Building an Integrated Persistent
Application

Dag Sjsberg
Malcolm Atkinson
Joao Lopes

Phil Trinder

Computing Science Department, University of Glasgow

Glasgow, Scotland

{sjoberg,mpa, jlopes,trinder}@dcs.glasgow.ac.uk

Abstract

The major motivation for database programming language (DBPL) re-
search is to facilitate the construction and maintenance of large data-
intensive applications. To fully benefit from DBPLs, supporting method-
ologies and tools are needed. This paper reports requirements for such
methodologies and tools that were experienced when constructing a multi-
authored, multi-levelled Thesaurus Application (TA) in a higher order
DBPL. Although built in a specific language (Napier88), the major prin-
ciples discovered apply to other DBPLs.

The TA comprises several loosely-integrated components constructed
by different programmers. The components were themselves implemented
using general purpose sub-components, including libraries. We experi-
enced that a realistic application could be constructed quickly in a DBPL.
Rapid construction was facilitated by the use of libraries, code reuse and
an incremental construction methodology supported by the persistent
store. Language features such as a polymorphic type system and struc-
tural type equivalence were important. Nevertheless, some problems were
encountered with code reuse, with integrating independently constructed
components, with the lack of concurrency and with build management
such as installation and recompilation. Our experiences lead us to suggest
several improvements, including models, methodologies and supporting
tools for persistent application construction and maintenance.

1 Introduction

The major motivation for database programming language (DBPL) research is
the belief that such languages will facilitate the construction of large, long-lived
data-intensive applications. Most database programming language research has
been directed towards constructing new languages and object stores. There
are relatively few reports of experience using these facilities to construct and
maintain persistent applications. Non-trivial DBPL applications are also rare
because many languages and stores are experimental prototypes. However,
Napier88 [MBCD8Y] is a new persistent programming language (PPL) that is

sufficiently well-engineered to support the construction of non-trivial applica-
tions.

The following sections describe experience gained in constructing the The-
saurus Application (TA) in Napier88. Although built in a specific language,
many of the principles discovered apply to any DBPL where code is accumu-
lated 1n a single repository, for example object-oriented DBPLs. One impact of
a single repository of code is that programs are no longer constructed as large
discrete units. Instead, a typical program is a small unit that retrieves and
reuses code already in the repository.

Although small, around 14000 lines of code, TA has an interesting external
and internal architecture. The first external feature i1s that, like many much
larger applications, it was multi-authored. That 1s, each of the three compo-
nents was constructed by a different programmer. Secondly, the application
is not a close-knit product, such as might be delivered to a “user”. Instead
the architecture is more open, or extensible. Indeed it appears that, in a per-
sistent world, programs from several sources are accreted to manipulate and
interrogate the thesauri.

The TA internal architecture is multi-level, i.e., the three components are
implemented using several general-purpose sub-components, namely the WIN
and Maps libraries [CDK90, ALPR91] and the Ringad comprehension trans-
lator [ATW93]. Some sub-components are used in more than one component;
Section 3 describes the architecture in detail. Moreover, some subsidiary com-
ponents were constructed by non-TA authors, and some originate from a remote
site. A second implementation feature is the degree of reuse in the internal ar-
chitecture. Both the Thesaurus-based Software Information Tool (TSIT) and
the Ringad comprehension translator reuse parts of the St Andrews Napier88
compiler.

The TA construction started using the tools and methodologies available
in 1990. Because DBPL research is advancing, better tools and methodologies
are now available. We are, however, constrained to report our experiences with
the tools and methodologies used during the development.

We experienced that a realistic, i.e., multi-author and multi-level, applica-
tion could be constructed quickly in a DBPL. All three programmers, although
experienced in other languages, were novice Napier88 programmers. Despite
our inexperience, TA was constructed in less than eight person-months work.
The rapid construction was facilitated by the use of libraries, code reuse and
an incremental construction methodology.

As detailed in Section 4, the TA project benefited from the powerful type
system of Napier88. Useful libraries existed and proved easy to use. Reuse
of code, even foreign-site code, was possible; although some difficulties were
encountered. In particular, locating all of the source code of a sub-component
i1s hard. Separately developed sub-components can be integrated by inserting
them into the same store, but discovering an installation-order, i.e., a legal order
for installing sub-components, might be very difficult. Lack of concurrency!
complicated both multiple-author cooperation and software maintenance.

As described in Section 5, our experiences lead us to propose several im-
provements. Many of these issues are even now being addressed by the Napier88
community. A well-developed methodology would facilitate construction and

IThe latest versions of Napier88 have multi-threading.

maintenance of large applications. Several tools would also have been useful,
particularly tools that provide cross-referencing and consistency checking, de-
termine installation-order and perform partial recompilation when a small part
of an application changes.

The remainder of the paper is structured as follows. Section 2 describes
the external TA structure. Section 3 describes the internal implementation
structure. Section 4 is a discussion of the experience we gained from writing the
application. Section b describes the improvements we recommend. Section 6
concludes.

1.1 Enabling Technology

Napier88 is a persistent programming language, that is, it conforms to the
principles of orthogonal persistence [ABCT83]. Napier88 is a strongly typed
language with some type inference. It provides labelled Cartesian product
(structures), labelled disjoint sums (variants) and explicit parametric poly-
morphism. Existential polymorphism is used to implement ADTs. Napier88
is a store-based language that combines persistence, higher-order procedures
[AMB85] and L-value and R-value binding [MBDA90].

During the TA development we adhered to a programming methodology
based on L-values bound to named persistent locations [Dea87, Mem90, Con91,
DCC92]. A stub for a procedure or another kind of value is initially inserted
into a new location to which other programs can then bind. For each stub a
template program is created that inserts a meaningful value into the location.
Incremental development is supported in that the template program can be
edited and the location correspondingly updated with a new value without the
need for editing, recompilation or re-execution of the other programs using the
value.

Currently most Napier88 applications are components of what may be
called a Napier88 programming environment which includes a callable com-
piler [Cut93a], a window manager (WIN), browsers [Kir93, FDK*92], a hyper-
programming environment [KCCT92], a Maps library and both model and
schema editors [Zhe92]. TA enhances the Napier88 programming environment
even further, and this paper demonstrates how TA was built by using the Maps
and WIN libraries, reusing components of a Napier88 compiler and browser and
integrating existing components (TSIT, ShTh, Utility Queries).

2 External Thesaurus Application Structure

The Thesaurus Application (TA) assists persistent programmers in keeping
track of the structure of the programs and other data in the persistent store.
It is a meta-application in that its universe of discourse is applications them-
selves. TA provides answers to questions like the following: Which environ-
ments, types, procedures, etc. exist? In which programs or environments are
they defined or used? Which places may be affected by changes to them? etc.
The need for such a tool has often been experienced by persistent programmers.

The fundamental component of TA is the collection of thesauri (Figure 1).
For each application registered with TSIT there is an associated thesaurus
holding information about names in the source programs and names denoting

|
: ShTh TSIT Utility Queries
|

< Thesauri >

Figure 1: TA structure

name-type-value-constancy bindings in a persistent store [ABC*83, MBDASS].
The thesaurus is automatically updated by TSIT at times specified by the user,
for example daily at 02:00. A thesaurus update can also be initiated at any
time.

As the interface to the thesaurus and the query facilities provided by TSIT
are rather primitive, a need was felt for a more convenient window-based inter-
face with enhanced query possibilities. The ShTh component was then devel-
oped by using WIN and provides a graphical interface to one or more thesauri.
ShTh also includes a simple query language for operations on the thesauri.
Complex queries (involving recursion), however, cannot be expressed. To meet
this deficiency another software component, the comprehension query language,
was constructed. Queries and their results can be saved in the persistent store.

2.1 A Thesaurus-based Software Information Tool

The heart of the Thesaurus-based Software Information Tool (TSIT) is the the-
saurus which keeps track of identifiers of all kinds (denoting types, structures,
(polymorphic) procedures, ADTs, etc.).

Names are the focus of attention of the thesaurus since they are central to
programmers and system builders’ thinking and thus influence the way soft-
ware 1s organised. The meanings attached to names are relatively stable when
dealing with concepts at an abstract level — even though the detailed seman-
tics and interpretation may vary between people and between contexts. This
contrasts with all changes in physical software implementations [Sjg93a]. The
most important information held by a thesaurus entry is as follows:

e name (a textual form of an identifier in a source program or of a binding
in a persistent store)

e container (file or environment)
e line number (if container is a file)

e kind — base type (integer, real, string, etc.) or constructed type (struc-
ture, procedure, etc.)

e constancy (constant or variable)

e usage (informs whether the name occurs as a declaration or use of a type
identifier, or as a declaration, left context or right context of a value
identifier)

e context (declaring use of binding in the store, declaring type parame-
ter, procedure parameter, structure field, variant tag, etc., inserting into
or dropping binding from persistent store, dereferencing structure field,
projecting variant tag, etc.)

There are two categories of thesauri:

1. The master-thesaur: contain automatically generated data reflecting the
state of the source code and persistent store of an application at the time
of the analysis.

2. The deriwved-thesauri are generated from the master-thesauri via queries.

TSIT is the tool responsible for creation and update of the master-thesauri.
Initially one thesaurus is created for each application registered with TSIT. A
thesaurus is populated by an analyser component of TSIT that scans all the
source files and the persistent store of the application being analysed. Each
time a name occurrence is encountered associated information is stored in the
thesaurus. To ensure correctness and consistency of the master-thesauri, entries
cannot be inserted, modified or removed interactively or by any program that
is not part of TSIT. A more detailed description can be found in [Sjg92].

TSIT provides primitive search facilities and simple consistency checks via
a textual interface. A thesaurus created by ShTh or Utility Queries is typically
a result of a query on a master-thesauri. Such derived-thesauri may, in turn,
be the subject of new queries.

2.2 Show Thesaurus User Interface

The ShTh user interface was implemented in order to provide an easy way of
filtering the (potentially) huge amount of information contained in a thesaurus.
ShTh provides menu-driven facilities that help the user to query a thesaurus
and visualise the result of query application. It also provides facilities to store
and retrieve queries and thesauri; thesauri may also be imported or exported
via text files.

Figure 2 presents the ShTh interface; the top menu line gives a broad idea
of 1ts functionality. In the “Actions” menu the user has options to load, close,
save, save as, delete, revert, and run queries; it also has undo and quit. The
“Select”, “Project” and “Sort” menus are used to build a query. Queries and
thesauri may be stored, retrieved and visualised using this interface. In the
same figure, part of the display of a thesaurus can be seen. The user can
also perform a union of two thesauri or renumber a thesaurus to compact the
sequential key.

By using pull-down menus from the menu line, the user can incrementally
build a query to be run against the current thesaurus. Figure 2 shows an exam-
ple of a query and the corresponding results. The notation used to visualise the

| Show Thesaurus

o

hotions) {_Thesaurus) {_Select) {_Project) { Sort)

Thesaurus — Thesl0

ZEQ No NAME CONTAINER LINE No KIND CONSTANCY TSAGE CONTEET

i HedimTriple Codutilities2 N 206 Structure ¥ typelze Typelanelze

i i LoAutilities2 W 213 Structure C read Argnarylp¥alue

G W Ldutilities2 N 213 Structure C declaration YalueDecl

5 nt Lutilities2 W 212 Structure ¥ read ArglharyOp¥alue

10 nt dutilities2 W 213 Structure ¥ read Argnarylp¥alue

2 it Sdutilities2 N 206 Structure ¥ declaration ProcParanDecl

6 theMediumMap dutilities2 N 212 Structure ¥ read StructFieldDeref
o

Query — Qu23
SELECTED 0N [Mame CONTAINS w AND f Usage EQUAL TO read OR Date EQUAL TO 1/1/1892)]
FROJECT T0O Name Container Kind Constancy Usage Context
SORT EY Mame[ASC] UsaqE[DESCj

Figure 2: ShTh Interface

query is a subset? of ASTRID3. The query consists of a selection, a projection
over domains and a display order specified by a nested sort clause.

2.3 Utility Queries

Typical data-intensive applications often use a powerful, and usually embedded,
query language for three reasons. First, although interactive query languages,
like those provided by TSIT and ShTh, may be used by naive users, they lack
the computational power to express some useful queries. A TA query that
requires a powerful query language 1s to generate a call-graph or procedure
explosion. An explosion discovers all of the procedures that are called by a
given procedure, and all of the procedures they in turn call. An explosion can
be used to split off a subsystem within a larger system. Another TA query
requiring power implodes a procedure to find all procedures that call it, and
any procedure that calls the caller.

The second reason for using a powerful, non-interactive query language
i1s for “canned” queries. These are queries or reports that are run regularly
(end-of-day, end-of-month, etc.). Primarily to avoid errors such queries are
stored, i.e. canned. Storing a query may also aid efficiency and ensure that the
information is always provided in the same format. A typical TA canned query
is to find type or value identifiers defined but not used. Third, many TA users
will have a high degree of computing skill and be able to use a powerful query
notation themselves to extract information of interest about their programs.
Incidentally, for any naive users, the utility queries could easily be packaged
into a menu.

2Note that there is no join as there is only one thesaurus at a time.
3ASTRID is a generalised relational algebra [Gra84].

ShTh TSIT Utility Queries

| | Comprehension
| WIN | ll__Mipi_l Translator
| Napier88 |

Figure 3: Implementation levels

3 Internal Thesaurus Application Structure

Figure 3 presents the implementation levels of the TA application. Each com-
ponent usage is represented by an arrow; the solid boxes indicate work done by
the TA authors. The authors were using libraries and other software compo-
nents that they had not written themselves: the WIN Library and the Napier88
compiler were developed in St Andrews; the Maps library in Glasgow.

The first level comprises the three components already described: TSIT,
ShTh and Utility Queries. The second level has add-on libraries of Napier88
procedures implementing the WIN windowing system, the Maps bulk data
types and the translator from comprehension programs to Napier88 programs.
All these components were entirely written in Napier88.

Table 1 illustrates the size of the (sub-)components in terms of lines of
code and number of name occurrences. The table also shows the distribution
of value identifiers occurring in declarations, right contexts and left contexts,
respectively. The measurements were collected by TSIT itself [Sjg92].

(Sub-)component Lines | Name % % R- % L-
of code occ. | Declaration | Context | Context
ShTh 4986 | 9934 26 67 7
TSIT 8356 | 14626 31 64 5
Utility Queries 360 943 11 88 1
Total Components 13702 | 25503 23 73 4
WIN 24053 | 37546 28 68 4
Maps 4844 | 9479 32 63 5
Compr. Translator 1018 1555 22 69 9
Total Sub-comp. 29915 | 48580 27 67 6
| Total TA | 43617 [74083] 25 | 70] 5 |

Table 1: Measurements of the (sub-)components

3.1 Components

Utility queries are typically small programs written to extract specific informa-
tion from the thesaurus. Queries are written in Napier88 with comprehensions.
Although “Utility Queries” is currently the smallest component, additional
queries can be written.

The Shth interface was built in Napier88 and by using the Maps and WIN
libraries. Napier88 provides linguistic support for two graphical types: pic and
tmage. Using pic, pictures are constructed as line drawings in two dimensions
of an infinite real space. Pictures may be combined with the operations of
join, concatenate, shift, scale, rotate, colour and text [MBDASG]. Images are
simply arrays of pixels. Maps were used to provide the storage and retrieval
facilities, sets, indexes and stored finite partial functions. WIN provided the
user interface building blocks.

The component of TSIT that processes Napier88 source programs is based
on the Napier88-in-Napier88 (NinlN) compiler developed at St Andrews [Cut93a].
The lexical and syntax analyser of the compiler have been adjusted to conform
to special information needs of TSIT. Instead of generating code, the TSIT
analyser extracts various information during the analysis and inserts it into the
thesaurus.

The thesaurus also contains information about the contents of the persistent
store. The code for scanning the store was implemented by reusing low-level
procedures used in the implementation of the Napier88 browser [KD90]. These
procedures are not type-safe and are thus not available in standard Napier88.
Instead of using the low-level procedures reflection could have been used, but
that alternative might have impaired the performance [Kir93]. The Maps li-
brary is heavily used in the implementation of TSIT (Figure 3). In particular,
each thesaurus is stored as a map.

3.2 Sub-Components
WIN

WIN is a library of procedures providing a set of generators of the most common
user interface objects: windows, editors, dialogue boxes, window managers, icon
managers, menus, light buttons and check boxes.

In WIN actions take place after the occurrence of some event. Events are
generated by the mouse or the keyboard. An interactive program is built upon
a number of sub-programs that perform an action in response to some event.
These programs are applications which are packed together in a notifier’s list.
The application part of notifiers (distribute Event) can also be an application in-
side other notifiers. This allows hierarchies to be built as multi-level notifiers.
WIN also allows dynamic reconfiguration of notifiers by adding or removing
applications from a notifier list. An event monitor will send events to the top
most notifier which will route that event through the notifier’s list of applica-
tions to the first application that accepts it. Each window has encapsulated in
it an application that processes input events received by the window and an
image on which raster operations are performed.

Maps Bulk Data Types

Maps constitute an add-on bulk data type language implemented as a library of
polymorphic Napier88 procedures [ALPR91]. Formally, maps are extensional
functions from a domain of type A to a range of type 7, with A and Z being
any Napier88 data type. Values of this type constructor denote a stored finite
mutable function and may be considered as a set of tuples. The operations
provided include iterations (e.g. for each); insert, find and remove entries; copy,
union, intersection, difference; filter and size, among others. A map may be
arbitrarily large, and in TA the thesauri are maps.

Ringad Comprehension Translator

Both WIN and Maps are libraries of procedures. In contrast, the comprehension
translator is a language processor. It is a preprocessor that translates Napier88
programs with embedded Ringad comprehensions into standard Napier88. A
comprehension is translated into several recursive polymorphic functions. The
translator reuses the lexical analyser, error handling and utility components of
the St Andrews Napier88 compiler [Cut93a].

Ringad comprehensions are a general purpose query language. In particular
they can be defined over several different bulk types, e.g. maps, lists, ordered
sets and vectors in Napier88. Comprehension queries are both powerful and
easily optimised [Tri91]. Because the utility queries access thesauri, which are
maps, they use procedures out of the Maps library.

4 Construction and Cooperation Experience

4.1 Napier88 Language

Almost all DBPLs are experimental languages and hence far from robust. In
contrast, Napier88 is well engineered. Moreover, the polymorphic type system
provided by Napier88 was crucial to the implementation of the comprehension
translator. A generic translator that permits queries over lists, maps, vectors
and sets could not have been constructed in a language without polymorphism,
e.g. PS-algol [ACC82], an early persistent language. However, if Napier88 had
supported bounded parametric polymorphism, the translator would have been
further simplified. In summary, the most important observation we make is
that very few other DBPLs are sufficiently robust and simultaneously possess a
sufficiently rich type system to permit the construction of a complex application
like TA. Built-in support of graphical types and first class procedures packaged
together with the related objects and parameterised types proved useful in the
ShTh implementation.

4.2 Napier88 Libraries

Because Napier88 is a robust and stable language platform, useful libraries of
software have been constructed, and more are under construction [ABJP93].
Again this contrasts favourable with many other DBPLs. The Maps and stan-
dard libraries are used by all of the TA sub-components; the WIN library is

used by ShTh. These libraries proved very useful, and due to persistence ac-
cessing them was straightforward. More complete documentation of some of
these libraries would have made them easier to use.

4.3 Reuse

In a large-scale software development project one should aim at software reuse
[Kru92]. The success of reuse depends heavily on the availability and quality
of the information about the existing software.

As described in Section 3.1, the TSIT analyser is a based on a modified
version of the NinN compiler developed at St Andrews [Cut93a]. Similarly, the
comprehension translator reuses the lexical analysis, printing and some utility
components of NinN.

The code for extracting information from the persistent store into the the-
saurus was implemented by directly reusing low-level procedures used in the
implementation of the Napier88 browser. Implementing the code proved easy
due to good documentation [KD90].

Reusing the syntax analyser was not straightforward. The compiler is one-
pass, i.e., the parsing and code generation are inter-twined which means that
detecting all program parts concerned with code generation is difficult. The
documentation and some structuring principles alleviated the problem but were
not sufficient for easy modification of the software to the needs of TSIT. In spite
of this problem we heavily benefited from reusing the compiler components —
developing TSIT would have been very much harder without reusing NinN. In
order to simplify reuse, work is in progress to identify substitutable generation
interfaces [Cut93b].

When installing bindings, including environments and procedures, into a
persistent store, the installation-order is significant. That is, a binding must be
inserted before it can be used. For example, an environment must be created
before 1t can be populated, a location must be created for a procedure before its
L-value can be updated, etc. It was a hard task to install the modified compiler
components from St Andrews into the store of the TSIT author. The original
Unix Makefiles [Fel79] could not be used since they had not been updated in
accordance with the changes to the Napier88 code. Since the author did not
fully understand the structure of the compiler components and their interaction
with the persistent store, the installation-order was determined by trial-and-
error.

Whereas TSIT uses most of the NinN compiler, the comprehension trans-
lator uses primarily the lexical analyser. Discovering which environments and
procedures are required by the lexical analyser is difficult. The difficulty arises
because the lexical analyser code extracts environments containing procedures
and other values. Discovering the name of the program that inserted those
values may also be hard, but is necessary in order to locate the source code.
The problem is exacerbated in an application with several levels of directory
structure.

4.4 Integration

The code necessary for integrating ShTh and Utility Queries with TSIT (includ-
ing the master-thesauri) is quite simple. There is one environment for each of

the three components. All procedures and data structures local to these appli-
cations are contained in their respective environments. That is, the persistence
paradigm enhances extensibility and integration.

The collection of type definitions in a Napier88 application approximately
corresponds to the schema in a conventional database. The source of such
type definitions may be contained in type-programs which consist exclusively
of type definitions; the compiled form is stored in persistent environments. A
few cases of naming conflicts were experienced when the type definitions of the
sub-components were integrated. In addition to resolution of naming conflicts,
integrating persistent software components also requires removal of duplicates,
determination of dependencies among type definitions, etc. This is equivalent
to the problem of schema integration in conventional databases [BLN8&6].

4.5 Multiple Authors — Cooperation

A severe problem of Napier88 (in use at the time of this experiment) is that
it does not provide concurrent and distributed access to a persistent store im-
plying that the software components had to be developed separately in the
private store of each author. Eventually the components were integrated by
re-installing ShTh and Utility Queries in the store of the thesaurus and TSIT
tool. However, maintenance is complicated as long as no concurrency is pro-
vided. Another consequence of the lack of concurrency is that libraries have
to be installed into each of the private stores of the users, raising well-known
problems with keeping multiple copies of software consistent. A partial solu-
tion to this problem can be envisaged by using Munro’s store-to-store copying
facilities [Mun93].

5 Proposed Improvements

To simplify and improve large-scale application development, which typically
involves integrating separately developed components, comprehensive construc-
tion and maintenance methodologies are needed. Appropriate supporting tools
are also essential. From, inter alia, our experience with the TA project they
should provide the following functionality:

Cross-referencing Information about where and how things are defined and
used should be provided. This includes for example finding the corre-
sponding source file of a procedure in the persistent store.

Recompilation and re-execution In addition to recompiling every changed
program there are some special cases to be considered. If a type definition
is changed, the dependent programs need to be recompiled. Moreover,
if there are dependencies between several type-programs, a compilation
order must be determined. After program modifications programs that
change the contents of the persistent store (e.g. updating a procedure
value) should be re-executed.

Installation Determining the installation-order for programs that insert bind-
ings into the persistent store may be a non-trivial task for medium or large
applications and should therefore be automated.

Consistency checking Constraints like the following should be checked: “all
declared bindings in a program should be used within that program,” “a
binding inserted into the store, not intended for export, should be used
somewhere within the application,” “there should be exactly one program
updating a procedure (or another kind of value) bound to a persistent
location initialised with a stub (cf. methodology of Section 1.1),” etc.
Such constraints are part of a proposed model for persistent application

systems [Sjg93b].

Indeed our experiences of constructing the TA application have confirmed the
need for TA itself — one of the purposes of building TA was to provide a foun-
dation for tools that tackle the deficiencies described in the previous section.
TA keeps track of all the names denoting identifiers in source code or bindings
in the persistent store of an application. Extensive cross-referencing is also
supported.

At present, many Napier88 programmers use Make [Fel79] to help rebuild
the application after change. The programmers, however, have to manually
specify compilation and execution dependencies. Similarly, Make and some-
times Unix shell-scripts are used to install software into the persistent store. A
correct installation-order, however, has to be determined and typed in manually
into a Makefile or a script. These problems are addressed by EnvMake [Sjg93b]
— another thesaurus-based tool that automatically infers the necessary depen-
dencies from the thesaurus and initiates (re)compilation and (re-)execution.
If installation is requested, EnvMake installs components in correct order (if
such an order exists?) into the persistent store. EnvMake thus relieves the
programmers from the burden of maintaining Makefiles and scripts.

In addition to replacing the use of Make, EnvMake provides additional
functionality tailored for persistent application development such as checking a
whole range of constraints that the application should adhere to. Among other
things, inconsistencies between the programs and data in the persistent store
of an application will be detected.

6 Conclusions

At first sight application development appears more complicated in a database
programming language context than in a traditional context. The reason is
that issues that earlier were dealt with by the operating system or DBMS, and
not made explicit, are now dealt with within the programming language itself.

The main purpose of DBPLs is to facilitate the construction of large long-
lived data-intensive applications. A conclusion from the TA project is that
realistic applications can be constructed quickly in a DBPL. (The three TA
programmers, all inexperienced in Napier88, used only eight person-months in
total to develop TA.) Our experiences fall into two categories: those specific to
Napier88 and those relevant to any DBPL with a code repository.

Several of the issues specific to Napier88 are known and are being ad-
dressed. As there were several authors, we felt the lack of concurrency [Mun93].
Bounded parametric polymorphism would have simplified the implementation
of the Ringad comprehension translator.

4If components cyclically refer to each other, installation is impossible.

Several 1ssues arise in any DBPL where code resides in a repository. In a
typical object-oriented DBPL, for example, a class definition with its methods
may also be preserved in the database. In contrast, in a conventional program-
ming environment code resides in a file system. Keeping code in a repository
gives several advantages. Programs are no longer large discrete units; instead
they are smaller and typically extract and use sub-programs from the reposi-
tory. Under this model libraries are easy to use, and large applications can be
constructed incrementally [Mem90, Con91, DCC92]. Code reuse would be easy
with suitable tools, but without the tools proposed in Section 5 we had some
difficulties.

Many of the potential benefits of storing the code in a repository rather
than in a file system are not realised because of transitional problems. There
are many tools available to support application development using file-based
code, e.g. make, rcs and grep. Analogous tools are required to operate on
code in a repository. Potentially these tools can be superior to those operating
on byte-stream files because a repository is coherent, transactional, structured
and typed. Such tools were not available to us during the TA construction, but
some are now being constructed [Sjg93b].

Similarly, guidelines or design principles were developed for traditional pro-
gramming languages where programs communicate via data files, e.g. struc-
tured programming [DDH72, Jac75] or modularisation where a high degree of
cohesion and a low degree of coupling among software components should be
pursued [CY79]. Such guidelines would also apply to a DBPL, but due to
more sophistication and communication via a strongly typed repository more
comprehensive programming methodologies are needed to fully benefit from
the new technology. Currently such methodologies are rudimentary, although
they are being developed [Atk93, Sjg93b]. Comparing file-based program con-
struction methodologies with those based on persistent stores, we observe that
in the persistent store case all possible data structures (e.g. Maps) and their
types are accommodated and preserved when data is stored for later use or
passed between programs. Typically file-based program composition has little
support from the type system and perforce loses structural information as data
1s mapped to a sequence of bytes. Although persistence leads to more sophisti-
cated interfaces between program parts using arbitrary modules, we believe it
will ultimately yield benefits because of the significant structural information
that is conveyed between programs.

Acknowledgements

Paul Philbrow co-authored the Maps libraries. Ray Welland made several useful
comments on the paper. The St Andrews development team, in particular
Quintin Cutts and Graham Kirby, provided robust software for us to reuse.

Dag Sjgberg’s work was supported by the Research Council of Norway,
Division NAVF. Malcolm Atkinson’s work was supported by FIDE (ESPRIT
BRA 3070). Joao Lopes’s work was supported by the Portuguese National
Council for Science and Technology Research (JNICT, “Programa Ciéncia”,
scholarship BD/1310/91-TA). Phil Trinder’s work was supported by the SERC
Bulk Data Type Constructors (project GR/F28953).

References

[ABCT83] M.P. Atkinson, P.J. Bailey, K.J. Chisholm, W.P. Cockshott, and
R. Morrison. An approach to persistent programming. The Computer

Journal, 26(4):360-365, November 1983.
[ABJP93] M.P. Atkinson, P.J. Bailey, N. Jackson, and P.C. Philbrow. Napier88

libraries. Technical report, in preparation, Department of Computing
Science, University of Glasgow, 1993.

[ACC82] M.P. Atkinson, K.J. Chisholm, and W.P. Cockshott. PS-algol: An
algol with a persistent heap. ACM SIGPLAN Notices, 17(7):24-31,
July 1982.

[ALPR91] M.P. Atkinson, C. Lécluse, P.C. Philbrow, and P. Richard. Maps as
bulk types for data base programming languages. In Proceedings of

the Annual Esprit Conference (1991), 1991.

[AM85] M.P. Atkinson and R. Morrison. Procedures as persistent data ob-
jects. ACM Transactions on Programming Languages and Systems,

4(7):539-559, October 1985.

[Atk93] M.P. Atkinson. Lecture notes in Napier88 programming. Department
of Computing Science; University of Glasgow, 1993.

[ATW93] M.P. Atkinson, P.W. Trinder, and D.A. Watt. Bulk type construc-
tors. Technical Report FIDE/93/61, ESPRIT Basic Research Action,
Project Number 3070—FIDE, 1993.

[BLN86] C. Batini, M Lenzerini, and S.B. Navathe. A comparative analysis
of methodologies for database schema integration. ACM Computing
Surveys, 18(4):323-364, April 1986.

[CDK90] Q.I. Cutts, A. Dearle, and G.N. Kirby. WIN programmers’ manual.
Technical Report CS/90/17, Department of Computational Science,
University of St Andrews, 1990.

[Con91] R.C.H. Connor. Types and Polymorphism in Persistent Programming
Systems. PhD thesis, Department of Computational Science, Univer-
sity of St Andrews, 1991.

[Cut93a] Q.I. Cutts. Delivering the Benefits of Persistence to System Con-
struction and Ezecution. PhD thesis, Department of Computational
Science, University of St Andrews, 1993.

[Cut93b] Q.I. Cutts. Private communication, 1993.

[CYT9] L.L. Constantine and E. Yourdon. Structured Design. Englewood
Cliffs, NJ, 1979.

[DCCI2] A. Dearle, Q.I. Cutts, and R.C.H. Connor. An application ar-
chitecture using type-safe incremental linking. Technical Report
FIDE/92/56, ESPRIT Basic Research Action, Project Number
6309—FIDE,, 1992.

[DDH72] O.J. Dahl, E.-W. Dijkstra, and C.A.R. Hoare. Structured Program-

[Dea87]

ming. Number 8 in A.P.I.C. Studies in Data Processing. Academic
Press, 1972.

A. Dearle. Constructing compilers in a persistent environment. In
R. Carrick and R.L. Cooper, editors, Proceedings of the Second In-
ternational Workshop on Persistent Object Systems: Their Design,
Implementation and Use (Appin, Scotland, 25th-28th August 1987),
pages 443-455, 1987. Technical Report PPRR-44-87, Universities of
Glasgow and St Andrews.

[FDK*92] A. Farkas, A. Dearle, G. Kirby, Q. Cutts, R. Morrison, and R. Con-

[Fel79)]

[Grag4)

[JacT5]

nor. Persistent program construction trough browsing and user ges-
ture with some typing. In A. Albano and R. Morrison, editors, Fifth
International Workshop on Persistent Object Systems. Design, Im-
plementation and Use (San Miniato, Italy, 1st-4th September 1992),
Workshops in Computing. Springer-Verlag in collaboration with the
British Computer Society, 1992.

S.I. Feldman. Make — a program for maintaining computer programs.
Software Practice and Erperience, 9(4):255-265, April 1979.

Peter Gray. Logic, Algebra and Databases. FEllis Horwood Limited,
Chichester, 1984.

M.A. Jackson. Principles of Program Design. Number 12 in A.P.1.C.
Studies in Data Processing. Academic Press, 1975.

[KCCt92] G. Kirby, R. Connor, Q. Cutts, A. Dearle, A. Farkas, and R. Mor-

[KD90]

[Kir93]

[Kru92]

rison. Persistent hyper-programs. In A. Albano and R. Morrison,
editors, Fifth International Workshop on Persistent Object Systems.
Design, Implementation and Use (San Miniato, Italy, 1st-4th Septem-
ber 1992), Workshops in Computing. Springer-Verlag in collaboration
with the British Computer Society, 1992.

G.N.C. Kirby and A. Dearle. An adaptive graphical browser for
Napier88. Technical Report CS/90/16, Department of Computational
Science, University of St Andrews; 1990.

G.N.C. Kirby. Reflection and Hyper-Programming in Persistent Pro-
gramming Systems. PhD thesis, Department of Computational Sci-
ence, University of St Andrews, 1993.

C.W. Krueger. Software reuse. ACM Computing Surveys, 24(2):131-
183, June 1992.

[MBCD&9] R. Morrison, F. Brown, R. Connor, and A. Dearle. The Napier88

reference manual. Technical Report PPRR-77-89, Universities of
Glasgow and St Andrews, June 1989.

[MBDASG] R. Morrison, A.L. Brown, A. Dearle, and M.P. Atkinson. An inte-

grated graphics programming environment. Computer Graphics Fo-

rum, 5(2):147-157, June 1986. Also available as PPRR-14-86.

[MBDASS8] R. Morrison, A.L. Brown, A. Dearle, and M.P. Atkinson. Flexible

incremental binding in a persistent object store. ACM SIGPLAN
Notices, 23(4):27-34, April 1988.

[MBDA90] R. Morrison, A.L. Brown, A. Dearle, and M.P. Atkinson. On the

[Mem90]

[Mun93]

[Sje92]

[Sig93a]

[Sjp93b]

[Tri91]

[Zhe92]

classification of binding mechanisms. Information Processing Letters,

34:51-55, February 1990.

Members of the FIDE types club with M.P. Atkinson and P. Richard
as editors. Types for large scale systems. Club report of meeting
in Pisa, bth—6th July 1990. Technical Report FIDE/90/1, ESPRIT
Basic Research Action, Project Number 3070—FIDE, October 1990.

D. Munro. On the Integration of Persistence, Concurrency and Dis-
tribution. PhD thesis, submited, Department of Computational Sci-
ence, University of St Andrews, 1993.

D. Sjgberg. Measuring name and identifier usage in Napier88 ap-
plications. Technical Report FIDE/92/37, ESPRIT Basic Research
Action, Project Number 3070—FIDE, 1992.

D. Sjgberg. Quantifying schema evolution. Information and Software

Technology, 35(1):35-44, January 1993.

D. Sysberg. Thesaurus-Based Methodologies and Tools for Maintain-
ing Persistent Application Systems. PhD thesis, Department of Com-
puting Science, University of Glasgow, 1993.

P.W. Trinder. Comprehensions, a query notation for DBPLs. In
P. Kanellakis and J.W. Schmidt, editors, Proceedings of the Third
International Workshop on Database Programming Languages (Naf-
plion, Greece, 27th-30th August 1991). San Mateo, CA: Morgan Kauf-
mann Publishers, 1991.

Qin Zhenzhou. Second year report. Department of Computing Sci-
ence, University of Glasgow, 1992.

