can model a system as a directed acyclic graph (DAG) consisting of a set of random 

variables (nodes) and their interaction in a network (arcs) (Hamilton & Pollino, 2012; Kanes 

et al., 2017). Within the network, arcs represent unidirectional cause-effect links between 

nodes (Bromley, 2005; Norton, 2010). The node causing an effect is referred to as the parent 

node, and the node it affects is called the child node. Root nodes do not have parent nodes,

and those without child nodes are leaf nodes (Figure 3). Each node contains states with 

assigned probabilities (degree of belief), also referred to as a prior probability 

p(X)(Bromley, 2005).  

Figure 3 Example Bayesian network components (modified from Paper I) 
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The relationship between parent and child nodes is described by the conditional probability 

table (CPT), which contains each possible combination of parent node that are incorporated 

through a joint probability function based on conditional independence (Norton, 2010; Pollino 

& Henderson, 2010). According to Heckerman (1997), the joint probability distribution (in a 

direct graph-causal chain) is given by: 

𝑝(𝑥) = ∏ 𝑝(𝑥𝑖|
𝑛
𝑖=1 𝑝𝑎𝑖) [1] 

The parent node is denoted by Pai and child node by Xi. When new evidence becomes 

available, BNs implement the Bayes theorem, also referred to as Bayes’ rule. It was founded 

and first published by Reverend Thomas Bayes in the essay “Towards Solving a Problem in 

the Doctrine of Chances” in 1764 (Pollino & Henderson, 2010; Uusitalo, 2007). The Bayes’ 

rule describes how probabilities are combined to update the output probability distributions 

p(X|E), the posterior probability of X given an event E (Hamilton & Pollino, 2012; Molina et 

al., 2010; Norton, 2010; Pollino & Henderson, 2010):  

𝑝(𝑋|𝐸) =
𝑝(𝐸|𝑋)𝑝(𝑋)

𝑝(𝐸)
[2] 

BNs present results as a probability distribution instead of single values and can integrate 

different kinds of information, such as direct measurements, expert opinion, or model outputs. 

In ERA, limited data and knowledge often hinder more realistic modelling efforts as they 

require constraining to simpler model structures with more assumptions. As BNs can 

incorporate various sources of data input, they can be applied in cases where data is scarce  

while still addressing uncertainties and variabilities (Hamilton & Pollino, 2012; Pollino & 

Hart, 2006). One of their most beneficial features when it comes to the risk assessment cycle 

is the possibility to easily update data and gained knowledge (Pollino & Hart, 2006). This is 

particularly useful for pesticide risk assessment and management tasks as these require 

uncertainty characterisation and handle uncertainty evaluation in a transparent way (Carriger 

& Newman, 2012). Furthermore, BNs allow for the integration of various assessment 

endpoints within the same framework. Another advantage of BNs being casual models is that 

they can assist in risk prioritization, aiding better recognition of vulnerability relations and 

hazard pathways (Sperotto et al., 2017).  
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The construction of a BN consists of three steps: Knowledge Acquisition, Design, and 

Application (Figure 4). In the Knowledge Acquisition step, information about concepts, the 

system and its processes, and other information and data is gathered. Building conceptual 

models and defining all its network nodes is the starting point of the Design step. Usually, 

those are based on mind maps compiled in the first step. Identification of important nodes and 

their linkage is crucial in this part. Node prior probabilities are derived from distributions or 

equations fitted to in-situ data measurements or model outputs. After parameterisation the 

network is compiled. The Application step obtains model outputs for the leaf nodes. Once 

compiled, model validation, such as the sensitivity analysis carried out in Paper I, is highly 

recommended. 

Figure 4 Generic methodology for the construction of a Bayesian network. Bold font are data sources used in 

the three papers of this synthesis (adapted from Pollino and Henderson (2010)) 
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IV Data and method 

4.1 Previous risk assessment approaches using Bayesian networks 

BNs have not been commonly used even though they have been applied to many fields and 

can contribute to assessing ecological and contaminants risks (Kaikkonen et al., 2021). They 

can implement site-specific information within the model to calculate the risk of contaminants 

and other stressors to the endpoints while quantifying uncertainties. As Landis et al. (2013) 

pointed out, traditional ERA needs to better account for global climate changes. In this 

context, they presented seven principles of conducting an ecological risk assessment. The 

sixth principle states: “Determine the major drivers of uncertainty, estimating and bounding 

stochastic uncertainty spatially and temporally, and continue the process as management” 

(Landis et al., 2013). Troldborg et al. (2022) published an example of this, carrying out a 

probabilistic approach to assess the risk of pesticide exposure with the help of a spatial BN. 

Thereby, the developed BN can better inform about uncertainty for management interventions 

on a field level (Troldborg et al., 2022). Another advantage of BN is that various perspectives 

and endpoints can be integrated and considered within the same framework. An example of a 

published BN with toxicants, future climate projections, and some measures of ecological 

risks for polar bears is Atwood et al. (2016). Their model interlinks different sub-models such 

as “Marine prey and conditions” – an abundance of prey with  “sea ice” - historical and 

predicted data from satellite observation (Atwood et al., 2016).  

In a recent study, Carriger and Barron (2020) demonstrated how BNs could be used to 

estimate a probabilistic risk quotient for a single species (Puma concolor coryi) using an 

exposure and effect distribution. By this, they succeeded in including more uncertainty and 

variability influencing the risk estimation by expanding the traditional risk quotient (Carriger 

& Barron, 2020). Focusing on the aquatic environment for contaminated site management, 

Carriger and Parker (2021) explored and built a conceptual site model using BNs. Another 

study displayed how climate change variables and other anthropogenic or natural stressors can 

be integrated into a BN, as shown in Gaasland-Tatro (2016). A relative risk model was used 

to evaluate ecological parameters on a regional landscape scale (Gaasland-Tatro, 2016). In a 

paper by Landis et al. (2017), a BN relative risk model was presented that used biological and 

abiotic endpoints to calculate the ecological risk to various regions in the study area. Landis et 

al. (2017) developed a model that can assess changes in the risk on these biological endpoints 

depending on management activities. Furthermore, the multiple stressors effect can be 

evaluated over the regional spatial scale (Landis et al., 2017). The most recent review of BN 

in environmental risk assessment was carried out by Kaikkonen et al. (2021). It found that 

BNs have been applied to various environmental risk contexts and scopes in recent years, but 

there is still potential for improvements in their use in ERA (Kaikkonen et al., 2021). 

4.2 Development of the Bayesian networks– from risk quotient to effect 

based approach 

In this project, BNs were developed and explored to integrate various factors relevant to 

extend the current deterministic ERA methodology.  

In the first step, a BN was developed closely following the traditional ERA procedure (Figure 

5). The model shown in Paper I, was similar to the terrestrial approach by Carriger and Barron 

(2020), which derived a distributed risk quotient in this study as a ratio of exposure and effect 

distributions. In Paper I, a distributed risk quotient was derived by fitting an exposure 

distribution to monitoring data for a Norwegian case study area. In this study, an effect 
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distribution was fitted to toxicity data (multiple aquatic species, NOEC values) collected from 

NIVA Risk Assessment database (https://www.niva.no/en/projectweb/radb). In regular ERA, 

a PNEC value is derived by applying an AF to the most sensitive NOEC/ EC50 value or HC5 

of an SSD. In the developed BN model, a precautionary factor was applied after deriving an 

exposure: effect ratio to account for uncertainty related to the number of data points, species, 

taxonomic groups, and limitations in measured concentrations on the exposure part. 

Furthermore, a seasonal node was introduced to account for some temporal differences in the 

risk characterization. This way, an innovative approach was presented by carrying out 

probabilistic risk characterization with a BN (Paper I). 

Paper II incorporated future scenarios for climate and land-use changes in probabilistic risk 

assessment for a Norwegian case study area. It used an exposure prediction model - World 

Integrated System for Pesticide Exposure (WISPE) (Bolli et al., 2013), to derive data for the

exposure module. The WISPE model was run for the various developed scenario 

combinations containing specific time periods, global climate models, and application 

scenarios. Furthermore, this process-based exposure model was run for five pesticides (three 

herbicides and two fungicides), and its output predicted the exposure concentrations for a 

specific time since application. Due to the prediction model output, the BN structure was 

changed, now containing scenario nodes (climate model, application scenario, and scenario 

combination) and time-specifying nodes that determine the exposure concentration 

distribution for a specific time after pesticide application. After that, effect data was collected 

for NOEC or EC50 values for each pesticide from Ecotoxicology databases. Finally, the effect 

distributions were fitted to either NOEC or EC50 data sets. In this case, the risk 

characterisation was carried out with a distributed risk quotient (leaf node) (Paper II). 

As was shown in Paper III, a BN model was developed that predicts the risk of various 

biological endpoints and the community level in a rice field. The study was carried out for a 

Spanish (Mediterranean) case study area. In Paper III, the exposure distribution was derived 

with a different process-based exposure model called autoRICEWQ (Fuentes-Edfuf & 

Martínez-Megías, 2022). It not only considered various applications, climate conditions, and 

crop types but also accounts for more spatial variability (ca. 550 rice field clusters in the 

Albufera national park) when predicting the exposure concentration in a rice field (Martínez-

Megías et al., [in prep]). The effects on different biological endpoints were predicted with a 

case-based effect model (PERPEST) based on a database of micro- and mesocosm studies 

based on the mode of action (Larras et al., 2022; Van den Brink et al., 2006; Van den Brink et 

al., 2002). Different pesticide types of effects on the ecosystem could be compared by 

including additional endpoint group nodes and an effect on community nodes in the BN 

model. The shown innovative BN approach integrated semi-field data for a probabilistic risk 

assessment while using full probabilistic scenario-based exposure assessment (Paper III). 
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Figure 5 Development of conceptual models of the Bayesian network approaches used in Paper I – III. 
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V Results 

5.1 Paper I – Using Bayesian networks for probabilistic risk 

assessment of pesticides 

The communication of uncertainty for all components of risk characterisation and use of 

distributed risk quotient as output is still rare but relevant to carry out more appropriate and 

informative ERA. In Paper I, a BN was developed that incorporates a probabilistic approach 

to pesticide risk characterisation. As was shown in Paper I, the BN can be applied for fully 

probabilistic risk characterisation for retrospective assessment. The developed BNs predicted 

risk quotient distributions for three regularly detected pesticides in the study area: 

azoxystrobin, metribuzin, and imidacloprid. Furthermore, it demonstrated intermediate and 

fully probabilistic approaches for risk characterisation depending on data availability, see 

Figure 6.  

Figure 6 Intermediate probabilistic approaches. Approach A displays how to derive a risk quotient distribution 

from a exposure concentration distribution and a single value PNEC. Approach B shows how a risk quotient 

distribution is derived from a single vale PEC and an effect concentration distribution (adapted from Paper I). 
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In addition, a seasonal risk calculation was shown as a seasonal variable (node) was 

introduced into the core network structure. This enabled the comparison of different 

seasons and their risk to the aquatic environment, see Figure 7.  

Figure 7 Example of a parameterized seasonal and fully probabilistic Bayesian network model for metribuzin. 

The risk quotient distribution was predicted for autumn season using a precautionary factor of 10 (adapted from 

Paper 1 Supplement material I) 

In this paper, the results are displayed as bar plots, an alternative to cumulative probabilities 

often derived in other probabilistic approaches. Albeit, the BNs developed in Paper I enabled 

the quantification of uncertainty coherently and transparently for all components in the 

network and different levels of risk. At the same time, enabling easy-to-understand 

communication associated with model outputs (Paper I). 

5.2 Paper II – Integrating exposure prediction model output into a 

Bayesian network 

In Paper II a prospective risk assessment approach was shown for a Norwegian case study 

area. A probabilistic causal model was developed that assessed the environmental risk of 

pesticides under several future scenarios. The BN built on the core model of Paper I, while 

incorporating future climate and application scenarios. Various types of information were 

integrated into the BNs that acted as a meta-models. The BNs predicted risk quotient

distributions using process-based exposure models (WISPE) inputs, toxicity tests, climate 

projections, and for five selected pesticides: clopyralid, fluroxypyr-meptyl, MCPA, 

prothioconazole, and trifloxystrobin. The model was able to show the general trend for risk 

change for this Norwegian region, as it predicted a slight increase toward higher risk levels 

for future periods (2000-2030, 2035-2065, 2070-2100), see Figure 8. 
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This goes along with the expected trends for this region in Norway, with increased 

precipitation and temperature. Increased precipitated is one of the main drivers of pesticide 

exposure to water bodies in Norway. 

Figure 8 Example of risk quotient distribution shift from 2000 to 2100, for Fluroxypyr-meptyl. The BN predicted 

the risk quotient distribution for Climate model 1, the baseline+50% application scenario and for a 

precautionary factor of 10 in this example (adapted from Paper II). 

Furthermore, application scenarios were predicted and able to be compared for the different 

pesticides. Generally, the risk quotient distribution shifted towards higher risk quotient levels 

the more pesticides were applied, see Figure 9. 

Figure 9 Example of risk quotient distribution shift due to increase in pesticide application, for Fluroxypyr-

meptyl. The BN predicted the risk quotient distribution for Climate model 1, time-period 2070-2100 and for a 

precautionary factor of 10 in this example (adapted from Paper II). 

Future scenarios are integrated into the exposure module. However, the process-based model 

was calibrated with historical data, so some uncertainty remains when it comes to changes in 

some of the environmental processes due to climate change. As toxicity tests are usually 

carried out under lab conditions, there is no direct link between the effect module of the BN. 

Quantified components' uncertainties were propagated and incorporated in the probabilistic 

risk characterization, which was again based on a distributed risk quotient. 

5.3 Paper III – Integrating exposure and effect prediction model 

outputs into a Bayesian network   

Paper III displayed a new BN approach to incorporate model outputs from a process-based 

exposure model (RICEWQ). The exposure model was run with future scenarios incorporated 

as exposure distribution in the BN (prospective assessment). Effect assessment was carried 

out by applying a case-based effect model (PERPEST) that predicted the effects on various 

biological endpoints. The BN model was able to estimate the effect on the various biological 
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endpoints, endpoint groups, and the aquatic community. The developed BN can be considered 

as a higher-tiered approach (tier 3 or tier 4) as it uses a model based on micro/mesocosm 

experiments. It predicted output for three pesticides: acetamiprid (insecticide), azoxystrobin 

(fungicide), and MCPA (herbicide). This study demonstrated the integration of a case-based 

effect model input in a BN. The BN model output can be used to compare different pesticide 

types and their effect on the community while visualising the uncertainty transparently for all 

model compartments see Figure 10. Based on currently available knowledge, the developed 

model incorporated various biological endpoints and enabled the quantification of uncertainty 

in the effect prediction on the community while indirectly accounting for some future 

scenarios through the exposure module. 

Figure 10 Example BN predictions of the effect on the aquatic community by the selected pesticides. The BN 

predicted the effect on any of the biological endpoints in the endpoint group and community for the climate 

conditions in 2050 with a baseline+50% application scenario (adapted from Paper III). 
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VI Discussion and future outlook 

6.1 Implications of Bayesian networks use in environmental risk 

assessment 

As aforementioned, traditional approaches in ERA usually favour single-point estimates (Moe 

et al., 2022). This deterministic approach hinders the realistic assessment of risk and lacks 

accounting for uncertainties appropriately, which can lead to overestimating or 

underestimating the predicted risk (Jager et al., 2001; Landis & Chapman, 2011; USEPA, 

2014). Another often-mentioned limitation of ERA is the lack of certainty for input and 

output parameters (EUFRAM, 2006). The three papers presented in this synthesis address this 

by applying a probabilistic approach to the risk characterisation of pesticides. Consequently, 

uncertainties are treated explicitly throughout all compartments in the BNs (Kaikkonen et al., 

2021), thereby they can overcome some of the limitations in traditional deterministic 

approaches (Carriger & Newman, 2012; EUFRAM, 2006; Solomon et al., 2000; Verdonck, 

2003). Pariès (2017) and Maertens et al. (2022) have called for a shift toward embracing 

uncertainty in a risk paradigm. BNs allow uncertainties to be acknowledged and 

communicated in a transparent manner (e.g., Figure 7, Figure 8, and Figure 9), unlike single-

estimate approaches that hide the underlying uncertainties (Moe et al., 2022). 

Jager et al. (2001) pointed out that better and more informed decision-making depends on 

understanding and interpreting probabilistic model outputs. However, the output from 

commonly used probabilistic approaches is usually associated with difficulties when 

communicating their results to decision-makers (Dreier et al., 2020; Giddings et al., 2000). 

BNs, unlike other probabilistic methods, display outputs as probability density distributions 

rather than cumulative probability distributions. These outputs are more straightforward to 

interpret than many of the conventional probabilistic approaches (Moe et al., 2021) and 

enable better risk communication (Kaikkonen et al., 2021; Laurila-Pant et al., 2019). In 

addition, BNs having a graphical user interface makes them more accessible to stakeholders 

(Moe et al., 2022; Moe et al., 2021). This is supported by Moe et al. (2022), stating that BNs 

generally lower scientists’ threshold starting to work with probabilistic methods.  

One of the most advantageous features of BNs is being able to support a continuous learning 

process. Generally, this is achieved by adding new variables to the existing networks 

(Kaikkonen et al., 2021). This is also shown throughout the three papers presented in this 

thesis. First, the core BN model for probabilistic risk characterisation developed in Paper I, 

was extended to integrate future scenarios in Paper II (see Figure 5). This was then further 

adapted to predict the effect on various biological endpoints and the aquatic community in 

Paper III. In today’s ERA, data limitation hinders more realistic risk estimation and could be

overcome by BNs’ ability to integrate knowledge from various sources (Kaikkonen et al., 

2021). In the three presented papers, probability and probability distribution were integrated 

into the BNs from different sources, such as monitoring or predictions from process-based 

exposure for exposure modules and toxicity data or predictions from case-based effect models 

for the effect-related modules. 

Furthermore, as shown in Paper II and Paper III, the developed BNs integrated future climate 

and land-use scenarios into a single model for pesticide exposure assessment. Today’s 

frameworks need to be adapted to better account for multiple stressors, and future scenarios 

were requested by various scientists such as Fairbrother et al. (2016) and Topping et al. 

(2020). In addition, improved integration of climate change has been of interest for some 
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years now (Landis et al., 2014; Stahl et al., 2013). The presented innovative approaches used 

inputs from exposure prediction models, enabling the integration of future scenarios directly 

into exposure assessment and indirectly in effect assessment. The resulting improved 

assumptions made in ERA can aid the prevention of future damage to the aquatic environment 

(Topping et al., 2020).  

6.2 Technical improvements for the developed Bayesian network 

Even though BNs and other probabilistic approaches incorporated uncertainty better, some 

unquantifiable uncertainties remain. These are related to extrapolation or choice of 

distribution as used in Paper I, Paper II and Paper III. Refinement of exposure and effect 

modelling could be achieved through better fitting distributions or Bayesian distributional 

regression models (Wolf & Tollefsen, 2021). Another factor that might have cause some loss 

of information is the choice of discretisation (Kaikkonen et al., 2021; Nojavan et al., 2017), 

the discretisation of continuous variables simplifies the probability distributions (Kaikkonen 

et al., 2021; Uusitalo, 2007). This had also been a limitation in the developed BNs of the 

presented papers but was necessary and justified for their application.   

For an adequate assessment of future scenarios and their effect on pesticide exposure and the 

ecosystem, it is recommended to use an ensemble of climate models, as mentioned by some 

experts, e.g., Steffens et al. (2014) and Moe et al. (2022). In addition, it is essential to account 

for the variability and uncertainty in future projections. The BN approach presented in Paper 

II has limited adjustability when running the exposure prediction model. The model used is 

somewhat manual and does not allow for a code line. Using a code line in Paper III allowed 

for more automatization in exposure modelling. This would empower running the process-

based model with an ensemble of climate models, thereby reducing uncertainty in the 

exposure assessment. As mentioned earlier, BNs can easily be updated, so once new 

information and data are available, the network predictions certainty would be improved 

effortlessly. This means that risk assessment would be more realistic and better informed.  

The application scenarios used in Paper II and Paper III, are based are fairly basic 

assumptions but could easily be updated if more realistic scenarios are available. For 

example, more informed and realistic risk and effect estimation could be carried out using 

application scenarios derived with regression-based analysis as described by Kattwinkel et al. 

(2011) and Chiu et al. (2017). Another option by Gagnon et al. (2016) presented another 

option, which used frameworks to assess climate change and pesticide transport impact 

presented. Again, through easily implementable updates of the BN, this new information 

could be integrated easily once the process-based model is run with these updated application 

scenarios. 

Furthermore, the developed BN approach in Paper II and Paper III needed a more direct link 

between future scenarios and the effect modules. This means there was no appropriate 

representation of the direct effect of future changes on the biological endpoint, merely an 

indirect one through a change in exposure concentration. The effect distribution used in Paper 

II is based on laboratory condition toxicity tests that do not account for temperature or other 

environmental changes. Neither did the micro- and mesocosm study database that the case-

based effect model uses for its prediction (Paper III). To properly assess multiple stressors 

and toxicity on the various species and the ecosystem, this link needs to be developed in the 

future. This could be achieved by integrating information and assumptions from research 

focused on multiple stressor scenarios, and some examples are Polazzo et al. (2022), focusing 

on multiple agricultural stressors’ effect on freshwater ecosystems, or Arenas-Sánchez et al. 
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(2019), investigating multiple stressors effect on zooplankton community. Improved 

assumptions would enable better and more sound effect estimation by the BN. This might 

require restructuring of BN to some extent in order to incorporate assumptions and prior 

probabilities appropriately.  

6.3 Further application of Bayesian network modelling for mixture risk 

assessment  

BNs could also be used to explore mixture toxicity risk assessment, though it was beyond the 

scope of this project. An early idea of how mixture risk assessment could be carried out using 

a BN model is displayed in Figure 11. The conceptual model is based on a study by Backhaus 

and Faust (2012) and assumes CA, whereby a toxic unit is calculated as the PEC divided by 

the effect concentrations to organisms (EC50). The sum of toxic units (STU) across pesticides 

can be calculated for each taxonomic group (e.g., algae, invertebrates, and fish). This can then 

be used to identify the taxonomic group with the highest STU. The conventional approach 

uses single values of exposure and effect to quantify the risk posed by chemical mixtures to 

the environment as a single risk quotient value (RQSTU). When trying to implement a 

probabilistic approach, the exposure and effect concentration can be expressed as a 

probability distribution that derives STU and RQSTU as probability distributions. The 

distribution and model development could be carried out similarly to what was presented in 

Paper I. The developed model can be a valuable tool to develop a fully probabilistic approach 

to mixture risk assessment while facilitating communication of uncertainties with 

stakeholders. Limited data availability could be overcome by using intermediate approaches, 

as displayed in Paper I. Though the usage of an intermediate approach might require some 

additional application of safety factors such as the mixture assessment factor to account for 

uncertainties in exposure and effect assessment.
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VII Conclusion 

Throughout this PhD project, the primary aim was to develop a probabilistic approach using a 

Bayesian network that could be applied to pesticide risk assessment. A core structure was 

developed that enabled an alternative to a single-value risk quotient with the functionality to 

display uncertainty more transparently, communicate more information and be compatible 

with traditional risk assessment frameworks (Paper I). An example integrating different levels 

of data availability was shown for three selected pesticides for a Norwegian case study area, 

also considering intermediate approaches for situations where data is scarce.  

After that, the core structure was extended to integrate future scenarios, thus, enabling risk 

characterisation using a risk quotient distribution for changes in climate conditions and 

agricultural practices. The network implementation of data and functionality was displayed 

for five selected pesticides and another Norwegian case study area. This developed BN 

enables risk prioritisation for specific times since application, time-periods in the future,

application practices, and comparison of the different pesticides (Paper II). Additionally, BNs 

were constructed that estimate the effect of three pesticides on the different biological 

endpoints, and the aquatic community for a southern European case study. An innovative BN 

that predicts the pesticides’ impact on various biological endpoints, endpoint groups and the 

community was developed. The network also enables the comparison of future scenarios 

directly on exposure assessment and indirectly on effect assessment (Paper III).   

All developed BNs could be parameterised for different pesticides and study areas, with few 

adjustments necessary. As shown in all three Papers, the realism and certainty of all network 

predictions can be improved in a simple matter whenever more data and better assumptions 

are available, e.g., improved agricultural scenarios and ensembles of climate scenarios.  

Nonetheless, the developed networks enable a probabilistic approach to pesticide risk 

assessment while communicating the uncertainty of all model compartments and for different 

risk levels.   
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Abstract
Conventional environmental risk assessment of chemicals is based on a calculated risk quotient, representing the ratio of

exposure to effects of the chemical, in combination with assessment factors to account for uncertainty. Probabilistic risk
assessment approaches can offer more transparency by using probability distributions for exposure and/or effects to account
for variability and uncertainty. In this study, a probabilistic approach using Bayesian network modeling is explored as an
alternative to traditional risk calculation. Bayesian networks can serve as meta‐models that link information from several
sources and offer a transparent way of incorporating the required characterization of uncertainty for environmental risk
assessment. To this end, a Bayesian network has been developed and parameterized for the pesticides azoxystrobin,
metribuzin, and imidacloprid. We illustrate the development from deterministic (traditional) risk calculation, via intermediate
versions, to fully probabilistic risk characterization using azoxystrobin as an example. We also demonstrate the seasonal risk
calculation for the three pesticides. Integr Environ Assess Manag 2022;18:1072–1087. © 2021 The Authors. Integrated
Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental
Toxicology & Chemistry (SETAC).

KEYWORDS: Bayesian network, Pesticide, Probabilistic risk assessment, Risk quotient, Uncertainty

INTRODUCTION
Pesticides play an important role in food production by

maintaining or enhancing crop yields and quality in arable
farming. However, they can also lead to harmful effects in
the environment and pose risks to human health. There is
now a widespread concern about regular emissions of such
substances designed to control specific target organisms
and their effects on ecosystems (Boye et al., 2019; Bradley
et al., 2017; Mohaupt et al., 2020; Szöcs et al., 2017;
Van den Brink et al., 2018).
In spite of strict regulations of pesticide use (e.g., Direc-

tive 2009/128/EC; Regulation (EC) No 1107/2009), there are
still knowledge gaps for the potential environmental impact
of these pesticides and their mixtures (Bradley et al., 2017;
Mohaupt et al., 2020; Szöcs et al., 2017). Current risk as-
sessment methods use conservative assumptions to avoid

underestimating the risk (F. A. M. Verdonck et al., 2003), and
decision makers rely on large safety margins for protective
decision making (Fairbrother et al., 2015).

In general, risk assessment of pesticides is carried out to
protect human health as well as the health and biodiversity
of ecosystems (Schäfer et al., 2019). The purpose is to assess
the probability that adverse effects of regulatory concern
occurs in ecosystems due to the exposure to one or several
chemicals. This can be done as a prospective assessment for
the registration of substances before products enter the
market, or as a retrospective assessment for potentially
harmful substances that are already in use (Forbes & Calow,
2002). The environmental risk assessment process usually
incorporates exposure and effect assessments as well as risk
characterization (Figure 1). Exposure assessment covers the
estimation of the predicted or measured environmental
concentration (PEC) of the compound in the environment
(van Leeuwen & Vermeire, 2007). Predicted environmental
concentration is usually calculated as the maximum envi-
ronmental exposure concentration (Finizio & Villa, 2002).
Effect assessment is typically based on the response of
species that are exposed to a chemical in toxicity tests, such
as data for toxicity endpoints (e.g., mortality, reproduction,
and growth) after short‐term exposure (acute) or long‐term
(chronic) exposure (van Leeuwen & Vermeire, 2007).
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Usually, a predicted no‐effect concentration (PNEC) is ob-
tained from the most sensitive no‐observed‐effect concen-
tration (NOEC). Alternatively, the PNEC can be calculated
from the hazardous concentration for 5% of the species
(HC5) based on the species sensitivity distribution (SSD)
(Bruijn et al., 2002). To account for uncertainty, the lowest
NOEC (alternatively the HC5) is divided by an assessment
factor (AF) to derive the PNEC, so it can be considered a
safe concentration for non‐target organisms (Schäfer et al.,
2019). Risk characterization includes a risk estimation by
comparing effect (hazard identification and characterization)
and exposure assessment; some of the metrics used are
margin of exposure, hazard, or risk quotient (More et al.,
2019). To ensure low risk, it is required that the PEC is lower
than the PNEC (Bruijn et al., 2002; Schäfer et al., 2019), so
when using a risk quotient (RQ), it is derived by the PEC/
PNEC ratio. Usually, in EU frameworks, if the risk quotient
exceeds 1, a risk of harmful effects to the environment is
indicated (Bruijn et al., 2002). Risk is usually considered an
estimation of the likelihood that an adverse effect occurs on
a biological target when being exposed to a chemical
(Fairbrother et al., 2015; Finizio & Villa, 2002; Moe, Carriger,
et al., 2021). Nevertheless, in the commonly used framework
for environmental risk assessment, the output of risk char-
acterization tends to be a single value (the risk quotient) from
which the conclusion is a “yes/no” statement (Fairbrother
et al., 2015). It has been argued that such single‐value esti-
mates cannot stand alone as a scientifically defensible char-
acterization of ecological risk (Campbell et al., 2000). The
analysis and quantification of uncertainty are a vital part of
risk assessment of the environmental impacts of pesticides,
which is not reflected in the single‐value risk estimate
(Fairbrother et al., 2015; USEPA, 2014). Based on this, a
concerted action was established to develop a European
framework for probabilistic risk assessment of the environ-
mental impacts of pesticides (EUFRAM). The consortium

named several shortcomings of conventional ERA (EUFRAM,
2006). For example, there is no indication of the level of
certainty associated with the risk assessment; no quantifica-
tion of the risk is carried out; the uncertainty calculation is not
transparent but hidden in assessment factors; and it is difficult
to follow all steps of the risk assessment. Various recom-
mendations were given for development toward probabilistic
risk assessment, mainly based on the use of cumulative
probability distributions (EUFRAM, 2006). Also, Jager et al.
(2001) recommend the use of probabilistic risk assessment for
the European Union (EU). In recent years, EFSA has published
a Guidance document on Uncertainty analysis where they
mention not only Bayesian inference but also Bayesian
graphical models as a way to use probability distribution to
analyze variability and uncertainty (EFSA et al., 2018) Never-
theless, non‐probabilistic methods are still more commonly
used (Fairbrother et al., 2015). During the “International
conference on uncertainty in risk analysis” held in 2018 by the
European Food Safety Authority (EFSA) and the German
Federal Institute for Risk Assessment (BfR), three conclusions
were drawn highlighting that training is important to improve
the understanding of uncertainty, that there is an ethical re-
sponsibility of scientists to communicate uncertainties, and
that active steps need to be taken by risk assessors to avoid
undetected sources of uncertainty (EFSA & BfR, 2019).
The aim of this study was to explore Bayesian network

modeling as a tool to combine probability distributions of
pesticide exposure and effects, to facilitate the calculation
of the risk quotient as a probability distribution instead of a
single number. We aimed to align the developed model to
the EU regulatory requirements and current risk assessment
procedures (Figure 1). Although a Bayesian network model
could also have incorporated more advanced components
such as effect modeling, we chose a simpler model structure
to facilitate the comparison of the Bayesian network ap-
proach with the more traditional existing approaches
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FIGURE 1 General ecological risk assessment process. AF, assessment factor; HC5, hazardous concentration for 5% of the species derived from SSD (species
sensitivity distribution); PEC, predicted or measured environmental concentration; PNEC, predicted no effect concentration; RQ, risk quotient
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(Figure 2). To this end, we present the development from a
deterministic toward a fully probabilistic Bayesian network
approach to risk characterization for a case study repre-
senting a small agricultural catchment in Norway. The model
application is demonstrated for three examples of pesti-
cides and for different seasons of the year.

APPROACHES TO PROBABILISTIC RISK
ASSESSMENT

Proposed methods for probabilistic risk assessment

Probabilistic risk assessment has been defined as using
“probabilities or probability distributions to quantify one or

Integr Environ Assess Manag 2022:1072–1087 © 2021 The Authorswileyonlinelibrary.com/journal/ieam

Traditional approach Intermediate approach using effect distribution 

Intermediate approach using exposure distribution Fully probabilistic approach  

(A) (C)

(B) (D)

FIGURE 2 Systematic overview of the traditional approach to derive a risk quotient (A), compared with two intermediate probabilistic options that contain
single values and a distribution (B and C), and a fully probabilistic option that derives a risk quotient distribution (D). Option B has a single exposure value and
an effect distribution, and Option C has an exposure distribution and a single effect value. AF, assessment factor; HC5, hazardous concentration for 5% of the
species derived from SSD (species sensitivity distribution); PF, precautionary factor
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more sources of variability and/or uncertainty in exposure
and/or effects and the resulting risk” (EUFRAM, 2006). This
allows the inclusion of estimates of uncertainty and sto-
chastic properties (Solomon et al., 2000). There are now
several probabilistic methods in use for risk characterization.
The species sensitivity distribution (SSD) (Posthuma et al.,
2001) is a probabilistic model for the variation in the sensi-
tivity of biological species to a single or a set of toxicants,
which is used in several frameworks (Belanger & Carr, 2020).
Guidance on modeling and data requirements can be found
in the “Technical Guidance for Deriving Environmental
Quality Standards” (TGD) (SCHEER, 2017). Many of the
probabilistic methods currently at hand also incorporate a
distribution for the exposure part. Methods such as quanti-
tative overlap and joint probability curves are relatively easy
to construct (Campbell et al., 2000; F. A. M. Verdonck, 2003)
and use more available data for exposure and effect com-
pared with traditional approaches (Campbell et al., 2000).
They also allow for an estimation of the likelihood of po-
tential ecosystem impact and their magnitude (Solomon
et al., 1996). Recently, an “Ecotoxicity Risk Calculator” was
presented by Dreier et al. (2020) that uses joint probability
curves. It is able to provide more information than a single‐
value risk quotient, as it depicts the relationship between
cumulative probability and magnitude of effect. The use of
both effect and exposure distributions enables a more
powerful approach for risk assessment and communication
(Dreier et al., 2020). However, most of these probabilistic
methods derive a distribution that can be a challenge
for decision makers to understand and interpret (F. A. M.
Verdonck et al., 2003).

From deterministic to probabilistic risk quotient

Another method more consistent with the probabilistic
definition of risk is the calculation of probabilistic risk quo-
tients. It can be useful for ranking of different scenarios as
well as prioritizing among alternative risk scenarios
(Campbell et al., 2000). A fully probabilistic risk quotient
calculation requires the quantification of a probability dis-
tribution for both exposure and effect. In cases where ex-
posure or effect data are too limited, an alternative
“intermediate” probabilistic approach could be applied
using a distribution for either the exposure or effect com-
ponent (Figure 1). This will allow for some variability to be
taken into account when deriving a distribution for the risk
quotient. For example, an intermediate approach could be
applied when an effect concentration distribution can be
quantified by a species sensitivity distribution, although few
exposure measurements are available. An overview of the
underlying concepts for the traditional deterministic ap-
proach, and the intermediate and fully probabilistic ap-
proaches is shown in Figure 2. The traditional deterministic
approach (Figure 2A) uses single‐value PEC and PNEC to
calculate a single‐value risk quotient. The second option
(Figure 2B) used an exposure distribution together with a
single‐value PNEC, derived the same way as in the tradi-
tional approach. However, unlike the traditional approach,

here, a risk quotient distribution is derived. The third option
(Figure 2C) uses the probability distribution of effects
(corresponding to an SSD). Instead of using the SSD to ex-
tract a single‐value HC5 as a basis for a single‐value PNEC in
combination with an assessment factor, in this case, a pre-
cautionary factor (PF) is applied to the calculated risk quo-
tient distribution. The precautionary factor plays a similar
role as an assessment factor by adjusting the predicted risk
to account for uncertainties, for example, associated with
extrapolation from laboratory toxicity tests to environmental
effects. However, we chose to use the slightly different term
“precautionary factor” to avoid misusing the more well‐
established term “assessment factor.” The principle of
avoiding the use of assessment factors as a prudential
measure in the calculation of the exposure/effect ratio, and
instead applying a precautionary factor more transparently
in the subsequent step, is inspired by the recommendations
of F. Verdonck et al. (2005). The fourth option (Figure 2D),
uses effect and exposure probability distributions to derive
the exposure/effect ratio distribution. Again, no PNEC is
derived, so after calculating the exposure/effect ratio dis-
tribution, the precautionary factor is applied to derive the
risk quotient distribution.

Probabilistic risk assessment using Bayesian networks

The early efforts of probabilistic risk assessment for pes-
ticides, which were usually visualized by cumulative dis-
tribution curves, were sometimes difficult to interpret for
both for advanced users and the general public (EUFRAM,
2006). As an alternative, Bayesian networks may provide a
way to overcome the limitations associated with visualization
of risk estimations while accounting for uncertainties when
using probabilistic approaches. They have been recognized
as a tool to analyze complex environmental problems and
support decision making while considering uncertainty
(Sperotto et al., 2017), and have recently been increasingly
used for environmental risk assessments (Moe, Carriger,
et al., 2021). A Bayesian network can characterize a system
by showing its interactions between variables in a network
(Chen & Pollino, 2012) through a directed acyclic graph
(Kanes et al., 2017). They are probabilistic graphical models
implementing Bayes' rule for updating probability dis-
tributions based on evidence. The nodes (variables) have
discrete states (e.g., intervals), quantified by discrete prob-
ability distributions. The causal links (arrows) represent
the conditional probability table (CPT), which can be
based on equations. The causal links (arrows) represent
conditional probability tables (CPT), which can be based on
equations of several methods, empirical frequency dis-
tributions, information from the literature, or expert opinion.
The degree of belief (probability) that a node will be in a
particular state given the state of the node are specified by
conditional probability table (Chen & Pollino, 2012) and by
using Bayes' rule probability distributions are updated
based on new evidence (Molina et al., 2010). In this project,
Bayesian network construction largely followed the
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guidelines provided by Marcot et al. (2006) and Pollino and
Henderson (2010).
Bayesian networks have an integral feature suitable for

risk estimation as they present results in the probability
distribution form instead of point estimates. They can ac-
commodate different kinds of data; their sources can in-
clude both direct measurements and output from models.
Also, if data are limited or non‐existent, it is possible to
include expert opinions instead (Pitchforth & Mengersen,
2013). The models can be updated with new information on
pesticide exposure and effects whenever it becomes avail-
able. Model updates are carried out by combining prior
probabilities and new data so that an update of the network
posterior probabilities can take place as a response to the
added observational information (Franco et al., 2016).
Bayesian networks are especially useful for pesticide risk
assessment and management tasks as these require char-
acterization of the uncertainties (Carriger and Newman
(2012)). Focusing on a terrestrial species (puma), Carriger
and Barron (2020) reported a process of mapping cause–
effect relations into a quantitative model. This is supported
by Catenacci and Giupponi (2013), who found that the
Bayesian network approach can examine different phe-
nomena due to its flexibility for interdisciplinary integration,
e.g., climatic, physical, ecological, and socio‐economic.
They also have the ability to perform predictive (forward),
diagnostic (backward), and mixed (forward and backward)
inferences (Carriger & Barron, 2020).

METHODS

Study area

The model was developed based on monitoring data
from a catchment within the Norwegian Agricultural Envi-
ronmental Monitoring Program (JOVA) located in South‐
East Norway (Heia, location: 59°21′29″N, 10°47′52″E). The
monitoring catchment has a total area of 1.7 km2, of which
62% is cropland. As the catchment is located in a coastal
climate, winters are mild and the growing season starts
relatively early as compared to Norwegian conditions in
general. The catchment has an annual rainfall of 829mm
and a mean annual temperature of 5.6 °C (in 2016). The crop
production in the catchment is mostly grain (up to 75%).
Potato and vegetable production made up about 40% until
2007 and had decreased to about 25% in 2015. The
catchment's use of plant protection products and exposure
data are recorded in the JOVA program (Bechmann et al.,
2017). Flow‐proportional composite sampling of stream
water at the catchment outlet was performed in the JOVA
program throughout the spraying season and the analyses
of concentrations of a wide range of current and previously
used pesticides were included. Based on these data, ex-
ceedances of environmental safety thresholds are identified
for different agricultural management practices for key ag-
ricultural production systems in various catchments in
Norway (Stenrød, 2015). The JOVA monitoring data for
pesticides have been collected over 25 years (1995 onward)

and thus also support the retrospective assessment
of ecological risk and temporal trends (Bechmann
et al., 2017).

Pesticides—exposure and effect data

The chemicals selected for analysis in this study are most
frequently occurring pesticides and the highest in concen-
tration in the study catchment (Table 1). Azoxystrobin and
metribuzin are approved chemicals for use in the EU and
Norway. Since 2013, the use and sale of imidacloprid are
prohibited in the EU (EC, 2013). Of the selected chemicals,
only the fungicide azoxystrobin has low solubility in water at
20 °C (6.7mg L−1), whereas metribuzin and imidacloprid
have high solubility in water. All pesticides form metabolites
primarily in soil (for more information, see the Supporting
Information, Chemical properties of selected pesticides).
The data used in this study were obtained from the NIVA
Risk Assessment database (NIVA RAdb, www.niva.no/radb),
which hosts exposure and effect data from a wide variety of
sources. Moreover, this database provides transparent and
harmonized cumulative risk predictions according to inter-
national recommendations for harmonized approaches for
human and ecological risk assessments (Tollefsen, 2021).
Exposure data for the period from 11.05.2011 to 06.12.2016
from the JOVA monitoring program and effect data
(NOECs) for the different compounds originating from the
ECOTOXicology Knowledgebase (ECOTOX) (https://cfpub.
epa.gov/ecotox/index.cfm) were extracted from the NIVA
RAdb database.

The total number of measured environmental concen-
trations was 55 for azoxystrobin and 59 for metribuzin and
imidacloprid. There is a large variation in the measured
concentration levels during the season and years for each
of the pesticides. The percentages of the detection fre-
quencies were 47.4%, 76.3, and 81.4 for azoxystrobin,
metribuzin, and imidacloprid, respectively. In general,
sampling of pesticides varied markedly between the years
and months. The highest concentrations were recorded in
summer and autumn, and lower concentrations were
recorded in spring and winter. Due to the sampling
method and frequency (i.e., an approx. 20‐day sampling
period of composite flow proportional sampling), the
measured exposure concentrations can reflect chronic
exposure to the ecosystem, but maximum and/or peak
exposure concentrations are unlikely to be reflected (see
the Supporting Information.

The exposure data for the three pesticides showed
that 22%–50% of the measured values were below the
respective limit of quantification (LOQ) (Supporting In-
formation Tables S4, S6, S7, and S8). In the case of non‐
detected values (below LOQ), new values were generated as
follows (see Supporting Information, Figure 4). First, the non‐
quantified records were temporarily assigned the value
LOQ/2. Use of the LOQ/2 value has been common practice
in assessing the potential risks of non‐detected residues
(Loos et al., 2018), but has been criticized for overestimating
the risks of chemicals with PNEC below LOQ (von der Ohe
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et al., 2011). Second, this intermediate data set was used to
derive a mean and standard deviation in ln scale. Third, the
resulting log‐normal distribution was used to simulate new
values in the range from 0 to LOD to replace the non‐
detected values. The discretized version of this distribution
was used as the prior probability distribution of the Exposure
node.
For the selected pesticides, data on toxic effects for sev-

eral freshwater species representing various taxonomic
groups were extracted from the NIVA RAdb and represent
data from the ECOTOX data repository. The data set con-
sisted of NOECs (no observed effect concentration) for ad-
verse effects such as growth, reproduction, and population.
For each chemical, multiple NOEC values from the same
species were used in our analysis that represent different
species, test durations, and time for effect observation (see
Table 2). In traditional effect assessments, only the most
sensitive value per species is often chosen to derive an SSD,
although, in some cases, an average is also used. In cases
where multiple NOEC values of the same species were
present, the mean NOEC was used. The fitted distribution
corresponds to a species sensitivity distribution (SDD), which
is often fitted as a log‐normal distribution (Belanger &
Carr, 2020).

Data processing

Data preparation was carried out using R version
4.0.2 (Team, 2020) using packages including tidyverse
(version 1.3.0) (Wickham et al., 2019), dplyr (version 1.0.2)
(Wickham et al., 2020), and readxl (version 1.3.1)
(Wickham & Bryan, 2019). To obtain probability dis-
tributions for the BN model from the exposure and ef-
fects data, log‐normal distribution models were fitted to
the data using the R package MASS (version 7.3‐51.6)
(Venables & Ripley, 2002).
In the case of exposure data below the LOQ, new values

in the range from 0 to LOQ were simulated using the
mean and standard deviation from the fitted log‐normal

Integr Environ Assess Manag 2022:1072–1087 © 2021 The AuthorsDOI: 10.1002/ieam.4533
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TABLE 2 Overview of the collected toxicity data of the selected
pesticides, also showing their adverse effect endpoint, and number
(n) of means used to fit the distribution and species with multiple

NOECs for the same substance

Substance Endpoints n

Metribuzin Growth 11

Population

Azoxystrobin Growth 13

Population

Imidacloprid Growth 11

Population

Reproduction

Abbreviation: NOEC, no observed effect concentration.
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distribution. To take into account the seasonal variation in
pesticide exposure, a separate probability distribution was
estimated for each season, defined as follows: Winter=
Dec–Feb; Spring=Mar–May; Summer= Jun–Aug; and
Autumn= Sep–Nov.

For the effect distribution, likewise, a log‐normal dis-
tribution was fitted to the NOEC values available for each
pesticide. However, while SSDs are traditionally used to
derive a single PNEC value (Figure 1), we used the whole
probability distribution of effects data in this study. For
comparison with the traditional risk quotient calculation
based on a PNEC, as described in the introduction, an HC5
was derived from a species sensitivity distribution using the
package ssdtools (Thorley & Schwarz, 2018) (see the
Supporting Information).

Parameterization of the Bayesian networks

The Bayesian networks were built in Netica (Norsys Soft-
ware Corp., www.norsys.com). For each pesticide, a BN was
built with an identical structure, for both exposure and ef-
fects nodes, the range was defined by the observed values
of the given pesticide, and the intervals were discretized
into 12 equidistant bins in a log10‐scale. The fitted log‐
normal distributions were used to parameterize the parent
nodes. The individual node description is shown in Table 3;
further detailed information is shown in the Supporting
Information—IV. Netica discretization and equation syntax).
All conditional probability tables of the BNs (Figure 3)

were generated from equations, by the function “Equation
to Table” in Netica (see the Supporting Information).
The probability distribution of the nodes “Exposure
Concentration (µg/L)” and “Effects Concentration (µg/L)”
was calculated from their respective parent nodes by
exp‐transformation. The node “Exposure/Effect Ratio” was
discretized into eight equidistant bins and calculated using
the equation [Exposure Concentration (µg/L)]/[Effects Con-
centration (µg/L)]. Thereafter, the risk quotient distribution

was derived by multiplying the “Exposure/Effect Ratio” with
a precautionary factor. The precautionary factor can be ap-
plied to account for uncertainties in the effect assessment,
similar to the use of an assessment factor in traditional risk
assessment (Figure 1). This factor can be transparent and
standardized in a simple manner by considering the in-
formation used during the effect assessment, for example,
number of data points, species, taxonomic groups, and
region‐specific species. In our model (Figure 1), the node
“precautionary factor” has alternative levels that can be se-
lected by the risk assessor, depending on the sources of
uncertainty to be accounted for in the risk assessment. We
describe diagnostic inference in more detail and how we
used it to derive an appropriate precautionary factor (see
Figure 3) in the results, as we used the parameterized
Bayesian network for this.

After the Bayesian network was constructed and para-
meterized, a sensitivity analysis was carried out in Netica.
The report showed that the risk quotient distribution is
dominated by the exposure side over the effect side, which
is most likely due to the wider range of concentrations.

In this way, a Bayesian network model is intended
as a tool for calculating the risk quotient as a probability
distribution, to account for, for example, temporal variability
in exposure, taxonomic variability in effects, and other types
of uncertainties.

RESULTS AND DISCUSSION

Diagnostic inference to derive an appropriate
precautionary factor used in the Bayesian network

This section describes the parameterized version of the
Bayesian network for each of the three pesticides, illustrated
with azoxystrobin as an example. For comparison, the risk
quotient was also calculated using the traditional single‐
values method (Figure 2A) as well as by the two inter-
mediate options (Figure 2B,C). For the single‐value ex-
posure versions (Options A and C), the minimum (0.01 µg/L),
mean (0.129 µg/L), and maximum (0.660 µg/L) of the meas-
ured concentrations were selected as alternative PEC
values. The highest exposure concentration is usually used
as the more conservative or protective choice. To be able to
compare traditional and probabilistic outputs better, we
have decided to use the mean PEC instead. For the single‐
value effect version (Options A and B), the PNEC values
were derived from an HC5 of 3.87 µg/L divided by an as-
sessment factor of 10, 5, 3, and 1 (Table 5). The Technical
Guidance Document recommends the use of an assessment
factor of 1–5 when deriving the PNEC from an SSD. We also
applied an additional and more conservative assessment
factor of 10, as the data set that we used does not fulfil
all the requirements of the TGD with at least 10 NOECs and
at least 8 taxonomic groups. The Technical Guidance
Document also states that the assessment factor should be
decided on a case‐by‐case basis “through consideration of
sensitive endpoints, sensitive species, mode of toxic action
and/or knowledge from structure‐activity considerations”

Integr Environ Assess Manag 2022:1072–1087 © 2021 The Authorswileyonlinelibrary.com/journal/ieam

TABLE 3 Node description for the example of Option D, the fully
probabilistic approaches (see Figure 4D), also describing the

discretization type, number of states, conditional probability table
input, and parent relation

Node/variable Type of discretization States

Exposure concentration
distribution

C 10

Effect concentration
distribution

C 10

Exposure–effect–ratio
distribution

C 8

Uncertainty factor D 7

Risk quotient distribution C 8

Abbreviations: C, discretized continuous; continuous variables were binned
into the states; D, discretized discrete; States, number of intervals of
each node.
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(Bruijn et al., 2002). Therefore, in this study, we present
several assessment factors but primarily focus on an
assessment factor of 5.
The probability distributions of exposure and/or effects

data in Options B, C, and D were based on the fitted
log‐normal distribution with mean and standard deviation.
The exposure distribution had a mean of −4.148 (ln µg/L),

with a standard deviation of 1.484 (ln µg/L). The effect dis-
tribution had a mean of 2.322 (ln µg/L), with a standard
deviation of 0.56 (ln µg/L).
The seasonal version of the Bayesian network was

parameterized with exposure distributions based on sea-
sonal mean values for the three pesticides. Winter season
for all chemicals and spring season for azoxystrobin had

Integr Environ Assess Manag 2022:1072–1087 © 2021 The AuthorsDOI: 10.1002/ieam.4533

FIGURE 3 Example of diagnostic inference for a mean exposure and effect interval. The precautionary factor was explored for a Risk quotient interval of “0.03
to 0.1” of azoxystrobin. The initiated nodes are visualized by the line above and below the interval probability bar (also the red outline)
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too few detected concentrations to derive a distribution
and were therefore excluded from further analysis. In
general, the mean concentrations in summer were higher
than in spring and intermediate in autumn (Table 4). The
exception was Imidacloprid, which had higher concen-
trations in autumn.

Before the parameterized Bayesian network model can
be used to calculate the risk quotient, an appropriate
precautionary factor should be set by the risk assessor. In
our example, to follow a regulatory accepted method as
closely as possible, we selected a precautionary factor that
would yield a similar risk quotient as the SSD‐based

Integr Environ Assess Manag 2022:1072–1087 © 2021 The Authorswileyonlinelibrary.com/journal/ieam

Traditional approach Intermediate approach using effect distribution 

Intermediate approach using exposure
distribution 

Fully probabilistic approach 

RQ
= mean PEC / PNEC
= 0.129 (µg/L) / 0.774 (µg/L) 
= 0.166 

(A) (C)

(B) (D)

FIGURE 4 Example of Bayesian network representation of the four alternative options shown in Figure 2, parameters for the fungicide azoxystrobin. A single‐
value risk quotient is calculated from a mean predicted environmental concentration (PEC) and predicted no effect concentration (PNEC) derived with an
assessment factor of 5 (A); the risk quotient distribution is calculated for the an exposure distribution and a PNEC derived with an assessment factor of 5 (B), the
risk quotient distribution is calculated for a mean predicted environmental concentration and an effect distribution, with a precautionary factor of 30 (C), and the
risk quotient distribution is calculated for exposure and effect distributions, with a precautionary factor of 30 (D)
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approach (Figure 2A). The derived ranges of risk quotients
are shown in Table 5. The values of the precautionary
factor corresponding to selected assessment factor values
of 1, 5, and 10 were derived by diagnostic inference by
instantiating the nodes for exposure, effect concentration,

and risk quotient nodes (Figure 3). For the exposure and
effect concentrations, the intervals were set according to
the mean of the observed values. The intervals for the risk
quotient were set according to Table 5. An example is
shown in Figure 3, where the risk quotient was 0.0999 (see
Table 5), showing that the risk quotient node interval is set
to “0.03 to 0.1.” In this example, the resulting precau-
tionary factor is 30. The appropriate precautionary factors
found corresponding to the assessment factors are shown
in Table 6. To explore the role of the assessment factor and
the precautionary factor and their effect on the risk quo-
tient, we chose precautionary factors of 3, 10, and 30 for
Option C and 10, 30, and a 100 for Option D for the first
example with azoxystrobin (Figure 5). For all the seasonal
versions of the Bayesian network, only one precautionary
factor (100) was chosen to focus more on the exploration of
the seasonal effects.

Risk quotient distributions predicted by the Bayesian
network

The Bayesian networks for the different options for the risk
quotient calculation (Figure 2) were carried out for azox-
ystrobin and are shown in Figure 4. The posterior probability
distribution of the risk quotient node output was shown for
the different approaches (Figure 2) and for alternative values
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FIGURE 5 Risk quotient values calculated with three alternative assessment factor values (AF= 1, 5, or 10) and corresponding precautionary factor values (PF=
3, 10, 30, or 100) from the traditional approach using the single mean predicted environmental concentration (PEC) and predicted no effect concentration
(PNEC) values (A), from the intermediate approaches with exposure distribution and PNEC (B) or mean PEC and effect distribution (C), and a fully probabilistic
approach with exposure and effect distribution (D). There are eight risk quotient intervals ranging from 0 to 3000. The color scheme ranges from dark red
(high‐risk quotient interval) to dark green (low‐risk quotient interval). AF, assessment factor; PF, precautionary factor; RQ, risk quotient

TABLE 4 Estimated mean and standard deviation of the exposure
by season and effect distributions, which are used as input for the

nodes in the Bayesian network

Exposure

Compound
Spring
ln (µg/L)

Summer
ln (µg/L)

Autumn
ln (µg/L)

Effect
ln (µg/L)

Azoxystrobin

Mean −3.939 −4.018 2.322

SD 1.529 1.541 0.568

Metribuzin

Mean −4.357 −2.794 −3.292 4.946

SD 0.966 1.416 1.363 2.432

Imidacloprid

Mean −3.902 −3.404 −1.783 6.484

SD 1.481 1.116 1.743 4.004
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of the assessment factor or precautionary factor, re-
spectively. The colors range from green (no risk) to red
(posing a risk) (Figure 5). The risk quotient distribution for
the approaches ranged from 0 to 3000. Higher assessment
factor and precautionary factor increase the probability of
the risk quotient exceeding 1.
An example using a Bayesian network approach for the

different approaches for Options A–D (Figure 2) is shown in
Figure 4. The assessment factor used in a risk assessment is
usually decided by the risk assessor depending on the
available toxicity test data. In this study, we have explored
the resulting risk quotient when using three alternative
plausible assessment factor values for Options (A) and (B),
and three corresponding precautionary factor values (see
Table 6) for Options (C) and (D). In this example, the risk

quotient was calculated using the following evidence: a
mean PEC and a PNEC with an applied assessment factor
of 5 (Options A and B) and a precautionary factor of 10
(Options C and D). Using the deterministic method, the risk
quotient distribution is estimated to be within the interval
“0.01 to 0.3” with 100% probability (Figure 4A). On the
other hand, Options B–D show a wider distributed risk
quotient and probabilities distributed over several risk
levels. Options B and D have the highest probabilities in
the intervals of “0.003 to 0.01,” “0.01 to 0.03,” and “0.03 to
0.1.” Option C has the highest probability in the interval of
“0.1 to 0.3.” A bar charts displaying vizualising the results
for the different Options A/D and selected assessment and
precautionary factor of the Bayesian network risk quotient
node are shown in Figure 5. When using an assessment
factor of 1, 5, or 10, the deterministic option (Figure 5A)
results in 100% probability of the risk quotient being in the
intervals of “0.01 to 0.03,” “0.1 to 0.3,” or 0.3 to 1, re-
spectively. Option B uses an exposure distribution and the
same assessment factors as in Option A to calculate the risk
quotient, which is distributed over the intervals “0 to
0.0003” and “1 to 3.” For an assessment factor of 1, the
probability for the risk quotient to be in an interval higher
than 0.1 is about 3.2%, whereas for an assessment factor of
5, it is 26.4%. Option C in this example uses the precau-
tionary factor calculated in Table 6a. For the events of a
mean PEC with a precautionary factor of 30, the interval of
“0.3 to 1” has the highest probability. If a precautionary
factor of 10 is chosen, however, the interval of “0.1 to 0.3”
has the highest probability (Figure 5C). The probability for
the risk quotient to be above 0.1 with a precautionary
factor of 3 is less than 10%; with one of 10, it is about 65%
and with one of 30, it is about 100%. The fully probabilistic
approach—Option D uses distributions for both exposure
and effect, when using precautionary factors of 10, 30, and
100, Table 6b. The probability for the risk quotient to be
above 0.3 is about 4% with a precautionary factor of 10,
12% with PF = 30, and about 40 with PF = 100 (Figure 5D).

As can be seen in Figure 5, the probabilistic approaches
yield a distributed risk quotient. The general tendency is
that the calculated risk quotient is similar in all of the ap-
proaches; nevertheless, the Bayesian network yields a
more nuanced risk estimation and offers some uncertainty
related to the different risk quotient intervals. In other
words, instead of having a single risk quotient (e.g., RQ >
1), uncertainties for various risk levels (e.g., RQ > 0.1, RQ >
0.001, RQ < 1) can be derived. The intermediate ap-
proaches using a distribution for only exposure or effect
also results in a more informative risk quotient compared
to the traditional approach, but include more variability
and/or uncertainty, respectively, in effect or exposure.
Therefore, options b and c could be used whenever data
are lacking for the fully probabilistic approach. The as-
sessment and precautionary factor applied have a major
impact on the risk quotient exceeding 1 and with that
being an unacceptable effect for non‐target organisms and
aquatic organisms (Bruijn et al., 2002). In this example, fully

Integr Environ Assess Manag 2022:1072–1087 © 2021 The Authorswileyonlinelibrary.com/journal/ieam

TABLE 5 Alternative risk quotient calculated for the combinations
of minimum, average, and maximum predicted environmental
concentration (PEC), respectively, and alternative predicted no

effect concentration (PNEC)

PEC minimum PEC average PEC maximum
AF PNEC 0.01 0.129 0.66

10 0.387 0.0258 0.3333 1.7041

5 0.775 0.0129 0.1665 0.8521

3 1.291 0.0077 0.0999 0.5112

1 3.873 0.0026 0.0333 0.1704

Note: The alternative PNECs are derived from the HC5 (see Figure 2A) with
an assessment factor (AF) of 1, 3, 5, and 10.

TABLE 6 Precautionary factor resulting from diagnostic inference
(see Figure 3)

(a) PEC min PEC avg PEC max

AF 0.01 0.129 0.66

10 30 30 30

5 30 10 10

3 10 3 10

1 1 3 3

(b) PEC min PEC avg PEC max

AF 0.01 0.129 0.66

10 10 300 1000

5 10 100 300

3 3 30 300

1 1 30 100

Note: For each alternative risk quotient in Table 5, the related RQ interval was
selected as evidence to derive the corresponding precautionary factor for
Option C—the intermediate approach using effect distribution (a) and Option
D—the fully probabilistic approach (b). The bold values are the ones used in
the examples of the result section. AF, assessment factor; PEC, predicted
environmental concentration.
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probabilistic approaches only show the risk quotient ex-
ceeding 1 for high assessment and precautionary factors
(Options B–D) (Figure 5).

Seasonal variation in risk quotients

A more temporally refined version of the Bayesian
network was developed and used for calculating seasonal
risk quotients for all three pesticides (see the Supporting
Information). The precautionary factor was set to 100 as
this was found to be the most appropriate in comparison
with the deterministic method (Table 6). According to this
model (Figure 6), the probability of the risk quotient for

azoxystrobin exceeding 0.1 during summer is about 72%,
while the probability of the risk quotient exceeding 1 is
about 15%.
In comparison with the other two pesticides, azoxystrobin

clearly showed a higher probability of exceeding the
risk quotient levels of 0.1 to 0.3 in summer and autumn
(Figure 6). Metribuzin and imidacloprid have a wider dis-
tribution for the risk quotient, mainly ranging from 0.0001 to
0.001. Spring and autumn distributions of probability in the
case of imidacloprid are more similar, unlike metribuzin,
where summer and autumn distributions appear to be more
similar, with higher probabilities of the risk quotient
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FIGURE 6 Risk quotient values calculated for three seasons spring, summer, and autumn for a precautionary factor of 100 for (A) azoxystrobin, (B) metribuzin,
and (C) imidacloprid
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exceeding 1 than the spring season. This analysis illustrates
how the Bayesian network approach can be used to identify
periods with a high risk of environmental effects of in-
dividual pesticides. This outcome can in turn be used to
assess the combined risk of multiple pesticides in specific
periods.

Evaluation of the Bayesian networks approach for risk
characterization

This study has demonstrated that Bayesian networks can
account for quantified uncertainties and variabilities in a
more coherent and transparent way than traditional risk
characterization. When developing this Bayesian network
approach, we aimed to follow important recommendations
for probabilistic risk estimation given by EUFRAM (2006).
We tried to accomplish these by combining the new
methods with the conventional “deterministic” assessment
to enable the end user (e.g., regulators) to become familiar
with the new methodology. Furthermore, the developed
models follow well‐known concepts described in the TGD
whenever it was possible and logical. The TGD, for example,
describes what an appropriate assessment factor is de-
pending on the available data and mentions requirements
for the used data for a minimum amount of taxonomic and
species used for SSD modeling (More et al., 2019). In ad-
dition, the Bayesian network methodology provides a
simple display of the results in bar plots (histograms) instead
of cumulative probability. This was also pointed out by
EUFRAM (2006), which mentioned stakeholders being more
likely to take up results if they and the concepts used are as
simple as possible and aligned with existing frameworks
(EUFRAM, 2006).
Bayesian networks are increasingly being used in envi-

ronmental risk assessment (Moe, Wolf, et al., 2021). They
can offer a transparent way of evaluating the required
characterization of uncertainty for pesticide risk assessment
as well as for ecological risk assessment in general (Carriger
& Newman, 2012). Moreover, their application is not only
carried out for risk estimation (e.g., risk quotient) but also
used to predict ecological effect from stressors more di-
rectly (e.g., decline in species abundance [Mitchell et al.,
2021]) and to develop quantitative Adverse Outcome
Pathways (Moe, Wolf, et al., 2021). Dreier et al. (2020)
pointed out that the use of effect and exposure distribution
allows for a competent risk assessment and communication
approach. In their “ecotoxicity risk calculator,” they used
joint probability curves or a risk curve‐based approach that
are able to show the connection between cumulative
probability and magnitude of effect (Dreier et al., 2020).
Although this might be an advantage of using joint proba-
bility curves, probabilistic risk quotients can provide a better
sense of the risk estimates and are useful for ranking of
different scenarios as well as prioritizing among alternative
risk scenarios (Campbell et al., 2000). Another probabilistic
alternative to the risk quotient was introduced by van
Straalen (2001) and has also been applied by Aldenberg
et al. (2001); it defines the ecological risk (δ) as the

probability that the environmental concentration exceeds
the no effect concentrations, while making use of the whole
probability distributions. This method does not make use of
an assessment factor; therefore, the δ would correspond to
the probability of our calculated Exposure/Effect ratio >1 (e.
g., Figure 3), or a risk quotient with the UF set to 1. How-
ever, this method does not allow for the calculation of dif-
ferent levels of risk.

Especially in ecological systems, limited data and knowl-
edge can hinder modeling efforts, as they constrain it to
simpler model structures that involve more assumptions. In
these cases, Bayesian network models can still be applied
by making better use of different sources of information,
including expert judgment (Hamilton & Pollino, 2012). Also,
Bayesian networks can be developed as casual models,
which can help understand pathways of hazard and vulner-
ability relations better and thereby be used to assist risk
prioritization (Sperotto et al., 2017).

Carriger and Barron (2020) recently showed how the
Bayesian network estimated a probabilistic risk quotient for
a single species by calculating the probability of an ex-
posure distribution exceeding an effect distribution. Their
Bayesian network estimated the risk by expanding the
standard risk equation to include more uncertainties and
variables that influence the risk (Carriger & Barron, 2020).
The networks that we have created used similar risk quotient
calculations, though instead of focusing on one terrestrial
species, we have included toxicity data for multiple aquatic
species using a species sensitivity distribution. Also, Carriger
and Barron (2020) stated that “the capabilities for per-
forming diagnostic, mixed, and predictive inference make
Bayesian networks especially useful for examining the causal
factor that could lead to higher or lower risk outcomes.” The
influence of different causal factors on the predicted risk in
our case study will be further explored later by including
different scenarios of climate and pesticide application.

The networks that we developed use discretization of
continuous variables and, due to this, lose some of the initial
precision and information. This is commonly considered a
shortcoming of Bayesian network models (Marcot, 2017).
Nevertheless, a possible improvement can be to use dy-
namic discretization to enable higher resolution and lower
uncertainty associated with the predictions (Carriger &
Barron, 2020).

Furthermore, F. A. M. Verdonck (2003) pointed out that
there are some unquantifiable uncertainties such as the
choice of distribution, model, and extrapolation un-
certainties that remain difficult to quantify, some of which
may be overcome by using distribution models other than
the ones used in this study. An alternative to the exposure
modeling that we have carried out in this study was pre-
sented by Wolf and Tollefsen (2021), showing how Bayesian
distributional regression models could be used to better
include spatiotemporal conditional variances in exposure
assessment and still allow for a distributed PEC (Wolf &
Tollefsen, 2021). Further refinement of the Bayesian Net-
work model presented here can make use of such statistical
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modeling for better estimation of the pesticide exposure
distributions.
There are many possibilities for further development

of the models presented here, for example, to better ac-
count for spatial and temporal variations in exposure
and inter‐ versus intra‐species variation in sensitivity in
effect assessment. Nevertheless, we have demonstrated
that this approach can offer a transparent way of
evaluating the required characterization of uncertainty
for pesticide risk assessment (Benford et al., 2018) as well
as for ecological risk assessment in general (Carriger &
Newman, 2012).

CONCLUSION AND OUTLOOK
This study demonstrates that Bayesian network modeling

is a promising tool for probabilistic calculation of a risk
quotient to carry out risk assessment of pesticides. A
probabilistic risk quotient is a more informative alternative
to the traditional single‐value risk quotient, which is often
interpreted as a binary outcome. The Bayesian network
approach provides more opportunities for interpretation,
such as the probability of the risk quotient that exceeds not
only the conventional threshold of 1 but also other specified
threshold values. The model presented here can easily be
mapped to the main steps of traditional risk characterization
frameworks. The Bayesian network approach can still apply
a precautionary factor to account for additional uncertainties
that are not captured by the exposure and effects dis-
tributions, corresponding to the assessment factor used in
traditional risk assessment. Thus, Bayesian networks can
offer a transparent way of evaluating the characterization of
uncertainty required for pesticide risk assessment as well as
for ecological risk assessment in general.
Our planned further development of this Bayesian net-

work includes extending the model for cumulative risk as-
sessment of pesticide mixtures in the aquatic ecosystem.
Furthermore, we intend to incorporate climate and agricul-
tural scenarios to predict the environmental risk of pesti-
cides under alternative future conditions.
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II. Derivation of exposure distribution

Figure S.  1 The location of the Heia catchment (red line) in Norway (left) and a detailed 

picture of the catchment area with the measuring station (red dot) 

The Norwegian Agricultural Environmental Monitoring Program (JOVA) aims to record 

concentrations of different pesticides and identify exceedance above environmental safety 

thresholds for different agricultural management practices for key agricultural production 

systems in Norway. Its data spans for more than two decades and continuously record water-

flow and samples for analysis of nutrients and pesticides (Bechmann et al., 2017). The JOVA 

data is especial useful as it is collected over a long period of time. Raw exposure data can be 

found in the attached excel file (Raw_data.zip – JOVA_Data.xlsx). 

The JOVA monitoring sampling intervals varied from 10 to 35 days between analysis of the 

composite sample. The sampling is carried out with flow-event triggered composite 

sampling. There is are 20.7 days averages with a standard deviation of about 5.2 between the 

sampling dates. Also, some additional samples to the composite sample were taken on some 

occasions (days appear twice and are indicated with a time difference of 0) for detailed 

information of the sampling dates (see Supporting files Raw_data.zip – JOVA_Data.xlsx). 

In general, it can be assumed that non-frequent sampling combined with storage before 

analysis means that peak concentrations will not be captured. This inappropriate capture of 

exposure of pesticides to the ecosystems is due to peak concentrations occurring 

stochastically. They can occur following major rainfall events or after their application 

(Bundschuh et al., 2014).  Another factor, that’s leads to the underestimation of negative 

effects of peak exposure that dilution occurs when collection takes place over an extend 

periods of times (Bundschuh et al., 2014). Another factor influencing and possibly 

minimizing the detection of contaminants is based on their aquatic half-life (Morrison et al 

2016). In Morrison et al. 2016 it was also stated that regardless of sampling methodology 

better estimates of the actual peak 96-h time-weighted average were obtained when sampling 

frequencies were high.  



Table S.  2 Overview of the collected exposure data for the Heia catchment, showing the 

detected concentrations for the selected pesticides, their detection frequency, total amount of 

data points, the limit of quantification (LOQ), and mean of the detected concentrations. 

Substance 

 Number of 

detected 

concentratio

n (n) 

Detecti

on 

frequen

cy (%) 

Total 

LOQ 

(µg/L

) 

Mean 

detected 

concentratio

ns (µg/L) 

Standard 

deviation 

detected 

concentrations 

Azoxystrobi

n 
26 47.7 55 0.01 0.129 

0.178 

Metribuzin 45 76.3 59 0.01 0.175 0.515 

Imidaclopri

d 
48 81.4 59 0.01 0.342 

0.492 

Table S.  3 Overview of derived single value predicted environmental concentrations (PEC) 

for the detected exposure concentrations of azoxystrobin (see Figure 2a). 

Measured 

Concentration 
PEC (µg/L) 

Minimum 0.010 

Mean 0.129 

Maximum 0.660 

Table S.  4 Azoxystrobin, metribuzin and Imidacloprid exposure data with number of detected 

concentrations, detection frequency, mean and standard deviation of detected concentration, 

and maximum and minimum value collected. 

Pesticide Season 

Number 

of 

detected 

concentr

ation (n) 

Detectio

n 

frequenc

y (%) 

Mean 

(µg/L) 

sd 
Maximu

m 

(µg/L) 

Minimu

m 

(µg/L) 

Azoxystr

obin 

Spring 8 12.5 0.043 - 0.04 - 

Summer 28 53.6 0.131 0.187 0.66 0.010 

Autumn 18 55.6 0.134 0.181 0.43 0.012 

Winter 1 0.0 - - >0.01 - 

Metribuz

in 

Spring 8 50.0 0.035 0.013 0.05 0.022 

Summer 32 84.4 0.023 0.656 3.50 0.022 

Autumn 18 77.8 0.108 0.137 0.55 0.015 

Winter 1 0.0 - - >0.01 - 

Imidaclo

prid 

Spring 8 50.0 0.103 0.075 0.20 0.032 

Summer 32 87.5 0.529 0.571 1.90 0.023 

Autumn 18 83.4 0.079 0.129 0.54 0.016 

Winter 1 100 0.018 - 0.02 - 

To explore and select a suitable probability distribution for the exposure concentrations, we 

have carried out some exploratory Kaplan Meier failure estimation for the selected pesticides 

as described by Gillespie et al. (2010) and Shoari and Dubé (2018). For all three the LOQ 

was set to 0.01 as a censoring data, with two columns containing 0 and LOQ for the non-

detected values using JMP statistical software (v. 16.0.0). It tested the three available 



estimations for exponential, Weibull and lognormal distribution. In all cases the lognormal 

fitted best as judged from the QQ plots (not shown). 

Simulated LOQ 

The following figure shows an example for the generation of the value below limit of 

quantification (see Figure S. 2). 

Figure S.  2 Generation of values below limit of quantification (LOQ) before simulation (left) 

and after simulation (right) for the example of azoxystrobin. (distribution = red curve, LOQ 

value = blue line) 

III. Derivation of effect distribution

Raw effect data can be found in the attached excel file (Raw_data.zip . -

EXTRACT_ECOTOX_V13_Chronic_Growth_Population_Reproduction.xlsx). It contains 

information about the species group, common name, endpoint, test type, target type (effect), 

measured value and unit collected for this pesticide. 

Table S.  5 Species sensitivity distribution for azoxystrobin based on means for multiple of the 

same species values. The dotted line indicates the derived 5% hazard concentration (HC5) 

used to derive the PNEC concentration in this study. The R package ‘ssdtools’ was used to 

derive/ calculate the HC5 and model this distribution. 

Substance Mean (µg/L) sd 

Azoxystrobin 12.39 9.13 

Metribuzin 3804.44 8779.10 

Imidacloprid 16671.03 53202.28 



Figure S.  3 Species sensitivity distribution for azoxystrobin based on means for multiple of 

the same species values. The dotted line indicates the derived 5% hazard concentration 

(HC5) used to derive the PNEC concentration in this study. The R package ‘ssdtools’ was 

used to derive/ calculate the HC5 and model this distribution. 

Table S.  6 Overview of the derived predicted no effect concentration (PNEC) for 

azoxystrobin with a used Assessment factor (AF) of 1, 3, 5 and 10. 

Determined by 

assessment factor 
PNEC (µg/L) 

1 3.87 

3 1.29 

5 0.77 

10 0.39 

The effect data set received and used for this study are compiled from NIVA RAdb database 

and represent data from the ECOTOXicology Knowledgebase (ECOTOX) database 

(https://cfpub.epa.gov/ecotox), a comprehensive, publicly available Knowledgebase 

providing single chemical environmental toxicity data on aquatic life, terrestrial plants and 

wildlife. The database contains a number of data and metadata, including information about 

the tested chemicals, bioassay species, endpoints, effect type, bioassay-specific information 

and effect concentrations (NOEC, LOEC, ECx etc.). The database assembly have undergone 

a certain level of quality assurance, but some data redundancy may be expected due to 

presence of data representing different observation times from the same test and potential 

duplication of data entries due to erroneous taxonomic identifiers. No additional effort was 

undertaken to remove such redundancy as effect data was merely used for demonstration of 

the Bayesian modelling approach.  



IV. Netica discretization and equations syntax

In the following, the node discretization is described in more detail. 

For the Precautionary factor, we chose integers of 1,3, 10, 30, 100, 300, and 1000 as 

alternatives.  

For the Exposure/Effect ratio and risk quotient distribution, the intervals were discretized into 

8 approximately equidistant bins in log10 scale (see Table S. 7). 

Table S.  7  Discretizaion of the Exposure/Effect ratio and Risk Quotient nodes. 

Node title States 

Exposure: effect - ratio 

distribution  

0 to 3e-4 

3e-4to 0.001 

0.001 to 0.003 

0.003 to 0.01 

0.01 to 0.03 

0.03 to 0.1 

0.1 to 1 

1 to 3 

Risk Quotient distribution 

0 to 0.003 

0.003 to 0.01 

0.01 to 0.03 

0.03 to 0.1 

0.1 to 0.3 

0.3 to 1 

1 to 3 

3 to 3000 

For the exposure and effect concentration nodes, the discretization was carried out with the 

multi-purpose box described at Norsys (1995c). The following shortcuts were used: 

1. [𝑏, 𝑒] / 𝑛
2. [𝑏, 𝑒] /𝐿 𝑛

With the interval beginning with “b” and ending with “e”, the number of intervals is decided 

by “n”, “L” divides the list logarithmically. The first shortcut was used to discretize the nodes 

“Exposure concentration Log” and “Effect concentration Log”, whereas the second shortcut 

was used for the nodes “Exposure concentration distribution (µg/L)” and “Effect 

concentration distribution (µg/L)”. These concentration nodes have equidistant intervals 

given (see Table S. 8) 

Table S.  8 Discretization of the exposure and effect concentration nodes. 

Node title 
Discretization syntax 

Azoxystrobin Metribuzin Imidacloprid 

Effect 

Concentration 

distribution Log 

[0, 3.8]/ 12 [2, 10]/ 12 [0, 12]/ 12 



Effect 

concentration 

Distribution 
[1, 44.7]/L 12 

[7.38, 22026.5]/L 

12 
[1, 1.62755e5]/L 12 

Exposure 

Concentration 

distribution Log 

[-6, 1]/ 12 [-8, 2]/ 12 [-6, 1]/ 12 

Exposure/Effect 

ratio distribution 
[0.0025, 2.71828] 

/L 12 

[3.35463e-4, 

7.38906] 

/L 12 

[0.00247875, 

2.71828] 

/L 12 

For these exposure and effect concentration nodes, the following distribution was used to 

quantify the conditional probability table: 

NormalDist (x, μ, σ) 

With “x” indicating the node, “μ” being the mean of the normal distribution, and “σ” being 

the standard deviation of the distribution  (Norsys, 1995d). In our case we used ln-

transformed values.  

For the season Bayesian another equation was used to implement conditions (for the different 

seasons). 

𝑝(𝑋|𝐵) = 
(𝐵 ==  𝑆𝑝𝑟𝑖𝑛𝑔)?  𝑁𝑜𝑟𝑚𝑎𝑙𝐷𝑖𝑠𝑡 (x, μ, σ): 
(𝐵 ==  𝑆𝑢𝑚𝑚𝑒𝑟)?  𝑁𝑜𝑟𝑚𝑎𝑙𝐷𝑖𝑠𝑡 (x, μ, σ): 
(𝐵 ==  𝐴𝑢𝑡𝑢𝑚𝑛) ?  𝑁𝑜𝑟𝑚𝑎𝑙𝐷𝑖𝑠𝑡 (x, μ, σ) ∶  0 

The parent of “X” (Exp_Log) in this network is “B” (Sea = Season). The formula describes 

the way to condition states of a discrete node and each condition has a distribution assigned 

(Norsys, 1995a)) Other common mathematical operators used in the model were exp (x) for 

exponential (e ^ x) (Norsys, 1995b). An example can be found in Table S. 10 – Source or 

CPT for the Exposure concentration distribution Log node. 

V. Conditional probability tables and posterior probabilities for the example of

azoxystrobin

a) Bayesian network for the traditional approach

Figure S.  4 Node overview for the traditional Bayesian network option a. (PEC = Predicted 

environmental concentration, PNEC = Predicted no effect concentration) 

Data input: 

- Exposure concentration max value from exposure data set



- Predicted no effect concentration derived by applying an assessment factor to the an

HC5 of a NOEC based Species sensitivity distribution

Table S.  9 Node description title, name, number of states per node and source of conditional 

probability table (CPT) of the traditional Bayesian network option a. (PEC = predicted 

environmental concentration, PNEC = predicted no effect concentration) 

Node title 
Netica 

node name 

Number 

of 

States 

Description of states Source of CPT 

PEC (µg/L) Exp_Norm 3 (ref to Table S. 3) (root node) 

PNEC (µg/L) Eff_Norm 4 (ref to Table S. 6) (root node) 

Risk quotient RQ 8 (ref to Figure 4) 

RQ (Exp_Norm, 

Eff_Norm) = 

Exp_Norm/ 

Eff_Norm 

b) Bayesian network for the intermediate approach using exposure distribution

Figure S.  5 Node overview for the intermediate Bayesian network option b using an exposure 

distribution. (PNEC = predicted no effect concentration, SSD = species sensitivity 

distribution) 

Data input: 

- Exposure distribution derived from exposure data set

- Predicted no effect concentration derived by applying an assessment factor to the an

HC5 of a NOEC based Species sensitivity distribution



Table S.  10 Node description title and name, type of node, number of states per node and 

used source of conditional probability table (CPT) generating the conditional probability 

table of the intermediate Bayesian network option b using exposure distribution for 

azoxystrobin. 

Node title 
Netica 

node name 

Number 

of 

States 

Source of CPT 

Exposure 

concentration 

distribution Log 

Exp_Log 

10 
P (Exp_Log|) = NormalDist (Exp_Log, -

4.148, 1.484) 

Exposure 

concentration 

distribution (µg/L) 

Exp_Norm 

10 Exp_Norm (Exp_Log) =  exp(Exp_Log) 

PNEC (µg/L) PNEC 1 root node (ref to Table S. 6) 

Risk quotient 

distribution 

RQ 
7 

RQ (Exp_Norm, PNEC) = 

(Exp_Norm/PNEC) 

Table S.  11 Posterior risk quotient probability distribution of the Bayesian network option b 

for azoxystrobin. The table contains the calculated probabilities for each interval of the risk 

quotient node depending on the selected assessment factor (AF). 

Interval/ 

states 

Posterior probability given alternative evidence 

Node title AF1 AF3 AF5 AF10 

Risk 

quotient 

probability 

distribution 

0 to 0.003 0.410 0.101 0.000 0.000 

0.003 to 0.01 0.325 0.141 0.242 0.101 

0.01 to 0.03 0.115 0.341 0.341 0.309 

0.03 to 0.1 0.117 0.343 0.268 0.325 

0.1 to 0.3 0.028 0.042 0.075 0.115 

0.3 to 1 0.004 0.031 0.070 0.137 

1 to 3 0.000 0.001 0.003 0.008 

3 to 3000 0.000 0.000 0.001 0.004 

c) Bayesian network the intermediate approach using effect distribution

Figure S.  6 Node overview for the intermediate Bayesian network option c using an effect 

distribution. (PEC = Predicted environmental concentration) 



Data input: 

- Effect distribution from collected NOEC values

- Exposure concentration max, min and mean value from exposure data set

Table S.  12 Node description title and name, number of states per node and source of 

conditional probability table (CPT) generating the conditional probability table of the 

intermediate Bayesian network option c using effect distribution for azoxystrobin. (PEC = 

Predicted environmental concentration) 

Node title 
Netica node 

name 

Number 

of 

States 

Source of CPT 

PEC (µg/L) PEC 2 Root node (ref to Table S. 3) 

Effect Concentration 

distribution Log 
Eff_Log 10 

P(Eff_Log| ) =  NormalDist(Eff_Log, 

2.3224782, 0.5680065) 

Effect concentration 

distribution (µg/L) 
Eff_Norm 10 Eff_Norm (Eff_Log) = exp(Eff_Log) 

Exposure/ effect - 

ratio distribution 

(µg/L) 

Exp_Eff_Ra 8 
Exp_Eff_Ra (Exp_Norm, Eff_Norm) = 

(Exp_Norm/Eff_Norm) 

Precautionary factor 

(PF) 
PF 8 - 

Risk quotient 

distribution 
RQ 8 

RQ (PF, Exp_Eff_Ra) = 

(PF*Exp_Eff_Ra) 



Table S.  13 Posterior risk quotient distribution of the Bayesian network option c for 

azoxystrobin. The table contains the calculated probabilities for each interval of the 

Exposure – effect ratio and, and risk quotient node depending on the selected Precautionary 

(PF), for the event of a mean (a) and maximum (b) predicted environmental concentration 

(PEC). 

a) Mean PEC

States 

Posterior probability given alternative evidence 

Exposure/ 

effect - ratio 

distribution 

Risk Quotient 

PF 10 PF 30 PF 100 PF 300 

0 to 3e-4 0.000 - - - - 

3e-4to 0.001 0.000 0.000 0.000 0.000 0.000 

0.001 to 0.003 0.000 0.000 0.000 0.000 0.000 

0.003 to 0.01 0.352 0.000 0.000 0.000 0.000 

0.01 to 0.03 0.551 0.352 0.000 0.000 0.000 

0.03 to 0.1 0.097 0.551 0.352 0.000 0.000 

0.1 to 1 0.000 0.097 0.551 0.352 0.000 

1 to 3 0.000 0.000 0.097 0.551 0.352 

3 to 3000 - 0.000 0.000 0.097 0.648 

b) Maximum PEC

States 

Posterior probability given alternative evidence 

Exposure/ 

effect - ratio 

distribution 

Risk Quotient 

PF 10 PF 30 PF 100 PF 300 

0 to 3e-4 0.000 - - - - 

3e-4to 0.001 0.000 0.000 0.000 0.000 0.000 

0.001 to 0.003 0.000 0.000 0.000 0.000 0.000 

0.003 to 0.01 0.000 0.000 0.000 0.000 0.000 

0.01 to 0.03 0.064 0.000 0.000 0.000 0.000 

0.03 to 0.1 0.706 0.064 0.000 0.000 0.000 

0.1 to 1 0.230 0.706 0.064 0.000 0.000 

1 to 3 0.000 0.000 0.706 0.064 0.000 

3 to 3000 - 0.230 0.230 0.936 1.000 



d) Bayesian network for the fully probabilistic approach

Figure S.  7 Node overview for the fully probabilistic Bayesian network option d. 

Data input: 

- Effect distribution from collected NOEC values

- Exposure distribution derived from exposure data set

Table S.  14 Node description title and name, number of states per node and used Netica 

equation generating the conditional probability table of the fully probabilistic Bayesian 

network option d for azoxystrobin. 

Node title 
Netica node 

name 

Number 

of 

States 

Netica equation 

Exposure 

concentration 

distribution log 

Exp_Log 10 
P(Exp_Log) = NormalDist(Exp_Log, -

4.148, 1.484) 

Effect concentration 

distribution log 
Eff_Log 10 

P(Eff_Log| ) =  NormalDist(Eff_Log, 

2.3224782, 0.5680065) 

Exposure 

concentration 

distribution (µg/L) 

Exp_Norm 10 Exp_Norm (Exp_Log) =  exp(Exp_Log) 

Effect concentration 

distribution (µg/L) 
Eff_Norm 10 Eff_Norm (Eff_Log) = exp(Eff_Log) 

Exposure/ effect - 

ratio distribution 
Exp_Eff_Ra 8 

Exp_Eff_Ra (Exp_Norm, Eff_Norm) = 

(Exp_Norm/Eff_Norm) 

Precautionary factor PF 8 - 

Risk quotient 

distribution 
RQ 8 RQ (PF, Exp_Eff_Ra) = (PF*Exp_Eff_Ra) 



Table S.  15 Posterior risk quotient distribution of the Bayesian network option d for 

azoxystrobin. The table contains the calculated probabilities for each interval of the risk 

quotient node depending on the selected Precautionary factor (PF). 

Risk Quotient 

distribution 
Posterior probability given alternative evidence 

Interval/ states PF 10 PF 30 PF 100 PF 300 

0 to 0.003 0.067 0.000 0.000 0.000 

0.003 to 0.01 0.294 0.067 0.000 0.000 

0.01 to 0.03 0.242 0.294 0.067 0.000 

0.03 to 0.1 0.281 0.242 0.294 0.067 

0.1 to 0.3 0.080 0.281 0.242 0.294 

0.3 to 1 0.029 0.080 0.281 0.242 

1 to 3 0.000 0.029 0.080 0.281 

3 to 3000 0.006 0.006 0.036 0.116 

VI. Conditional probability tables and posterior probabilities for the seasonal

Bayesian network approach for azoxystrobin, metribuzin, and imidacloprid

a) Azoxystrobin

Table S.  16 Node description title and name, number of states per node and used Netica 

equation generating the conditional probability table of the seasonal fully probabilistic 

Bayesian network approach for azoxystrobin. 

Node title 
Netica node 

name 

Number 

of 

States 

Netica equation 

Season Sea 2 - 

Exposure 

concentration 

distribution Log 

Exp_Log 10 

P(Exp_Log| Sea) =Sea ==  

Summer? NormalDist(Exp_Log, -3.939194, 

1.528558): 

Sea == Autumn? NormalDist(Exp_Log, -

4.017832, 1.540513):0 

Effect 

concentration 

distribution Log 

Eff_Log 10 
P(Eff_Log| ) =  NormalDist(Eff_Log, 

2.3224782, 0.5680065) 

Exposure 

concentration 

distribution 

Exp_Norm 10 Exp_Norm (Exp_Log) =  exp(Exp_Log) 

Effect 

concentration 

distribution 

Eff_Norm 10 Eff_Norm (Eff_Log) = exp(Eff_Log) 

Exposure/ effect - 

ratio distribution 
Exp_Eff_Ra 8 

Exp_Eff_Ra (Exp_Norm, Eff_Norm) = 

(Exp_Norm/Eff_Norm) 

Precautionary 

factor  
PF 8 - 

Risk quotient 

distribution 
RQ 8 RQ (PF, Exp_Eff_Ra) = (PF*Exp_Eff_Ra) 



Table S.  17 Posterior risk quotient distribution of the seasonal fully probabilistic Bayesian 

network approach for azoxystrobin. The table contains the calculated probabilities for each 

interval of the Exposure – effect ratio, and risk quotient node depending on the selected 

Precautionary factor (PF) of 10, 30, 100, 300 and 3000, for summer (a) and autumn (b) 

season. 

a) Summer

States 

Posterior probability given alternative evidence 

Exposure/ 

effect - ratio 

distribution 

Risk Quotient 

PF 10 PF 30 PF 100 PF 300 
PF 

1000 

0 to 3e-4 0.039 - - - - - 

3e-4to 0.001 0.237 0.039 0.000 0.000 0.000 0.000 

0.001 to 

0.003 
0.319 0.237 0.039 0.000 0.000 0.000 

0.003 to 0.01 0.255 0.319 0.237 0.039 0.000 0.000 

0.01 to 0.03 0.093 0.255 0.319 0.237 0.039 0.039 

0.03 to 0.1 0.051 0.093 0.255 0.319 0.237 0.000 

0.1 to 1 0.007 0.051 0.093 0.255 0.319 0.237 

1 to 3 0.000 0.000 0.051 0.093 0.255 0.319 

3 to 3000 - 0.007 0.007 0.058 0.150 0.405 

b) Autumn

States 

Posterior probability given alternative evidence 

Exposure/ effect 

- ratio

distribution 

Risk Quotient 

PF 10 PF 30 PF 100 PF 300 
PF 

1000 

0 to 3e-4 0.045 - - - - - 

3e-4to 0.001 0.246 0.045 0.000 0.000 0.000 0.000 

0.001 to 

0.003 
0.298 0.246 0.045 0.000 0.000 0.000 

0.003 to 0.01 0.244 0.298 0.246 0.045 0.000 0.000 

0.01 to 0.03 0.100 0.244 0.298 0.246 0.045 0.045 

0.03 to 0.1 0.060 0.100 0.244 0.298 0.246 0.000 

0.1 to 1 0.008 0.060 0.100 0.244 0.298 0.246 

1 to 3 0.000 0.000 0.060 0.100 0.244 0.298 

3 to 3000 - 0.045 0.008 0.068 0.167 0.411 



b) Metribuzin

Table S.  18 Node description title and name, number of states per node and used Netica 

equation generating the conditional probability table of the seasonal fully probabilistic 

Bayesian network approach for metribuzin. 

Node title 
Netica node 

name 

Number 

of 

States 

Netica equation 

Season Sea 3 - 

Exposure 

concentration 

distribution Log 

Exp_Log 10 

P(Exp_Log| Sea) = 

Sea == Spring? NormalDist(Exp_Log, -

4.3568058, 0.9664787): 

Sea == Summer? NormalDist(Exp_Log, -

2.793568, 1.415767): 

Sea == Autumn? NormalDist(Exp_Log, -

3.292422, 1.363139): 

0 

Effect 

concentration 

distribution Log 

Eff_Log 10 
p(Eff_Log| ) =  NormalDist(Eff_Log, 

4.946324, 2.431668) 

Exposure 

concentration 

distribution 

(ug/L) 

Exp_Norm 10 Exp_Norm (Exp_Log) =  exp(Exp_Log) 

Effect 

concentration 

Distribution 

(ug/L) 

Eff_Norm 10 Eff_Norm (Eff_Log) = exp(Eff_Log) 

Exposure/ effect 

- ratio

distribution

Exp_Eff_Ra 8 
Exp_Eff_Ra (Exp_Norm, Eff_Norm) = 

(Exp_Norm/Eff_Norm) 

Precautionary 

factor  
PF 8 - 

Risk quotient 

distribution 
RQ 8 RQ (PF, Exp_Eff_Ra) = (PF*Exp_Eff_Ra) 



Table S.  19 Posterior risk quotient distribution of the seasonal fully probabilistic Bayesian 

network approach for metribuzin. The table contains the calculated probabilities for each 

interval of the Exposure – effect ratio, and risk quotient node depending on the selected 

Precautionary factor (PF) of 10, 30, 100, 300 and 3000, for spring (a), summer (b) and 

autumn (c) season 

a) Spring

States 

Posterior probability given alternative evidence 

Exposure/ 

effect - ratio 

distribution 

Risk Quotient 

PF 10 PF 30 PF 100 PF 300 
PF 

1000 

0 to 3e-4 0.764 - - - - - 

3e-4to 0.001 0.167 0.764 0.000 0.000 0.764 0.000 

0.001 to 0.003 0.052 0.167 0.764 0.000 0.000 0.000 

0.003 to 0.01 0.016 0.052 0.167 0.764 0.000 0.000 

0.01 to 0.03 0.001 0.016 0.052 0.167 0.000 0.764 

0.03 to 0.1 0.000 0.001 0.016 0.052 0.167 0.000 

0.1 to 1 0.000 0.000 0.001 0.016 0.052 0.167 

1 to 3 0.000 0.000 0.000 0.001 0.016 0.052 

3 to 3000 - 0.000 0.000 0.000 0.001 0.017 

b) Summer

States 

Posterior probability given alternative evidence 

Exposure/ 

effect - ratio 

distribution 

Risk Quotient 

PF 10 PF 30 PF 100 PF 300 
PF 

1000 

0 to 3e-4 0.476 - - - - - 

3e-4to 0.001 0.238 0.476 0.000 0.000 0.476 0.000 

0.001 to 0.003 0.166 0.238 0.476 0.000 0.000 0.000 

0.003 to 0.01 0.077 0.166 0.238 0.476 0.000 0.000 

0.01 to 0.03 0.029 0.077 0.166 0.238 0.000 0.476 

0.03 to 0.1 0.010 0.029 0.077 0.166 0.238 0.000 

0.1 to 1 0.003 0.010 0.029 0.077 0.166 0.238 

1 to 3 0.000 0.000 0.010 0.029 0.077 0.166 

3 to 3000 - 0.003 0.003 0.014 0.042 0.119 

c) Autumn



States 

Posterior probability given alternative evidence 

Exposure/ effect 

- ratio

distribution 

Risk Quotient 

PF 10 PF 30 PF 100 PF 300 
PF 

1000 

0 to 3e-4 0.545 - - - - - 

3e-4to 0.001 0.223 0.545 0.000 0.000 0.545 0.000 

0.001 to 0.003 0.141 0.223 0.545 0.000 0.000 0.000 

0.003 to 0.01 0.062 0.141 0.223 0.545 0.000 0.000 

0.01 to 0.03 0.021 0.062 0.141 0.223 0.000 0.545 

0.03 to 0.1 0.006 0.021 0.062 0.141 0.223 0.000 

0.1 to 1 0.002 0.006 0.021 0.062 0.141 0.223 

1 to 3 0.000 0.000 0.006 0.021 0.062 0.141 

3 to 3000 - 0.002 0.002 0.008 0.029 0.091 



a) Imidacloprid

Table S.  20 Node description title and name, number of states per node and used Netica 

equation generating the conditional probability table of the seasonal fully probabilistic 

Bayesian network approach for imidacloprid. 

Node title 
Netica node 

name 

Number 

of 

States 

Netica equation 

Season Sea 3 - 

Exposure 

concentration 

distribution Log 

Exp_Log 10 

P(Exp_Log| Sea) = 

Sea == Spring? NormalDist(Exp_Log, -

3.901538, 1.481266): 

Sea == Summer? NormalDist(Exp_Log, -

1.783072, 1.742699): 

Sea == Autumn? NormalDist(Exp_Log, -

3.403673, 1.115896): 

0 

Effect 

concentration 

distribution Log 

Eff_Log 10 
P(Eff_Log| ) =  NormalDist(Eff_Log, 

6.483570, 4.003579) 

Exposure 

concentration 

distribution 

(µg/L) 

Exp_Norm 10 Exp_Norm (Exp_Log) =  exp(Exp_Log) 

Effect 

concentration 

Distribution 

(µg/L) 

Eff_Norm 10 Eff_Norm (Eff_Log) = exp(Eff_Log) 

Exposure/ 

Effect ratio 

distribution 

Exp_Eff_Ra 8 
Exp_Eff_Ra (Exp_Norm, Eff_Norm) = 

(Exp_Norm/Eff_Norm) 

Precautionary 

factor  
PF 8 1, 3, 10, 30, 100, 300, 1000 

Risk quotient 

distribution 
RQ 8 RQ (PF, Exp_Eff_Ra) = (PF*Exp_Eff_Ra) 



Table S.  21 Posterior risk quotient distribution of the seasonal fully probabilistic Bayesian 

network approach for imidacloprid. The table contains the calculated probabilities for each 

interval of the Exposure/Effect ratio, and risk quotient node depending on the selected 

Precautionary factor (PF) of 10, 30, 100, 300 and 3000, for spring (a), summer (b) and 

autumn (c) season. 

a) Spring

States 

Posterior probability given alternative evidence 

Exposure/ Effect 

ratio distribution 

Risk Quotient 

PF 10 PF 30 PF 100 PF 300 
PF 

1000 

0 to 3e-4 0.704 - - - - - 

3e-4to 0.001 0.109 0.704 0.000 0.000 0.000 0.000 

0.001 to 0.003 0.072 0.109 0.704 0.704 0.000 0.000 

0.003 to 0.01 0.065 0.072 0.109 0.000 0.000 0.000 

0.01 to 0.03 0.030 0.065 0.072 0.109 0.704 0.000 

0.03 to 0.1 0.017 0.030 0.065 0.072 0.109 0.704 

0.1 to 1 0.004 0.017 0.030 0.065 0.072 0.109 

1 to 3 0.000 0.000 0.017 0.030 0.065 0.072 

3 to 3000 - 0.004 0.004 0.021 0.051 0.116 

b) Summer

States 

Posterior probability given alternative evidence 

Exposure/ Effect 

ratio distribution 

Risk Quotient 

PF 10 PF 30 PF 100 PF 300 
PF 

1000 

0 to 3e-4 0.517 - - - - - 

3e-4to 0.001 0.154 0.517 0.000 0.000 0.000 0.000 

0.001 to 0.003 0.091 0.154 0.517 0.517 0.000 0.000 

0.003 to 0.01 0.097 0.091 0.154 0.000 0.000 0.000 

0.01 to 0.03 0.052 0.097 0.091 0.154 0.517 0.000 

0.03 to 0.1 0.058 0.052 0.097 0.091 0.154 0.517 

0.1 to 1 0.032 0.058 0.052 0.097 0.091 0.154 

1 to 3 0.000 0.000 0.058 0.052 0.097 0.091 

3 to 3000 - 0.032 0.032 0.090 0.141 0.238 



c) Autumn

States 

Posterior probability given alternative evidence 

Exposure/ Effect 

ratio distribution 

Risk Quotient 

PF 10 PF 30 PF 100 PF 300 
PF 

1000 

0 to 3e-4 0.683 - - - - - 

3e-4to 0.001 0.114 0.683 0.000 0.000 0.000 0.000 

0.001 to 0.003 0.076 0.114 0.683 0.683 0.000 0.000 

0.003 to 0.01 0.072 0.076 0.114 0.000 0.000 0.000 

0.01 to 0.03 0.036 0.072 0.076 0.114 0.683 0.000 

0.03 to 0.1 0.018 0.036 0.072 0.076 0.114 0.683 

0.1 to 1 0.002 0.018 0.036 0.072 0.076 0.114 

1 to 3 0.000 0.000 0.018 0.036 0.072 0.076 

3 to 3000 - 0.002 0.002 0.019 0.055 0.127 

b) Example of seasonal Bayesian network

Figure S.  8 Example of parameterized seasonal fully probabilistic Bayesian network model 

for metribuzin, with a selected Precautionary factor of 100 and for the summer season. 

Exposure Concentration Log Effect Concentration Log

Season

Spring
Summer
Autumn

   0
 100
   0

Exposure Concentration (µg/L)

3.35463e-4 to 7.71891e-4
7.71891e-4 to 0.0017761
0.0017761 to 0.00408677
0.00408677 to 0.00940356
0.00940356 to 0.0216374
0.0216374 to 0.0497871
0.0497871 to 0.114559
0.114559 to 0.263597
0.263597 to 0.606531
0.606531 to 1.39561
1.39561 to 3.21127
3.21127 to 7.38906

.095
0.26
1.55
8.30
16.8
19.5
23.8
16.2
10.1
2.65
0.51
0.18

0.152 ± 0.34

Exposure/ Effect Ratio

0 to 3e-4
3e-4 to 0.001
0.001 to 0.003
0.003 to 0.01
0.01 to 0.03
0.03 to 0.1
0.1 to 1
1 to 3

47.6
23.8
16.6
7.66
2.87
1.03
0.32
   0

0.00406 ± 0.035

Precautionary Factor

1
3
10
30
100
300
1000

   0
   0
   0
   0

 100
   0
   0

100

Effect Concentration (µg/L)

7.38906 to 14.3919
14.3919 to 28.0316
28.0316 to 54.5982
54.5982 to 106.343
106.343 to 207.127
207.127 to 403.429
403.429 to 785.772
785.772 to 1530.48
1530.48 to 2980.96
2980.96 to 5806.11
5806.11 to 11308.8
11308.8 to 22026.5

7.07
9.13
10.9
12.2
12.6
12.0
10.7
8.81
6.74
4.79
3.16
1.93

1190 ± 2800

Risk Quotient

0 to 0.003
0.003 to 0.01
0.01 to 0.03
0.03 to 0.1
0.1 to 0.3
0.3 to 1
1 to 3
3 to 3000

   0
   0

47.6
23.8
16.6
7.66
2.87
1.35

20.5 ± 200
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Probabilistic risk assessment of
pesticides under future
agricultural and climate
scenarios using a bayesian
network
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Knut Erik Tollefsen1,3, Marianne Stenrød2 and S. Jannicke Moe1
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Norway, 2Norwegian Institute of Bioeconomy Research, Division for Biotechnology and Plant Health,
Ås, Norway, 3Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and
Natural Resource Management, Ås, Norway

The use of Bayesian networks (BN) for environmental risk assessment has

increased in recent years as they offer a more transparent way to

characterize risk and evaluate uncertainty than the traditional risk

assessment paradigms. In this study, a novel probabilistic approach applying

a BN for risk calculation was further developed and explored by linking the

calculation a risk quotient to alternative future scenarios. This extended version

of the BN model uses predictions from a process-based pesticide exposure

model (World Integrated System for Pesticide Exposure - WISPE) in the

exposure characterization and toxicity test data in the effect

characterization. The probability distributions for exposure and effect are

combined into a risk characterization (i.e. the probability distribution of a risk

quotient), a common measure of the exceedance of an environmentally safe

exposure threshold. The BN model was used to account for variabilities of the

predicted pesticide exposure in agricultural streams, and inter-species

variability in sensitivity to the pesticide among freshwater species. In

Northern Europe, future climate scenarios typically predict increased

temperature and precipitation, which can be expected to cause an increase

in weed infestations, plant disease and insect pests. Such climate-related

changes in pest pressure in turn can give rise to altered agricultural

practices, such as increased pesticide application rates, as an adaptation to

climate change. The WISPE model was used to link a set of scenarios consisting

of two climate models, three pesticide application scenarios and three periods

(year ranges), for a case study in South-East Norway. The model was set up for

the case study by specifying environmental factors such as soil properties and

field slope together with chemical properties of pesticides to predict the

pesticide exposure in streams adjacent to the agricultural fields. The model

was parameterized and evaluated for five selected pesticides: the three

herbicides clopyralid, fluroxypyr-meptyl, and 2-(4-chloro-2-methylphenoxy)

acetic acid (MCPA), and the two fungicides prothiocanzole and trifloxystrobin.

This approach enabled the calculation and visualization of probability

distribution of the risk quotients for the future time horizons 2050 and
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2085. The risk posed by the pesticides were in general low for this case study,

with highest probability of the risk quotient exceeding 1 for the two herbicides

fluroxypyr-meptyl andMCPA. The future climate projections used here resulted

in only minor changes in predicted exposure concentrations and thereby future

risk. However, a stronger increase in risk was predicted for the scenarios with

increased pesticide application, which can represent an adaptation to a future

climate with higher pest pressures. In the current study, the specific BN model

predictions were constrained by an existing set of climate projections which

represented only one IPCC scenario (A1B) and two climate models. Further

advancement of the BNmodelling demonstrated herein, includingmore recent

climate scenarios and a larger set of climate models, is anticipated to result in

more relevant risk characterization also for future climate conditions. This

probabilistic approach will have the potential to aid targeted management of

ecological risks in support of future research, industry and regulatory needs.

KEYWORDS

bayesian network models, exposure modelling, environmental risk assessment,
pesticides, uncertainty

1 Introduction

Climate change (CC) is expected to shift weather patterns,

and consequently can alter the way water and food resources are

obtained and managed worldwide. Already today, European

assessment for rivers and lakes report that 5–15% of the

monitoring stations show exceedances of environmental

quality standards by herbicides, and 3–8% by insecticides over

the period 2007–2017 (Mohaupt et al., 2020). Nevertheless, in

future pesticides will be extensively used as they will continue to

play a vital role in the food production process and food security

(Popp et al., 2013). Despite thorough regulation of pesticides,

large knowledge gaps continue to hinder risk assessment,

especially when it comes to potential environmental impact of

pesticide mixtures and impacts of climate and regional factors

(Topping et al., 2020; Weisner et al., 2021). In Northern Europe,

predicted increase in plant diseases and insect pests may

consequently lead to higher pesticide use and thereby

occurring concentration of pesticides in the environment

(Kattwinkel et al., 2011; Sutherst et al., 2011; Delcour et al.,

2015). As pesticide environmental fate and exposure scenarios

for Norway and the Nordic countries deviate from EU

predictions due to spatial (regional) or temporal differences

(Stenrød et al., 2008; Holten et al., 2018), the pesticide use,

emissions, exposure and fate are not adequately represented by

the standardized EU model scenarios (Stenrød et al., 2016). To

safeguard environment health better, there is a need to improve

the integration of trend connected to CC into environmental risk

assessments of pesticides, considering both direct effects such as

the shifts in climate conditions and indirect effects such as

changes in pesticide application patterns. This should

subsequently enable better informed risk management.

Current paradigms for environmental risk assessment (ERA)

of pesticides typically aim to take into account the variability of

species sensitivities by estimating a proportion of affected species

in a community, which is used to define a predicted no-effect

concentration (PNEC) of the pesticide (More et al., 2019). The

traditional risk characterization of pesticides usually uses single-

value e.g., toxic exposure ratio derived from the PNEC divided by

the predicted environmental concentration (PEC) to assess

whether a chemical substance poses a risk to the environment

(EC, 2011). In this study, a more general approach was applied

using a risk quotient (RQ) that is calculated as PEC/PNEC, where

a potential risk to the environment is assumed whenever the PEC

exceeds the safe concentration (PNEC) (Bruijn et al., 2002; More

et al., 2019). These derived point estimates may convey an

unjustified sense of accuracy (Rai et al., 2002), as they ignore

many sources of uncertainty such as the variability of pesticides

concentrations in the environment or other factors that influence

the exposure of biota to these chemicals. Especially in Europe,

these traditional methods seek to avoid underestimating risk by

using conservative assumptions (i.e., assessment factors) to

account for various sources of uncertainty (Verdonck, 2003).

This way, protective decision making relies on precautionary

safety margins (Fairbrother et al., 2015). Spatial and temporal

variations in exposure are caused by many factors, including

changing environmental characteristics and contamination

sources (Artigas et al., 2012) that can cause uncertainty. There

is therefore a need for risk assessment methodology to better

account for uncertainty and variability in chemical exposure

(Belanger and Carr, 2020).

Probabilistic risk assessment make use of probability

distributions to characterize uncertainty in all parts of the risk

characterization (EUFRAM, 2006; Mentzel et al., 2021). Ergo,

fully probabilistic risk characterization can better account for

spatial and temporal variability of both chemical concentrations

and species sensitivity (Solomon et al., 2000; Verdonck, 2003;

EUFRAM, 2006; Fairbrother et al., 2015). Several probabilistic
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methods have been proposed to characterize risk while including

estimation of stochastic properties and uncertainty (Maertens

et al., 2022). The general responsibility of scientists to

communicate uncertainties has also been highlighted by the

EU (EFSA BFR, 2019). Already 2 decades ago, the use of

probabilistic risk assessment has been recommended for the

European Union (EU) (Jager et al., 2001) but is still not

commonly applied in regulatory risk assessment (Fairbrother

et al., 2015). Probabilistic methods that incorporate distributions

for exposure and effect are e.g., joint probability curves and

quantitative overlap. Generally, probabilistic methods require

more data for calculation of distributions compared to traditional

ERA, but on the other hand probabilistic methods make better

use of available data as well as other sources of information

(Campbell et al., 2000; Verdonck, 2003). However, some of the

results are difficult to communicate and thereby challenging for

decision-makers to interpret and understand (Verdonck, 2003;

FOCUS, 2007), possibly because they are often based on

cumulative distribution curves (EUFRAM, 2006). A Bayesian

network (BN) model has therefore been proposed as a more user-

friendly and intuitive method for supporting probabilistic risk

assessment of pesticides (Mentzel et al., 2021).

In this study, the BN model developed by Mentzel et al.

(2021) was further extended and explored to assess

environmental risk of pesticides under future scenarios. The

extended BN model presented here includes the output of a

pesticide exposure prediction platform for a representative

Northern European area (WISPE; Bolli et al. (2013)) under

different climate and pesticide application scenarios. The main

objective of this study was to develop an approach for

incorporating alternative climate change and pesticide

application scenarios into a probabilistic approach to risk

characterization, based on the available data and information

for a Norwegian case study.

2 Materials and methods

2.1 Approach

2.1.1 Bayesian network model, structure and
implementation

Bayesian methods have been recommended by the European

Food Safety Authority (EFSA et al., 2017) for uncertainty analysis

in the process of identifying limitations in scientific knowledge

and evaluating their implications for scientific conclusion.

Bayesian networks (BNs) are a branch of Bayesian approaches

that have been increasingly used in environmental risk

assessment and management (Aguilera et al., 2011; Moe et al.,

2021b; Kaikkonen et al., 2021). BNs are probabilistic and

graphical models, more specifically directed acyclic graphs

(DAG) (Kanes et al., 2017) that have no feedback loops. The

nodes (variables) are connected through links (potentially causal

relationships) shown as arcs representing conditional probability

tables (CPTs) (Kjærulff and Madsen, 2013). Each node has a set

of alternative states (typically intervals) that are quantified by

probability distributions. To update probability distributions of

the network, the Bayes’ rule is implemented to combine prior

probabilities with new evidence (Carriger et al., 2016). One of the

main benefits of BNs is that all components can be quantified by

probability distributions, which facilitates a probabilistic risk

calculation. Along these lines, BNs can incorporate various

sources of information such as expert opinion, literature and

model outputs, enabling a greater use of available data and

knowledge (Carriger and Newman, 2012; Carriger et al.,

2016). An example of the application of spatial BNs for

probabilistic assessment of pesticide exposure on a field level

has been carried out by Troldborg et al. (2021). Carriger and

Barron (2020) combined probabilistic exposure and effect

characterization into calculation of a probabilistic risk

quotient (RQ) of Mercury for the Florida panther. This

approach to a probabilistic calculation of RQ and associated

uncertainties was further developed by Mentzel et al. (2021), by

using species sensitivity data for the effect characterization to

represent risk to aquatic ecosystems.

The BN conceptual model developed here is based on

Mentzel et al. (2021) and consist of four modules (Figure 1):

1) future scenarios (orange), 2) pesticide exposure (blue), 3) toxic

effect (green) and 4) risk characterization (grey). The scenario

module contains a scenario node that is based on the climate and

pesticide application. These scenarios determine the

instantaneous pesticide concentration and its probability

distribution (pesticide exposure module). This instantaneous

concentration node together with the set time since

application (node) determines the distribution of the time-

specific concentration node, via a log-linear equation. The risk

characterization module composes the exposure/effect ratio node

that together with an appropriate precautionary factor predicts

the probabilities of the RQ intervals. The finalized BN can be

instantiated by selecting a scenario and specifying the time since

application of interest as evidence. Given this evidence,

probability distributions will be updated throughout the

network. The four modules are described in more detail in

Section 2.2.

2.1.2 Exposure sampling and modelling
Measured pesticide exposure concentrations, their

distribution and associated uncertainties are highly influenced

by sampling method, time and rate (Spycher et al., 2018). Data

derived from monitoring has a wide range of uncertainties

through sampling constraints and limited representativeness

(FOCUS, 2017). Yet, a realistic environmental concentration is

vital for reliable environmental risk assessment. This is especially

significant whenever a single number is used without accounting

for uncertainty, but is also influential when trying to derive a

representative exposure distribution as uncertain estimations can
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hinder appropriate decision-making (Wolf and Tollefsen, 2021).

Thence, the EU (Directive 2009/128/EC (EC, 2009a) and

REGULATION (EC) No 1107/2009 (EC, 2009b)) offers the

option to use models to predict environmental concentrations

(PECs) in surface waters. Even if monitoring data are available,

the use of modeling approaches for exposure assessment is

encouraged by EFSA (2017). They have developed the FOCUS

(FOrum for the Co-ordination of pesticide fate models and their

Use) surface water scenarios using themodel tool SWASH, a GUI

for the models PRZM (Pesticide Root Zone Model), MACRO

and TOXSWA (TOXic substances in Surface Waters). PRZM

and MACRO are models frequently used to simulate pesticide

transport in soil while TOXWA simulates the dilution at the edge

of field or drain water concentration from the other two models

in different surface water body types. SWASH takes agricultural

management practices, climate, crops, topography, and soil types

into account (Adriaanse et al., 2017).

For this study, we used the World Integrated System for

Pesticide Exposure (WISPE) platform, which was developed to

evaluate the potential for pesticide exposure to surface waters and

groundwaters (Bolli et al., 2013). The WISPE platform was

configured with scenarios containing crop, soil, and weather

conditions for representative agricultural areas among others in

the EU, USA and Norway. This modelling platform interlinks the

pesticide root zone model (PRZM), an exposure analysis

modeling system (EXAM) (Burns, 2004) and the aquifer

dilution assessment model (ADAM) (Williams, 2010) similar

to TOXWA. The PRZM model simulates the movement of

chemicals within and below the root zone (in unsaturated soil

systems). EXAM is a hydraulic model combined with a chemical

fate and transport model simulating processes in aquatic

environments. It simulates various processes in the aquatic

environment. ADAM is an integrated model which predicts

the chemical dilution, partitioning and persistence to a water

body. EXAM and PRZM are standard models used by USEPA,

and the latter model is also used in European pesticide

registration and risk assessment (REGULATION (EC) No

1107/2009 (EC, 2009b)). In a previous study, the transport of

particles and particle bound pesticides was calibrated for two

field sites representative for Norwegian agricultural areas by Bolli

et al. (2013). The study found that in this northern region the

erosion and transport of particle-bound pesticides are heavily

dependent on the weather conditions such as precipitation

shortly after application or melting-freezing episodes, which

take place in spring and winter. The WISPE platform is based

on many of the FOCUS default setting but was specifically

tailored for northern European conditions and contains e.g.

major Norwegian crops, and plant growth effected by climate

conditions, therefore being better suited as a exposure prediction

tool in this study.

2.2 Bayesian network modules

In the following, the information sources and assumptions

for the four modules of the BN model and the model runs are

described. The software Netica (Norsys Software Corp, www.

norsys.com) was used to construct the BN model. The BN was

constructed with identical node structure and number of states

for all of the selected pesticides, but with different discretization

of the concentration nodes. For each pesticide, the range of the

exposure and effect concentration nodes was adapted to the

distributions derived from the data used for exposure and effect

assessment, respectively. We chose a relatively high number (10)

of intervals to obtain a high resolution of the model. The

concentration nodes were discretized by equidistant intervals

in the log-scale.

The exposure model platform WISPE was run for each

selected pesticide, for three application scenarios and for two

climate models. In the selected case study area, environmental

FIGURE 1
Conceptual model for the risk estimation of a pesticide. Pesticide exposure derives input from the WISPE platform and is determined by the
associated future scenarios. The toxic effect nodes together with the exposure concentration derives the risk quotient under risk characterization.
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factors such as soil and site parameters together with chemical

properties and climate scenarios were linked to the exposure of a

pesticide by using the WISPE platform. The probability

distribution of pesticide exposure was obtained from predicted

concentrations for multiple years, which enabled accounting for

variability over a longer time period (FOCUS, 2017).

Correspondingly, for the probability distribution of effects, the

range of species sensitivities was determined from available

toxicity data. The RQ node was discretize with a high number

of states, this enabled exploring the differences between

scenarios. A more detailed node description and model

assumptions are given in the following Table 1.

2.2.1 Future scenarios
The agricultural sector manages 3.5% of Norway’s land

area pr. 2021. Being part of northern Europe, Norway has

lower temperatures and a shorter growing season than

central and southern Europe. These climate conditions

restrict the area suitable for grain cultivation. Until the

year 2060, the annual average temperature is expected to

increase by approx. 2°C, with the largest increase in

temperature in winter, and the lowest in summer in

Norway. Consequently, the meteorological growing season

will be longer than the current, with a predicted increase in

growing season of up to 2 months towards the end of the

century (Fuglestvedt, 2016). This may lead to earlier sowing,

ripening and harvest for spring cereals and growing of crop

types that mature later but offer a higher yield potential. CC

is also expected to lead to significant changes in precipitation

with an increase of 8% for annual precipitation at the end of

the century, but with large variation between the cropping

regions in Norway (Olesen and Bindi, 2002). For the

cultivation of grain, not only the amount and intensity of

rainfall is of interest, also its frequency and distribution

throughout the growing season. Other expected CC impacts

are the introduction of new plant pathogens and pests from

southern countries to northern areas while existing will be able

to take advantage of a longer growing season and multiply

faster than before. Also, changes in crop composition may lead

to a change in the occurrence of the diseases and possibly new

host-parasite interactions (Fuglestvedt, 2016). Furthermore,

pesticides efficacy is affected by environmental factors such

as temperature, precipitation and wind (Olesen and Bindi,

2002). In Norway, a longer growing season and more

frequent pest infestations may require the use of more

pesticides. A warmer climate is expected to result in

increased production of winter wheat. The milder cold

season may provide better overwintering conditions for

plant pathogens, which might entail early and more severe

infestation of the crop the following season. The most relevant

measure apart from using resistant crop types is spraying of

fungicides. In addition, early infestations require spraying both

TABLE 1 Bayesian network node description detailing the type of node, the number of states and the method used to parameterize the network.

Node name
(Variable)

Type Number of
states

Explanation and information
source

Climate model Categories 2 Scenario component (parent node)

Period Ranked
categories

3 Scenario component (parent node)

Application Ranked
categories

3 Scenario component (parent node)

Scenario Integers 18 Combination of the scenario components: Scenario = climate scenario + pesticide application
scenario + period scenario

Intercept Log Intervals 5 Maximum environmental concentration (log-transformed), scenario-specific probability
distribution

Time since application Integers 5 Day 1, 2, 5, 21 or 60 for WISPE model prediction (parent node)

Time-specific
concentration Log

Intervals 10 Time-specific environmental concentration (log-transformed), function with scenario-specific slope:
[Intercept Log] + ([slope] x [Time since application]))

Endpoint Categories 2 EC50 (day 1)

NOEC (day 1–61)

Effect concentration Log Intervals 10 EC50: NormalDistribution (mean, sd) or NOEC: NormalDistribution (mean, sd)

Exposure concentration Intervals 10 exp ([Time specific concentration Log])

Effect concentration Intervals 10 exp ([Effect concentration Log])

Exposure/effect ratio Intervals 7 Ratio [Exposure concentration]/[Effect concentration]

Precautionary factor Integers 7 A scaling factor for deriving the risk quotient (parent node)

1, 3, 10, 30, 100, 300, or 1000

Risk quotient Intervals 7 [Exposure/effect ratio] x [Precautionary factor]
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earlier and more frequently during the growing season

(Fuglestvedt, 2016). Based on these considerations, winter

wheat was chosen as the model crop for this study.

A more detailed description of the expected CC for this

region is given by Hanssen-Bauer et al. (2015). In the following,

the future scenarios used to run the WISPE platform are

described.

2.2.1.1 Climate scenarios

In this study, two sets of climate projections were used

originally developed for the site Grue in the south east of

Norway (ca 160 km North-east of Syverud/Ås) under the

GENESIS project (2009–2014, https://cordis.europa.eu/project/

id/226536). Both were derived from the greenhouse gas emission

scenario “A1B” (IPCC, 2000), which was developed to represent a

future world of very rapid economic growth, low population

growth and rapid introduction of new and more efficient

technology, for a spatial resolution of 50 km. The two sets of

climate projections were derived by two global climate models

(GCM) which will be referred to as Climate Model 1 (C1) and

Climate Model 2 (C2). The GCM of C1, “ECHAM5-r3”

(Roeckner et al., 2004), was developed by the Max Planck

Institute for Meteorology, and the GCM for C2, “HADCM3-

Q0” (Gordon et al., 2000), was developed at the Hadley Centre.

Regional climate models (RCMs) are commonly applied to

downscale from the global to more local levels (Jones et al.,

2011; Samuelsson et al., 2011). Here, the same RCM called

RCA3 was used, developed by the Rossby Center at SMHI

(the Swedish Meteorological and Hydrological Institute).

Thereby, C1 represents the regional climate model

“ECHAM5-r3 A1B-SMHI-RCA3” and C2 represents

“HADCM3-Q0 A1B-SMHI-RCA3”.

The climate projections used in this study has several

limitations: the emission scenario and the two climate

models are rather old, and they have not been bias-

corrected for the study area. Moreover, climate

projections should ideally be obtained from a larger

ensemble of climate models rather than one or a few

models (Moe et al., 2022). However, generating a new

and more appropriate set of climate projections was

beyond the scope of this study. Therefore, the climate

projections that were already derived for the WISPE

platform were considered sufficient for the purpose of

demonstrating this BN approach to linking climate

projections, pesticide exposure and risk characterization.

Projections from the two climate models (C1 and C2)

differed in precipitation, temperature, evapotranspiration,

solar radiation and wind. For example, they had different

projected changes in number of days with snow cover and

changes of annual rainfall (Kjellstöm et al., 2011). The

differences between the two climate models are especially of

interest for the chosen days and months of pesticides application.

Based on Mann-Kendall (MK) trend analysis, C1 showed a

positive trend in temperature, evapotranspiration and

precipitation for a 3-days average before the day of pesticide

application. When comparing climate conditions for 10-days

average before day 21 after application, a positive trend was

detected for temperature and evapotranspiration (i.e. the process

of water evaporation from soil and other surfaces through

transpiration from plants). In general, C2 showed no trend

for May, and even a negative trend for October for a 3-days

average before the day of application (see Supplementary Table

S2). The projections from C1 were more consistent with more

recent climate projections for Norway, which show that an

increase in temperature and precipitation can be expected

(Hanssen-Bauer et al., 2015). Consequently, in this paper we

decided to focus mainly on predicted exposure concentration

based on C1.

2.2.1.2 Pesticide application scenarios

The first pesticide application scenario is based on the

current common practice dosage and is referred to as the

“baseline” scenario (see Table 2). The second scenario,

referred to as “baseline-50%“, is inspired by the European

Green Deal, which aim for a 50% reduction of the pesticide

use by 2030 (EC, 2020). The third scenario represents a

potentially increased use of pesticides in the future, for

example due to changing climate conditions and increased

pest pressures (Fuglestvedt, 2016) and is referred to as

“baseline+50%”.

We selected active pesticide ingredients that are all approved

in Norway for crop protection in winter wheat. Two plant

protection products, a herbicide containing MCPA (CAS nr.

94–74-6), fluroxypyr-meptyl (CAS nr. 81,406–37-3) and

clopyralid (CAS nr. 1702–17-6), and a fungicide composed of

trifloxystrobin (CAS nr. 141,517–21-7) and prothioconazole

(CAS nr. 178,928–70-6), were chosen for the purpose of

demonstrating the approach. Inherent properties such as

molecular weight, water solubility, sorption properties (Koc),

degradation half-life (DT50 soil), and vapor pressure, and

Freundlich exponent (1/n), and systemic property e.g. plant

uptake factor, were collected and included in the data asset

(see Supplementary Table S1).

The associated application rate and time of spraying were

used to define the application scenario for the WISPE platform

runs. It was assumed that the herbicide is applied once in the first

half of May (crop growth stage BBCH 13–14; cf. label for Ariane

™ S, Corteva Agriscience), and that the fungicide is applied once

in the first half of October (after sowing and germination of the

winter wheat; cf. label for Delaro SC 325, Bayer Crop Science).

For the calibration of the WISPE platform no tillage was

assumed. Some of the combinations chosen for pesticide

application, e.g. the choice of no soil tilling in combination

with winter cereals, may not be the most common/optimal

agronomic practice and can hence add to some of the

uncertainty in the modelling.
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2.2.2 Pesticide exposure
The scenarios described above were used as input

information for the WISPE platform. Additional settings used

to run the platform are described in the succeeding section. The

exposure distributions used as input for the pesticide exposure

module were based on the predicted exposure concentration

from the WISPE platform.

2.2.2.1 WISPE platform settings

When the WISPE platform was first developed as a tool to

estimate pesticide exposure in ground- and surface water for

Norwegian conditions, two study areas were chosen as

representative field sites to generate data for calibration and

validation of the model (Bolli et al., 2013). In this study, the

Syverud was used as a site scenario, which was developed to

represent larger agricultural areas in South East Norway. The

study site is located on the grounds of the Norwegian University

of Life Sciences (NMBU) in Ås (Supplementary Table S1). The

soil in this study area is classified as loam/silt loam, with 26%

clay, 49% silt, and 25% sand content. The area was formerly

used as a meadow which resulted in a soil structure with high

infiltration capacity, aggregate stability and saturated hydraulic

conductivity (Bolli et al., 2013). For the model simulations the

site was assumed to be ploughed in autumn, with a ploughing

depth of 20 cm. The platform predicts output concentrations

for a stream, pond and ditch with parameters adapted originally

from TOXSWA into the EXAM model.

We have only considered the predicted output for the stream

environment, with the following water body parameters: 1 m

width, 100 m total length, 0.3 m average water depth, 15 mg/L

concentration of suspended solids, 5% organic carbon content,

and 800 kg/m3 dry bulk density (FOCUS, 2015). WISPE was

calibrated for the model crop winter wheat.

2.2.2.2 Exposure prediction platform implementation

The WISPE platform was run according to the previously

mentioned future scenarios and platform settings such as the

selected representative field site, crop type and for the various

time-periods of C1 and C2. The WISPE platform predicted

exposure concentration for 26 years, corresponding to the

26 years over which the model runs. The concentrations were

predicted for instantaneous, 24 h, 96 h, 21, 60 and 90 days.

In the further process, the time-periods were changed into

three periods (year 2000–2030, 2035–2065, 2070–2100) to derive

the distributions (BN input) representing inter-annual variation

within each of the 30-year period. The platform simulated

pesticides to specified unique application conditions for the

two climate models. In total, 18 scenarios were used in the

developed BN per pesticide (Table 3). The following example

shows the log-transformed pesticide concentration against time

since application predicted by WISPE for scenario 11 (Figure 2).

A log-linear equation was fitted to each of the predicted

concentrations time series. Data processing and analysis was

carried out in R (version 4.1.0), using the tidyverse package

(Wickham et al., 2019) and some base R functions (R Core Team,

2020). Within each scenario the slope did not differ significantly

among the years (see Figure 2), therefore the average slope across

years was used to calculate the time-specific concentration for

each scenario (see Supplementary Information SII). The

probability distribution of the instantaneous concentration

(representing inter-annual variation) was used as input in the

conditional probability table (CPT) of the instantaneous

concentration node. This distribution was combined with the

slope to derive the distribution of the time-specific concentration

node (see Supplementary Information SII). In general, the

instantaneous node interval range differed for each selected

pesticide: clopyralid 0.0025–0.6065 μg/L, fluroxypyr-meptyl

0.0111–4.4817 μg/L, MCPA 0.0821–12.1825 μg/L, prothioconazole

0.0302–0.2231 μg/L, trifloxystrobin 0.0235–0.1653 μg/L.

2.2.3 Pesticide effects
Uncertainties related to current effect assessment are often

associated with extrapolation from laboratory to field and inter-

intraspecies variation (Rai et al., 2002) and can also be linked to

the data set size. In traditional regulatory effect assessment, these

uncertainties are usually accounted for by assessment factors to

increase the assumed safe concentration threshold (PNEC). In

this study, two types of effect distribution were derived and used

TABLE 2 Description of application scenarios used in this case study for the five selected pesticides.

Active substance Baseline-50% Baseline Baseline+50%

Dose
active substance (kg/ha)

Dose
active substance (kg/ha)

Dose
active substance (kg/ha)

Clopyralid 0.025 0.05 0.075

Fluroxypyr-meptyl 0.05 0.1 0.15

MCPA 0.25 0.5 0.75

Prothioconazole 0.0875 0.175 0.2625

Trifloxystrobin 0.075 0.15 0.225
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as input in the pesticide effect module. They were based on either

NOEC (no-observed effect concentrations) values or on EC50

(effect concentration for 50% of the test population) values and

collected for each of the selected pesticides. The derived effect

distribution is similar to a species sensitivity distribution (SSD),

representing inter-specific variation in sensitivity to toxicants,

which is used extensively in ecotoxicology (Belanger and Carr,

2020). SSDs are now commonly used as an alternative to the

conservative approach on the basis of the most sensitive species

(lowest NOEC value). They are based on multiple toxicity tests of

different species and thereby reflect interspecies differences in

sensitivity to a chemical. Subsequently, SSDs can be used to

develop a community level threshold (Belanger et al., 2017).

However, SSDs are usually used to derive a single threshold value

such as the HC5 (hazardous concentration to 5% of the species),

as a basis for the PNEC. Here we follow the approach presented

by (Mentzel et al., 2021), to use the whole species sensitivity

distribution in the calculation of the exposure/effect ratio

distribution (Section 2.2.4). Toxicity data were mainly

collected and used from the US EPA ECOTOX

Knowledgebase (https://cfpub.epa.gov/ecotox/search.cfm) and

supplemented with data from Middle Tennessee State

University EnviroTox Database (https://envirotoxdatabase.

org). The EC50 effect distribution was derived from EC50 and

LC50 (lethal dose for 50% of the test population) toxicity data

(Table 4). The NOEC distribution is based on NOEC and NOEL

(no-observed effect level) values, apart from Clopyralid for which

only NOEC toxicity data was available. If multiple values for the

same species occurred in the data set, the mean was used as a data

point to derive the distribution (Mentzel et al., 2021). The

number of observations for this study varied depending on

the chemical, and whether it was an EC50 or NOEC toxicity

test. In this study, we only considered adverse effects such as

TABLE 3 Overview of scenarios used in the Bayesian network model combining the three scenario components Climate model, Period and
Application scenario. For description of the climate models, see Section 2.2.1.1. For definition of the pesticide application scenarios, see Table 2.

Scenario Climate model Period (years) Application scenario

1 C1 2000–2030 baseline

2 C1 2000–2030 baseline+50

3 C1 2000–2030 baseline-50

4 C1 2035–2065 baseline

5 C1 2035–2065 baseline+50

6 C1 2035–2065 baseline-50

7 C1 2070–2100 baseline

8 C1 2070–2100 baseline+50

9 C1 2070–2100 baseline-50

10 C2 2000–2030 baseline

11 C2 2000–2030 baseline+50

12 C2 2000–2030 baseline-50

13 C2 2035–2065 baseline

14 C2 2035–2065 baseline+50

15 C2 2035–2065 baseline-50

16 C2 2070–2100 baseline

17 C2 2070–2100 baseline+50

18 C2 2070–2100 baseline-50

FIGURE 2
Example log-linear regression of the concentration in the
stream predicted by the WISPE platform for MCPA with an
application baseline scenario for the C1 and the time interval
2070–2100.
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TABLE 4 Effect (toxicity) data collected for this study, detailing the effect types per pesticides and the derived EC50 and NOEC natural log(ln) mean
and standard deviation for the natural log distributions.

Pesticide Number of
values

Effect type EC50 (µg/L) NOEC (µg/L)

EC50 NOEC Log Mean Log sd Log Mean Log sd

Clopyralid 7 8 Growth, Population, Reproduction, Development, Mortality 11.45 1.99 7.73 3.67

Fluroxypyr-
meptyl

16 11 Population, Mortality 7.08 2.06 6.03 2.01

MCPA 45 20 Population, Mortality, Growth, Morphology, Development,
Reproduction

9.56 3.11 7.07 2.10

Prothioconazole 11 10 Population, Mortality, Growth 7.41 1.78 6.17 2.00

Trifloxystrobin 19 17 Growth, Development, Mortality, Population, Morphology 4.48 1.72 3.18 1.77

FIGURE 3
Example of the Bayesian network parameterized for fluroxypyr-meptyl, with a baseline+50% application, global climate model C1, time period
of 2035–2056, for a time since application of 1 day and a EC50 based effect distribution.
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mortality, reproduction and growth. The distribution was fitted

using the R package MASS (Venables and Ripley, 2002). The data

preparation was carried out with the R package tidyverse

(Wickham et al., 2019) (see Supplementary Information SIII).

2.2.4 Risk characterization
This module consists of three nodes: exposure/effect ratio, a

precautionary factor and the risk quotient (RQ). In traditional

risk assessment, an RQ higher than 1 indicates a reason for

concern (Bruijn et al., 2002).The assumptions for the node input

are described in Table 1. The BN was run for the different

scenarios and with either an EC50 (and day 1 since application),

representing an acute exposure scenario, or a NOEC distribution

(and day 1–61 since application), representing a chronic

exposure scenario. As explained in Mentzel et al. (2021), the

precautionary factor was introduced as a scaling factor to have a

similar role as the assessment factors, which are frequently used

in risk assessment to obtain a higher safe concentration threshold

(see TGD (SCHEER, 2017)). Thus, a higher assessment factor or

a higher precautionary factor will increase the probability of the

RQ exceeding 1. In traditional risk assessment, the decision on an

appropriate assessment factor is based on evaluation of the

available toxicity test data used to derive the effect

distribution to account for uncertainties in the used data set

and for extrapolation. In the approach presented byMentzel et al.

(2021), an appropriate precautionary factor was found by

calibrating the RQ distribution predicted by the BN to the

single-value RQ of a corresponding traditional risk

calculation. In the case study by Mentzel et al. (2021) it was

found that for a fully probabilistic approach with exposure data

derived from monitoring with infrequent sampling though

reflecting chronic exposure to the ecosystem, and collected

effect e.g. toxicity test (NOECs), the most appropriate

precautionary factor was 30–300. In the current study, some

of the uncertainties associated with the exposure concentrations

were overcome by using predicted exposure concentrations that

enabled the use of peak concentrations in addition to the

declining concentrations over time (see Figure 2). In our view,

this justified the usage of a lower precautionary factor of 1–10. To

account for additional interspecies variation in sensitivity that

TABLE 5 Results from Mann-Kendall trend analysis of the predicted pesticide exposure concentrations for the following WISPE model settings:
climate models C1 and C2; baseline application in May (herbicides) and October (fungicides). The predicted exposure concentration series
represent both acute and chronic conditions (day 1 and 21 since application, respectively). For each series, the overall trend for the whole period of
years 2000–2100 was analyzed. The test statistic τ denotes increasing (τ > 0) or decreasing (τ < 0) trend.

Scenario Climate
model

Days since
application

Pesticide Pesticide
type

Time of
application

Kendall’s τ
coefficient

p
value

1 C1 1 Clopyralid Herbicide May −0.005 0.951

1 C1 1 Fluroxopyr-
meptyl

Herbicide May 0.038 0.634

1 C1 1 MCPA Herbicide May 0.034 0.655

1 C1 1 Prothiocanazole Fungicide October 0.138 0.084

1 C1 1 Trifloxystrobin Fungicide October 0.182 0.024

1 C1 21 Clopyralid Herbicide May 0.006 0.935

1 C1 21 Fluroxopyr-
meptyl

Herbicide May −0.020 0.773

1 C1 21 MCPA Herbicide May 0.048 0.490

1 C1 21 Prothiocanazole Fungicide October 0.039 0.618

1 C1 21 Trifloxystrobin Fungicide October 0.082 0.312

10 C2 1 Clopyralid Herbicide May 0.111 0.142

10 C2 1 Fluroxopyr-
meptyl

Herbicide May 0.159 0.044

10 C2 1 MCPA Herbicide May 0.133 0.078

10 C2 1 Prothiocanazole Fungicide October 0.002 0.983

10 C2 1 Trifloxystrobin Fungicide October −0.054 0.506

10 C2 21 Clopyralid Herbicide May 0.034 0.620

10 C2 21 Fluroxopyr-
meptyl

Herbicide May 0.078 0.269

10 C2 21 MCPA Herbicide May 0.054 0.432

10 C2 21 Prothiocanazole Fungicide October −0.125 0.111

10 C2 21 Trifloxystrobin Fungicide October −0.14 0.080
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was not represented by the relatively small data set on effects, a

more conservative precautionary factor of 10 was applied for all

RQ distributions displayed in this study (see Figure 3).

A Mann-Kendall trend analysis a statistical method that is

rank-based and non-parametric, and widely used in

hydrometeorological time series trend detection (Wang et al.,

2020). The trend analysis was carried out for the predicted

exposure concentration (WISPE platform output) for baseline

application, C1 and C2, Day 1 and 21 since application and for all

of the selected pesticides (see Table 5). A positive trend indicates

an increase of the predicted exposure concentration. The trend

was concluded to be negative whenever the test statistic Kendall’s

τ < 0 and the p < 0.1. The trend was concluded to be positive

when τ > 0 and p < 0.1.

3 Results

3.1 Predicted pesticide exposure

Some of the trends in the projected climate variables such as

mean temperature, precipitation, radiation, evapotranspiration

and wind (see Supplementary Table S2) were also reflected in the

trends of the predicted exposure. The Mann-Kendall trend

analysis showed mostly no significant trends over the whole

range of years (2000–2100), for the different pesticides and

seasons. However, C1 had a positive trend in mean

temperature, precipitation and evapotranspiration in October,

this trend is also reflected in a positive trend of the exposure

concentration of fungicides prothiocanazole and trifloxystrobin

that are applied in October (for C1) (Table 5).

A closer look at the relationship between the

instantaneous exposure concentration and precipitation,

one of the determining climate conditions for the

transport and fate of pesticides, revealed that higher

amount of precipitation was associated with increased

exposure concentration (Figure 4). In addition, there was

a positive interaction between pesticide application and

precipitation, as the effect of precipitation was higher

(steeper slope) when the pesticide application was higher.

This relationship was not further investigated here, but the

pesticide concentrations predicted by the WISPE platform

predictions showed similar temporal trends as the those

described for the climate variables (see Supplementary

Table S2).

3.2 Predicted risk quotient distribution for
various scenarios

The output for each of the settings (evidence) used in this

study has been reported in the Supplementary Information SIV.

It contains a detailed collection of the probabilities for each of

the RQ node intervals depending on the selected evidence. In

the following, the predicted RQ node distributions for the

different scenarios (see Table 3 for reference) are visualized

as stacked bar plots for easy comparison (Figure 5). The RQ was

calculated with an effect distribution based on either NOEC

values (RQNOEC) or EC50 values (RQEC50). This analysis

enabled the identification of periods with higher risk of

environmental effects of individual pesticides or groups of

pesticides.

3.2.1 Risk quotient distribution across the time
since application

For a baseline application scenario, at day 1 the

probability of RQNOEC to be higher than 1 was 1% for

MCPA (Figure 5C), 0.98% for fluroxypyr-meptyl (Figure 5B),

and 0% for Clopyralid (Figure 5A), prothioconazole

(Figure 5C), and trifloxystrobin (Figure 5E). Overall, the

time-specific RQNOEC declines with time since application

(Figure 5). So, at Day 2 probability of RQNOEC to be higher

than 1 decreased to 0.79% for MCPA and 0.65% for

fluroxypyr-meptyl. At Day 5 the RQNOEC to be higher

than 1 decreased further to 0.69% for MCPA and 0% for

fluroxypyr-meptyl. Considering a lower RQ threshold

(corresponding to a higher precautionary factor), the

probability of RQ > 0.1 at Day 1 was highest for MCPA,

followed by fluroxypyr-meptyl, trifloxystrobin, clopyralid

and prothioconazole.

FIGURE 4
Example fluroxypyr-meptyl exposure concentration vs.
precipitation for the three tested application scenarios for a 3-days
sum of precipitation before the day of application (here:
5–7 October for the period 2000–2100).
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3.2.2 Plausible scenarios: Combination of
climate change and pesticide application

A change in pesticide application patterns such as an increase

in the rates or number of applications per season can be

considered as an adaptation to consequences of climate

change (e.g. increased pest pressure). Therefore, the scenario

combining future climate projections (period 2035–2065) with

increased pesticide application was considered as a plausible

scenario. On the other hand, the combination of future

climate projections with reduced pesticide application

represent a scenario more in line with EU’s pesticide policy.

Hence, we compare the RQEC50 of the current time period

(2000–2030) and baseline application with the predicted

RQEC50 for a future time period (2035–2065) as well as

baseline-50% and baseline+50% application scenarios. In

general, the probability of RQEC50 exceeding 1, which

commonly used as a threshold for concern, was low and not

much influenced by the different time periods or application

scenarios.

Focusing on lower RQ thresholds, examples are shown for

the fungicide trifloxystrobin (Figure 6A) and the herbicide

fluroxypyr-meptyl (Figure 6B). Trifloxystrobin had more than

10% probability of RQEC50 exceeding 0.03 for the current

practice. In future, applying less fungicide resulted in a shift

towards lower RQ intervals and an overall decrease in risk. From

the BN prediction, it was observed that applying 50% less resulted

in a shift towards lower RQ intervals, with a probability to be

above 0.3 decreasing from 12.5% to 3.5%. Comparing baseline

FIGURE 5
Example of predicted risk quotient distribution for clopyralid (A), fluroxypyr-meptyl (B), MCPA (C), prothioconazole (D) and trifloxystrobin (E)
over time for 1, 2, 5, 22, and 61 days after application, for the baseline application scenario, climate model C1 and the time interval of 2070–2100 for
NOEC-based effect distribution.
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and baseline+50% the RQEC50 distributions were similar, with a

probability of being above 0.03 of about 12.5%. This was also the

case for some of the other pesticides (e.g. clopyralid or MCPA)

(see Supplementary Figure S2). Fluroxypyr-meptyl, on the other

hand, showed a change to higher RQEC50 intervals for the

baseline+50% application. For this herbicide the probability for

RQEC50 to be above 0.03 increased from 7.2% (for baseline) to

8.9% (for baseline+50%) and decreases to 6.4% (for baseline-50%).

4 Discussion

As monitoring of environmental pesticide concentration is

costly and time-consuming, future climate conditions need to be

incorporated for better risk assessment. The complexity of

processes in pesticide risk assessment can to some degree be

overcome by taking advantage of the BNs’ ability to use data from

various different sources, which is one of their benefits (Chen and

Pollino, 2012; Gibert et al., 2018; Mentzel et al., 2021; Troldborg

et al., 2021). Moreover, they can be constructed as causal models

that help comprehend hazard pathways and vulnerability

relations better and with that assist in risk prioritization

(Sperotto et al., 2017). For example, a BN developed for

predicting spatial distributions of pesticide exposure in a drinking

water catchment was informed by multiple information sources

including GIS as well as expert knowledge (Troldborg et al., 2021). A

study by Gaasland-Tatro (2016) showed how CC factors and other

stressors can be integrated in BNs by using a relative risk model that

evaluates ecological parameters over landscape scale regions. Along

these lines, Landis et al. (2013) pointed out that today’s

environmental risk assessment should also consider interactions

among contaminant and noncontaminant stressors, together with

new regimes of precipitation and temperature at specific

geographical sites (Landis et al., 2013).

The BN model presented here demonstrates how a

traditional risk characterization score such as the RQ can be

made more informative by being presented as a probability

distribution. While the traditional risk assessment has focused

on whether a single-value RQ score exceeds 1, the BN approach

allows for a systematic analysis also of lower risk situations, such

as the probability of RQ exceeding 0.3 or 0.1. This way, the model

can be used to explore plausible environmental scenarios and

FIGURE 6
Predicted risk quotient distribution for a selected herbicide and fungicide, for a time since application of 1 day, for the climate model C1 and for
EC50-based effects distribution. The scenarios 1,4,5,6 (Table 3) are displayed for the herbicide fluroxypyr-meptyl (A) and the fungicide
trifloxystrobin (B).
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identify early-warning trends in RQ towards levels of concern.

Moreover, in our approach, the precautionary factor is used in a

more transparent way and better separated from the pesticide

effect characterization than the corresponding assessment factor

is in traditional risk assessment (Mentzel et al., 2021). The

assignment of a precautionary or assessment factor involves a

subjective evaluation of data quality and other uncertainties by

the risk assessor and should therefore be better separated from

the calculation of chemical concentrations, in our opinion. The

traditional assessment factor is applied to calculate an assumed

safe concentration threshold (predicted no-effect concentration),

which is in turn used as the denominator in the calculation of the

traditional RQ. In our model, in contrast, the exposure/effect

ratio distribution is calculated and displayed before the

precautionary factor is included as a final step to obtain the

RQ distribution.

The BNmodel predicted a slight increase in the probability of RQ

exceeding 1 for future time periods, for most of the pesticides

investigated. In other words, the model predicts higher risk for

aquatic organisms under the A1B climate scenario for the

intermediate (2035–2065) and last time periods (2070–2100)

investigated. This is expected and consistent with previous

suggestions regarding pesticide fate and transport being influenced

by precipitation in northern Europe. In other words, increased

precipitation in future can imply increase risk of pesticides to

freshwater ecosystems in agricultural areas. We aim to investigate

the role of precipitation and other climate variables on predicted

pesticide exposure in theWISPE platformmore systematically in later

studies, to obtain functional relationships between climate variables

and pesticide exposure under different climate scenarios. A

quantification of such functional relationships will allow for more

efficient exploration of pesticide risk under different climate and

agricultural scenarios.

Considering the prediction for future periods, the climate

projection used in this study was obtained from an existing

project and based on a relatively old climate scenario (A1B).

Moreover, the climate models used in this study were not

properly bias-corrected for the study area. Thus, improved

precision and realism of the BN model predictions could be

achieved by using more updated climate projections from more

relevant climate scenarios (e.g. RCP4.5 and 8.5) and based on a

larger number of climate models. Further model development

with a newer and refined version of the WISPE, could reduce

some of the uncertainty related to predictions.

The applicability domain of the BN model presented here is

constrained by the current applications and calibration of the

WISPE model platform. Until now, the WISPE platform was

validated by Bolli et al. (2013) and offers the possibility to

predict environmental concentrations for specific and

representative study fields in Norway. The platform takes into

account chemical properties and environmental factors when

predicting the exposure of pesticides in the selected water body

(Bolli et al., 2013). A predicted exposure time series with multiple

peak concentrations could not easily have been incorporated in the

exposure module of the BN, which currently assumes a log-linear

decrease in pesticide concentration over time. Further development

of this module would be needed to account for a more complex

temporal exposure pattern.

In addition, extending the current BN with more developed

pesticide application, scenarios, including selected crop and

pesticide types, and the use of other representative study areas

would be beneficial for the integration of variability in model

predictions. This BN model could also be further developed to

predicting the cumulative risk of intentional pesticide mixtures.

Further research efforts could also explore more advanced

options for risk characterization as alternatives to the

currently used RQ approach, for example making better use

of causal dose-response relationships from mesocosm studies in

cases where such information can be obtained. Therefore, we are

considering an approach that incorporate not only an exposure

prediction model under alternative future conditions but also an

effect prediction model for selected groups of aquatic species.

The use of BN models in ecotoxicology is still rare compared

to other types of environmental assessment (Kaikkonen et al.,

2021) even though their use has increased in chemical risk

assessment in recent years (Moe et al., 2021a). One of the

inherent shortcomings of BNs is the loss of precision due to

discretization of continuous variables (Marcot, 2017; Nojavan

et al., 2017); this phenomenon was also observed in the predicted

exposure concentrations for some of the pesticides in this study,

e.g. MCPA. Although the instantaneous pesticide concentration

distribution differed between the baseline and baseline+50%

scenarios, these differences were not reflected in the exposure

concentration node, where the probability distribution appeared

very similar. This resulted in similar RQ distribution for the two

application scenarios, given the current discretization (Marcot,

2017; Nojavan et al., 2017). The number of node states is often

kept low in BNmodels, because a higher number of states implies

that more information is needed for parameterization of the

conditional probability tables. In our BN model, however, most

of the CPTs were derived from equations and can therefore easily

be adapted to a higher number of intervals. It is therefore

straight-forward to increase the resolution of this BN model.

More generally, this technical problem can potentially be

amended by through dynamic discretization which can enable

higher resolution and reduce the information loss of the BN

predictions (Carriger et al., 2016; Fenton and Neil, 2018).

5 Conclusion and future outlook

With this study, we have demonstrated how inputs and

outputs from a pesticide exposure prediction model can be

incorporated into a Bayesian network to deriving a risk

quotient distribution for various scenarios. The constructed

network integrates and propagates uncertainty of all
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components in a transparent way when performing the

probabilistic risk characterization. In general, compared to the

current period (2000–2030), the Bayesian network model

predicted a slight increase in the probability of risk quotient

exceeding 1 for the intermediate (2035–2065) and latest time

period (2070–2100) due to changes in future climate conditions,

for most of the pesticides investigated in this study.

For further development of this approach we aim to integrate

more updated and properly bias-corrected climate projections

from a larger ensemble of climate models in the BN, as well as

more realistic and better-informed pesticide application

scenarios. Nevertheless, the presented approach shows

promise in its ability to characterize the environmental risk of

pesticides under future scenarios by integrating different types of

information from agricultural practice, climate models, pesticide

exposure models and toxicity testing.
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III. Comparison Climate variables Climate model 1 & 2:  Mann-Kendall -trend

analysis

Table S. 2 Mann-Kendall trend analysis for Climate variables of Climate model 1 (C1) and Climate model 2 (C2) for mean day since 

application (mean over 3 previous days)  and 21 days (mean of 10 previous days) climate conditions for application in May and October. 

May October 

Days since 

application output MK.tau MK.p conclusion MK.tau MK.p conclusion 

1 MeanTemp1 0.167 0.252 zero 0.273 0.059 pos 

1 MeanPrecip1 -0.011 0.962 zero 0.361 0.012 pos 

1 MeanEpot1 0.244 0.093 pos 0.25 0.084 pos 

1 MeanWind1 0.196 0.191 zero 0.131 0.374 zero 

1 MeanRadiat1 -0.067 0.657 zero 0 1 zero 

1 MeanTemp2 0.16 0.272 zero 0.053 0.726 zero 

1 MeanPrecip2 0.135 0.369 zero -0.32 0.029 neg 

1 MeanEpot2 0.05 0.744 zero -0.127 0.387 zero 

1 MeanWind2 -0.168 0.264 zero 0.172 0.242 zero 

1 MeanRadiat2 -0.36 0.012 neg -0.067 0.657 zero 

21 MeanTemp1 0.249 0 pos 0.301 0 pos 

21 MeanPrecip1 -0.029 0.676 zero 0.015 0.83 zero 

21 MeanEpot1 0.279 0 pos 0.318 0 pos 

21 MeanWind1 0.018 0.79 zero -0.037 0.588 zero 

21 MeanRadiat1 -0.063 0.358 zero -0.123 0.072 neg 

21 MeanTemp2 0.267 0 pos 0.451 0 pos 

21 MeanPrecip2 -0.124 0.069 neg 0.088 0.201 zero 

21 MeanEpot2 0.196 0.004 pos 0.412 0 pos 

21 MeanWind2 0.072 0.29 zero 0.07 0.308 zero 

21 MeanRadiat2 -0.005 0.942 zero -0.195 0.004 neg 



IV. Visualized Result output for all selected pesticides for direct and indirect

climate effect- Risk quotient distribution for climate model 1 and application scenarios

a)

b)

c)



d)

e) 

Figure S. 2 Risk estimation of a selected herbicides, clopyralid (a), fluroxypyr-meptyl (b), MCPA (c) and fungicides, 

prothiocanazole (d) and trifloxystrobin €, for a time since application of 1 day, for the climate model C1 and for EC50 based 

effects distribution, for all time period and application scenarios. 
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southern European case study [preprint] 

Sophie Mentzel, Claudia Martínez-Megías, Merete Grung, Andreu Rico, Knut Erik 

Tollefsen, Paul J. Van den Brink, and S. Jannicke Moe 

Abstract 

In recent years, Bayesian network (BN) models have become more popular as a tool to 

support probabilistic environmental risk assessments (ERA). They can better account for and 

communicate uncertainty compared to the deterministic approaches currently used in 

traditional ERA. In this study, we used the BN as a meta-model to predict the potential effect 

of various pesticides on different biological levels in the aquatic ecosystem. The meta-model 

links the inputs and outputs of a process-based exposure model (RICEWQ), that is run with 

various scenarios combination built on meteorological, hydrological, and agricultural 

scenarios, and a probabilistic case-based effect model (PERPEST), which bases its prediction 

on a database of microcosm and mesocosm experiments. The research focused on pesticide 

exposure in rice fields surrounding a Spanish Natural Park, considering three selected 

pesticides for this case study: acetamiprid (insecticide), MCPA (herbicide), and azoxystrobin 

(fungicide). For each of the pesticide types, the developed BN model enabled the prediction 

of their effects on biological endpoints, endpoint groups, and community in an aquatic 

ecosystem. Also, it enables comparison between the different pesticide types, their effects on 

endpoint groups and community. While directly linking future scenarios of climate and 

agricultural practice to the exposure concentration and indirectly linking them to the effect on 

biological endpoints as well as community. In summary, azoxystrobin and MCPA seem to 

have a higher predicted risk for the community with at least one of the biological endpoint 

being effected compared to acetamiprid. Generally, the developed approach facilitates the 

communication of uncertainties associated with the predicted effect on different biological 

levels of the aquatic ecosystem. This transparency in all model components can aid risk 

management and decision making.  

1 Introduction 

In the future, changes in agricultural practices, as for instance, the use of new or more plant 

protection products (Delcour et al., 2015) can cause a change of risk to biodiversity in aquatic 

ecosystem. Some agricultural methods lead to an intensive use of pesticides. This is of special 

concern in the Albufera Natural Park (Valencia, Spain) a lake enclosed by rice fields, known 

for its diversity in bird and fish species (Soria, 2006). In this area, the rice production and 

other anthropogenic stressors already had a negative impact on lake’s water quality and 

ecosystem health throughout the last century (Calvo et al., 2021; Vera-Herrera et al., 2021). 

Realistic assessment of risk posed by these expected stressors is therefore crucial for the 

future ecological sustainability of the Albufera National Park. 
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1.1 Importance of effect assessment using predictive models 

Today’s ERA is mostly based on deterministic approaches, usually relying on single value 

risk estimation, such as risk quotients, to provide predictions based on individual effects data 

(for larger organisms) or sub-populations (for smaller organisms run in lab tests with subsets 

of a population). Thus far, good and reliable assessment of pesticide risk requires realistic 

exposure and effect data, as well as understanding of ecosystem processes (Schmolke et al., 

2010).  

ERA often uses monitoring studies for exposure assessment, though these can be time-

consuming and expensive, and their results are quite site specific and have a wide range of 

uncertainties (Lammoglia et al., 2018). Ergo, for pesticide ERA, using pesticide fate

simulation models (Pereira et al., 2017) is a needed tool for the prediction of exposure 

concentration and for the characterization of spatial and temporal long-term patterns. 

Moreover, as future land-use and climate changes (CC) are expected to alter the distribution 

and fate of pesticides in the aquatic environments. In the Mediteranean, it is expected that 

droughts occur more frequently, and water is less available, thereby resulting in lower 

dilution. On the other hand, severe precipitation events are expected to occur more often 

which may result in higher pesticide runoff. For this southern region, an expected increase in 

temperatures, may facilitate microbial degradation of pesticides but also higher uptake by 

organisms (Arenas-Sánchez et al., 2016; Balbus et al., 2013; García de Jalón et al., 2014; 

Noyes et al., 2009). In recent years, the CC’s influence on pesticide fate and transport has 

been the subject of increased concern (Bloomfield et al., 2006; Delpla et al., 2009; Lamon et 

al., 2009; Noyes et al., 2009). Exposure prediction models can aid exposure assessment in 

cases where monitoring data is scarce, or for example assist the analysis of future land-use 

and CC impact in prospective exposure assessment. As these process-based exposure models 

are able to integrate a wide diversity of scenario combinations such as agricultural practices, 

soil properties, crop types and meteorological conditions, consequently being a relative rapid 

and cost efficient tool assessing the exposure of pesticides to the environment (Lammoglia et 

al., 2018). 

For effect assessment based on toxicity test, indirect effects are frequently not considered, nor 

is the complexity of the population and population dynamics accounted for neither is the 

complex interactions occurring between populations in a community structure. Whilst some 

exceptions may be mesocosm studies, that are often based on single-chemical and single-

species, certain environmental media (soil, water, or sediment) and under laboratory 

conditions (Di Guardo & Hermens, 2013). The traditional assessment, species response and 

interaction have to be extrapolated and accounted for by applying assessment factors to the 

most sensitive toxicity test or hazard concentration from a species sensitivity distribution 

(Schmolke et al., 2010; Topping et al., 2020). The current effect assessment lacks insights

into the concentration-response relationship between different trophic levels of the ecosystem

(Van den Brink et al., 2006). Furthermore, ERA needs to better consider the interaction of 

contaminant and noncontaminant stressor (Landis et al., 2013), such as changes in climate 

conditions (temperature & precipitation) as well as changes in land use practices as they can 

lead to shifts in ecosystems, their hydrological processes. In turn, this may lead to changing 

responses to contaminants by affected species (Landis et al., 2013). Multiple stressors have 

been found to affect freshwater ecosystem functioning and structure long-term, and can

influence the resilience and recovery of the ecosystem (Polazzo et al., 2022). Instead of

basing the effect assessment only on single-species toxicity tests, multi-species models can

be used to predict and analyse possible indirect effects within community. Food chain models 
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can include food-web models, that only consider trophic relationships, or community models, 

that also consider some inter-species interaction (Larras et al., 2022).  

Some multi-species models are based on case-based reasoning (CBR). These CBR based 

models are based on “a paradigm of artificial intelligence and cognitive science that models 

the reasoning process as primarily memory based. Case-based reasoners solve new problems 

by retrieving stored ‘cases’ describing similar prior problem-solving episodes and adapting 

their solutions to fit new needs” (Leake, 2001). They can consider various factors such as 

endpoints, experimental ecosystems and test design in their prediction. One such model is the 

PERPEST model used in this study (Van den Brink et al., 2002), which predicts direct effects 

on communities. At the same time, it accounts for some indirect effects and interaction 

among species groups informed by observations from mesocosm studies (Davis et al., 2013) 

while considering the mode of action in its prediction (Larras et al., 2022; Van den Brink et 

al., 2006; Van den Brink et al., 2002).  

1.2 Probabilistic environmental risk assessment method needed to handle sources of 

variability and uncertainty 

Often, European prospective ERA is based on toxicity exposure ratios or other single values 

where potential risk is often calculate by comparing predicted exposure (concentration) to no-

effect concentration (Di Guardo & Hermens, 2013; Schmolke et al., 2010). In ERA, this 

deterministic approach describes risk either as a “margin of safety” using uncertainty factors, 

or the exceedance and frequency of exceedance of safe thresholds. Both derive qualitative 

output that lack indication of the level of certainty related to the input and output parameters 

(EUFRAM, 2006). In reality, however, pesticide exposure and effect have spatial and 

temporal variability determined by environmental and biological characteristics, and pesticide 

application patterns (FOCUS, 2007). Improving prospective ERA by considering and 

integrating future scenarios in the prediction of risk to the aquatic environment would 

improve prevention of further and future damage (Topping et al., 2020). Some of the 

limitations of traditional ERA can be overcome with probabilistic approaches that 

characterize both toxicity and exposure, typically using distributions or assigning 

probabilities. Consequently, they are able to account for variability and uncertainty better 

(Carriger & Newman, 2012; EUFRAM, 2006; Solomon et al., 2000; Verdonck, 2003). The 

use of probabilistic approaches has also been recommended by the European Union (Jager et 

al., 2001). Commonly used probabilistic methods are joint probability curves, quantitative 

overlap, or risk quotient distribution (Campbell et al., 2000; Mentzel et al., 2021; Verdonck, 

2003). These commonly used probabilistic approaches outputs can be hard to understand and 

communicate to decision-makers (Dreier et al., 2020; Giddings et al., 2000).  

Bayesian networks can overcome some of these limitations and better communicate and 

quantify uncertainties to decision-makers and other stakeholders (Carriger et al., 2016; 

Carriger & Newman, 2012). While being used in situations where data is limited or processes 

lack characterization, BNs are able to incorporate these various sources of information e.g., 

expert elicitation, model outputs or literature (Carriger et al., 2016; Carriger & Newman, 

2012; Gibert et al., 2018; Hamilton & Pollino, 2012). Besides, BNs have the ability to act as a 

meta-model (e.g. Mentzel et al. (2022)), allowing for the incorporation of inputs and outputs 

from various different models (in a single model). Summarized, they are probabilistic 

graphical models that contain nodes (variables) linked through arcs representing conditional 

probability tables (CPT) (Aguilera et al., 2011; Kaikkonen et al., 2021). The nodes have 

assigned states (intervals) that can be quantified by probabilities and probability distributions. 
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Based on new evidence, these Direct Acyclic Graphs (DAG) use Bayes’ rule to update the 

probability distributions throughout the network (Carriger et al., 2016; Kanes et al., 2017). 

The overall objective is to predict the risk of pesticides to biological communities

represented by multiple biological species groups. To achieve this, the  probability of effect 

on biological endpoints was predicted for the different pesticides. Secondly, the developed

BNs predicted the cumulative probability of the effects of a pesticide on different endpoint

groups (e.g., invertebrates) as well as the whole community. Thirdly, the effects of different

pesticide types on various endpoint groups are compared at the community level. Lastly, this

BN model aims to predict the probability of effects under scenarios of pesticide application 

or climate change. 

2 Material and methods 

2.1 Description of the case study region 

The study area is a coastal wetland around five kilometres south of Valencia on the 

Mediterranean Spanish coast, with an area of about 210 km2 (Figure 1).  The Natural Park has 

ecological relevance as it is a nesting and transfer point for approximately 250 species of 

migrating birds and mentioned  in as a special protection area by Birds Directive (Directive 

2009/147/EC), listed as European habitat in Natura 2000, and Ramsar Convention of 

wetlands (Calvo et al., 2021; GV, 2020; Vera-Herrera et al., 2021). Within its bound, 34% of 

Spanish rice is produced (Canet et al., 2003) as 73% of the wetland is dedicated to rice 

cultivation (Vera-Herrera et al., 2021). Also, the lake's water level is regulated by a network

of irrigation channels and seasonal rainfall (mainly spring and autumn). Agricultural and 

other anthropogenic activities had negative impact on the shallow (1-1.2 m mean depth) and 

oligohaline (1-2% salinity) lake located in the centre of the wetland (Calvo et al., 2021; Vera-

Herrera et al., 2021). 

Figure 1 Location of Albufera Natural Park near Valencia (red) and location of rice field clusters 

(coloured areas) (adapted from IGN (2022), Retrieved from www.ign.es, Accessed on 28 April 2022) 
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2.2 Bayesian network conceptual model and assumptions 

The general approach is to integrate predicted outputs from both exposure and effect 

prediction models into a Bayesian network serving as a meta-model. In this study, the RICE 

Water Quality model – RICEWQ was used to simulate the pesticide exposure in the water in 

rice paddies (Karpouzas & Capri, 2006; Miao et al., 2004) and the Predicts the Ecological 

Risks of PESTicides (PERPEST) model was used to simulate the pesticide effect to various 

biological endpoint (Van den Brink et al., 2002). We developed a BN meta-model structure 

incorporating temporal variability in the effect estimation of pesticide for various endpoints 

in the aquatic ecosystem. Thus, the simulated peak concentrations (RICEWQ output) are 

converted to a probability distributions. The gradients predicted for each biological endpoint

(PERPEST outputs) are manually added as prior probabilities in the CPTs of the related

biological endpoint nodes in the BN.  

The BN model is composed of three modules: the scenarios and exposure module (blue), 

effect on biological endpoint module (green) and effect on community (grey) module (Figure 

S. 3). The first module, scenario and exposure, is composed of the scenario combination (red)

that define the exposure concentration distributions fitted to the RICEWQ model output. The

second module is derived by the PERPEST model output that provides the effect

concentration states and the prior probabilities of the biological endpoint nodes. Finally, in
the third module, cumulative risk to community, each of the biological endpoint nodes are

transferred to Boolean nodes (true/false) before being aggregated to their respective endpoint

group nodes (light grey) (e.g. effect on Vertebrates) and further aggregated to the community

level  (Figure 2). Thus the node "Macrophytes bool" is meant to quantify the probability of a

pesticide effect to macrophytes (true/false); the node "Effect on plants" will quantify the

cumulative probability of effects to any of the plant endpoints; and the node "Effect on

Community" will quantify the cumulative probability of effects to any of the endpoint

groups.

Figure 2 Conceptual model for the effect estimation of a pesticide (acetamiprid) on an aquatic community. 

Pesticide exposure derives input from the RICEWQ model and is determined by the associated future and 

application scenarios. The PERPEST model input derives the effect on biological endpoints and endpoint 

groups and in turn the effect on the community.  

In this study, the BN was constructed with the Netica software (Norsys Software Corp., 

www.norsys.com). For each of the selected pesticides, the BN illustrates the predicted 

exposure concentration and effect on the various biological endpoint and endpoint groups and 

summarizing effect on community. The parameterized model can be run by selecting a set of 

scenarios e.g. climate time and application scenario as evidence. The probability distributions 

will then be updated throughout the BN to predict the probability of effect classes on the 

output nodes. Model assumptions and a more detailed node description are detailed in Table 

1.
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Table 1 Bayesian network node description containing the node name, type, number of states and 

information source.

Module Node name Node type No. 

of 

states 

Node input source 

Scenario 

and 

Exposur

e 

Climate time Categories 3 Scenarios (2008, 2050, 2100) 

Application 

scenario 

Categories 2 Scenarios (baseline, baseline+50%) 

Scenario 

combination 

Categories 6 Combination of the scenarios 

Exposure 

concentration 

Intervals 8 Scenario-dependent distribution: 

Normal Distribution (mean, sd) 

Effects 

on 

biologica

l 

endpoint

s 

Effect 

concentration 

Intervals 6-10 = exposure concentration with 

discretization adapted to intervals 

used by PERPEST 

Biological 

endpoint node 

Ranked 

categories 

3 Pesticide effect (no, slight, clear) on 

biological endpoints as predicted by 

PERPEST 

Cumulat

ive risk 

to 

commun

ity 

Effect on 

endpoints 

Boolean 2 FALSE = no effect 

TRUE = slight effect + clear effect 

Effect on 

endpoint group 

Boolean 2 Effect on functional groups = 

1-(1-nodea)* (1-nodeb)*…. (1-noden) 

Effect on 

Community 

Boolean 2 Effect on Community = 

1-(1-nodea)* (1-nodeb)*…. (1-noden) 

2.3 Exposure prediction with RICEWQ - prediction and settings 

As previously mentioned, the RICEWQ model was developed to simulate pesticide exposure 

in water of rice paddies. It is a process-based model that at field level simulates pesticide 

runoff specific for use in rice paddies (Williams et al., 1999). Thus far, it is considered to be

the most suitable and reliable for higher-tier pesticide fate and exposure prediction (Daam et

al., 2013; Karpouzas & Capri, 2006; MED-Rice, 2003). Besides, it has been widely applied 

in the US (Karpouzas & Capri, 2006; Miao et al., 2004) to track the fate of both parent and 

metabolite chemicals (Christen et al., 2006). Various processes are reflected in RICEWQ 

modelling, such as biological, hydrological and physico-chemical processes (Wang et al.,

2019).  

This exposure prediction model requires the following inputs: daily weather information, 

paddy soil properties, pesticide chemical properties, pesticide management information, and 

water management practices (Wang et al., 2019). The reader is referred to (Williams et al., 

1999) for a more detailed information of the model function, assumptions and description.  

In this study, the latest version, RICEWQ 1.92 (Waterborne Environmental Inc, 2022), was

run for various scenarios incorporating different rice crop types, management practices,
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meteorological and hydrological conditions, and for selected pesticides used for the rice crops

in the region. Moreover, we selected three active substances that are regularly applied around 

Albufera lake by farmers. The derived pesticide application scenario is based on the

recommended manufacturer dosages from which we derived two scenarios: one maximum 

recommended dosage (referred to as Baseline application throughout this study) and one that 

is 150% of that baseline dosage (Baseline+50%). Initially, we had aimed to have at least

three different emission scenarios’ climate projections to include more variability. We used

them as input for the RICEWQ model runs, based on what had been previously used in a 

study by Pool et al. (2021). However, available prediction data was limited for the specific

meteorological station 8416 near the National park. Therefore, only one climate prediction 

data set was collected from AEMET (2021) at “Climate projections for the XXI Century – 

Daily data”, derived with the model “GCM MPI-ESM-LR” and an emission scenario 

“representative concentration pathways (RCP) 8.5”. Based on this data set, three 

“climate-time” scenarios for the years 2008, 2050 and 2100 were used to run the exposure 

prediction model. 

The exposure prediction model was run for 552 rice crop clusters. The maximum exposure 

concentration from each cluster was used to fit to the exposure distribution. A detailed 

description of the assumptions made to derive these clusters, as well as the automatization of 

the RICEWQ with a handy interface, are available in Martínez-Megías et al. (2022). In total,
six different scenarios were developed each of which is the combination of year and 

application scenario, and pesticide. They were run with autoRICEWQ (open source under

GPL-3.0 License, programmed in Python 3), which can be accessed at Fuentes-Edfuf and

Martínez-Megías (2022).   

The prior probability of exposure concentration node is assumed to be a normal distribution 

with varying mean and standard deviation depending on the scenario combination (Table 2). 

This paper focuses on the predicted effect in 2050, which was considered sufficient for the

concept development. The predictions for the other years will be presented in supplementary,

as valid predictions of the effect of climate models on the various biological endpoints, 

would require more climate model scenarios to account for uncertainty and variability in

future appropriately.

Table 2 The exposure peak concentration means and standard deviations used as input on the Bayesian 

network for the selected pesticides and scenarios, also detailing the year and application scenario. (three 

significant digits were chosen) 

Scenario 
Pesticide 

type 
Pesticide Year Application 

Mean 

(µg/L) 

Sd 

(µg/L) 

1 

Insecticide Acetamiprid 

2008 
Baseline 0.35 0.27 

2 Baseline+50% 0.47 0.36 

3 
2050 

Baseline 0.86 0.45 

4 Baseline+50% 1.14 0.60 

5 
2100 

Baseline 0.58 0.20 

6 Baseline+50% 0.77 0.26 

1 

Fungicide Azoxystrobin 
2008 

Baseline 80.5 10.0 

2 Baseline+50% 121 15.0 

3 2050 Baseline 71.9 9.80 



bioRxiv         doi: https://doi.org/10.1101/2022.10.19.512688) 

8

4 Baseline+50% 108 14.7 

5 
2100 

Baseline 69.6 8.74 

6 Baseline+50% 105 13.1 

1 

Herbicide MCPA 

2008 
Baseline 37.7 5.59 

2 Baseline+50% 56.5 8.40 

3 
2050 

Baseline 33.1 5.20 

4 Baseline+50% 49.6 7.81 

5 
2100 

Baseline 24.3 4.79 

6 Baseline+50% 36.5 7.16 
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2.4 Effect prediction with PERPEST – model assumptions and prediction 

The PERPEST model was developed to simulate pesticide effects on various biological

endpoints (Van den Brink et al., 2002) and can be used for risk assessment of single and

mixed applications of pesticides (Rämö et al., 2018). It is considered more comprehensive

compared to the traditional ERA that uses risk or hazard quotient approaches (Polidoro & 

Morra, 2016; Rämö et al., 2018). This effect prediction model applies case-based reasoning 

approach (CBR) to draw empirical ecotoxicological data from micro- and mesocosm 

experiments (Davis et al., 2013; Rämö et al., 2018). It can predict direct and indirect effects 

of contaminants while incorporating hydrological properties and acute and chronic exposure 

in the prediction (Van den Brink et al., 2002). The PERPEST model compares environmental 

exposure concentrations to previous observations in mesocosm and microcosm toxicity tests 

to estimate the probability of the pesticide having a toxic effect on various pesticide type 

dependent biological endpoints and endpoint groups.  

The PERPEST model predicts a probability gradient for three (default) effect classes on 

biological endpoints depending on the modelled pesticide type. Following Van den Brink et 

al. (2002) these three classes are:  

• “No effect” - No consistent adverse effects are observed as a result of the treatment.

Observed differences between treated test systems and controls do not show a clear

causality;

• “Slight effect” - Confined responses of sensitive endpoints (e.g. partial reduction in

abundance). Effects observed on individual sampling dates only and/or of a very short

duration directly after treatment; and

• “Clear effect” – severe reductions of sensitive taxa over a sequence of sampling dates

are demonstrated, but the duration of the study is too short to demonstrate complete

recovery within eight weeks after the last treatment (Davis et al., 2013).

The reader is referred to Van den Brink et al. (2002) for more detailed information of the 

model function, assumptions and description.  

In this study, we used the PERPEST model to predict the effect of a fungicide, herbicide and 

insecticide on the biological endpoint associated with being affected by the different types of 

pesticides. The selected pesticides for this study were not currently available in the PERPEST 

case base, therefore their physico-chemical properties were collected from literature and 

databases such as PPDB (Lewis et al., 2016), PubChem (Kim et al., 2020) and CompTox 

(Williams et al., 2017). The median hazard concentration (HC50) was calculated for each of 

the pesticides using MOSAIC (Charles et al., 2017) with EC50 toxicity data collected from 

ECOTOXicology Knowledgebase (Olker et al., 2022). The used input information that is
compared to the toxicity dataset by the PERPEST model is shown in Table 3.
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3 Results 
A parameterised example of the BN is shown in Figure 3 for the insecticide acetamiprid. It

displays the event of scenario 4, so for the climate in 2050 with a Baseline+50% application 
scenraio, resulting in the displayed exposure distribution (exposure concentration node). For

this event the predicted effect on the biological endpoint varied. There was no effect on fish

and other macroinvertebrates. Also, there was mostly no effect on rotifers, community 
metabolism, algae and macrophytes, with a probability of 80-90%. The highest probability of

a clear effect was predicted for macrocrustacea, with about 24%. The effect on the endpoint

groups also varied, with no biological endpoint predicted to be affected in the vertebrates,

and most likely none being affected in the endpoint group of plants (ca. 97%). The

summarizing node "community" had a predicted effect on at least one of the biological

endpoints, with about 77%.

Figure 3 Example of the parameterised Bayesian network for the insecticide acetamiprid. It displays the 

predicted effect on the biological endpoints and endpoint groups for climate conditions of 2050 and a 

baseline+50% application scenario. 

In the subsequent, the probabilities of the output nodes predicted by the BN are displayed in a 

bar chart to enable easier comparison between the different scenarios, biological endpoint and 

pesticides types. 

3.1 Predicted effect on biological endpoints 

Focusing on the biological endpoints, the BN predicted the effect of the insecticide 
acetamiprid for eight biological endpoints. Insects, macro- and microcrustaceans had a 

probability of up to 30% to be in the state of slight to clear effect. Community metabolism, 
algae and rotifers were mostly unaffected. fish and macroinvertebrates were most likely to 

not be affected by the insecticide (Supplement Information I Figure S. 5).  

For this fungicide azoxystrobin, eleven biological endpoints were considered by the 
PERPEST model. Macroinvertebrates, microcrustacean and other zooplankton taxa were the 

biological endpoints predicted to be clearly affected ,with a likelihood of 50%, followed by 
other zooplankton, phytoplankton, community metabolism, and macrocrustacea. Fish and 
macrophytes were similarly affected, with a 15 to 20% probability of being in the “no effect” 
state. Finally, decomposition and periphytic were predicted not to be affected (approx. 100%)

(Supplement Information I Figure S. 7).  
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The PERPEST model considered eight biological endpoints for this herbicide MCPA. Here 

zooplankton even had a probability of more than 50% to be in the clear effect state and

phytoplankton, and periphytic had a probability of 25%. Macrophytes and community

metabolism were also primarily unaffected. Fish and molluscs were predicted not to be 
affected by about 100% (Supplement Information I Figure S. 9).

There were few biological endpoints all pesticides had in common, one of them was 

macrocrustacea (see Figure S.5, Figure S.7, Figure S.9). For all pesticides the distribution of 

probabilities over the three states were similar. The fungicide and insecticide were predicted 

to have a probability of 25% to be in the clear effect state in 2050. Compared to the other 

pesticides, the insecticide had lowest predicted probability of being in a clear effect state at
about 20%. The pesticides showed the highest probability of the macrocrustacea not being
affected.   

3.2 Aggregation of the predicted effect from biological endpoints to endpoint groups 

The BN model output could be defined as the effect on a specific biological endpoint (Figure

4). In the following, an example of acetamiprid dispalys the aggregation from the PERPEST

defined states to the effect on the biological endpoint. It was expected that insects were 

affected with a probability of approx. 22 %, slightly affected with 18 %, and not be affected 

with 60 % by acetamiprid (Figure 4a). 

To summarize this example, the likelihood of there being an effect on insects was true with 

approx. 30% and false with approx. 70% (Figure 4b). 

Figure 4 Example BN output predicted effect on insects by acetamiprid for a specific scenario (a) and 

summarising Boolean node output displaying whether or not an effect of the pesticide can be assumed (b), for 

climate condition in 2050 and a Baseline+50% application. 

An assumption can be made for the effect on biological endpoints and the endpoint groups 

(Figure 5). When comparing some of the biological endpoints for the insecticide acetamiprid, 

it can be observed that macroinvertebrate was predicted not to be affected by acetamiprid 
with a likelihood of almost 100 %. Unlike the insects, macro-and microcrustaceans had a 

higher probability of being affected, with a 25-30% likelihood. The effect on the endpoint 
group could also be aggregated with the BN. In this insecticide example the biological 
endpoints displayed were all considered for the endpoint group of invertebrates. It can be 

concluded that the predicted probability of an effect on any of these biological endpoints of
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the invertebrates endpoint group was false with approx. 25 % and true with approx. 75%. 

In other words, it is more probable for at least one of the biological endpoints to be 

affected. 

Figure 5 Example for the predicted effect of insecticide on the biological endpoints (a), which are considered 

in the endpoint functional group “Invertebrates” (b), for climate conditions in 2050 and Baseline+50% 

application. 

3.3. Comparison of the predicted effect of pesticides on the endpoint groups and community 

Another output of the BN was the effect on the endpoint groups and community, which 

describes the combined probability of any biological endpoints being affected. 

The fungicide azoxystrobin had a probability of 50% for any of its biological endpoints in the 

plant endpoint group to be affected (for the baseline application scenario). The endpoint 

group of ecosystem system processes had a probability of less than 50% for any of its 

biological endpoints to be affected. On the other hand, the vertebrates were not affected 

(Supplement Information I Figure S. 8 – upper panel).  

For the herbicide MCPA, the probability of any of the plant’s biological endpoints being 

affected was about 50%.  With a probability of 15-20% of any of the biological endpoints of 

the ecosystem processes being affected by the herbicide. Again, no biological endpoint was 

affected for the vertebrate endpoint group. (Supplement Information I  Figure S. 10 – lower 

panel). 

With a probability of 50-75% it was predicted that any of the biological endpoints of the 

invertebrates were affected by the insecticide acetamiprid. In contrast, the endpoint groups of 

plants and ecosystem processes were predicted to have mostly none of the biological 

endpoints affected. For this pesticide type, the vertebrates were expected to not be affected 

(Supplement Information I Figure S. 6 – lower panel). 
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The summarizing effect on community node shows that all three pesticides influenced at least 

one of the biological endpoints (Figure 6). The fungicide (Azoxystrobin) affected any of the 

biological endpoints of the community with a predicted probability of almost 100%, while the 

herbicide (MCPA) had almost 90 % probability of affecting one of the endpoints. The 

insecticide (Acetamiprid) had the lowest predicted risk to the community, with a probability 

of almost 75% of any of the biological endpoints being affected.  

In the following example, the results display the effect on any of the biological endpoints of 

the invertebrate, plant endpoint groups and community for either baseline and baseline+50% 

application scenario under the same future climate conditions (2050) (Figure 6). Focusing on 

the endpoint groups, the invertebrates had the highest probability of being affected by 

azoxystrobin and the lowest by acetamiprid. It was observed that the probability of an effect 

on any of the biological endpoints of the plant community (endpoint group) was highest for 

MCPA with approx. 60 % (for the baseline application), and lowest for acetamiprid with 

approx. 2%. Azoxystrobin has the highest probability (98%) of any of the biological 

endpoints in the community being affected, and acetamiprid had the lowest probability with 

75%. From these BN predictions, it can also be observed that the increase in effect of any of 

the biological endpoint is highest for azoxystrobin whenever a higher application scenario is 

used, whereas the lowest increase in probability was observed for acetamiprid.  

Figure 6 Example of effect on invertebrates, plant endpoint group and community displaying the probability 

in a bar chart for the selected pesticides, for a baseline and  Baseline+50% application under climate 

conditions in 2050.  
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4 Discussion 

In general, the BN predicted at least one of the biological endpoints was affected by the 

pesticides under any of the scenario combinations. Azoxystrobin was most likely to affect at 

least one of the biological endpoints, followed by MCPA which also had a high likelihood. 
Whereas acetamiprid, compared to the other two pesticides, had the lowest effect. 
Furthermore, a trend from the predictions could be observed for the higher application of 

pesticides that resulted in a shift towards a higher probability for any of the biological 

endpoint and  endpoint groups being affected for all pesticides.  On the other hand, the 

climate condition at the time had no trend on the effect on biological endpoints that can be 

observed for all pesticide types.  

We aimed to carry out an effect assessment of three selected pesticides using a probabilistic 

approach, as these have been recommended to better account for uncertainty in pesticide 

exposure (Carriger & Newman, 2012) and effect (Dreier et al., 2020). Therefore, we linked 

the inputs and outputs of two prediction models into a Bayesian network (BN). We had 

succeeded in developing a BN model that can predict the effect on multiple biological 

endpoints and the cumulative effect on endpoint groups and communities. These BN 

predictions enabled comparison between different pesticide types, community levels, as well 

as pesticide application and climate change scenarios. 

Some initial precision of the prediction model outputs might be lost due to a common BN 

shortcoming when discretisation of continuous variables is applied (Marcot, 2017; Nojavan et 

al., 2017). A higher resolution of BN predictions can be achieved by applying dynamic 

discretisation (Carriger et al., 2016; Fenton & Neil, 2018). The credibility of developed BN is 

mainly influenced by the assumptions and input data derived from predictions from the 

process-based exposure model and case-based effect model. The RICEWQ model used to 

predict the exposure concentrations in the rice paddy is readily available for simulation and 

can be used for higher tier exposure assessment (MED-Rice, 2003). A detailed description of 

uncertainties related to this model can be found in Miao et al. (2004). We chose this model as 

it enabled simulation of agricultural conditions for rice production, such as the controlled 

release of water, overflow, and flooding, unlike other pesticide fate and transport models. 

Moreover, it was considered as the first option when carrying out an exposure prediction for 

rice cultures (MED-Rice, 2003). However, some assumptions and input data that led to 

uncertainty in our modelling efforts. We could have derived more realistic model outputs by 

updating or adding scenarios to our model efforts. The use of multiple climate models with 

different greenhouse gas emission scenarios allows integration of more variability (Fernández 

et al., 2017). The model could be improvement by using more and different climate models, 
as some papers by  Steffens et al. (2014) and Moe et al. (2022) recommended. These 

mentioned that using an ensemble of various lobal and regional climate models together with 

various greenhouse gas emission scenarios would potentially enable more robust estimations 

of pesticide losses in future. In addition, we assumed more realistic application scenarios 

could be developed and used to run the autoRICWQ model. Future work for the prediction of 

the exposure concentration could also be extended to the discharge channel, by using the 

RIVWQ model, which would enable the consideration and integration of dilution better. 

There is also some uncertainty associated with the PERPEST model, connected to the 

ecotoxicology database. The database on which the case-based effect model bases its 

predictions on has limited data availability for fish and tadpoles. Furthermore, its 

incorporated data is primarily based on datasets from temperate climate  such  as Europe and 

North-America (Davis et al., 2013; Van den Brink et al., 2002), and therefore is limited in its 

predictions for the Mediterranean climate zone.  
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Henceforth, this limitation could be overcome by updating the database with more and 

regional relevant bioassays. Some other uncertainties of the PERPEST model can be 

associated with the input information such as pesticide properties for the model run. 

Consequently, we tried to minimize this, by using the same information source for the 

selected pesticides whenever possible. For example, we collected toxicity data from  

ECOTOXicology Knowledgebase (Olker et al., 2022) and thereafter using the same method 

to prepare the data used on MOSAIC (Charles et al., 2017) to predict the HC50. In essence, 

the effect prediction model has simple data requirements making it easy to use (Davis et al., 

2013). In addition, some uncertainty is also linked to how the PERPEST model output is 

integrated in the BN, as it is a gradient, and its concentration range thus far cannot be 

adjusted to fit better with the exposure distribution. Some other restraints are pointed out by 

Davis et al. (2013) detailing that PERPEST output might be challenging to use and 

understand by stakeholders and used in risk management due to the lack of an “established 

threshold risk value”. To overcome this limitation of the PERPEST model Davis et al. (2013) 

suggested to set acceptable probabilities. In this study, we tried a different approach to enable 

easier communication of BN outputs integrated with a summarizing node for the effect on 

endpoint group and community. These nodes show the probability of any of the biological 

endpoints to be affected to be true or false. This far there is no direct link from the scenarios 

to the effect module of the network. This relationship needs to be further explored, as the 

combined effect of climate conditions and chemical exposure are expected to change the 

effect on the different biological endpoints. 

Additional research and model development may result in a better integration and use of the 

prediction model outputs. An updated PERPEST model database would greatly decrease 

uncertainties. Regarding the RICEWQ model calibration, larger number of models runs with 

more applications and climate scenarios, and crop types would be beneficial to increase 

reflection of variability. In addition, the BN model could also be run for other pesticides 

commonly used for rice production in the area. Thenceforward this could also allow the 

prediction of cumulative risks of intentional mixtures. Most of these improvements will likely 

require some changes to the model structure. Nevertheless, this model enables accounting for 

uncertainty of all compartments of the BN model, which allows for transparency when 

communicating the effect of pesticides to various biological endpoints, endpoint groups and 

the community in the aquatic environment. 
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5 Conclusion and future outlook 

This study shows how to use a Bayesian network model to integrate the outcomes of two 

different predictive models - the pesticide exposure model RICEWQ and the biological effect 

model PERPEST, and thereby predicts the risk of a pesticide on biological endpoints and 

endpoint groups in the aquatic ecosystem of a rice paddy. The BN, we have developed can 

carry out probabilistic calculation of risk for various event such as pesticide application 

scenarios. This approach builds upon our probabilistic model versions of the traditionally 

used Risk Quotient calculation, displaying uncertainty transparently of all its model 

components. The current study further expands this approach by including the risk 

calculation for individual biological endpoints as well cumulative risk for the endpoint groups 

and the community.  

For example, the fungicide azoxystrobin was predicted to have the highest probability (about 

98%) of affecting any of the biological endpoints in the community. Followed by the 

herbicide MCPA, which had a probability of 85% of affecting any of the biological endpoints 

in the community. MCPA, compared to azoxystrobin, the invertebrate’s endpoint group had a 
lower probability of any endpoints being affected, and the plant endpoint group a higher 

probability. The insecticide acetamiprid had the lowest probability of affecting any of the 

biological endpoint groups in the community. In comparison to the two other pesticides, its 

plant community (endpoint group) has higher probability of none of the biological endpoints 

to be affected. 

Future research efforts can incorporate more scenarios such as additional crop types, 

application patterns and an ensemble of climate models to derive a more realistic idea of 

pesticide effects on the aquatic ecosystem. In addition, we aim to carry out an effect 

assessment of the intentional mixtures applied in the Albufera Natural Park to move away 

from a single compound assessment.   
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I. Endpoint groups per pesticide type

The following lists the biological endpoint groups that are considered by the PERPEST 

model.  

Fungicide: 

- Invertebrates: Microcrustacea, Macrocrustacea, Insecta, Other zooplankton taxa,

Other macro-invertebrate taxa

- Plant: Periphytic algae, Phytoplankton, Macrophytes

- Vertebrates: Fish and tadpoles

- ecosystem process: DO-pH metabolism, Decomposition

Insecticide: 
- vertebrates: Fish
- invertebrates: Insects, Macrocrustacea, Microcrustacea, Other macro-invertebrates,

Rotifers
- plants: Algae and macrophytes
- ecosystem process: Community metabolism

Herbicide: 
- ecosystem process: Community metabolism
- invertebrates: Zooplankton, Macrocrustaceans & Insects, Molluscs
- vertebrates: Fish and Tadpoles
- plants: Macrophytes, Periphyton, Phytoplankton



II. PERPEST model description and output

2.1 Description of assumption and processes on the PERPEST model 

In contrast to most effect models, PERPEST is based on empirical data from micro- and 

mesocosms extracted from literature. It searches for situations in the database which resemble 

the case in question, based on relevant (toxicity) characteristics of the compound. This allows 

the model to predict effects of pesticides for which no evaluation on a semi-field scale have 

been published. PERPEST results in a prediction showing the probability of three effect 

classes (no, slight or clear effects) for the various grouped endpoints. For each taxon group, 

the predicted probability of effect classes along the pesticide concentration gradient is used to 

derive the conditional probability table for this taxon node in the BN. 

2.2 Example gradient output for an insecticide 

Figure S. 1 Example of the predicted effect on the taxonomic group Algae and Macrophytes that where derived for the 

herbicide. 

III. Bayesian network output for the biological endpoints and endpoint groups

Figure S. 2 Bayesian network model for the insecticide 



Figure S. 3 Bayesian network for the fungicide 

Figure S. 4 Bayesian network for the herbicide 

It can be observed that for the insecticide. The probability of the biological endpoints to had 

slight and clear effect state was higher in 2050 and 2100. The opposite could be observed for 

the fungicide azoxystrobin, here the probability of the biological endpoint to be in the slight 

and clear effect state decrease in 2050 and 2100. The herbicide MCPA, also showed a 

decrease of probability of the biological endpoints to be in slight and clear effect state for 

2100 and predicted a similar probability of the previous climate-time scenarios. For the 

fungicide, the probabilities  for any of the biological endpoints in the endpoint groups didn’t 

seem to change much over the years, with one exception, ecosystem processes had a higher 

probability of none of the biological endpoints to be affect in 2100. As for the herbicide, in 

general azoxystrobin had lower effect on the endpoint groups in 2100 than previous time-

periods. The overall trend for the insecticide was that the likelihood of any of the biological 

endpoints not being affected was highest in 2008 and lowest in 2050. The Probability were 

slightly higher for the biological endpoints to be affected by MCPA in 2050 and 2100. 

Whereas, a decreased was observed for azoxystrobin for the climate conditions in 2050 and 

2100. For acetamiprid an increase was observed in probability for a biological endpoint to be 

affected for the climate conditions in 2050 for acetamiprid followed by a decrease in 2100. 



Figure S. 5 Overview of effects on the biological endpoints by the selected insecticide (acetamiprid) for all selected 

scenarios. 



Figure S. 6 Overview of effects on the endpoint groups community level by the selected insecticide (acetamiprid) for all 

selected scenarios. 



Figure S. 7 Overview of effects on the biological endpoint by the selected fungicide (azoxystrobin) for all selected scenarios. 



Figure S. 8 Overview of effects on the endpoint groups community level by the selected fungicide (azoxystrobin) for all 

selected scenarios. 



Figure S. 9 Overview of effects on the biological endpoint by the selected herbicide (MCPA) for all selected scenarios. 



Figure S. 10 Overview of effects on the endpoint groups and community level by the selected herbicide (MCPA) for all 

selected scenarios. 
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