
Comparing prioritization and visualization
of technical debt and security debt

A Design Science Research study

Sandra Liabø

Thesis submitted for the degree of
Master in Informatics: Programming and System Architecture

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Autumn 2022

Comparing prioritization and
visualization of technical debt and

security debt

A Design Science Research study

Sandra Liabø

© 2022 Sandra Liabø

Comparing prioritization and visualization of technical debt and security debt

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Context
Historical data from issue tracking systems provides valuable information about
how technical debt has been prioritized in the past. These insights should be
presented in a good way to support software practitioners in prioritizing the re-
payment of future debt.

Objective
In this study I focus on the difference between technical debt and security debt.
I investigate the fixing rate of the debt to understand which issues are fixed in
higher quantities. Further, I look into the lead time of the various issues to find
out after how much time they are fixed. Finally, these insights are used as a
starting point for creating an artefact to support the planning and prioritization
of technical debt and security debt.

Method
A Design Science Research was conducted. I analyzed a data set of 10970 techni-
cal debt issues to find out which issues benefited the most in terms of repayment
and time required to solve the issue. These findings together with requirements
proposed by company stakeholders were the base from where I developed an arte-
fact: a dashboard consisting of four different visualizations of historical data from
Jira. The artefact has been evaluated through six interviews within two itera-
tions.

Result
The results reveal that security debt has a significant higher fixing rate than
technical debt. The calculation of lead time shows that technical debt is often
fixed faster than security debt. Finally, an artefact has been provided as a start-

i

ing point for supporting the planning and prioritization of technical debt and se-
curity debt. The results reveal the visualization’s degree of understandability,
usefulness, and suggested improvements for further research.

Conclusion
The results from the two first research questions offers context knowledge for
the rest of the thesis. In addition, they provide interesting empirical findings
for research purposes. The findings from the last research question proves that
the artefact offers a initial new way of approaching the prioritization of the debt
by providing insights into the differences between security debt and the rest of
technical debt, showing after how much time the debt have been fixed, as well as
highlighting the most important unaddressed issues.

ii

Acknowledgements

This master’s thesis marks the end of five educational years at the University of
Oslo. The work on this assignment has been exciting and fun, but also challenging
alongside family life. Working on a master’s thesis can sometimes seem lonely,
but I have benefited greatly from wonderful people around me. There are many
who deserve to be thanked for the fact that this thesis has turned into a finished
product.

To my supervisor Antonio Martini (University of Oslo) and co-supervisor Daniela
Soares Cruzes (Norwegian University of Science and Technology), thank you very
much for all the feedback you have given me during the work on this master’s the-
sis. You have challenged me on my thoughts, but also supported me throughout
the work on this thesis. To both of you - thank you very much!

I want to thank the company stakeholders involved in our meetings. Your thoughts,
input and ideas have contributed significantly to my learning during the work on
this assignment! Additionally, I want to thank all of the participants for their
contributions to making this study possible.

I want to thank my patient family, without their considerations it would have
been difficult to complete my studies. Lastly, I want to thank all of my friends for
supporting me in writing this thesis.

This marks the end of my education at the University of Oslo. It has been a plea-
sure!

Sandra Liabø
November 2022

iii

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1

1.1 Structure . 3

2 Background 5

2.1 Technical debt . 5

2.2 Security debt . 6

2.2.1 Framework used to classify security debt issues 7

2.3 Debt management . 9

2.3.1 Technical debt process . 9

2.3.2 Security debt process . 11

2.4 Issue tracking systems . 13

2.4.1 Jira . 13

2.5 Analyzing debt evolution . 14

2.5.1 Analysis of debt backlog . 15

2.6 Software visualization . 15

iv

2.6.1 Visualizing technical debt . 16

2.6.2 Visualizations in dashboards 17

3 Methodology 18

3.1 Company context . 18

3.2 Design Science Research . 19

3.2.1 Design Science Research process 20

3.3 Methods for data collection . 23

3.3.1 Document analysis . 23

3.3.2 Interview . 26

3.4 Data analysis . 29

3.4.1 Quantitative data analysis . 29

3.4.2 Qualitative data analysis . 33

3.5 Research ethics . 34

4 Results from quantitative data analysis 36

4.1 RQ1. How different is the amount of fixed issues for technical debt
and security debt? . 36

4.2 RQ2. How different is the lead time for fixing technical debt and
security debt? . 41

5 Iterations 45

5.1 Defining the objectives for a solution 45

5.2 First iteration . 46

5.2.1 Design and development . 47

5.2.2 Evaluation . 52

5.3 Second iteration . 58

v

5.3.1 Refining the visualizations . 58

5.3.2 Evaluation . 63

6 Artefact 73

6.1 Technology . 73

6.1.1 Jira Cloud Platform . 73

6.1.2 EazyBI . 74

6.1.3 Forge app . 75

6.1.4 Custom Chart for Jira . 75

6.2 Dashboard . 76

7 Discussion 78

7.1 RQ1 How different is the amount of fixed issues for technical debt
and security debt? . 78

7.2 RQ2 How different is the lead time for technical debt and security
debt? . 81

7.3 RQ3 How can visualizations of historical data in issue trackers sup-
port the prioritizing of the repayment of technical debt and security
debt? . 83

7.3.1 Support debt prioritization . 86

7.4 Contributions . 87

7.4.1 Implications for research . 88

7.4.2 Implications for practice . 89

7.5 Validity and limitations . 90

7.5.1 Validity . 90

8 Conclusion 95

vi

Bibliography 103

A Interview guide (first iteration) 106

B Interview guide (second iteration) 109

C Observed and expected counts 109

vii

List of Figures

2.1 Model that hierarchically structures subfactors of security 8

3.1 Design Science Research process . 21

3.2 An example showing how the security debt items are classified by
searching in the summary and labels field. The colored rows shows
the issues that are considered security debt. I have removed some
information to keep the data from the company anonymous. 25

3.3 An example showing the thematic analysis from theme to interview
quotes . 34

4.1 Contribution to the Chi-Square statistic. The contribution is rounded
to its nearest integer. 38

4.2 Percentage of fixes for each priority type. The number is rounded to
its nearest integer. 39

4.3 Overlapping histograms showing the distribution of the lead time
for security debt (SD), all technical debt (TD all), and technical debt
only from the projects that have security debt as well (TD projects). . 43

5.1 Visualization 1 - The Chi-Square Test of Independence 47

5.2 Visualization 2 - Created vs. resolved charts for technical debt and
security debt . 48

5.3 Visualization 3 - Average lead time . 49

5.4 Visualization 4 - Lead time chart . 50

5.5 Visualization 5 - List of most risky security debt issues 51

viii

5.6 Visualization 6 - List of oldest issues 52

5.7 Refined visualization 1 - The Chi-Square Test of Independence 59

5.8 Refined visualization 2 - Created vs. resolved charts by priority . . . 60

5.9 Refined visualization 3 - Average lead time 61

5.10 List shown in a new tab when clicking on the High priority (SD) box
(for the last 6 months) . 62

5.11 Refined visualization 4 - Important issues 62

6.1 Example backlog in Jira showing the technical debt and security
debt issues for one of the projects. 74

6.2 The entire dashboard . 77

7.1 Median lead time in days . 82

ix

List of Tables

3.1 Distribution of issues for the different priorities 24

3.2 Table showing the participants in the second iteration. Interview
3 and 5 were conducted as focus group interviews. The number of
participants in each interview is reflected in the "referred to as" col-
umn. The "referred to as" column shows how I will refer to the par-
ticipants when including citations of what they have said. The four
first interviews were from different teams and the last interview
was four people from one project (meaning different teams within
the same project) which is why the number of open issues are much
higher. 28

3.3 Cohen’s classification of effect size . 33

4.1 Distribution of considered issues by priority and resolution 37

4.2 Results from the Chi-Square Test of Independence 40

4.3 Results from the Mann-Whitney U test 44

5.1 Requirements proposed by the company stakeholders 46

5.2 Summarized results for the two first visualizations from the second
evaluation . 71

8.1 Observed and expected counts for the Chi-Square Test of Indepen-
dence. The expected counts are shown in bold and rounded to its
nearest integer. 110

x

Chapter 1

Introduction

The pace of software delivery is increasing and technology is changing rapidly
(Kruchten, Nord, Ozkaya, & Falessi, 2013). The highly competitive software mar-
ket forces companies to work in tight schedules to be able to release software
to customers faster (Yli-Huumo, Maglyas, & Smolander, 2016). As the empha-
sis on delivering functionality quickly is increasing, aspects such as design, good
programming practices, and test coverage is often less focused on (Codabux &
Williams, 2013). Because of this, these short-term aspects usually result in an
increase in technical debt (Lindgren, Wall, Land, & Norström, 2008).

Technical debt is a popular metaphor in software engineering that has received
significant attention in the recent years (Ciolkowski, Lenarduzzi, & Martini, 2021).
The metaphor is used for technical trade offs that can be beneficial in short term
but may hurt the health of the software system in the long term (Z. Li, Avgeriou,
& Liang, 2015). Both in the research and industrial community, the metaphor
has been further developed to contain different types of technical debt (Rindell &
Holvitie, 2019).

As technical debt has become more mature as a concept, the term security debt
has attracted more attention (Martinez et al., 2021). Although investigations that
relates to security debt is recent (Ahmadjee & Bahsoon, 2019), it is a trend with
ongoing research and new approaches (Martinez et al., 2021). The concept of
security debt is derived from the technical debt metaphor (Martinez et al., 2021).
At the TechDebt conference in 2021 it was found that the impact technical debt

1

has on security is prominent and Ciolkowski et al., 2021 thus argues that such a
relationship needs further investigation.

Both technical debt and security debt must be identified and managed in order
to allow informed decisions on whether to take on the debt or not (Rindell &
Holvitie, 2019). While the debt cannot be totally eliminated in practice, it needs
to be managed to be kept at an acceptable level (Z. Li et al., 2015). To make the
best decision about which debt items that should be repaid first and which items
that can be delayed until later releases, the prioritization of technical debt and
security debt is crucial (Alfayez, Alwehaibi, Winn, Venson, & Boehm, 2020).

In order to manage the debt one must know of the debt, and in order to know
of the debt one must track it. If the issues are not tracked they will remain
invisible (Martini, Besker, & Bosch, 2018). Issue tracking systems are useful
ways of tracking issues when the number of issues becomes large and when a lot
of people have to access and input data on them (Serrano & Ciordia, 2005).

By analysing historical data from an issue tracking system one can identify trends
in the evolution of the debt and provide insights into if the amount of debt items
increase beyond a threshold (Digkas, Lungu, Avgeriou, Chatzigeorgiou, & Am-
patzoglou, 2018). These insights can thus support software practitioners in bet-
ter understanding their own projects evolution. Then the question is how this
information best can be presented.

Software visualization uses visual representations to present information that is
often complicated to analyse (Z. Li et al., 2015). As visualization techniques have
been shown to support the process of software understanding, Rios, de Mendonça
Neto, and Spínola, 2018 and Brown et al., 2010 argues that visualization tech-
niques should be further investigated in relation to technical debt.

The above findings reveals that the relationship between technical debt and se-
curity debt needs to be studied further in order to expand knowledge about the
impact technical debt has on security. This will be done by analyzing the evolution
of technical debt and security debt in issue trackers. There exists few studies on
the evolution of technical debt in issue trackers (Tan, Feitosa, & Avgeriou, 2022b)
which indicates the need for further investigations. The purpose of analysing the
debt evolution in issue trackers is to understand and investigate the amount of

2

issues that have been fixed and the time required to fix these issues. Moreover,
as the prioritization activity is a crucial part of the debt management (for decid-
ing which items to fix), I want to figure out how these insights can be visualized
to support the planning and prioritization of technical debt and security debt. I,
therefore, aim at answering the following three research questions:

RQ1 How different is the amount of fixed issues for technical debt and security
debt?

RQ2 How different is the lead time for technical debt and security debt?

RQ3 How can visualizations of historical data in issue trackers support prioritiz-
ing the repayment of technical debt and security debt?

For the first two research questions I have analyzed a data set consisting of tech-
nical debt issues from a company. While the first research question focuses on the
amount of fixed issues and the types (technical debt and security debt) in order
to identity which issues are fixed more often, the second research question fo-
cuses on the survival of the various issues. The results from these two questions
are used as a starting point when designing and developing the different visu-
alizations. For the last research question, my contribution can be considered a
first feedback from relevant stakeholders (e.g. managers, developers, architects)
within one company. The visualizations are implemented as a dashboard in Jira.
Then, the artefact is demonstrated and evaluated within two iterations.

1.1 Structure

• Chapter 2 - Background
The background explains the concepts of technical debt and security debt
along with how the debt is managed. Further, issue tracking systems and
debt evolution analysis is described. Lastly, I look into software visualiza-
tion and visualization techniques suggested in the context of technical debt.

• Chapter 3 - Methodology
The methodology describes the Design Science Research process, the data
collection methods and data analysis, as well as research ethics.

3

• Chapter 4 - Results from quantitative data analysis
This chapter presents the results for the two first research questions.

• Chapter 5 - Iterations
This chapter describes how the artefact has been developed and refined
throughout two iterations. The findings from the evaluations are presented
to answer the last research question.

• Chapter 6 - Artefact
This chapter describes the technology used for the development of the arte-
fact and the functionalities of the artefact.

• Chapter 7 - Discussion
The findings from Chapter 4 and 5 are discussed together with related work.
The discussion is structured according to the research questions. Finally,
contributions, implications for research and practice are presented as well
as validity and limitations.

• Chapter 8 - Conclusion
In this last chapter, this study is concluded.

4

Chapter 2

Background

In this chapter I will present the background for the topics of this thesis. In the
first section I describe the concept of technical debt. Then I present the concept
of security debt as well as the framework used for classifying the security issues.
Further, I look into debt management. Then I describe issue tracking systems and
previous literature related to debt evolution analysis. Lastly, I look into software
visualization and visualization techniques suggested in the context of technical
debt.

2.1 Technical debt

Technical debt is a metaphor used for technical trade offs that can be beneficial
in short term but may hurt the health of the software system in the long term (Z.
Li et al., 2015). The metaphor was originally introduced by Ward Cunningham
explaining to a non-technical stakeholder why the code refactoring took some time
(Kruchten, Nord, & Ozkaya, 2012). From the original description: “not quite right
code which we postpone making it right” (Kruchten et al., 2012; Sneed, 2014), the
term has expanded with time.

Fowler, 2009 studied the metaphor of technical debt and divided it into four parts:
reckless/prudent and deliberate/inadvertent debt.

5

• The debt is prudent-deliberate when the team knows that they are taking
on a debt and thus puts some thought as to whether payoff for an earlier
release is greater than the costs of paying it off.

• The debt is reckless-inadvertent when the team is ignorant of design prac-
tices and takes on the reckless debt without realizing how much hock it’s
getting into.

• The debt is reckless-deliberate when the team knows about good design
practices but decides to go "quick and dirty" because they think they can’t
afford the time required to write clean code.

• The debt is prudent-inadvertent when the team understands what would
have been the best design approach, then the team also realizes that they
have an inadvertent debt.

In this thesis I’m looking at the technical debt that has already been identified.
This means that according to Fowler’s quadrant I’m looking at the deliberate tech-
nical debt and not technical debt that people do not know of.

Both in the research and industrial community, the metaphor of technical debt
has been further developed to contain different types of technical debt as well as
different ways to manage it (Rindell & Holvitie, 2019). Alves et al., 2016 and
Rios et al., 2018 presents 15 types of technical debt where the most mentioned
types are design, code, and architectural debt. The fact that technical debt types
have expanded over time indicates that new fields are being included (Alves et al.,
2016). One of the fields that have attracted more attention as technical debt have
become more mature as a concept is security debt.

2.2 Security debt

Although there exists several studies investigating different software related fac-
tors for indicating security risks, little attention has been given on technical
debt as an indicator (Siavvas, Tsoukalas, Jankovic, Kehagias, & Tzovaras, 2020).
Based on the strong relationship found between technical debt and the security

6

level of a software product, Siavvas et al., 2019 argues that technical debt is an
factor that should be looked at in relation to indicating security risks.

The concept of security debt is derived from the technical debt metaphor (Mar-
tinez et al., 2021). Based on the assumption that security issues typically are
linked to the internal quality, Rindell, Bernsmed, and Jaatun, 2019 explained
security debt as technical debt that contains a security risk. In another study,
security debt is divided in two parts: the term is first used for technical debt that
has been identified through security verification or validation methods. Secondly,
security debt is used for debt that has incurred through technical debt in a secu-
rity critical software component (Rindell & Holvitie, 2019).

One major difference between technical debt and security debt is that security
debt is highly related to security risks (Martinez et al., 2021). Security risk is
defined by Firesmith, 2003 as: "the potential risk of harm to an asset due to at-
tacks". The risk is usually calculated by multiplying the negative impact of the
harm with the likelihood of the harm occurring (Firesmith, 2003).

Recently, Kruke, 2022 presented a formal definition of security debt: "a set of
design or implementation solutions that hinder or has the potential to hinder the
achievement of a system’s optimal/desired/required security goal" (p. 45). My
thesis is using this definition and work as a basis for security debt. The reason
for choosing this definition is that my research is done in the same company,
which ensures that the definition holds in the same context.

2.2.1 Framework used to classify security debt issues

Firesmith, 2003 presents a large hierarchical taxonomy of quality factors and
subfactors with the main function of providing a context for safety, security, and
survivability. He defines a quality factor as "a high-level characteristic or attribute
of something that captures an aspect of its quality" (p. 7).

In order to clearly distinguish between security and safety, security is defined
using the term malicious whereas safety is defined using the term accidental:

• "Security is the degree to which malicious harm is prevented, reduced, and

7

properly reacted to" (p. 11).

• "Safety is the degree to which accidental harm is prevented, detected, and
properly reacted to" (p. 13).

Security is about attacks, while safety is about accidents. Having said that, at-
tacks (security) may cause security risks that in turn may cause accidents. On
the other hand, accidents (safety) can result in security vulnerabilities that can
be exploited by attacks.

Security as a quality factor

Figure 2.1: Model that hierarchically structures subfactors of security

Security is most commonly defined in terms of availability, integrity and privacy.
But it is important to note that security is a relatively complex concept that can-
not be adequately addressed simply using these terms. Therefore, Firesmith,
2003 expressed the need for a broadly accepted industry standard taxonomy of
security and its quality subfactors.

8

Figure 2.1 shows how security is broken down into different quality subfactors
in the taxonomy presented by Firesmith, 2003. This model has been the starting
point for classifying the security debt issues in the data set I have looked at.

2.3 Debt management

As technical debt and security debt not can be totally eliminated in practice, it
needs to be actively managed in order to be kept at an acceptable level (Z. Li et
al., 2015). Different methods and tools have been used, proposed and developed
for managing the debt.

2.3.1 Technical debt process

Technical debt management consists of a set of activities to either prevent poten-
tial technical debt from being incurred or to deal with existing technical debt to
keep it under a reasonable level. Z. Li et al., 2015 presents eight technical debt
management activities: identification, measurement, prioritization, prevention,
monitoring, repayment, representation/documentation, and communication.

In this thesis I’m looking at the issues that are already identified and documented
through an issue tracking system. Even though this thesis focus on the repay-
ment action, how the repayment is done is out of scope. Because of this, I will not
go into the identification, prevention and repayment activities.

Measurement

The measurement activity is related to quantifying the benefit and cost of known
technical debt in a software system. The most studied method for measuring tech-
nical debt is to calculate technical debt through mathematical formulas or models
(Z. Li et al., 2015). Additionally, Z. Li et al., 2015 mentions five other suggested
approaches for measuring technical debt; code metrics, human estimations, cost
categorization, operational metrics, and solution comparison. This activity is rel-
evant for this thesis because by measuring the issues that are tracked one can

9

make better decisions of which items to fix in the future (Guo et al., 2011).

Prioritization

The prioritization activity is done by ranking the identified debt according to
which items should be repaid first and which items can be allowed until later
releases. The studied approaches for prioritizing technical debt are cost/benefit
analysis, high remediation cost first, portfolio approach, and high interest first
(Z. Li et al., 2015). The prioritization activity is especially relevant for this thesis
as the debt documented in issue trackers can provide insights into how technical
debt and security debt has been prioritized in the past.

Implementing new features are often prioritized over refactoring technical debt.
Moreover, technical debt that is not directly related to the implementation of new
features are often postponed (Martini, Bosch, & Chaudron, 2015). Vathsavayi
and Systä, 2016 emphasizes this: "Deciding on whether to spend resources for
developing new features or fixing the debt is a challenging task".

Monitoring

The monitoring activity is done to see the changes of the cost and benefit of unre-
solved technical debt over time. Some of the suggested approaches for monitoring
technical debt is to measure and track changes over time, and to define thresh-
olds for related quality metrics and warnings if the thresholds are not met (Z. Li
et al., 2015). By detecting trends in the evolution and give warnings when the
items increase beyond a threshold, the monitoring activity helps to identify and
prioritize repayment actions where technical debt items are fixed (Digkas et al.,
2018). The monitoring activity is relevant for this thesis as the artefact created
visualizes the evolution of technical debt and security debt over time.

Communication

The communication activity refers to making the identified technical debt visible
to stakeholders so that it can be discussed and further managed. Different com-

10

munication approaches suggested in the literature of technical debt is a backlog,
different visualizations (such as code metric visualization and dependency visu-
alization), and a dashboard displaying technical debt items, types and amount (Z.
Li et al., 2015). This activity is relevant for my thesis because the visualizations
that I create aims to improve the communication in the decision-making process
related to the prioritization of technical debt and security debt.

Documentation

The documentation activity is a way of representing technical debt in a consistent
manner to address the concerns of specific stakeholders (Z. Li et al., 2015). Ac-
cording to Z. Li et al., 2015, all of the included studies that suggests an approach
for documenting technical debt is doing it by listing technical debt items along
with different information (such as ID, issue type, author, etc.). The documen-
tation activity is relevant for my thesis as the technical debt that I look into is
already documented through an issue tracking system.

2.3.2 Security debt process

In order to make an informed decision on whether to take on the debt or not, the
security risk must be identified and managed (Rindell & Holvitie, 2019). Kruke,
2022 argues that the eight activities found by Z. Li et al., 2015 applies for security
debt management as well. In addition, she highlights three activities that were
specifically mentioned for the security debt process: threat modeling, the use of
a bug bounty program, and security testing performed by the company’s security
team. As these activities falls under the prevention and identification activities,
they will not be further elaborated.

Measurement and monitoring

Security management activities includes the creation of appropriate security as-
surances to measure and monitor the accumulation of security risk. The techni-
cal debt management activities covers these areas of the security management

11

(Rindell & Holvitie, 2019).

Prioritizing

The accuracy of a risk assessment is crucial for the prioritization of security debt.
This is because while the technical debt is mostly prioritized according to the prin-
cipal and interest, the security items are assessed primarily by the risk (Rindell &
Holvitie, 2019). Kruke, 2022 also finds in her study that most of the participants
prioritize the security debt by calculating the risk severity.

Communication

The main reason for communicating security debt items is to make the risk visible
and to create some discussion about it. The security issues are often communi-
cated in the form of a security operations guide or an incident plan (Rindell &
Holvitie, 2019). Kruke, 2022 points out that some of the participants highlighted
the importance of communicating security debt, not only inside the team but also
outside the team.

Documentation

When a security risk is known of, the debt is documented (Rindell & Holvitie,
2019). The documentation of security debt is not very different from the technical
debt (Kruke, 2022). Kruke, 2022 found, in her study, that both technical debt and
security debt were documented in the same backlog as everything else. The dif-
ference were that while technical debt is often tagged with "NFR" (non functional
requirement), security debt is often labeled with a "security" tag in addition to
the "NFR" tag.

12

2.4 Issue tracking systems

Incurring technical debt can be an investment if the debt is kept visible and un-
der control (Z. Li et al., 2015). When working on a software project one have to
manage the issues that are found. In order to manage the debt one must know of
the debt, and in order to know of the debt one must track it. If the issues are not
tracked they will remain invisible (Martini et al., 2018). Issue tracking systems
are useful ways of tracking issues when the number of issues becomes large and
when a lot of people have to access and input data on them (Serrano & Ciordia,
2005).

Issue tracking systems are repositories that are used to support the software de-
velopment process (Ortu, Destefanis, Kassab, & Marchesi, 2015). By hosting de-
velopment tasks (like bugs and new features), the system supports maintenance
activity. For all of the stored items, the system provides information like a de-
scription, status of the issue, priority, as well as comments and attachments by
developers to discuss the task at hand (Ortu, Destefanis, Murgia, et al., 2015).

According to Serrano and Ciordia, 2005, there exists more than 70 issues and bug
tracking systems. Some popular issue tracking systems are Plutora, BugZilla,
Backlog, and Jira (Mostowski, Kuder, Filipczak, & Rutkowski, 2018). In this
thesis I’m looking at issues that are documented through the Jira issue tracking
system as the company uses Jira to track their technical debt issues.

2.4.1 Jira

The Jira issue tracking system has become popular within the last years (Ortu,
Destefanis, Murgia, et al., 2015), and is one of the most common issue tracking
systems adopted by companies (Ortu et al., 2016). Originally, Jira is a bug and
issue tracking system that were developed by Atlassian in 2002. Currently, it is
used by 65 000 companies over the world (Atlassian, 2022c).

As an issue tracking system, Jira contains the standard issue tracking informa-
tion mentioned above, as well as allowing for customized fields. In addition to
tracking issues, Jira has grown into a powerful work management tool for all

13

kinds of use cases (Atlassian, 2022c). Jira provides the possibility of tracking
progress, managing the backlog, and to plan sprints (Ortu, Destefanis, Murgia,
et al., 2015). Moreover, Jira offers unique features like a project management
system and the Jira agile kanban board (Atlassian, 2022c).

2.5 Analyzing debt evolution

One major issue when dealing with software development is how to decide about
future changes. "What evolution should the software system undergo, and in
which sequence?" (Kruchten et al., 2012). This evolution is, according to Kruchten
et al., 2012 constrained by cost in most cases, i.e. the resources available to apply
to making these changes.

During software evolution, technical debt is being incurred and paid back, some-
times in the same day and sometimes ten years later (Digkas et al., 2018). One
important aspect of technical debt is how the debt evolves over time and how it is
paid back (Tan, Feitosa, Avgeriou, & Lungu, 2020). While it has been empirically
proven that incurring technical debt negatively affects the project’s quality, it is
unwanted to totally eliminate the debt as the investment to reduce it would be
extremely inefficient (Digkas, Lungu, Chatzigeorgiou, & Avgeriou, 2017).

There have been several studies in the literature investigating how technical debt
in source code accumulates over time and the consequences of this accumulation
for software maintenance (Digkas et al., 2018). This type of knowledge can be
useful in terms of encouraging refactoring activities when the amount of technical
debt increases fast or for preventing the accumulation of new technical debt if
repayment strategies are too costly (Tan et al., 2020).

To the best of my knowledge, there exists only two studies that investigates the
evolution of technical debt in issue trackers. Y. Li, Soliman, and Avgeriou, 2020
explores the identification and remediation of self-admitted technical debt in Jira.
Tan et al., 2022b combines the sources of issue trackers and source code to study
the life cycle of technical debt items. Aside from this, the studies looking into issue
trackers in relation to technical debt is focusing on the identification of technical
debt items.

14

2.5.1 Analysis of debt backlog

The technical debt backlog helps teams in remembering to take care of technical
debt that would otherwise be invisible and overlooked (Martini et al., 2018). In
this thesis I’m interested in how the debt items that are already documented
in a backlog can be analyzed in order to give valuable information to relevant
stakeholders.

For the first research question I focus on the amount of debt that is fixed and
the types of issues that are fixed. For the second research question I focus on
the survival of the various issues to find out after how much time the issues are
fixed. Then the question is how these insights can be used to support the planning
and prioritization of technical debt and security debt. Because of this, my last
research question aims to find out how visualizations of historical data in issue
trackers can be used for this purpose.

2.6 Software visualization

As vision is the most used sense by humans, software visualization techniques
are increasingly researched. Software visualization techniques have been inves-
tigated in software engineering to help in understanding, maintaining, testing,
and evolving software systems (Alves et al., 2016). These visualization techniques
refers to the mapping of a software artefact (such as lines of code or method) to
graphical representations (Mendes, Gomes, Gonçalves, & et al., 2019). As large
amounts of data are produced during the evolution of a software, the use of visu-
alizations can make the understanding of the system’s evolution easier (Novais,
Torres, Mendes, Mendonça, & Zazworka, 2013).

Based on the fact that software visualization has been shown to benefit the pro-
cess of software understanding, Rios et al., 2018 and Brown et al., 2010 argues
that the use of software visualizations in relation to technical debt needs further
investigation.

15

2.6.1 Visualizing technical debt

Software visualization techniques can support the developer in the identification
and/or management of different types of technical debt in software projects (Alves
et al., 2016). Mendes et al., 2019 claims that software visualization techniques
are a promising way to deal with technical debt items.

There exists few studies that has proposed visualization techniques related to the
identification of technical debt. The suggested techniques to support the identifi-
cation are: flags in code, 2D maps, scatterplot and correlation matrix, time range,
timeline and treemap (Alves et al., 2016). In the context of technical debt manage-
ment, software visualization techniques are more studied and the most proposed
techniques are dependency matrix, bar graph, and pie chart format (Alves et al.,
2016). Besides this, Alves et al., 2016 and Novais et al., 2013 points out that the
different types of visualization techniques already suggested in other contexts in
software maintenance and evolution should be investigated for the management
of technical debt.

In the context of agile development, burn down and burn up charts are usually
used to keep track of progress. Burn up charts shows the functionality imple-
mented over a time period, while burn down charts shows the work remaining to
reach a specific goal over a period of time. Other visualizations used for progress
tracking are concerned with the velocity of the team and estimating efforts (Pare-
des, Anslow, & Maurer, 2014). Additionally, treemaps, timelines, and pie charts
are also commonly used within agile development (Paredes et al., 2014).

In addition to visualization techniques, another useful approach when dealing
with large amounts of complex data are software metrics. Lanza, 2001 combines
these two approaches, i.e., software metrics are visualized allowing for quickly
understanding the evolution. Moreover, Pinzger, Gall, Fischer, and Lanza, 2005
points out that software metrics should be communicated to highlight trends in
the large amounts of data, because by spotting these trends one can get a thor-
ough understanding of the current state and thus further focus on maintaining
the relevant entities.

16

2.6.2 Visualizations in dashboards

In dashboard, the information is organized and presented in an easy to read man-
ner. The use of dashboards is beneficial in terms of letting managers and develop-
ers access a summarized version of the project’s data without having to go through
log files to gather and understand the information. By using visualization tech-
niques on dashboards one can improve the awareness of their own project and
thus make them act upon the conflicts that arise (Paredes et al., 2014).

In this thesis I aim to create a dashboard that makes the planning and priori-
tization of technical debt and security debt easier. Some of the mentioned visu-
alization techniques are used as an inspiration for designing the visualizations.
Additionally, different software metrics (such as number of open issues and lead
time) are included.

17

Chapter 3

Methodology

In this chapter I will present the methodology used in the thesis. First, I will
present the research design and how this design was applied to my research. Then
I will describe the different methods of data collection. Further, I will explain how
the data was analyzed. Lastly, I will present research ethics.

3.1 Company context

The company used in this study is a multinational company with a growing num-
ber of independent subsidiaries and is currently found in over 20 countries. Each
of the independent subsidiaries use global processes such as the annual assess-
ment of the technical debt process. The company use an index application that
contains multiple areas where they measure the maturity of their products. Two
of these areas are Architecture and Technology, and Security. Under these areas
each product that the company owns has assigned one target level. Each level
has assigned the interval of penalty points that you can have for that level. These
penalty points you get if you do not perform several actions, and each action has
a different rating depending on the importance of it.

18

3.2 Design Science Research

A central part of my research is to find out how visualizations can support the
planning and prioritization of technical debt and security debt. As this can be
achieved by creating and evaluating an artefact, the research design chosen for
this study is Design Science Research.

Design Science Research can be considered a problem solving paradigm (Brocke,
Hevner, & Maedche, 2020; Hevner et al., 2004). Hevner et al., 2004 argues that
Design Science is about creating and evaluating innovative artefacts to solve spe-
cific problems. An artefact is defined by Johannesson, 2014 as a humanly-made
object used to address a practical problem. A common distinction within Design
Science Research is between four types of artefacts: constructs, models, methods,
and instantiations (Johannesson, 2014).

Instantiations are working systems that can be used in a practice (Johannesson,
2014). The artefact that I aim to create will work as a dashboard implemented in
the existing Jira platform. Because of this, the artefact provided by my study can
be considered an instantiation.

An important step following the Design Science Research methodology is to eval-
uate the created artefact. This is done to determine if the artefact is solving the
explicated problem. Different strategies have been suggested to evaluate an arte-
fact but one common distinction is between ex ante and ex post evaluations. Ex
ante evaluation is evaluation that is conducted before the artefact is fully devel-
oped, while ex post evaluation requires that the artefact is working (Johannesson,
2014).

Hevner et al., 2004 created seven guidelines to support researchers in developing,
improving, and evaluating artefacts. In Chapter 7 I will go through how these
guidelines have been followed throughout my project.

19

3.2.1 Design Science Research process

I have applied Peffers, Tuunanen, Rothenberger, and Chatterjee, 2007 Design Sci-
ence Research Methodology in my research. The procedure follows 6 steps: prob-
lem identification and motivation, definition of the objectives for a solution, de-
sign and development, demonstration, evaluation, and communication. A visual
representation of the research design is presented in Figure 3.1 and explained
below.

Figure 3.1 shows an arrow above the six steps. Throughout my project I’ve had
weekly meetings with my supervisors where we have discussed methodology, re-
sults and interactions with the company. Company stakeholders have been in-
volved in most of these meetings which has given me the opportunity of getting
continuous input and feedback from relevant stakeholders within the company.

Step 1 is the activity of defining the specific problem and justifying the value of
a solution (Peffers et al., 2007). In this first step I got input from the company
stakeholders (involved in our meetings) to define the research topic for this the-
sis. Additionally, I reviewed the current literature on technical debt and security
debt. This revealed that even though visualization techniques are shown to ben-
efit software understanding, there exists few studies related to visualizations of
technical debt. Based on the findings from the literature review it is reasonable to
assume that the planning and prioritization of technical debt and security debt is
considered a challenge. These findings together with feedback from the company
stakeholders were the base from where I defined my research questions. This will
further be used to develop the artefact in order to provide a solution.

Step 2 is the activity of creating the objectives of a solution based on the problem
definition (Peffers et al., 2007). In this step I conducted a document analysis
where I looked into a data set containing technical debt issues from the company’s
Jira backlog. The document analysis helped me in finding out what data was
available in the company. Furthermore, I performed some statistical tests on
the data. These tests serve as a starting point for the rest of the thesis as I
got to explore the problem area and understand how the teams prioritize and fix
technical debt and security debt within the company. A more detailed explanation
of the document analysis and the statistical tests will be presented later in this

20

F
ig

ur
e

3.
1:

D
es

ig
n

Sc
ie

nc
e

R
es

ea
rc

h
pr

oc
es

s

21

chapter. With the findings from the statistical tests in mind, I discussed different
ideas of how to solve the explicated problem together with the company stakehold-
ers involved in our meetings. This resulted in a set of functional requirements (see
section 5.1) which was the base from where the visualizations were designed and
developed.

The three next steps: design and development, demonstration, and evaluation
are done in an iterative manner with two iterations as shown in Figure 3.1. After
completing the evaluation in the first iteration I went back to redesign the artefact
as a result of the feedback I got. A more detailed explanation of these steps will
be described in chapter 5.

Step 3 is the activity of creating the artefact (Peffers et al., 2007). In the first iter-
ation I designed and developed the different visualizations based on the require-
ments proposed by the company stakeholders. In the second iteration I improved
the visualizations based on the feedback provided in the first evaluation.

Step 4 is the activity of demonstrating the artefact in order to solve one or more
instances of the explicated problem (Peffers et al., 2007). In the first iteration I
conducted an interview with a Chief Software Quality Engineer. In the interview
I presented the findings from the statistical tests as well as the different visual-
izations and their purposes. In the second iteration I demonstrated the artefact
and interviewed different roles (e.g. managers, developers, and architects) from
five teams/projects within the company.

Step 5 is the activity of evaluating the artefact to find out how well it supports a
solution to the explicated problem (Peffers et al., 2007). The goal for the first eval-
uation were to find out about the usefulness of the visualizations and what could
be improved. This evaluation led to refining the visualizations. The evaluation
step in the second iteration were done to find out to what extent the evaluation
criteria understandability and usefulness were met.

Step 6 is the activity of communicating the problem and its importance (Peffers
et al., 2007). This last step is this master thesis report.

22

3.3 Methods for data collection

In this section I will describe the different data collections methods used in the
research. Although it is common to use a single data collection method in a re-
search project, it can be helpful to use more than one method to get a broader view.
The approach of combining research strategies and methods is called the mixed
method approach (Johannesson & Perjons, 2014). I have used the mixed-method
approach in my project by using different sources of data.

The purpose of choosing this mixed-method approach was to first explore how
the different teams works with technical debt and security debt using document
analysis and quantitative data analysis. Then, based on the findings from the
quantitative data analysis together with input from the company stakeholders,
I developed an artefact and conducted interviews with different relevant stake-
holders. The reason for using both quantitative and qualitative data was that the
visualizations could best be developed after a preliminary investigation on how
the teams manage technical debt and security debt.

3.3.1 Document analysis

Document analysis is a systematic procedure for reviewing or evaluating docu-
ments. By reviewing documents one can gain insights into the context where
research participants operate. Documents can provide information as well as his-
torical insights. Such information can help researchers understand past events
(Bowen, 2009).

Using documents as a data source means that a great deal of data can be collected
in a shorter period of time and more inexpensively than what would be the case
with questionnaires or interviews (Brocke et al., 2020).

The document I have gained access to is a data set consisting of technical debt is-
sues from the company’s Jira backlog. One of the company stakeholders extracted
the issues and imported it to my project in TSD 1 (Tjeneste for Sensitive Data),

1https://www.uio.no/tjenester/it/forskning/sensitiv/

23

owned by the University of Oslo, operated and developed by the TSD service group
at the University of Oslo, IT-Department (USIT).

Data set description

• The data set consists of 10970 technical debt issues

• The issues are created from November 2012 until April 2022

• The data set reports information about the creation date, resolution date (if
resolved), summary, priority, status, resolution, and labels

• There are four different priority levels: low, medium, high, and critical

• The issue can be in one of these four statuses: open, in progress, in review,
and closed

• The different resolutions reported are: done, fixed, won’t do, won’t fix and
unresolved

Excluded issues

I have removed issues lacking the required information, i.e. issues without a pri-
ority, issues that have been moved, duplicates, etc. Additionally I have excluded
the issues that are created in April 2022 because there is a much higher amount
of unresolved issues compared to the other months (16% vs. 50%). After removing
these issues the data set consists of 10192 issues.

Table 3.1 shows the distribution of issues for the different priorities after the
removal of the mentioned issues.

Resolution Low Medium High Critical Total
Fixed 297 4906 619 135 5957

Not fixed 338 2864 182 24 3407
Won’t fix 91 687 47 3 828

Table 3.1: Distribution of issues for the different priorities

24

Issue resolution

I distinguish between issues that are fixed and issues that are not fixed. The
issues that are considered fixed are the issues that are closed with the resolution
"done" or "fixed". The issues that are closed without a resolution ("won’t do" or
"won’t fix") are not included in the fixed issues. The issues that are considered not
fixed are the issues that are still open with the resolution "unresolved".

Issue types

I have classified some of the issues in the data set as security debt. This has been
done by searching in each of the issues summary and label fields. In these fields
I have searched for the words proposed in the security model by Firesmith, 2003
(see Figure 2.1). For example, if the issue is labeled "security" or if the summary
mentions "authentication" I have classified that item as security debt. The figure
below shows four example items and how the classification is done.

Figure 3.2: An example showing how the security debt items are classified by
searching in the summary and labels field. The colored rows shows the issues
that are considered security debt. I have removed some information to keep the
data from the company anonymous.

Different projects

The data set consists of data from 181 different projects. Some of the projects
have very few issues, while others have a large amount of issues. 55 of these
projects have both technical debt and security debt issues. Since a part of this
thesis is to investigate the relation between technical debt and security debt, I
have performed the statistical tests for both of these cases: 1) using all technical
debt and security debt issues (without considering projects), and 2) using data

25

only from the projects with both technical debt and security debt. This can be
seen when reporting the results in Chapter 4.

3.3.2 Interview

Interviews are useful for collecting data from people with deep and unique in-
formation and knowledge about some domain. A big advantage of conducting
interviews is that the researcher is allowed to go into depth in order to collect
detailed and complex information (Johannesson & Perjons, 2014).

Interviews can be divided into three types based on the structure of the interview;
structured, semi-structured and unstructured interviews. The semi-structured
interview were chosen for all of the interviews as this opens up for partcipants to
freely express their ideas (Johannesson & Perjons, 2014).

I have conducted interviews within both iterations. In the first iteration I inter-
viewed a Chief Software Quality Engineer in the company in order to get some
initial thoughts and improvements on the visualizations. In the second iteration,
I refined the visualizations by including the improvements suggested in the first
evaluation. Then, I interviewed different stakeholders from five teams/projects
within the company. Because this can be seen as a first feedback regarding visu-
alizing technical debt and security debt for the purpose of supporting the planning
and prioritization I wanted to get feedback from different perspectives within a
team/project.

To prepare for the interviews I made an interview guide. Because I conducted
interviews in two iterations and these iterations had different goals I made two
different interview guides (one for each iteration). In the first evaluation, the
main focus were on the relevance of the visualizations and how these best could be
shown, while the interviews in the second iteration focused on evaluating the un-
derstandability and usefulness of the refined visualizations. The interview guide
used in the first iteration is included in Appendix A (8) and the interview guide
used in the second iteration is included in Appendix B (8).

Before interviewing the participants in the second iteration I got some help for-
mulating the questions to ask. I had a meeting with a Senior User Experience

26

Designer from the company where I showed my visualizations and told what I
wanted to get out of asking the participants. This preparation supported me in
the creation of the interview guide for the second iteration. One of the main things
that were discussed in the meeting was how to evaluate the understandability of
the visualizations. It was proposed to ask open questions about what the partici-
pant could see in the visualizations to get an impression of how it was perceived.
Another thing that was pointed out in the meeting was the importance of getting
candid and honest answers from the participants. This was especially important
as I had developed the visualizations myself and then the participants could be
cautious to avoid hurt my feelings. Because of this, I told the participants that
they should say if they don’t like or understand the visualizations because only
then I can do something about it.

First evaluation

The participant in the first evaluation was selected in agreement with my su-
pervisors. The participant is a Chief Software Quality Engineer and is therefore
someone who knows a lot about how the prioritization of technical debt and secu-
rity debt is done within the company.

This interview was conducted in the first iteration. The goal of this first eval-
uation was to find out about the usefulness of the visualizations and how they
could be improved. Because the statistical tests were the starting point for the
creation of the visualizations I explained to the participant which tests were per-
formed and the results from the tests. The visualizations were demonstrated in a
presentation showing one visualization on each slide.

This first evaluation can be considered an ex ante evaluation because the artefact
was not demonstrated as an integrated solution in Jira. This was chosen as this
type of evaluation is ideal for evaluations where an initial design or prototype
is to be assessed quickly and inexpensive in order to obtain feedback for further
improvement (Johannesson & Perjons, 2014).

27

Interviewing stakeholders within 5 projects/teams

In the second iteration I conducted interviews with different roles from five teams/
projects within the company as shown in Table 3.2. The participant in the first
evaluation suggested different people that I could ask in this second iteration.

Interview Referred to as Role # open TD
1 A1 Service architect 5
2 B1 Development manager 17
3 C1, C2 Backend developers 92
4 D1 Project manager 26
5 E1, E2, E3, E4 Software architects 883

Table 3.2: Table showing the participants in the second iteration. Interview 3
and 5 were conducted as focus group interviews. The number of participants in
each interview is reflected in the "referred to as" column. The "referred to as"
column shows how I will refer to the participants when including citations of
what they have said. The four first interviews were from different teams and the
last interview was four people from one project (meaning different teams within
the same project) which is why the number of open issues are much higher.

Two of the interviews were conducted as a focus group interview with two and four
participants. This was done because the participants in the same interview were
from the same team/project within the company. By conducting a focus group
interview, the participants can be more creative and more in depth as the par-
ticipants can inspire each other to come up with ideas (Johannesson & Perjons,
2014). A disadvantage with this type of interview is that the participants can in-
fluence each other and thereby drive the discussion in a certain direction. Thus,
this type of interviews might not be useful for understanding the views of every
participant. As the participants in the same focus group interview has the same
role and daily tasks within the same company, I think this disadvantage is greatly
mitigated.

I wanted to demonstrate the artefact with the participant’s own data, but as they
then could be more concerned with discussing the actual numbers and not the
visual representations, I decided, together with the company stakeholders, to use
data from another project when demonstrating it. When firstly creating the vi-
sualizations I used the five biggest projects in terms of amount of issues for both
technical debt and security debt. When demonstrating it to the different stake-

28

holders I chose to use the middle project out of these five largest.

The evaluation criteria for these interviews were understandability and use-
fulness of the visualizations. In order to get data on the understandability I
asked open questions about the visualizations before explaining them and their
purpose. This was done to get an impression of how they perceive the different
visualizations. Related to the understandability, I for example asked "What do
you see here?" or "What do you think this visualization is showing?". To get data
related to the usefulness of the visualizations I asked questions related to how it
could help the participants in their work with technical debt and security debt,
who would use it and when it would be used. Further, I asked the participants
what is missing in the different visualizations to find out how they could be fur-
ther improved.

The evaluations conducted in this second iteration can be considered an ex post
evaluation as the artefact is fully working and implemented as a dashboard in
Jira. Because the completed artefact is evaluated, this kind of evaluation is less
likely to produce false positives (Johannesson & Perjons, 2014). Although the
artefact is fully working, I did ask for and will report some suggested improve-
ments for the artefact.

3.4 Data analysis

There are two main kinds of data analysis: quantitative and qualitative analysis.
Quantitative data analysis works on quantitative data (numbers), while qualita-
tive data analysis works on qualitative data (words, images, etc.) (Johannesson,
2014). In this section I will describe how the data has been analysed. Since I have
both quantitative and qualitative data I will first explain the quantitative data
analysis and then describe the qualitative data analysis.

3.4.1 Quantitative data analysis

When doing a quantitative data analysis one typically distinguish between de-
scriptive statistic and inferential statistics. The difference between these two is

29

that descriptive statistics intends to describe a given sample of data (for example
mean, median, mode, etc.) while inferential statistics is used to draw conclusions
about a population that the sample represents (Johannesson, 2014).

Johannesson and Perjons, 2014 presents four kinds of quantitative data that dif-
fer in terms of how they can be manipulated mathematically. Below is a short
explanation of these types:

• Nominal/categorical data does not have a numerical value on which arith-
metical operations can be performed.

• Ordinal/ranked data also denotes categories, but these categories can be
ranked and there is an order between them.

• Interval data are ordered and the distance between two adjacent points on
the scale is always the same.

• Ratio data are like interval data and additionally there is a zero to the
scale.

In my research I have used inferential statistics in order to investigate the re-
lationship between technical debt and security debt. This has been done using
two-population hypothesis testing. For performing the statistical tests I have
used the program Xlstat 2.

The data set that I have looked at consisted of technical debt issues from differ-
ent projects within the company. All projects with security debt did also have
technical debt. On the other hand, projects with technical debt might not have
security issues. Because not all of the projects had security issues, I performed
the statistical tests for the following two cases:

1. All technical debt and security debt without considering projects

2. Technical debt and security debt only from projects having both security
debt and technical debt

2https://www.xlstat.com/en/

30

The first case was to consider all of the issues in the data set to get a complete
overview and the second case was to only compare the projects that has both
security debt and technical debt as mentioned in the research questions.

Chi Square test of independence

I wanted to explore the relationship between issue type (security debt and tech-
nical debt) and whether or not the issue is fixed in order to see if one of the issue
types are fixed in higher quantities than the other and thus are considered more
important to the team/project. For this purpose, I have performed the Chi-Square
Test of Independence. The data used for this test is nominal/categorical data (is-
sue type and resolution) and the samples are independent.

The reason for choosing this test is that the Chi-Square Test of Independence can
be used to study relationships in categorical data. If the variables are found to
be unrelated, they’re declared independent. If they’re found to be related, they’re
declared dependent (Rumsey, 2009).

The Chi-Square Test of Independence is first calculating what is expected to be
seen in each of the cells in the table if the variables are independent. Then the
test compares these expected cell counts to what you observe in the data and
compares them using a Chi-Square statistic (Rumsey, 2009).

Table 8.1 (Appendix C) shows the counts for each issue-fixing combination. All
technical debt issues (without considering projects) are denoted with TD (all).
The technical debt issues that are only from the projects that has both technical
debt and security debt are denoted with TD (projects). Lastly, the security debt
issues are denoted with SD. The expected counts represents the number of fixed
or not fixed issues if there are no relationship.

I have performed the Chi-Square Test of Independence for all of the priorities
together (overall) as well as for each priority (low, medium, high and critical). For
the critical security issues, the expected count for not fixed issues are 3 (see Table
8.1). Because a requirement for this test is that there are more than five expected
counts for each combination of the two variables, the result for the issues with
critical priority is not as reliable as the other results.

31

I have used a 5% significance level, i.e., the null-hypothesis was rejected if the p
value was smaller than 0.05. The following is my null hypothesis and alternative
hypothesis:

• H0: There is no relation between issue type and fixing

• HA: There is a relation between issue type and fixing

Mann-Whitney U test

I wanted to find out if the lead time for fixing an issue were different for technical
debt and security debt. For this purpose I have performed the Mann-Whitney U
test. The data used for this test is ordinal data (lead time). I have one independent
variable (issue type) and one dependent variable (lead time).

The reason for choosing this test is that the Mann-Whitney U test can be used
to test the null hypothesis that two samples come from the same population or
similar populations (Beatty, 2018). I could have used an independent t-test for
this purpose, but since the data that I have is not normally distributed (Shapiro-
Wilk test was significant for all cases) I have used the non-parametric test Mann-
Whitney U test. This test doesn’t require the data to have a specific distribution
(Rumsey, 2009).

I removed outliers in the data set using the interquartile range technique. This
was done because outliers are patterns which are not in the range of normal be-
haviour (Vinutha, Poornima, & Sagar, 2018). The interquartile range technique
works by dividing the data into three quartiles: Q1, Q2, and Q3. Then the in-
terquartile range is calculated by Q1 and Q3. In the end, the upper and lower
boundaries are found by using the interquartile range and then removed.

I have performed the Mann-Whitney U test for all of the priorities together (over-
all) as well as for each priority (low, medium, high and critical). I have used a 5%
significance level, i.e., the null-hypothesis was rejected if the p value was smaller
than 0.05. The following is my null hypothesis and alternative hypothesis:

• H0: The lead time for technical debt and security debt is equal

32

• HA: The lead time for technical debt and security debt is not equal

With lead time I mean the time required to fix the issue. The lead time is found
by calculating the days between the created and resolved time stamps. When
performing the test I did only used the issues that are actually fixed, i.e., the
issue that are closed with a resolution ("done" or "fixed"). I have not included the
issues that are closed without a resolution ("won’t do" or "won’t fix").

I have used Cohen’s classification of effect size to determine the strength between
the variables. The effect size is found by: r = Z√

N
.

r > 0.3 small effect
r < 0.3 & r > 0.5 medium effect

r < 0.5 large effect

Table 3.3: Cohen’s classification of effect size

3.4.2 Qualitative data analysis

All of the interviews were conducted and recorded in Zoom. Then, the recordings
were transcribed and anonymized. I used thematic analysis to categorize the data
in the transcribings.

Thematic analysis

Thematic analysis is used to identify, analyse, and report themes within data. A
theme is a collection of something important about the data in relation to the re-
search question. Additionally, the theme presents some level of patterned mean-
ing within the data set (Braun & Clarke, 2006).

I analysed the interviews using themes. There are two common ways to identify
themes in thematic analysis: inductive way or deductive way. For the inductive
approach, the coding frames emerges from the data, while for the deductive ap-
proach the coding frames are pre-defined (Braun & Clarke, 2006).

33

Deductive approach

For both of the iterations, I used the deductive approach when coding the data. I
chose to do it this way because I had already defined the topics I wanted to find
out about in the two interview guides. Additionally, since I’m coding for specific
evaluation criteria, this seemed to be the best choice. The themes were selected
by the topics in the interview guides. Below is a figure (see Figure 3.3) showing
an example of how the thematic analysis is done from the themes to the quotes
from the interviews.

Figure 3.3: An example showing the thematic analysis from theme to interview
quotes

The themes I have used for the thematic analysis are shown under the evaluation
section for each of the iterations in chapter 5.

3.5 Research ethics

The data set that I gained access to from the company was anonymized in advance
by one of the company stakeholders. Even though there were no identifiable in-

34

formation, I considered the data to be in confidence data because it contained
information about the company’s issues. In accordance to the University of Oslo’s
data storage guide I created a project in TSD so that the data could be stored
securely. Additionally I created a data management plan that was sent to NSD 3

(Norwegian Center for Research data).

The interviews were recorded. Before conducting the interviews I sent a notifi-
cation form to NSD. In the notification form I uploaded the interview guides, a
consent form as well as described how the recordings would be stored. Before
starting the interviews I asked the participants if they were fine with me record-
ing the meeting. I read the most important parts of the consent form before I
asked them for a consent. After the interview I sent the full consent form to the
participants by mail.

3https://www.nsd.no/en

35

Chapter 4

Results from quantitative data
analysis

As described earlier, I have performed two different statistical tests to investigate
the relationship between technical debt and security debt. The results from these
tests will be presented in this chapter. The sections corresponds to the two first
research questions described in Chapter 1.

As I have performed the test for the two cases described in the Methodology (sec-
tion 3.4.1), the results are presented in this order for both presented tests:

1. All technical debt (All TD) and security debt (SD) without considering projects.

2. The technical debt (TD from projects) and security debt (SD) from only the
projects having both technical debt and security debt

4.1 RQ1. How different is the amount of fixed is-
sues for technical debt and security debt?

The aim of this research question is to quantify the amount of technical debt and
security debt that is paid off and thus find out which issues are fixed more often.
I considered 9357 Jira issues. Table 4.1 shows the distribution of issues for the

36

different priorities. I tested the relation between issue type and resolution by
performing the Chi-Square Test of Independence.

Issue type Resolution Low Medium High Critical Total

All TD Fixed 238 4255 396 118 5007
Not fixed 290 2655 157 23 3152

TD from
projects

Fixed 223 3899 363 88 4573
Not fixed 269 2335 151 12 2767

SD Fixed 59 630 223 17 929
Not fixed 48 195 25 1 269

Table 4.1: Distribution of considered issues by priority and resolution

Overall
As the obtained p value is 1.8E−27/1.6E−24 we should reject the null hypothesis
and accept the alternative hypothesis. In general, the Chi-Square Test of Inde-
pendence shows that there is a relation between issue type and fixing.

Low
As the obtained p value is .057/.065, the null hypothesis cannot be rejected. For
the issues with low priority, the Chi-Square Test of Independence shows that
there is no significant relation between issue type and fixing.

Medium
As the obtained p value is 8.7E−17/7.3E−15 we should reject the null hypothesis
and accept the alternative hypothesis. For the issues with medium priority, the
Chi-Square Test of Independence showed that there was a significant relation
between issue type and fixing.

High
As the obtained p value is 1.08E−8/3.19E−9 we should reject the null hypothesis
and accept the alternative hypothesis. For the issues with high priority, the Chi-
Square Test of Independence showed that there was a significant relation between
issue type and fixing.

37

Critical
As the obtained p value is .23/.42, the null hypothesis cannot be rejected. For the
critical issues, the Chi-Square Test of Independence showed that there was no
significant relation between issue type and fixing, X2=1.4/0.65, p=.23/.42.

The results from the Chi-Square Test of Independence are summarized in Table
4.2. This table shows that the results are not very different for the tests where all
technical debt are included and where only the technical debt from the projects
with security debt are included. At least, the difference does not impact if the
result is significant or not.

To further look at the significant relations I have used a bar chart to graph each
cell’s contribution to the Chi-Square statistic (see Figure 4.1). This graph empha-
sizes the small difference for the considered technical debt issues.

Figure 4.1: Contribution to the Chi-Square statistic. The contribution is rounded
to its nearest integer.

The contribution graph shows that it is the security debt that contributes the
most to the Chi-Square statistic and thus produce the statistical significance. The
technical debt issues adds almost nothing. This means that, for these priorities,
the security debt issues are fixed more frequently than expected. This can also be
seen by looking at the statistical output for the observed and expected counts in

38

the Table 8.1 (Appendix C). Moreover, I will show the percentage of fixes for all of
the priorities in a bar chart.

Figure 4.2: Percentage of fixes for each priority type. The number is rounded to
its nearest integer.

Figure 4.2 shows the percentage of fixes for technical debt and security debt. By
looking at this graph we can see can see the same observations as above: the
percentage of fixes is higher for the security debt issues. This is also the case
for the issues with low and critical priority even if the relation between issue
type and resolution were not significant. In addition, this graph shows that the
percentage of fixed issues goes up as the priority gets higher for both technical
debt and security debt.

39

P
ri

or
it

y
In

cl
ud

ed
is

su
es

Si
gn

ifi
ca

nt
di

ff
er

en
ce

p
va

lu
e

In
te

rp
re

ta
ti

on

O
ve

ra
ll

T
D

(a
ll)

an
d

SD
1.

8E
−
2
7

Ye
s

Se
cu

ri
ty

de
bt

is
si

gn
ifi

ca
nt

ly
fix

ed
m

or
e

of
te

n
th

an
te

ch
ni

ca
ld

eb
t

T
D

(p
ro

je
ct

s)
an

d
SD

1.
6E

−
2
4

L
ow

T
D

(a
ll)

an
d

SD
.0

57

N
o

T
he

re
is

no
re

la
ti

on
be

tw
ee

n
is

su
e

ty
pe

an
d

fix
in

g
T

D
(p

ro
je

ct
s)

an
d

SD
.0

65

M
ed

iu
m

T
D

(a
ll)

an
d

SD
8.

7E
−
1
7

Ye
s

Se
cu

ri
ty

de
bt

is
si

gn
ifi

ca
nt

ly
fix

ed
m

or
e

of
te

n
th

an
te

ch
ni

ca
ld

eb
t

T
D

(p
ro

je
ct

s)
an

d
SD

7.
3E

−
1
5

H
ig

h
T

D
(a

ll)
an

d
SD

1.
08

E
−
8

Ye
s

Se
cu

ri
ty

de
bt

is
si

gn
ifi

ca
nt

ly
fix

ed
m

or
e

of
te

n
th

an
te

ch
ni

ca
ld

eb
t

T
D

(p
ro

je
ct

s)
an

d
SD

3.
19

E
−
9

C
ri

ti
ca

l
T

D
(a

ll)
an

d
SD

.2
3

Ye
s

T
he

re
is

no
re

la
ti

on
be

tw
ee

n
is

su
e

ty
pe

an
d

fix
in

g
T

D
(p

ro
je

ct
s)

T
D

(p
ro

je
ct

s)
an

d
SD

.4
2

Ta
bl

e
4.

2:
R

es
ul

ts
fr

om
th

e
C

hi
-S

qu
ar

e
Te

st
of

In
de

pe
nd

en
ce

40

4.2 RQ2. How different is the lead time for fixing
technical debt and security debt?

The aim of this research question is to find out after how long time the issues are
repaid and if there is a difference in the lead time for technical debt and security
debt. For this research question I only considered the issues that are fixed which
are 5955 Jira issues. I considered as outliers the data outside the interquartile
range. After this, the data set contained 5470 issues. The distribution of the lead
time is shown in Figure 4.3. I tested the differences of the distributions of lead
time using the Mann-Whitney U Test.

Overall
As the obtained p value is 0.002/3.00E−8, we can reject the null-hypothesis and
conclude that there is a difference in the lead time for technical debt and security
debt. In general, the Mann-Whitney U test indicates that the lead time is higher
for security debt issues (Median=82) than technical debt issues (Median=77/63).
The effect size is small (r=0.04/0.08).

Low priority
As the obtained p value is 0.28/0.25 we cannot reject the null-hypothesis. For the
issues with low priority, the Mann-Whitney U test indicates that the lead time is
equal for the technical debt issues (Median=226/223) and the security debt issues
(Median=320).

Medium priority
As the obtained p value is 6.3E−5/3.75E−9 we can reject the null-hypothesis and
conclude that there is a difference in the lead time for technical debt and security
debt. For the issues with medium priority, the Mann-Whitney U test indicates
that the lead time is higher for security debt issues (Median=76) than technical
debt issues (Median=73/58). The effect size is small (r=0.06/0.10).

High priority
As the obtained p value is 0.001/0.013 we can reject the null-hypothesis and con-
clude that there is a difference in the lead time for technical debt and security
debt. For the issues with high priority, the Mann-Whitney U test indicates that

41

the lead time is higher for technical debt issues (Median=90/78) than security
debt issues (Median=55). The effect size is small (r=0.14/0.11).

Critical priority
As the obtained p value is 0.045/0.028 we can reject the null-hypothesis and con-
clude that there is a difference in the lead time for technical debt and security
debt. For the issues with critical priority, the Mann-Whitney U test indicates
that the lead time is higher for security debt issues (Median=91) than technical
debt issues (Median=39/31). The effect size is small (r=0.19/0.26).

The results from the Mann-Whitney U test if summarized in Table 4.3. This table
shows that the results are not very different for the tests where all technical debt
is included and where only the technical debt from the projects with security debt
is included. At least, the difference does not impact if the result is significant or
not.

42

Figure 4.3: Overlapping histograms showing the distribution of the lead time for
security debt (SD), all technical debt (TD all), and technical debt only from the
projects that have security debt as well (TD projects).

43

P
ri

or
it

y
In

cl
ud

ed
is

su
es

Si
gn

ifi
ca

nt
di

ff
er

en
ce

p
va

lu
e

In
te

rp
re

ta
ti

on

O
ve

ra
ll

T
D

(a
ll)

an
d

SD
.0

02

Ye
s

Te
ch

ni
ca

l
de

bt
is

fix
ed

in
sh

or
te

r
ti

m
e

th
an

se
cu

ri
ty

de
bt

T
D

(p
ro

je
ct

s)
an

d
SD

3.
00

3E
−
8

L
ow

T
D

(a
ll)

an
d

SD
.2

8

N
o

T
he

re
is

no
di

ff
er

en
ce

in
th

e
le

ad
ti

m
e

fo
r

te
ch

ni
ca

ld
eb

t
an

d
se

cu
ri

ty
de

bt
T

D
(p

ro
je

ct
s)

an
d

SD
.2

48

M
ed

iu
m

T
D

(a
ll)

an
d

SD
6.

28
8E

−
5

Ye
s

Te
ch

ni
ca

l
de

bt
is

fix
ed

in
sh

or
te

r
ti

m
e

th
an

se
cu

ri
ty

de
bt

T
D

(p
ro

je
ct

s)
an

d
SD

3.
74

9E
−
9

H
ig

h
T

D
(a

ll)
an

d
SD

.0
01

Ye
s

Se
cu

ri
ty

de
bt

is
fix

ed
in

sh
or

te
r

ti
m

e
th

an
te

ch
ni

ca
ld

eb
t

T
D

(p
ro

je
ct

s)
an

d
SD

.0
13

C
ri

ti
ca

l
T

D
(a

ll)
an

d
SD

.0
45

Ye
s

Te
ch

ni
ca

l
de

bt
is

fix
ed

in
sh

or
te

r
ti

m
e

th
an

se
cu

ri
ty

de
bt

T
D

(p
ro

je
ct

s)
an

d
SD

.0
28

Ta
bl

e
4.

3:
R

es
ul

ts
fr

om
th

e
M

an
n-

W
hi

tn
ey

U
te

st

44

Chapter 5

Iterations

In this chapter I will describe how the artefact was created through two iterations.
The iterations consists of step 3-5 in the Design Science Research process. As
step 2 (defining objectives for solution) was the base from where I designed and
developed the artefact I will describe this step first.

5.1 Defining the objectives for a solution

Before developing the artefact I discussed different ideas on how to solve the ex-
plicated problem together with the company stakeholders involved in our meet-
ings. As the document analysis had already provided me with information about
which data was available and the quantitative data analysis revealed insights
about how the different teams have prioritized and fixed technical debt and secu-
rity debt in practice we had good knowledge of the problem area. Based on this,
the ideas were transformed into a set of functional requirements aiming to solve
the problem. The six requirements presented in Table 5.1 was provided by the
company stakeholders.

The explanation and motivation behind each requirement will be elaborated for
in each of the visualizations below. The overarching goal for the artefact is that it
shall serve as a dashboard of history keeping where the teams can see how they
prioritized and fixed technical debt and security debt in the previous period and

45

thus make better decisions regarding the prioritization of the debt in the future.
These decisions can impact which debt is fixed and how fast they are fixed.

R1 Let teams know if they handle technical debt and security debt
equally or not

R2 Let teams get information about how much time they use to fix tech-
nical debt and security debt

R3 Let teams get information about the time they use to fix issues com-
pared to best team and average team in the company

R4 Let teams get information about the issues they have identified and
fixed within the last period

R5 Let teams get information about the open security issues with highest
priority

R6 Let teams get information about the open issues that have been in the
system for the longest time

Table 5.1: Requirements proposed by the company stakeholders

5.2 First iteration

This first iteration includes the steps denoted with the letter a in my research pro-
cess. The design and development phase were carried out based on the previously
described requirements. As I have conducted the demonstration and evaluation
at the same time, I will explain it together under the Evaluation sections.

The visualizations are created from the same data set that the statistical tests
are performed on. Because the data set is extracted from the company’s Jira
backlog I decided to use Jira when creating the artefact. Before I could start to
develop the visualizations I had to export data from TSD to Jira. I imported the
five biggest projects in terms of highest amount of both technical debt issues and
security debt issues. Before exporting the issues I replaced each issue’s summary
field with "summary" (as I didn’t need this information for the visualizations) and
labeled the issues as either "TD" (technical debt) or "SD" (security debt). This was

46

done to keep the data as anonymous as possible and not display more information
than needed.

5.2.1 Design and development

The visualizations shown below are created with data from one out of these five
projects. I chose to use the middle-sized project to have a balance in the amount of
presented information. The reason for using data from one project in the demon-
stration is that the artefact aims to serve as a dashboard for each of the teams.
Since the teams within the company have a yearly assessment of the technical
debt process, all of the visualizations are made with the time period of one year.
As described in the background, I took inspiration from visualization techniques
used in agile development when designing the artefact. The technology used for
developing the visualizations is described in Chapter 6.

Visualization 1: The Chi-Square Test of Independence

Figure 5.1: Visualization 1 - The Chi-Square Test of Independence

This visualization is created from the first requirement: Let teams know if they
handle technical debt and security debt equally or not. The results from
the quantitative data analysis revealed that security debt is fixed more often than
technical debt. So, by letting teams get this knowledge they can see if they need
to put more focus into the other debt type.

This visualization is based on the statistical test I performed when looking at
the relation between issue type and resolution. The issues included here are the
fixed and not fixed issues for both of the issue types within the last year. The
visualization is configured just like the Chi-Square test of Independence described
in section 3.4.1.

47

This visualization have three possible outputs:

• Your team is significantly fixing more technical debt than security debt

• Your team is significantly fixing more security debt than technical debt

• Your team is fixing technical debt and security debt equally

I added a "More info" button to show that it would be possible to get additional
information if that was of interest for the teams.

Visualization 2: Created vs. resolved chart

Figure 5.2: Visualization 2 - Created vs. resolved charts for technical debt and
security debt

This visualization is created from the following requirement: Let teams get in-
formation about the issues they have identified and fixed within the last
period. The first visualization only says if one of the issue types are fixed more
often, it doesn’t show how many issues that are identified and fixed by the teams.
Because of this, it was discussed that showing the created and fixed issues would
be helpful for the teams so that they can see if there are peaks (times where they
identify or fix a lot of issues) in the graph. Additionally, by adding a line showing
the open issues, the teams can see if they accumulate more or less issues over
time.

This visualization is greatly inspired by the created vs. resolved chart that is an
option to choose from in Jira. The difference is that I have included the open
issues to show the trend of created and resolved issues over time.

48

This visualization includes one graph for technical debt issues (to the right) and
one graph for the security debt issues (to the left). This is done so that the teams
can compare how technical debt and security debt is being managed over time
and if there are similarities/differences in how the two types are handled.

Visualization 3: Average lead time

Figure 5.3: Visualization 3 - Average lead time

This visualization is created from the following requirement: Let teams get in-
formation about the time they use to fix issues compared to best team
and average team in the company. This visualization highlights an impor-
tant metric for measuring productivity, namely the lead time. The reason for
showing this is to let the teams know how much time they use to actually fix their
issues. By letting teams get this information they can see how productive they are
compared to other teams in the company. This can motivate them to take actions.

In addition, because the lead time is shown for both technical debt and security
debt, the teams can see if they use much more or less time for one of these debt
types. The visualization shows the average time (in days) used to fix an issue for
their own project, for the company and for the best project. The average lead time
for the technical debt items are shown to the left and the average lead time for
the security debt issues are shown to the right.

The lead time is found in the same way as described earlier (created and resolved
time stamps for each issue). This calculation might be misleading as the issue
could have been untouched for half a year before it was started to work on. Addi-
tionally, the size of the issue could be a relevant metric to include here as it would

49

require more time to fix a larger issue. But I only have access to the dates for
when the issue was created and resolved. I don’t have any information about the
size or when the issue went from the status "To do" to "In progress" for example.

Visualization 4: Lead time chart

Figure 5.4: Visualization 4 - Lead time chart

This visualization is created from the following requirement: Let teams get in-
formation about how much time they use to fix technical debt and secu-
rity debt. As already stated, the lead time is an important metric for measuring
productivity. By letting teams get knowledge about how much time they have
used on solving issues within the last period, they can see if they use more or less
time than excepted and thus take actions if necessary.

The graph to the left shows the average lead time for technical debt while the
graph to the right shows for security debt. As the previous visualization only
shows the average lead time the last year and not how the lead time has changed
throughout the year this graph is included. This is because it could reveal peaks
(times where they fix a lot of old issues for example).

This was a chart that I was a bit unsure about how could best be visualized as
the number of days between two months can be a bit confusing. For example one
can see in the technical debt chart that it goes from 196 days in April 2021 to 409
days in June 2021. This can be confusing as it is not possible to add that many
days in 2 months. But that only means that in June they have fixed older issues
(issues created for a longer time ago).

50

Visualization 5: Top risky security debt issues

Figure 5.5: Visualization 5 - List of most risky security debt issues

This visualization is created from the following requirement: Let teams get in-
formation about the open security issues with highest priority. As men-
tioned in the background, security debt is highly related to security risk. Because
the security risk increases as time goes by (Rindell & Holvitie, 2019), it is impor-
tant to highlight these kinds of issues. By displaying the open security issues to
the teams it is easier to act upon them.

This visualization shows a list of the most risky issues, namely the unaddressed
security debt issues. Only the issues with high and critical priority are included
after discussions with company stakeholders.

Visualization 6: Oldest issues

This visualization is created from the following requirement: Let teams get in-
formation about the open issues that have been in the system for the
longest time. By letting teams get information about the open issues that have
been in the system for the longest time they can see if these issues are things they
should worry about or not. It makes sense to display the oldest issues as these
could represent candidates for refactoring or re-prioritization.

In contrast to the previous visualization, this list includes both technical debt and
security debt issues. All of the priorities are included and the list is ordered by
the created date in ascending order.

51

Figure 5.6: Visualization 6 - List of oldest issues

5.2.2 Evaluation

In this section I will present the feedback I got in the first evaluation. The feed-
back provided here was from a Chief Software Quality Engineer. As the findings
from the statistical tests were a starting point for the rest of the thesis, it was
natural to ask some questions regarding these results as well. This was also done
in order to find out if these results were interesting for them to see and know
about. Though, the main objective of conducting the interview were to evaluate
the visualizations.

First, I will present the comments related to the findings from the quantitative
data analysis. Then I will describe the feedback I got for each of the visualizations.
In the end I will present some additional information that I found to be relevant to
know of. The feedback provided in this interview led to refining the visualizations.
These refinements are presented in the next section.

52

RQ1 How different is the amount of fixed issues for technical debt and
security debt?

I explained that I have performed a statistical test to investigate the relation
between issue type (technical debt or security debt) and whether or not the issue
is fixed. Further I presented the results, which are described more detailed in
section 4.1.

• All priorities: Significant result - security debt is more frequently fixed
than technical debt

• Low priority: Not a significant result but security debt has a higher per-
centage of fixes than technical debt

• Medium/high priority: Significant result - security debt is more frequently
fixed than technical debt

• Critical priority: Too few security issues that are not fixed to actually
conduct the test

The participant found the results as expected and said that it would have been
surprising if it was the other way around. Further, the participant told that they
prioritize to fix everything that has to do with security before anything else.

The participant also pointed out why they thought it wasn’t a big difference for
the issues with low priority:

"I might have expected that everything that has a low priority, that there might
not have been such a big difference because we encourage the teams to register

most of their technical debt, and security debt too, and if there is something they
are not going to fix maybe or maybe they will fix it a little far into the future, then

we want them to just set the priority low and rather have it visible"
(first evaluation)

By doing it this way it is possible to act upon if the teams are accumulating a lot
of issues.

53

RQ2 How different is the lead time for technical debt and security debt?

I explained that I have looked at the lead time for fixing the issues and described
how I calculated the lead time. Further, I presented the results from the Mann-
Whitney U test which is described more detailed in section ??.

• All priorities: Significant result - the lead time for fixing a technical debt
issue is less than for security debt

• Low priority: Not a significant result

• Medium priority: Significant result - the lead time for fixing technical debt
is less than for security debt

• High priority: Significant result - the lead time for fixing security debt is
less than for technical debt

• Critical priority: Significant result - the lead time for fixing technical debt
is less than for security deb

The participant found the results a little bit surprising as they expected the se-
curity issues to be solved faster than the other technical debt issues. I explained
that I did only have access to the two time stamps created and resolved and that
I have not considered the size of the issues when calculating the lead time. Then
the participant said that the size also could impact the time used to fix an issue:

"Some teams create technical debt, for example that they have to upgrade a very
large version of a framework/library they use, and that can take many months to

complete" (first evaluation)

The participant told that an important question related to the lead time is how
the different teams prioritize the issues in order to perhaps make it visible or not.
Additionally, the participant mentioned that some of the teams might not even
tag the issues that are technical debt:

"You can tag it as that this is a bit of a bigger project even though it is basically
technical debt" (first evaluation)

54

Visualization 1: Chi-Square app

The participant expressed that this first visualization was useful for the teams so
that they could see how much focus they have on technical debt and security debt
during a period. Further, the participant said that some additional information
should be presented as well:

"... we have looked at teams and if we present them with a statement like yours,
they are also interested in the data behind the statement" (first evaluation)

Therefore, it was proposed that showing how many issues that were fixed for both
of the issue types would be an easy way to see the data behind the statement.
Additionally, the participant proposed to present a more dynamic app by letting
the teams choose which time period they would like to see the visualization for
in order to have a more continuous overview. It was suggested that the teams
should be able to filter the last month, last three months, last six months and the
last year.

Visualization 2: Created vs. resolved

This visualization was perceived as very useful to the participant. This was be-
cause it could reveal if the teams are working continuously with the issues or
not. The participant told that it is seen as important (to the company and man-
agement) to have a good culture of fixing technical debt continuously. Further,
the participant pointed out the importance of not only looking at the number of
created and resolved issues:

"... because we have seen a few times, if we look at how many issues have been
solved and created in the last 12 months, we get a number, but has it been done

one week before we go into review because then they realized they have to focus or
they will get some points?" (first evaluation)

The participant were curious if the issues that were created and fixed were only
low priority issues or if there were critical issues as well. Based on this, it was
proposed to have a visualization showing more "deeply" the issues that are cre-
ated and fixed.

55

Visualization 3: Average lead time

This visualization was perceived as interesting and the participant pointed out
that it could be useful for the teams in terms of getting an impression of how
much time they use to resolve an issue. Further, the participant were a bit un-
sure of how it would be to compare the lead time between different teams in the
company. This was because the teams have different ways of coming through the
development process and different requirements for their security, so some places
things will take longer or go quicker.

Immediately, the participant thought that there should be possible to filter based
on the different priorities:

"Guessing that these 185 days sounds like a lot, but it’s probably not for critical or
high issues, but maybe more on low and medium" (first evaluation)

Visualization 4: Lead time graph

The participant told that they have had a wish to see how long time the different
teams have used to solve a Jira case before (not necessarily technical debt). Then
they have seen that if the team addresses an issue that was created three years
ago there comes a huge spike in the graph. The participant emphasized this by
looking at the graph for technical debt in September 2021:

"It could be that they have solved 10 different cases that are so so old and then it
accumulates in 600 days, or they have solved one case that is 620 days and two

other cases that are 2 days old" (first evaluation)

Based on this, the participant suggested to think of another way to visualize this
as the teams could find it hard to interpret this graph. In conclusion, the partic-
ipant found it very interesting for the teams to see if the issues have been in the
system for a long time. Though, the participant proposed, at least for the team
perspective, to show a list of the fixed items with a column counting the lead time.

56

Visualization 5 and 6: Lists of most risky issues and oldest issues

As these two visualizations serves the same purpose of showing the most impor-
tant issues, they were discussed at the same time. According to the participant,
these visualizations are definitely perceived as useful for the different teams. It
was stated that this kind of filtering, both for the oldest issues but also for the
priorities were very useful.

Additional relevant information

As an introduction to the interview I asked some questions about how the teams
are logging their technical debt and security debt. This was done to find out how
they label the different issues and if they have a practice of registering most of the
issues in Jira or not. The participant informed me that some teams are very strict
on technical debt in terms of almost fixing the debt before they register it in Jira.
Thus, the participant told me to keep in mind that there are many teams that are
actually really good at managing technical debt even if they don’t document it in
any ways:

"The team maybe have some code review sessions where they find technical debt,
and then they fix it immediately because they know that if they register a case in
Jira they have to close it in so so many hours and then they choose to not do it"

(first evaluation)

Generally concerning visualizations, the participant expressed that they don’t
like it when a graph shows too much metrics/information at the same time. Al-
though there can be a lot of good information in one graph, the participant told
that they like to keep it to show one graph per thing they look at. In this way
there is not too much information to process at one time.

When it comes to additional visualizations that the teams could benefit from,
the participant mentioned three fields they use in relation to technical debt in
Jira: risk impact, risk likelihood and severity. The participant expressed that
these fields could be interesting to show to the teams in any way, thus it was
said that the priority field (currently used in my visualizations) also works for the

57

same purpose. As the data set I have looked at only holds information related
to the priority, the three other mentioned fields will not be used in any of the
visualizations.

5.3 Second iteration

This iteration is conducted after the first iteration and denoted with the letter b
in my research process. The feedback given in the interview in the first iteration
were used to refine the visualizations. This will be described below. In the end I
will go through how these refined visualizations are demonstrated and evaluated.

5.3.1 Refining the visualizations

The visualizations are using the same data (from one project) as in the first it-
eration. For the demonstration in this step, all of the visualizations were put
together in a dashboard in Jira. The entire dashboard is shown in chapter 6.2.
Below I will go through how each visualization has been refined.

Visualization 1: Chi-Square app

Because the feedback related to this visualization concerned more information in
terms of the knowing which data lays behind the statement, and the possibility
of filtering time period, these functionalities were added to the visualization.

The visualization has now an "Overview" tab that displays if the team is focusing
more on one of the issue types or not. Furthermore, there is a "More information"
tab that displays the number of fixed issues during the chosen time-period. Lastly,
the viewer can choose to filter between the following time-periods: last year, last
six months, last three months, and the last month.

58

Figure 5.7: Refined visualization 1 - The Chi-Square Test of Independence

Visualization 2: Created vs. resolved by priority

The feedback related to this visualization focused on the importance of showing
the distribution of priorities for the created and resolved issues. The visualization
is now refined to show the issue’s priority. The created issues are marked with a
degree of red color while the fixed issues are marked with a degree of green color.
The darker the color is, the higher is the priority.

As the participant pointed out that it was essential to not show to much infor-
mation in the same graph I decided to not include the open issues. Further, the
functionality of choosing between the last year, last six months, last three months
and last month is also added.

59

Figure 5.8: Refined visualization 2 - Created vs. resolved charts by priority

Visualization 3: Lead time

The feedback related to this visualization concerned seeing the lead time for the
different priorities. Because the issues with low, or even medium priority are not
considered very important, I have chosen to show the lead time in total (for all
priorities) and the lead time for the issues with high and critical priority. Addi-
tionally, I did remove the comparison of lead time between the best team and all
teams in the company.

Visualization 4 (in the first iteration) is also related to the lead time. The feedback
regarding this visualization were that it could be confusing to interpret it. It was

60

Figure 5.9: Refined visualization 3 - Average lead time

suggested to show a list of the fixed items with a column counting the number of
days since they were created.

I have merged the these two visualizations (visualization 3 and 4 from the first
iteration) into one visual representation. This refined visualization shows the
average lead time (in days) for a chosen time period. The viewer can choose be-
tween the same time periods as in the two previous; last year, last 6 months, last
3 months and last month. In order to also include the list suggested by the par-
ticipant in the initial interview, it is now possible to click at the boxes to open a
new tab showing the list of these included issues.

By for example clicking the high priority security debt issues while having chosen
the last 6 months, the list shown in Figure 5.11 will open in a new tab. As seen
from this figure, the issues that are resolved between July 2021 and December
2021 are included with a separate column showing the lead time for each item.

Visualization 4: Important issues

As visualization 5 (risky issues) and visualization 6 (oldest issues) from the first
iteration were discussed at the same time I decided to merge these into one visual-
ization concerning the most important issues. From having them in two separate
lists I have now made one visualization that only displays the number of issues in
each category. The risky issues are still the unaddressed security issues of high
or critical priority, and the other box shows the unaddressed issues that are older

61

Figure 5.10: List shown in a new tab when clicking on the High priority (SD) box
(for the last 6 months)

than a year. I chose to only display the number because by clicking the box, the
viewer will get another tab showing a list of the included issues (just like in the
previous visualization).

Figure 5.11: Refined visualization 4 - Important issues

62

5.3.2 Evaluation

In this section I will present the feedback provided in the last evaluation. The
participants have different roles and are from five different teams/projects. There
was one service architect, one development manager, two back-end developers
(from the same team), one project manager, and four architects (from same project).

The evaluation criteria for the second iteration were to find out about the under-
standability and usefulness of the visualizations. I will go through the results
regarding this criteria for each of the visualizations below. Some of the partici-
pants also suggested improvements. These improvements will be described below
as well.

To be able to distinguish between the information provided by the participants in
the different interviews I’m referring to the interviews as they are described in
Table 3.2.

Visualization 1: Relation between issue type and fixing

Understandability
All of the participants found it easy to interpret this visualization. One of the
participants said:

"This team finds security debt more important than technical debt is basically
what it’s saying" (A1)

Before I demonstrated the visualizations to the participants, I shortly explained
what I had done in the project before creating the visualizations. This was done
to establish the context for how the visualizations were developed. As this visual-
ization reflects one of the statistical tests that I have performed (and told about),
that can have impacted the participants understanding here.

Usefulness
Regarding the usefulness of this visualization it was said in four of the interviews
that this was interesting insights to have about a team/project. Participant D1

63

pointed out that this visualization was a good first view to get an overview of
security debt and technical debt. Further, this participant said:

"Well I think it is interesting insights, because first of all it gives you kind of
heads up to put some focus on the fact that there is a difference on the technical

debt and security debt, which we haven’t really always been as clear about
focusing on" (D1)

Moreover, this participant told that they had biweekly meetings where they dis-
cussed technical debt and said that they would have used this visualization in
this meeting.

Participant B1 pointed out that the stakeholders could find it interesting to know
of this as well as getting an overview of the issues that have been completed
during the last period.

Improvements
Some of the participants suggested improvements for the visualization. Partic-
ipant B1 would like to have a weekly option in addition to the other options.
Participant D1 also suggested a more granular time filtering in order to configure
it to fit their planning periods (two weeks at a time).

Further, participant E1 proposed to display some proportion, for example if you
fix twice as many security issues than technical debt issues. This was because
you could then define a metric that you aim for. Participant E2 also suggested to
see some more statistics (like story points or time spent on the issues).

Participant B1 asked if this visualization were just for Jira as the participant
thought it could be pretty cool if the visualization could have a hyperlink to the
issues that are filtered. Lastly, participant in D1 said that it could be interesting
to see the different priorities for the issues that are fixed as this have a great
impact on which items they fix first.

Visualization 2: Created vs. resolved

Understandability
Before I asked questions related to each of the visualizations in the dashboard I

64

let the participants have a look and asked them where they were looking. This vi-
sualization were mentioned by several of the participants as the first visualization
that caught their eyes. Regarding the understandability, all of the participants
found it easy to interpret these graphs. One of the participants said:

"These graphs are simple views to get a good understanding on how you are
actually performing" (B1)

In addition, several of the participants told me different things they saw in the
two graphs and discussed the created and resolved issues.

Usefulness
The usefulness of these graphs were dependent on the amount of issues in their
backlog. Participant A1 told that because they have that few issues they wouldn’t
look at this visualization monthly or weekly. Further, the participant said:

"If you could sometimes look back for one or two years then you might see some
discrepancies that you want to improve" (A1)

Participant B1 said that one of the key performance indicators (KPIs) that they
have is how good they are at resolving the issues coming in. Moreover, the par-
ticipant told that these graphs would be very useful too see if they are actually
delivering on their KPIs and to identify if they needed to have more focus on
cleaning out some of their technical debt. In addition, the participant told that
these graphs could be useful for creating presentations internally (for the rest of
the team) to let them see that they are making progress and doing better.

Participant D1 said that it would be useful in the sense of revealing how the
prioritization has been in the previous period, especially helpful to become more
aware of the issues that have been re-prioritized without them actually updating
the risk severity. Moreover, the participant told that it would be relevant to look at
during their biweekly planning meetings as well as on a higher level of planning
(for example quarterly plannings). By looking at these graphs they could get more
detailed insights into how they have actually worked with technical debt for the
last quarter and whether they should be more aware of changing their priorities
for the coming quarter.

65

In addition, most of the participants mentioned that they really liked that the
graphs offered another dimension than an ordinary created vs. resolved chart,
namely the priorities. Two of the participants said:

"I think one of the interesting things is the priorities, because even if we have a
technical debt policy stating that we should always prioritize technical debt with

the highest priority first, that is not always the case in practice" (D1)

"I like it, I like that they have another dimension based on the priority" (E2)

Improvements
Some of the participant suggested improvements for these graphs. Participant
E3 would like to include a goal/threshold with how many tickets the team should
tackle per month so that they could see if they over-deliver or under-deliver.
In one of the interviews I asked the participant if they would have included a
goal/threshold in these graphs where I got the answer:

"No, we would not use that. As I mentioned, we have the KPIs, for example that
we are not gonna have more than 10 bugs open, so to be able to see this it is

already more than enough for us actually" (B1)

Participant D1 suggested to include some trend lines in the graphs. This was
also suggested by the participants E1, E2 and E3 to be able to see if they were
trending up or down or holding steady.

In addition to the time periods available in the graphs, participant D1 would also
like to be able to filter more granular. This participant also thought that it could
be easier to compare the two graphs if they were merged into one graph, i.e., to
show the technical debt issues and security debt issues in the same graph.

Visualization 3: Average lead time

Understandability
This visualization were not the easiest to interpret right away. Participant E1
asked what these numbers meant. Otherwise, the questions regarding this visu-
alization were mainly concerned with if the numbers were in minutes or days.

66

Most of the participants told that they had never used the lead time metric in
relation to technical debt before. Participant A1 said that they used the lead time
to measure the deployment from merging to master production but didn’t have an
idea of technical debt and security debt lead time.

Although, after looking at the visualization for some time, the participants told
me different things about the visualization:

"This project takes about 6 months to resolve technical debt issues" (A1)

"... we can also see that it takes more than twice less time to solve a security debt
of high priority than for technical debt" (C2)

Usefulness
Regarding the usefulness, participant A1 found that the created vs. resolved
charts revealed more than this visualization on how they work with technical
debt and security debt over time. However, the participant would have used the
list of resolved issues with a column showing the lead time.

Participant D1 also pointed out that they would imagine that this lead time would
need to be looked at in a context of a longer time frame (more high-level planning).
The participant thought that this visualization could be valuable to look at in the
quarterly plannings to see if the lead time is too high based on what they would
expect:

"Then maybe we would have to put some effort into having technical debt pay
down days. It could affect the planning in that sense" (D1)

Additionally, participant D1 said that with a year to evaluate, these numbers
could be really good to actually set some goal metrics in terms of where they want
to be to be a high performing software development team.

Participant E3 told that this visualization would be useful to define deadlines.
Participant B1 said that the lead time is an important metric. Further, the par-
ticipant emphasized who would have used the visualization:

"Well, I think every team would have actually used it because we have KPIs in
place for lead time and it makes reporting so much easier, and also for the teams

to have an idea on how they are performing compared to out KPIs" (B1)

67

After demonstrating the visualization and showing that the boxes could be clicked
on to get more details, participant B1 said that this was something that could be
used on a retrospective meeting on all issues if something has been taking longer
than it should have.

Participant C1 said that the Service owner could have used this visualization to
see how long time they have used to solve a technical debt issue. Further, this
participant said that this visualization were also useful for them:

"If we see that it takes three months to solve a high priority security issue, we
should re-prioritize a bit" (C1)

Improvements
Some of the participants suggested improvements for this visualization. Partici-
pant E1 would have liked to see something with a trend of time:

"We have the actual numbers at the moment, but maybe something can be done to
visualize if you are declining on lead time, maybe based on priority" (E1)

Participant D1 would also like to see if they were resolving technical debt tickets
faster or slower over time. In addition, this participant suggested to show the
variances (maximum and minimum values) as well:

"... but actually for one of the high priority issues we have used 900 days and one
of them was resolved within 1 day, why is there such a difference? Especially if

they are within the same priority" (D1)

Visualization 4: Important issues

Understandability
Some of the participants mentioned this visualization as the visualization they
firstly looked at. Although all of the participants understood that this visualiza-
tion reflected the most important issues in the system, it was not as clear which
issues were considered important. Participant C1 asked what the risky issues
meant.

68

Additionally, there was quite a difference in the participants thoughts about when
the issue is considered old. Participant A1 said that if the issues were of medium
and especially low priority, it didn’t matter if the issue were years old. Participant
D1 said that if they had technical debt that is older than a year they would want
to know about it. Further, this participant said that because their team is quite
small and their projects as well, they attempt to not have technical debt older
than a year.

Usefulness
I asked the participants what was the most important things to see in order to
make the planning and prioritization of technical debt and security debt easier.
Participant A1 mentioned two things where one of those were a list of the most
important issues.

Participant B1 told that they really liked the way I was highlighting the impor-
tant issues and that they thought it could add a lot of value. Further, the partic-
ipant said that if it was possible to see the issues related to the KPIs they have
defined that could be really interesting for the service owners to see (and perhaps
tech lead of each team to create some awareness). In addition, product owners
and stakeholders could benefit from looking at this visualization before sprint
planning. Regarding when the visualization would be used, the participant said
that:

"For myself it would probably be more than once a week that I look into this" (B1)

Additionally, the participant really liked the possibility of drilling down into the
details:

"From this view as well it might be that you look at it today and you see that we
have one risky issue and then goes into the details, and tomorrow when you log in

you still have one issue it’s probably the same so you don’t bother checking the
details" (B1)

Participant E1 said that they would have used this visualization themselves as a
tool to help prioritize the debt. The participant said that it would be especially
useful in relation to the prioritizing activity if they had some calculations in there

69

that took into account the factors for the security index (index used by all projects
in the company):

"For example when we have a bug bounty ticket we have 90 days to resolve it,
otherwise it [the security index] starts counting against us" (E1)

Because participant D1 don’t have that many issues in their backlog, the partic-
ipant thought that they would benefit more from seeing an overview of all their
tickets. The participant pointed out that this would probably depend on the team
and the size of the project:

"For our sake, with the process that we are used to now, where we do this review of
all the tickets every other week, we don’t go into details for all of them but we can
shuffle through them and have an overview. Because we have the time to do that
and we don’t have that many tickets I think that is preferable. To see, maybe just
highlighting the important issues, that could maybe for us lead to kind of being

less aware than we currently are" (D1)

Improvements
Some of the participants suggested improvement related to this visualization.
Participant B1 suggested to define some KPIs of how long you expect the most
major issues to live in Jira, and then show the visualization based on that. Par-
ticipant C1 were curious if there was possible to add a functionality of sending a
notification by mail:

"For example if you create a security issue of high priority you can get a
notification in mailing list or something" (C1)

Participant C2 emphasized this by saying that it would be nice to get notification
by mail for the issues with high and critical priority. Participant E3 would like to
add another dimension, i.e., make it of the level of severity and also likelihood:

"Because sometimes a small issue that everybody is facing might be more
important than a super critical issue that rarely happens" (E3)

Table 5.2 below shows a summarized version of the results provided in this second
evaluation.

70

U
nd

er
st

an
da

bi
li

ty
U

se
fu

ln
es

s
Im

pr
ov

em
en

ts

C
hi

-S
qu

ar
e

•
E

as
y

to
in

te
rp

re
t

•
T

he
fa

ct
th

at
I

to
ld

ab
ou

t
th

e
C

hi
-S

qu
ar

e
te

st
co

ul
d

ha
ve

an
im

-
pa

ct

•
In

te
re

st
in

g
in

si
gh

ts

•
O

ve
rv

ie
w

of
te

ch
ni

ca
l

de
bt

an
d

se
-

cu
ri

ty
de

bt

•
C

an
re

ve
al

if
th

er
e

is
a

di
ff

er
en

ce
w

hi
ch

th
e

te
am

s
ha

ve
n’

t
fo

cu
se

d
on

W
h

en
:

•
B

i-
w

ee
kl

y
pl

an
ni

ng
m

ee
ti

ng
s

•
B

ef
or

e
ea

ch
re

le
as

e

•
M

or
e

gr
an

ul
ar

ti
m

e
fil

te
r-

in
g

•
D

is
pl

ay
pr

op
or

ti
on

•
H

yp
er

lin
k

to
is

su
es

•
Se

e
di

st
ri

bu
ti

on
of

pr
io

r-
it

y

C
re

at
ed

vs
.

re
so

lv
ed

by
pr

io
ri

ty

•
Si

m
pl

e
vi

ew
s

•
E

as
y

to
in

te
rp

re
t

•
L

oo
ki

ng
ba

ck
fo

r
on

e
or

tw
o

ye
ar

s
ca

n
re

ve
al

di
sc

re
pa

nc
ie

s
to

im
pr

ov
e

•
U

se
fu

l
to

se
e

if
th

ey
ar

e
de

liv
er

in
g

on
th

ei
r

K
P

Is

•
U

se
fu

l
fo

r
cr

ea
ti

ng
pr

es
en

ta
ti

on
s

in
te

rn
al

ly

•
U

se
fu

lf
or

re
ve

al
in

g
ho

w
th

e
pr

io
ri

-
ti

za
ti

on
ha

s
be

en
in

th
e

pr
ev

io
us

pe
-

ri
od

W
h

en
:

•
B

i-
w

ee
kl

y
pl

an
ni

ng
m

ee
ti

ng
s

•
Q

ua
rt

er
ly

pl
an

ni
ng

•
In

cl
ud

e
go

al
/t

hr
es

ho
ld

•
In

cl
ud

e
tr

en
d

lin
es

•
M

or
e

gr
an

ul
ar

ti
m

e
fil

te
r-

in
g

•
M

er
ge

gr
ap

hs
in

to
on

e
(t

o
ea

si
er

co
m

pa
re

)

Ta
bl

e
5.

2:
Su

m
m

ar
iz

ed
re

su
lt

s
fo

r
th

e
tw

o
fir

st
vi

su
al

iz
at

io
ns

fr
om

th
e

se
co

nd
ev

al
ua

ti
on

71

U
nd

er
st

an
da

bi
li

ty
U

se
fu

ln
es

s
Im

pr
ov

em
en

ts

L
ea

d
ti

m
e

•
N

ot
th

e
ea

si
es

t
to

in
-

te
rp

re
t

•
M

os
t

of
pa

rt
ic

ip
an

ts
ha

d
ne

ve
r

us
ed

le
ad

ti
m

e
in

re
la

ti
on

to
te

ch
ni

ca
ld

eb
t

be
fo

re

•
A

ft
er

lo
ok

in
g

fo
r

so
m

e
ti

m
e,

th
e

pa
rt

ic
ip

an
ts

to
ld

m
e

se
ve

ra
l

th
in

gs
th

ey
sa

w
fr

om
th

e
vi

-
su

al
iz

at
io

n

•
C

an
re

ve
al

if
th

e
le

ad
ti

m
e

is
hi

gh
er

th
an

ex
pe

ct
ed

•
U

se
fu

l
fo

r
se

tt
in

g
go

al
m

et
ri

cs
(y

ea
rl

y
ev

al
ua

ti
on

)

•
U

se
fu

lt
o

de
fin

e
de

ad
lin

es

•
U

se
fu

lf
or

te
am

s
to

ha
ve

an
id

ea
on

ho
w

th
ey

pe
rf

or
m

ac
co

rd
in

g
to

K
P

Is

•
U

se
fu

lt
o

se
e

if
is

su
es

sh
ou

ld
be

re
-

pr
io

ri
ti

ze
d

W
h

en
:

•
H

ig
h-

le
ve

lp
la

nn
in

g

•
Q

ua
rt

er
ly

pl
an

ni
ng

•
R

et
ro

sp
ec

ti
ve

m
ee

ti
ng

•
Se

e
tr

en
d

ov
er

ti
m

e

•
Sh

ow
va

ri
an

ce
s

(m
in

an
d

m
ax

va
lu

es
)

Im
po

rt
an

t
is

su
es

•
U

nd
er

st
oo

d
th

at
it

re
-

fle
ct

s
th

e
m

os
t

im
po

r-
ta

nt
is

su
es

•
N

ot
cl

ea
r

w
hi

ch
is

su
es

w
er

e
co

ns
id

er
ed

im
po

r-
ta

nt

•
D

if
fe

re
nt

vi
ew

s
on

w
he

n
is

su
es

ar
e

co
n-

si
de

re
d

ol
d

•
U

se
fu

la
s

a
to

ol
to

he
lp

pr
io

ri
ti

ze
/r

e-
pr

io
ri

ti
ze

•
U

se
fu

lf
or

pl
an

ni
ng

w
hi

ch
is

su
es

to
fix W

h
en

:

•
B

ef
or

e
sp

ri
nt

pl
an

ni
ng

•
R

eg
ul

ar
ly

•
C

on
fig

ur
e

it
to

th
ei

r
co

n-
si

de
ra

ti
on

s
of

im
po

rt
an

t
is

su
es

(s
ec

ur
it

y
in

de
x,

K
P

Is
)

•
A

dd
e-

m
ai

ln
ot

ifi
ca

ti
on

•
In

cl
ud

e
se

ve
ri

ty
an

d
lik

e-
lih

oo
d

Ta
bl

e
5.

2
C

on
ti

nu
ed

:S
um

m
ar

iz
ed

re
su

lt
s

fo
r

th
e

tw
o

la
st

vi
su

al
iz

at
io

ns
fr

om
th

e
se

co
nd

ev
al

ua
ti

on

72

Chapter 6

Artefact

In this chapter I will describe the technology I have used in order to develop the
artefact. In addition, I will go through the main functionalities that the artefact
provides.

6.1 Technology

This section presents the technology used to develop the visualizations. I chose to
use Jira 1 because the data set I investigated was extracted from the company’s
Jira backlog. The stakeholders that I have interviewed have a good knowledge
of how Jira works which I think that is an advantage when demonstrating the
artefact. Additionally, the visualizations can easily be adopted by the company if
they want to.

6.1.1 Jira Cloud Platform

As described above, I chose to use the Jira platform to develop my artefact. I
imported the data from the five largest projects into Jira by making a CSV file.
Below is a figure showing the backlog of technical debt and security debt issues

1https://www.atlassian.com/software/jira

73

for one of the projects. This figure also shows which fields that exists in the data
set I have access to.

Figure 6.1: Example backlog in Jira showing the technical debt and security debt
issues for one of the projects.

Then, with the imported data I started to design and create the different visual-
izations in the dashboard functionality in Jira. When I had made some different
visualizations I showed it to my supervisors and company stakeholders in our
weekly meeting to get some feedback and input.

6.1.2 EazyBI

In order to create the visualization showing the created and resolved issues by
priority I used EazyBI 2. The reason for using this application was that it allowed
the representation of both bars and lines within the same graph (which is not
possible in the Custom Charts for Jira). EazyBI is an add-on available in the
Atlassian Marketplace 3. This app lets you visualize and analyse your data by
creating custom Jira reports, charts and dashboards.

2https://eazybi.com
3https://marketplace.atlassian.com

74

6.1.3 Forge app

In order to visualize the relation between issue type and resolution (Chi-Square
test of independence) I had to create my own app as this could not be done in
an existing app/add-on available in Atlassian Marketplace. I chose to create a
Forge app because this is the recommended choice by Atlassian 4. Forge apps are
fully hosted by Atlassian and Atlassian automatically creates the development,
staging, and production environment (Atlassian, 2022a).

The Forge app I created calls a remote resource, namely the Jira REST API. I used
the @forge/api package to make REST calls to an authenticated Jira endpoint. By
using this package I got access to the Jira issues in the form of an array.

To create a dynamic and interactive interface for my app’s frontend I used the
UI kit provided by Atlassian. The UI Kit is made up of three main concepts:
components, hooks and event handlers (Atlassian, 2022b). For my app, I used the
DashboardGadget and DashboardGadgetEdit component as well as a Select form.
The Select form were used so that the viewers could filter time.

6.1.4 Custom Chart for Jira

For the visualization of lead time and important issues I used the Custom Chart
for Jira app because this app offers custom reporting directly inside the Jira dash-
board. I customized the dashboard gadgets using the Jira Query Language (JQL).
An example of a JQL query (for including security issues with high or critical pri-
ority) will be shown below:

labels = "SD" AND priority IN ("High", "Critical")

Additionally, for the lead time visualization I used a separate dashboard gadget
called Simple Search so that the dashboard viewers could filter on which time
period they would like to see the visualizations for. This search gadget were con-
nected to the other gadget so that they showed the same data.

4https://atlassian.com

75

6.2 Dashboard

The artefact I have created aims to serve as a dashboard for the teams to get an
overview and understanding of how they have managed/prioritized technical debt
and security debt in the previous period, as well as get an insight into the most
important issues that exists in their project. The final dashboard consists of four
different visualizations. These visualizations are described in section 5.3.1. The
entire dashboard is shown in Figure 6.2.

As the artefact is implemented in Jira, all functionalities that exists in Jira can
be used in parallel to the created dashboard. Though, this is out of scope for this
thesis so I will not go further into this. Moreover, I will shortly explain how the
viewer can interact with the dashboard.

For all of the relevant visualizations, the viewer can filter time by choosing either
to view the last year, last 6 months, last 3 months or last month. For the visu-
alizations of important issues and lead time it is possible to click on the boxes
to be shown the list of included issues, and then further click on the specific item
to get more details. Lastly, for the created vs. resolved charts, the viewer can
mouse hover to display the number of issues for the specific time and priority.

76

F
ig

ur
e

6.
2:

T
he

en
ti

re
da

sh
bo

ar
d

77

Chapter 7

Discussion

In this chapter I will discuss the results presented in Chapter 4 and the findings
from Chapter 5 together with related work. First, I will go through each research
question. Then, I will discuss the contributions and implications for research and
practice. Lastly, I will explain the quality of this research.

7.1 RQ1 How different is the amount of fixed is-
sues for technical debt and security debt?

There exists several papers looking into the types and amounts of technical debt
that is repaid during software evolution. This is shown by the following papers:

While Digkas et al., 2018 analyze the evolution of technical debt in Java projects,
investigates Tan et al., 2020 Python projects. In another study, Tan, Feitosa, and
Avgeriou, 2022a looks into which types of technical debt that is most likely to be
self-fixed (i.e. fixed by the developer who introduces it). Tan et al., 2022b explores
the management of technical debt items in both software repositories and issue
trackers. They, among other things, look into which types of technical debt items
are most likely to be repaid.

This thesis looks into the amount of both technical debt and security debt that is
fixed over a given period of time. The earlier identified publications did not take

78

into account the security debt as a type of technical debt. This made it interesting
to look into the security perspective of technical debt.

The aim of this research question is to quantify the amount of technical debt
and security debt that is repaid and find out which issues are fixed more often. I
performed the Chi-Square Test of Independence (section 4.1) which revealed that:

• In general, security debt (78% of issues are fixed) is significantly fixed
more than technical debt (61%/62% of issues are fixed)

• For the issues with low priority, there was no significant difference
between the amount of fixed issues for security debt (55% of issues are fixed)
and technical debt (45% of issues are fixed)

• For the issues with medium priority, security debt (76% of issues are fixed)
is significantly fixed more than technical debt (62%/63% of issues are
fixed)

• For the issues with high priority, security debt (90% of issues are fixed)
is significantly fixed more than technical debt (72%/71% of issues are
fixed)

• For the issues with critical priority, there was no significant difference
between the amount of fixed issues for security debt (94% of issues are fixed)
and technical debt (84%/88% of issues are fixed)

Kruke, 2022 found in her study that security debt have a higher priority than
technical debt. Moreover, there was a general agreement by her participants that
the security issues were fixed first because they could disrupt the sprint (Kruke,
2022). The quantitative findings from this thesis support the qualitative findings
in the study of Kruke, 2022.

These results were not surprising for the participant interviewed in the first it-
eration. It was further elaborated on why the difference for the issues with low
priority wasn’t big. This is because the teams are encouraged to register most of
their debt even though they don’t plan to fix it in the nearest future.

79

The reason for why the security issues are fixed more often than technical debt
were not specifically asked for in the interviews in the second iteration (because
the main objective were the visualizations) but all of the participants indirectly
mentioned why they prioritize security debt over technical debt. One of the men-
tioned reasons is that by having security debt you have wholes in your security
and then it should be fixed to not let hackers in and exploit your system. This is
in line with what is said by Kruke, 2022: "Having security debt makes the system
more open to attacks because the system has not reached the security goal due to
the security debt" (p. 98).

The company use different tools to automatically scan their code and look for,
among other things, security problems. The sort of tickets that are found by these
tools are kept track of in the security index. The index application that the com-
pany use were mentioned in relation to the prioritization of debt in all interviews
except one. If the issues tracked in the security index are left untouched for a
given time, the teams get alerted which might change how they prioritize the is-
sues in the backlog. In addition, these third party tools adds a severity/priority
score which tells the software practitioners the risk of the issue. This makes it
easier for the teams to prioritize these security issues.

The key difference between technical debt and security debt is the prioritization
of the debt (Rindell & Holvitie, 2019). Much effort has been put into estimating
the principal and interest of technical debt, but also to set the priorities for re-
payment schedule (Rindell & Holvitie, 2019). Security debt is usually measured
in terms of loss of business if a vulnerability is successfully exploited rather than,
for example, source code maintenance effort in traditional technical debt (Mar-
tinez et al., 2021). Wrongly prioritizing security items will, in worst case, lead to
security incidents and forced payment of the debt with potentially heavy interest.
The security incidents also have a multiplicative effect which further complicates
estimations. Based on this, the accuracy of risk assessment are crucial for the
prioritization of debt items (Rindell & Holvitie, 2019).

In conclusion, security debt has a significant higher fixing rate than technical
debt. These results support the literature that exists on security debt. It is also
worth mentioning that the index system used by the company gives more penalty
points for not addressing security debt than technical debt of the same priority

80

and within the same time frame. Thus, the index system could greatly impact
these findings. The penalty point factor will be discussed in section 7.5.

7.2 RQ2 How different is the lead time for techni-
cal debt and security debt?

There exists several papers looking into the lead time of technical debt resolution.
This is shown by the following papers:

Firstly, Digkas et al., 2018 and Tan et al., 2020 investigates the lead time of differ-
ent types of technical debt. Secondly, Lenarduzzi, Martini, Saarimäki, and Tam-
burri, 2021 looks into how the presence of technical debt items in the changed
code affects the lead time for resolving the task. Thirdly, Saarimaki, Baldas-
sarre, Lenarduzzi, and Romano, 2019 and Baldassarre, Lenarduzzi, Romano, and
Saarimäki, 2020 compares the lead time estimated by SonarQube and the actual
time used to fix the issue. Lastly, Tan et al., 2022a is looking into and comparing
the lead time of self-fixed and non-self-fixed technical debt.

This thesis is looking into the lead time for both technical debt and security debt.
As explained in the discussion of the first research question, the same argument
is valid seeing as how the security perspective has not been taken into account
for the lead time of technical debt resolution.

The aim of this research question is to find out after how long time the issues are
repaid and if there is a difference in the lead time for technical debt and security
debt. I performed the Mann-Whitney U test (section 4.1) which revealed that:

• In general, the lead time for fixing security debt (Median=82 days) is higher
than for fixing technical debt (Median=77/63)

• For the issues with low priority, there was no significant difference in the
lead time for security debt (Median=320) and technical debt (Median=226/223)

• For the issues with medium priority, the lead time for fixing security debt
(Median=76 days) is higher than for fixing technical debt (Median=73/58)

81

• For the issues with high priority, the lead time for fixing security debt (Me-
dian=55) is lower than for fixing technical debt (Median=90/78)

• For the issues with critical priority, the lead time for fixing security debt
(Median=91) is higher than for fixing technical debt (Median=39/31)

Table 7.1 shows the median lead time for each issue type by priority. The lower
the lead time is the greener is the color, and the higher the lead time, the darker
is the shade of red.

Figure 7.1: Median lead time in days

The results reveal that in general and for all priorities except the high priority,
technical debt is fixed in a shorter time than security debt. These findings are
inconsistent with the results of the first research question and were surprising to
the participant in the first evaluation.

Although all of the participants have said that they use Jira to track their tech-
nical debt, there is quite a different practice of how much of the issues the teams
register. One of the participants pointed out that if it they could solve the issue in
one or two days they didn’t register the debt. Some of the teams only register the
larger cases and might create one ticket for technical debt that could have been
split into ten different items. In contrast, other teams register all debt that they
come across and register if they make conscious choices about delaying improve-
ments or refactoring until later. This could impact the findings as some of the
issues are not even registered before they are fixed.

When it comes to the findings for the lower priorities, it could be that these issues
are considered less important to the teams. It has been said in different inter-
views that it doesn’t matter if the debt with low severity and impact score is open
for multiple years because it probably doesn’t have much impact on the team. In
one of the interviews it was pointed out that they don’t calculate and assign issues

82

older than three years because if they haven’t done anything for this consistent
time it is not required for anyone.

Additionally, it was said in one of the interviews that the size of the project/product
could impact the lead time for fixing the debt. This was reasoned by the fact that
smaller projects probably have less issues than bigger projects. It was further
emphasized that bigger projects might have more cross team collaboration which
would make it harder to have an overview of all issues and it would thus require
more time to resolve them.

For the issues with high priority, security debt is fixed in shorter time than rest
of the technical debt issues which support the participants sayings during the
interviews. This was argued to be the case because of the security index. One of
the participants also said that if the security debt is both important and haven’t
been addressed for a long period then something is wrong with the process.

In conclusion, technical debt is fixed in shorter time than security debt for all
cases except for the issues with high priority. This was an unexpected result as
the previous findings and the participants sayings in the interviews point to the
opposite. This might indicate a lack of security knowledge which was explained
by Kruke, 2022: "Having a lack of security knowledge have been described to neg-
atively impact the management activities prevention, identification, evaluation,
prioritization, and repayment" (p.106). The key management activities here are
prioritization and repayment due to the focus of this thesis.

7.3 RQ3 How can visualizations of historical data
in issue trackers support the prioritizing of
the repayment of technical debt and security
debt?

There exists some papers looking into visualization techniques in relation to tech-
nical debt. I looked into the following papers:

83

Falessi and Reichel, 2015 and Eliasson, Martini, Kaufmann, and Odeh, 2015 both
explore the visualization of the interest/impact of debt, where the first paper looks
into technical debt and the second looks into architectural technical debt. When
it comes to improving the technical debt management, Power, 2013 reported a vi-
sualization technique to help the teams allocate resources for technical debt. The
last studied publication, Husby, 2022, developed visualizations of repaid tech-
nical debt to improve the technical debt management activities monitoring and
communication.

This thesis looks into visualizations not only for technical debt, as explained in
the above publications, but also for security debt. How these visualizations can
improve the prioritization of the repayment of technical debt and security debt
will be explored.

To answer this research question I designed and developed an artefact consist-
ing of four different visualizations with the aim of supporting the planning and
prioritization of technical debt and security debt. Below I will compare the in-
tended purpose (requirement) of the visualizations together with the results from
the evaluations. Further, I will elaborate on how the visualizations can be used.

Visualization 1: Relation between issue type and resolution

The purpose of this visualization was to give the teams knowledge about if they
handle technical debt and security debt equally or not so that they could see if
they need to put more focus into the other debt type. The findings from the eval-
uations proved that this purpose was fulfilled to a certain extent. It was said in
most of the interviews that this type of insights were interesting to know about.
One of the participants further emphasized this by telling that this visualization
could reveal if there is a difference between technical debt and security debt which
they haven’t really focused on.

However, some of the participants meant that this was a common understanding
within the company, i.e., that all teams prioritize security debt over technical
debt. In addition, one of the participants found that the created vs. resolved
chart revealed more on the difference between how technical debt and security
debt were handled.

84

Visualization 2: Created vs. resolved by priority

The purpose of this visualization was to give the teams knowledge about how
many issues they identify and resolve for both technical debt and security debt
in a given time. This is because it could reveal if they incur more or less issues
over time and if there are periods where they create or fix a lot of issues. The
purpose of this visualization was met. One of the participants pointed out that
by looking back at these graphs it could reveal discrepancies that should be im-
proved. Moreover, as one of their KPIs is to continuously work on technical debt,
this visualization could reveal if they are actually delivering in this area. In ad-
dition, most of the participants found it useful to see how the prioritization has
been done in the previous period.

Visualization 3: Average lead time

The purpose of this visualization was to give the teams knowledge about how
productive they are in order to make it easier for them to take actions if they are
slower than expected. This purpose was met. It was said that this visualization
could reveal if the lead time is higher than expected. Further, it was mentioned
that the visualization could be used to see how long time the team used to solve
issues and thus get an idea on how they perform according to their KPIs.

Additionally, the participants pointed out several areas of use for this visualiza-
tion. One of these was to see if issues should be re-prioritized, i.e., if the issues
took longer time than expected to fix it should perhaps have had another priority.
Other than this it was said that by setting a goal metric for lead time in relation
to technical debt and security debt, this visualization could be useful to look at to
yearly evaluate the specified goal.

Visualization 4: Important issues

The purpose of this visualization was to display the issues that are considered
important in regard to repayment actions or re-prioritization, so that the teams
can more easily act upon it. The purpose of this visualization was was fulfilled

85

to a certain extent. It was said that this way of highlighting important issues
could be a useful tool to help prioritize or re-prioritize the issues. Additionally, by
looking at this visualization when planning which issues to fix, the highlighted
issues can be added as something that should be done during the next period.

However, for one of the teams that didn’t have that many issues in their backlog,
it was said that this visualization could lead them to being less aware of their
issues than they currently are. This was based on how they currently review
technical debt and security debt. Because they don’t have a lot of tickets and
have the time to roughly go through all issues this was preferred over just seeing
the most important issues.

7.3.1 Support debt prioritization

The prioritization of technical debt is done by ranking the identified debt accord-
ing to which items should be repaid first and which items can be allowed until
later releases. There have been suggested different approaches to support this
activity. The most studied approaches are cost/benefit analysis, high remediation
cost first, portfolio approach, and high interest first (Z. Li et al., 2015).

This research introduces a new way of approaching the prioritization of technical
debt and security debt. This is done by shedding lights into the differences be-
tween security debt and the rest of the technical debt, showing after how much
time the debt has been fixed, as well as highlighting the most important issues.
The results from the second evaluation describes how the different visualizations
can be used to support the planning and prioritization of technical debt and secu-
rity debt (see section 5.3.2).

The first visualization states whether there is a difference in how the teams pri-
oritize technical debt and security debt. This can be helpful for the teams by
putting focus on this difference and thus providing insights into how they have
previously handled technical debt and security debt. The second visualization
has been proven useful to see how the prioritization within the technical debt and
security debt issues have been done in the chosen period. The third visualization
reveals how much time the teams have used to fix the issues and could thus reveal

86

if they are using more time than they expect to. This can further support them
in finding out if an issue should be re-prioritized. The last visualization displays
the most important issues which facilitates which issues should be fixed during
the next period.

Some of the teams have a lot of issues in their backlog while others just have a
few issues. These differences should be considered when adapting the visualiza-
tions. If the list of issues is quite small it is considered manageable and then
the visualizations would not give any immediate value in short term. With this
I mean that these teams would benefit more from seeing the visualizations over
a longer time period in order to discover trends or discrepancies that they would
like to improve.

Another thing that should be taking into consideration is that the teams have
different goals for their management of the debt. The issues that are considered
important to one team might not be the same for another team. Different teams
have different KPIs and required levels in the index system. Therefore, the vi-
sualizations should reflect these kinds of issues. For example, the teams should
define which issues are considered important and these will then be visualized as
the most important issues.

All of the participants have pointed out that the visualizations could add value in
their work on technical debt and security debt. I experienced that the participants
were genuinely interested in this research and that the artefact inspired them to
think differently about how they manage technical debt and security debt. Sev-
eral of the participants have said that they would really like to have something
similar to the presented visualizations in their practice.

To conclude, the artefact can be considered a starting point of an approach to
debt prioritization. It is crucial that the visualizations reflects and considers the
amount of technical debt and security debt found in their system.

7.4 Contributions

The following bullet points summarize the contributions of this thesis:

87

• Initial evidence have been found to show that security debt has a higher
significant fixing rate than technical debt.

• The calculation of the lead time has been presented and shows that technical
debt often is fixed faster than security debt.

• Earlier publications does not have a substantial focus on visualizations re-
lated to technical debt or security debt. This study contributes to this area
by producing a dashboard containing four distinct technical debt and secu-
rity debt visualizations.

• An artefact has been provided as a starting point for how visualizations of
historical data in issue trackers can support the planning and prioritization
of technical debt and security debt. The artefact has been initially validated
with a limited number of teams.

7.4.1 Implications for research

• All results in this thesis are impacted by the penalizing strategies used
within the company. Further research should compare the results from this
thesis to other company contexts.

• The results from RQ1 shows that security debt has a significantly higher
fixing rate than technical debt. This might be due to the index system used
in the company. Further research should focus on the amount of issues that
are fixed for technical debt and security debt in a context where they don’t
use penalizing strategies.

• The results from RQ2 shows that technical debt in general is fixed in a
shorter time period than security debt. In this research I was not able to
consider issues size due to data set restrictions. Further research should
explore the additional factor of issue size.

• The results from RQ2 shows that technical debt in general is fixed in a
shorter time period than security debt. This might be due to lack of security
knowledge. Further research should investigate this.

88

• I presented a starting point for visualizing historical data in issue trackers
(e.g. Jira) for the purpose of supporting technical debt and security debt
planning and prioritization. Further research should look into improve-
ments on these visualizations.

• The general consensus after talking to the participants showed that the vi-
sualizations made them rethink their management of technical debt and
security debt. As they all pointed out that the use of visualizations in rela-
tion to technical debt can be valuable, further research should investigate
how visualizations can support the management of technical debt.

7.4.2 Implications for practice

• From RQ1 it can be interpreted that software practitioners should have an
understanding of their fixing ratio of their technical debt and security debt.
Based on these ratios they might be able to better plan and prioritize the
debt.

• From RQ2 it can be found that lead time can be helpful for the teams in
relation to debt management. This metric can be used to show the team’s
productivity of debt repayment.

• From RQ3 visualizations have been presented. Teams within the company
can take inspiration from the presented artefact and choose the visualiza-
tions that could give them value in terms of supporting the prioritization
and planning process.

• From RQ3 visualizations have been presented. Teams outside the company
might get similar results in terms of re-thinking their debt management
strategies due to the visualizations showing an overview of how they previ-
ously have prioritized and repaid the debt.

89

7.5 Validity and limitations

In this section I will first elaborate on the threats to validity. Then, I will point
out the limitations in this study. Lastly, I will describe how I have followed the
seven Design Science Research guidelines provided by Hevner et al., 2004 during
my research.

7.5.1 Validity

"The validity of a study denotes the trustworthiness of the results, to what extent
the results are true and not biased by the researchers’ subjective point of view"
(Runeson & Höst, 2009, p. 153). There are four different ways to classify threats
to validity in the literature: construct validity, internal validity, external valid-
ity, and reliability. Lastly, I will discuss conclusion validity as it is important to
ensure the quality of the quantitative data analysis (García-Pérez, 2012).

Construct validity

Construct validity reflects the extent to which the operational measures being
studied really represent what the researcher has in mind and what is being in-
vestigated according to the research questions (Runeson & Höst, 2009).

As a common threat to construct validity is that the constructs discussed in the
interview questions are not interpreted in the same way by the researcher and
the interviewees (Runeson & Höst, 2009) it was important to me that we had a
common understanding of the terms technical debt and security debt. Because
of this, the interviews started by discussing the concept of technical debt. In
addition, I explained how I classified the security debt items.

A threat to the construct validity was when I classified the security issues in the
data set. The classification were done by searching for specific security words
according to the taxonomy proposed by Firesmith, 2003. This can result in false
negatives, i.e., the issue can be a security issue although it is not tagged with one
of these security words.

90

Internal validity

Internal validity is of concerns when causal relations are examined (Runeson &
Höst, 2009).

A threat to the internal validity is that the size of an issue can impact the lead
time for fixing the issue. As I didn’t have information about the issue size, I have
not considered the size when looking into the difference in lead time for fixing
technical debt and security debt.

Another threat to the internal validity is that I spoke to different teams and each
team use different ways of prioritizing the debt.

External validity

External validity concerns the extent to which it is possible to generalize the find-
ings, and the extent to which the findings are of interest to other people outside
the investigated case (Runeson & Höst, 2009).

The analyzed data set contains data from different projects within one company.
This is limiting the ability to generalize the conclusions regarding lead time and
amount of fixed technical debt and security debt to projects in a different company.

The studied company uses Jira to track their issues. The artefact is created in
Jira and requires the intended user to track their issues. This is limiting the
ability to generalize the conclusions related to the artefact to companies that does
not use Jira to track their technical debt.

Reliability

Reliability is concerned with to what extent the data and the analysis are depen-
dent on the specific researchers (Runeson & Höst, 2009).

A common threat to the reliability in relation to qualitative research is that the re-
searcher influences the respondents and the overall process. In order to mitigate

91

my own bias I had discussions with the company stakeholders and my supervi-
sors continuously throughout the thesis. This was important because I was the
only person who analyzed and interpreted the data. Additionally, to mitigate the
threat of my own bias throughout the thesis I did triangulation of the sources of
data: document analysis and interviews.

Conclusion validity

Conclusion validity concerns the use of appropriate statistical methods which be-
haves accurately. Additionally, the statistical method must provide an answer to
the research question (García-Pérez, 2012).

I have reported results considering inferential statistics and used two-population
hypothesis testing. To answer the first research question I performed the Chi-
Square Test of Independence which requires that the expected count for each
issue-fixing combination is at least 5. This is not the case for the security issues
of critical priority. Because of this, the results for RQ1 regarding the critical
issues are not as reliable as the other results.

For RQ2 I have performed the non-parametric test, Mann-Whitney U test, accord-
ing to the normality of the data. I used Xlstat to perform all statistical analyses
since it gives good confidence regarding the results quality. In addition, I per-
formed the tests several times to see that I obtained the same results.

Limitations

Few participants
For the evaluation of the artefact I conducted only six interviews. The fact that
the evaluation is based on few participants is a limitation in this study.

Issue size
I have not considered the size of the issue when calculating the lead time for fixing
technical debt and security debt because I didn’t have information about this.

Time constraint

92

For the first five interviews the interviews lasted approximately 1 hour. But for
the last interview I only had 30 minutes which limited the questions and feedback
I could get.

Impact of penalty points
The index system used by the company might impact how the debt is prioritized.
This has also been mentioned by several participants. Due to time constraint I
could not look into this.

Design Science Research Guidelines

Guideline 1: Design as an Artefact
This first guideline implies that the research must produce a usable artefact in
the form of a construct, model, method, or an instantiation (Hevner et al., 2004).
The artefact provided in my thesis can be considered an instantiation. It is a
dashboard of history keeping (implemented in Jira) which aims to support in the
planning and prioritization of technical debt and security debt. Chapter 5 de-
scribes how the artefact has been designed and developed through two iterations.
The final artefact is presented in Chapter 6.

Guideline 2: Problem relevance
This guideline implies that the objective of the research is to create technological
solutions to important and relevant problems (Hevner et al., 2004). The artefact
provided in this research address a relevant and important problem. Before I
started to design and develop the artefact, I got input from relevant stakeholders
within the company. I also looked into the current literature on technical debt
and security debt. Further, I used document analysis where I got knowledge
of the data available. Then, by performing statistical tests I got to know the
environment/context relevant to the problem. Based on the knowledge I got from
the document analysis and statistical tests, I discussed different ideas together
with the company stakeholders. This resulted in the requirements proposed to
solve the problem. These requirements were used as a basis for the development
of the artefact.

Guideline 3: Design evaluation
This guideline implies that the utility, quality, and efficacy of the artefact must

93

be rigorously demonstrated using well-conducted evaluation methods (Hevner et
al., 2004). The artefact was evaluated by conducting interviews with relevant
stakeholders within two iterations. This is described in Chapter 3. The under-
standability and usefulness of the artefact is presented in section 5.3.2.

Guideline 4: Research Contributions
This guideline implies that the research must provide clear and verifiable contri-
butions in the areas of the designed artefact (Hevner et al., 2004). The contribu-
tions in the area of the designed artefact is pointed out later in this chapter (see
section 7.4).

Guideline 5: Research Rigor
This guideline implies that the research is dependent on the use of rigorous meth-
ods in both the construction and evaluation of the designed artefact (Hevner et
al., 2004). The artefact is designed and developed based on the company stake-
holders proposed requirements. Additionally, I have gotten continuous feedback
and input from these stakeholders during this project.

Guideline 6: Design as a search process
This guideline implies that the search for an effective artefact requires the use of
available means to reach desired goals while satisfying laws of the problem envi-
ronment (Hevner et al., 2004). The artefact has evolved through two iterations.
The progress has been made iterative as the scope of the problem expands.

Guideline 7: Communication of research
This last guideline implies that the research must be presented effectively both
to technology-oriented as well as management-oriented audiences (Hevner et al.,
2004). The artefact has been evaluated by both technology-oriented and management-
oriented audiences. Further, both perspectives are presented in the evaluation
(see section 5.3.2).

94

Chapter 8

Conclusion

In this thesis, I have focused on the difference between technical debt and security
debt. For the first research question I have looked into how different the amount
of fixed issues are. For the second research question I have explored the difference
in the lead time for fixing an issue. Finally, for the last research question I have
investigated how visualizations of historical data in Jira can support teams in
prioritizing the repayment of technical debt and security debt.

To answer the research questions I have conducted a Design Science Research
study. A technical debt data set from the company was analyzed to find out which
issues have been repaid the most and which issues have been repaid in the short-
est time. The findings from the quantitative data analysis together with require-
ments proposed by company stakeholders resulted in an artefact containing four
distinct visualizations of historical technical debt and security debt issues. The
artefact have been evaluated through six interviews within two iterations.

The results from the first research question showed that security debt had a sig-
nificant higher fixing rate than technical debt. Regarding the second question, the
results revealed that technical debt were often fixed in a shorter time than secu-
rity debt. Finally, the findings from the last research question initially proved
that the created artefact could support teams in prioritizing the repayment of
technical debt and security debt.

Historical data from Jira can provide valuable information about how technical

95

debt and security debt have been prioritized in the past. The two first research
questions provided both context findings for the rest of the thesis as well as inter-
esting empirical findings for research purposes. For the last research question,
the artefact offered a new way of approaching the prioritization of debt by provid-
ing insights into the differences between security debt and the rest of technical
debt, showing after how much time the debt have been fixed, as well as highlight-
ing the most important unaddressed issues.

96

Bibliography

Ahmadjee, S., & Bahsoon, R. (2019). A taxonomy for understanding the security
technical debts in blockchain based systems.

Alfayez, R., Alwehaibi, W., Winn, R., Venson, E., & Boehm, B. (2020). A systematic
literature review of technical debt prioritization. In Proceedings of the 3rd
international conference on technical debt (pp. 1–10). doi:10.1145/3387906.
3388630

Alves, N. S., Mendes, T. S., de Mendonça, M. G., Spínola, R. O., Shull, F., & Sea-
man, C. (2016). Identification and management of technical debt: A sys-
tematic mapping study. Information and Software Technology, 70, 100–121.
doi:https://doi.org/10.1016/j.infsof.2015.10.008

Atlassian. (2022a). Retrieved from https : / /developer.atlassian .com/cloud/ jira /
platform/index/

Atlassian. (2022b). Dashboard gadget. Retrieved from https://developer.atlassian.
com/platform/forge/ui-kit-components/jira/dashboard-gadget/

Atlassian. (2022c). What is jira used for? Retrieved from https://www.atlassian.
com / software / jira / guides / use - cases / what - is - jira - used - for # Jira - for -
requirements-&-test-case-management

Baldassarre, M. T., Lenarduzzi, V., Romano, S., & Saarimäki, N. (2020). On the
diffuseness of technical debt items and accuracy of remediation time when
using sonarqube. Information and Software Technology, 128, 106377. doi:https:
//doi.org/10.1016/j.infsof.2020.106377

Beatty, W. (2018). Decision support using nonparametric statistics. Cham: Springer
International Publishing : Imprint: Springer.

Bowen, G. (2009). Document analysis as a qualitative research method. Qualita-
tive Research Journal, 9, 27–40. doi:10.3316/QRJ0902027

97

https://doi.org/10.1145/3387906.3388630
https://doi.org/10.1145/3387906.3388630
https://doi.org/https://doi.org/10.1016/j.infsof.2015.10.008
https://developer.atlassian.com/cloud/jira/platform/index/
https://developer.atlassian.com/cloud/jira/platform/index/
https://developer.atlassian.com/platform/forge/ui-kit-components/jira/dashboard-gadget/
https://developer.atlassian.com/platform/forge/ui-kit-components/jira/dashboard-gadget/
https://www.atlassian.com/software/jira/guides/use-cases/what-is-jira-used-for#Jira-for-requirements-&-test-case-management
https://www.atlassian.com/software/jira/guides/use-cases/what-is-jira-used-for#Jira-for-requirements-&-test-case-management
https://www.atlassian.com/software/jira/guides/use-cases/what-is-jira-used-for#Jira-for-requirements-&-test-case-management
https://doi.org/https://doi.org/10.1016/j.infsof.2020.106377
https://doi.org/https://doi.org/10.1016/j.infsof.2020.106377
https://doi.org/10.3316/QRJ0902027

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative
Research in Psychology, 3, 77–101. doi:10.1191/1478088706qp063oa

Brocke, J. v., Hevner, A., & Maedche, A. (2020). Introduction to design science
research. (pp. 1–13). doi:10.1007/978-3-030-46781-4_1

Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., . . . Zazworka, N.
(2010). Managing technical debt in software-reliant systems. doi:10.1145/
1882362.1882373

Ciolkowski, M., Lenarduzzi, V., & Martini, A. (2021). 10 years of technical debt
research and practice: Past, present, and future. IEEE Software, 38(6), 24–
29. doi:10.1109/MS.2021.3105625

Codabux, Z., & Williams, B. (2013). Managing technical debt: An industrial case
study. In Proceedings of the 4th international workshop on managing tech-
nical debt (pp. 8–15). San Francisco, California: IEEE Press.

Digkas, G., Lungu, M., Avgeriou, P., Chatzigeorgiou, A., & Ampatzoglou, A. (2018).
How do developers fix issues and pay back technical debt in the apache
ecosystem? In 2018 ieee 25th international conference on software analysis,
evolution and reengineering (saner) (pp. 153–163). doi:10.1109/SANER.2018.
8330205

Digkas, G., Lungu, M., Chatzigeorgiou, A., & Avgeriou, P. (2017). The evolution of
technical debt in the apache ecosystem. In A. Lopes & R. de Lemos (Eds.),
Software architecture (pp. 51–66). Cham: Springer International Publishing.

Eliasson, U., Martini, A., Kaufmann, R., & Odeh, S. (2015). Identifying and visual-
izing architectural debt and its efficiency interest in the automotive domain:
A case study. In 2015 ieee 7th international workshop on managing technical
debt (mtd) (pp. 33–40). doi:10.1109/MTD.2015.7332622

Falessi, D., & Reichel, A. (2015). Towards an open-source tool for measuring and
visualizing the interest of technical debt. In 2015 ieee 7th international work-
shop on managing technical debt (mtd) (pp. 1–8). doi:10.1109/MTD.2015.
7332618

Firesmith, D. (2003). Common concepts underlying safety, security, and survivabil-
ity engineering (tech. rep. No. CMU/SEI-2003-TN-033). Software Engineer-
ing Institute, Carnegie Mellon University. Pittsburgh, PA. Retrieved from
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6553

Fowler, M. (2009). Technical debt quadrant. Retrieved from https://martinfowler.
com/bliki/TechnicalDebtQuadrant.html

98

https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1007/978-3-030-46781-4_1
https://doi.org/10.1145/1882362.1882373
https://doi.org/10.1145/1882362.1882373
https://doi.org/10.1109/MS.2021.3105625
https://doi.org/10.1109/SANER.2018.8330205
https://doi.org/10.1109/SANER.2018.8330205
https://doi.org/10.1109/MTD.2015.7332622
https://doi.org/10.1109/MTD.2015.7332618
https://doi.org/10.1109/MTD.2015.7332618
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6553
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html

García-Pérez, M. (2012). Statistical conclusion validity: Some common threats
and simple remedies. Frontiers in Psychology, 3. doi:10 .3389/ fpsyg.2012.
00325

Guo, Y., Seaman, C., Gomes, R., Cavalcanti, A., Tonin, G., Da Silva, F. Q. B.,
. . . Siebra, C. (2011). Tracking technical debt — an exploratory case study.
In 2011 27th ieee international conference on software maintenance (icsm)
(pp. 528–531). doi:10.1109/ICSM.2011.6080824

Hevner, A., R, A., March, S., T, S., Park, Park, J., . . . Sudha. (2004). Design science
in information systems research. Management Information Systems Quar-
terly, 28, 75–.

Husby, V. R. (2022). Visualizing historical project data to improve technical debt
management (Master’s thesis).

Johannesson, P. (2014). An introduction to design science. Cham: Springer Inter-
national Publishing : Imprint: Springer.

Johannesson, P., & Perjons, E. (2014). An introduction to design science. doi:https:
//doi.org/10.1007/978-3-319-10632-8

Kruchten, P., Nord, R. L., & Ozkaya, I. (2012). Technical debt: From metaphor to
theory and practice. IEEE Software, 29. doi:10.1109/MS.2012.167

Kruchten, P., Nord, R. L., Ozkaya, I., & Falessi, D. (2013). Technical debt: Towards
a crisper definition report on the 4th international workshop on managing
technical debt. 38(5). doi:10.1145/2507288.2507326

Kruke, M. M. (2022). Security debt in practice (Master’s thesis).
Lanza, M. (2001). The evolution matrix: Recovering software evolution using soft-

ware visualization techniques. In Proceedings of the 4th international work-
shop on principles of software evolution (pp. 37–42). doi:10 .1145 /602461 .
602467

Lenarduzzi, V., Martini, A., Saarimäki, N., & Tamburri, D. A. (2021). Technical
debt impacting lead-times: An exploratory study. In 2021 47th euromicro
conference on software engineering and advanced applications (seaa) (pp. 188–
195). doi:10.1109/SEAA53835.2021.00032

Li, Y., Soliman, M., & Avgeriou, P. (2020). Identification and remediation of self-
admitted technical debt in issue trackers. In 2020 46th euromicro confer-
ence on software engineering and advanced applications (seaa) (pp. 495–
503). doi:10.1109/SEAA51224.2020.00083

99

https://doi.org/10.3389/fpsyg.2012.00325
https://doi.org/10.3389/fpsyg.2012.00325
https://doi.org/10.1109/ICSM.2011.6080824
https://doi.org/https://doi.org/10.1007/978-3-319-10632-8
https://doi.org/https://doi.org/10.1007/978-3-319-10632-8
https://doi.org/10.1109/MS.2012.167
https://doi.org/10.1145/2507288.2507326
https://doi.org/10.1145/602461.602467
https://doi.org/10.1145/602461.602467
https://doi.org/10.1109/SEAA53835.2021.00032
https://doi.org/10.1109/SEAA51224.2020.00083

Li, Z., Avgeriou, P., & Liang, P. (2015). A systematic mapping study on technical
debt and its management. The Journal of systems and software, 101, 193–
220.

Lindgren, M., Wall, A., Land, R., & Norström, C. (2008). A method for balancing
short- and long-term investments: Quality vs. features. In 2008 34th euromi-
cro conference software engineering and advanced applications (pp. 175–
182). doi:10.1109/SEAA.2008.22

Martinez, J., Quintano, N., Ruiz, A., Santamaria, I., de Soria, I. M., & Arias,
J. (2021). Security debt: Characteristics, product life-cycle integration and
items. In 2021 ieee/acm international conference on technical debt (techdebt)
(pp. 1–5). doi:10.1109/TechDebt52882.2021.00009

Martini, A., Besker, T., & Bosch, J. (2018). Technical debt tracking: Current state
of practice: A survey and multiple case study in 15 large organizations. Sci-
ence of Computer Programming, 163, 42–61. doi:https://doi.org/10.1016/j.
scico.2018.03.007

Martini, A., Bosch, J., & Chaudron, M. (2015). Investigating architectural tech-
nical debt accumulation and refactoring over time: A multiple-case study.
Information and Software Technology, 67, 237–253. doi:https://doi.org/10.
1016/j.infsof.2015.07.005

Mendes, T., Gomes, F., Gonçalves, D., & et al. (2019). Visminertd: A tool for auto-
matic identification and interactive monitoring of the evolution of technical
debt items. J Braz Comput Soc, 25. doi:https://doi.org/10.1186/s13173-018-
0083-1

Mostowski, P., Kuder, A., Filipczak, J., & Rutkowski, P. (2018). Workflow man-
agement and quality control in the development of the PJM corpus: The
use of an issue-tracking system. In M. Bono, E. Efthimiou, S.-E. Fotinea,
T. Hanke, J. A. Hochgesang, J. Kristoffersen, . . . Y. Osugi (Eds.), 11th in-
ternational conference on language resources and evaluation (LREC 2018):
Proceedings of the LREC2018 8th workshop on the representation and pro-
cessing of sign languages: Involving the language community (pp. 133–138).
Miyazaki, Japan: European Language Resources Association (ELRA). Re-
trieved from https://www.sign-lang.uni-hamburg.de/lrec/pub/18045.pdf

Novais, R. L., Torres, A., Mendes, T. S., Mendonça, M., & Zazworka, N. (2013).
Software evolution visualization: A systematic mapping study. Information

100

https://doi.org/10.1109/SEAA.2008.22
https://doi.org/10.1109/TechDebt52882.2021.00009
https://doi.org/https://doi.org/10.1016/j.scico.2018.03.007
https://doi.org/https://doi.org/10.1016/j.scico.2018.03.007
https://doi.org/https://doi.org/10.1016/j.infsof.2015.07.005
https://doi.org/https://doi.org/10.1016/j.infsof.2015.07.005
https://doi.org/https://doi.org/10.1186/s13173-018-0083-1
https://doi.org/https://doi.org/10.1186/s13173-018-0083-1
https://www.sign-lang.uni-hamburg.de/lrec/pub/18045.pdf

and Software Technology, 55(11), 1860–1883. doi:https://doi.org/10.1016/j.
infsof.2013.05.008

Ortu, M., Destefanis, G., Kassab, M., & Marchesi, M. (2015). Measuring and un-
derstanding the effectiveness of jira developers communities. doi:10.1109/
WETSoM.2015.10

Ortu, M., Destefanis, G., Murgia, A., Tonelli, R., Marchesi, M., & Adams, B. (2015).
The jira repository dataset: Understanding social aspects of software devel-
opment.

Ortu, M., Murgia, A., Destefanis, G., Tourani, P., Tonelli, R., Marchesi, M., &
Adams, B. (2016). The emotional side of software developers in jira. In 2016
ieee/acm 13th working conference on mining software repositories (msr) (pp. 480–
483).

Paredes, J., Anslow, C., & Maurer, F. (2014). Information visualization for agile
software development. In 2014 second ieee working conference on software
visualization (pp. 157–166). doi:10.1109/VISSOFT.2014.32

Peffers, K., Tuunanen, T., Rothenberger, M., & Chatterjee, S. (2007). A design
science research methodology for information systems research. Journal of
Management Information Systems, 24, 45–77.

Pinzger, M., Gall, H., Fischer, M., & Lanza, M. (2005). Visualizing multiple evolu-
tion metrics. In Proceedings of the 2005 acm symposium on software visual-
ization (pp. 67–75). doi:10.1145/1056018.1056027

Power, K. (2013). Understanding the impact of technical debt on the capacity and
velocity of teams and organizations: Viewing team and organization capacity
as a portfolio of real options. In 2013 4th international workshop on manag-
ing technical debt (mtd) (pp. 28–31). doi:10.1109/MTD.2013.6608675

Rindell, K., Bernsmed, K., & Jaatun, M. (2019). Managing security in software
or: How i learned to stop worrying and manage the security technical debt.
doi:10.1145/3339252.3340338

Rindell, K., & Holvitie, J. (2019). Security risk assessment and management as
technical debt. doi:10.1109/CyberSecPODS.2019.8885100

Rios, N., de Mendonça Neto, M. G., & Spínola, R. O. (2018). A tertiary study on
technical debt: Types, management strategies, research trends, and base in-
formation for practitioners. Information and Software Technology, 102, 117–
145. doi:https://doi.org/10.1016/j.infsof.2018.05.010

Rumsey, D. (2009). Statistics ii for dummies. Hoboken, N.J: Wiley.

101

https://doi.org/https://doi.org/10.1016/j.infsof.2013.05.008
https://doi.org/https://doi.org/10.1016/j.infsof.2013.05.008
https://doi.org/10.1109/WETSoM.2015.10
https://doi.org/10.1109/WETSoM.2015.10
https://doi.org/10.1109/VISSOFT.2014.32
https://doi.org/10.1145/1056018.1056027
https://doi.org/10.1109/MTD.2013.6608675
https://doi.org/10.1145/3339252.3340338
https://doi.org/10.1109/CyberSecPODS.2019.8885100
https://doi.org/https://doi.org/10.1016/j.infsof.2018.05.010

Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case
study research in software engineering. 14(2). doi:10.1007/s10664-008-9102-
8

Saarimaki, N., Baldassarre, M. T., Lenarduzzi, V., & Romano, S. (2019). On the
accuracy of sonarqube technical debt remediation time. In 2019 45th eu-
romicro conference on software engineering and advanced applications (seaa)
(pp. 317–324). doi:10.1109/SEAA.2019.00055

Serrano, N., & Ciordia, I. (2005). Bugzilla, itracker, and other bug trackers. IEEE
Software, 22(2), 11–13. doi:10.1109/MS.2005.32

Siavvas, M., Tsoukalas, D., Jankovic, M., Kehagias, D., Chatzigeorgiou, A., Tzo-
varas, D., . . . Gelenbe, E. (2019). An empirical evaluation of the relationship
between technical debt and software security. doi:10.13140/RG.2.2.15488.
79365

Siavvas, M., Tsoukalas, D., Jankovic, M., Kehagias, D., & Tzovaras, D. (2020).
Technical debt as an indicator of software security risk: A machine learn-
ing approach for software development enterprises. Enterprise Information
Systems, 0(0), 1–43. doi:10.1080/17517575.2020.1824017

Sneed, H. M. (2014). Dealing with technical debt in agile development projects.
In D. Winkler, S. Biffl, & J. Bergsmann (Eds.), Software quality. model-
based approaches for advanced software and systems engineering (pp. 48–
62). Cham: Springer International Publishing.

Tan, J., Feitosa, D., & Avgeriou, P. (2022a). Does it matter who pays back technical
debt? an empirical study of self-fixed td. Information and Software Technol-
ogy, 143, 106738. doi:https://doi.org/10.1016/j.infsof.2021.106738

Tan, J., Feitosa, D., & Avgeriou, P. (2022b). The lifecycle of technical debt that
manifest in both source code and issue trackers. SSRN Electronic Journal.
doi:10.2139/ssrn.4160012

Tan, J., Feitosa, D., Avgeriou, P., & Lungu, M. (2020). Evolution of technical debt
remediation in python: A case study on the apache software ecosystem. Soft-
ware: Evolution and Process. doi:https://doi.org/10.1002/smr.2319

Vathsavayi, S. H., & Systä, K. (2016). Technical debt management with genetic
algorithms. In 2016 42th euromicro conference on software engineering and
advanced applications (seaa) (pp. 50–53). doi:10.1109/SEAA.2016.43

Vinutha, H. P., Poornima, B., & Sagar, B. M. (2018). Detection of outliers using
interquartile range technique from intrusion dataset. In S. C. Satapathy,

102

https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1109/SEAA.2019.00055
https://doi.org/10.1109/MS.2005.32
https://doi.org/10.13140/RG.2.2.15488.79365
https://doi.org/10.13140/RG.2.2.15488.79365
https://doi.org/10.1080/17517575.2020.1824017
https://doi.org/https://doi.org/10.1016/j.infsof.2021.106738
https://doi.org/10.2139/ssrn.4160012
https://doi.org/https://doi.org/10.1002/smr.2319
https://doi.org/10.1109/SEAA.2016.43

J. M. R. Tavares, V. Bhateja, & J. R. Mohanty (Eds.), Information and deci-
sion sciences (pp. 511–518). Singapore: Springer Singapore.

Yli-Huumo, J., Maglyas, A., & Smolander, K. (2016). How do software develop-
ment teams manage technical debt? – an empirical study. Journal of Sys-
tems and Software, 120. doi:10.1016/j.jss.2016.05.018

103

https://doi.org/10.1016/j.jss.2016.05.018

A Interview guide (first iteration)

104

Interview guide (first iteration)

Consent

Thanks for participating

Introduction of study

Documenting consent

Get to know participant

- Please tell me about yourself and what you do at [company]

- Role?

Statistical findings

Show results from both statistical tests

- What did you expect?

- Why do you think the results are like they are?

Visualization 1 (Chi-Square)

Explain visualization and purpose

- What do you think of this?

- What kind of information would you like?

- Useful? For whom? When?

- Improvements?

Visualization 2 (Created vs. resolved)

Explain visualization and purpose

- What do you think of this?

- Useful? For whom? When?

- Improvements?

Visualization 3 (Avg. lead time)

Explain visualization and purpose

- What do you think of this?

- Useful? For whom? When?

- Improvements?

Visualization 4 (Lead time chart)

Explain visualization and purpose

- What do you think of this?

- Useful? For whom? When?

- Improvements?

Visualization 5/6 (Lists)

Explain visualization and purpose

- What do you think of this?

- Useful? For whom? When?

- Improvements?

Closing interview (5 min)

- Any ideas on other visualizations that could help the teams in the planning and prioritization?

- What haven’t I asked you today that you think would be valuable for me to know?

- May I contact you if I have any other questions on this topic?

B Interview guide (second
iteration)

106

Interview guide (second iteration)

Consent (5 min)

Thanks for participating

Introduction of study

Documenting consent

Opening interview (20 min)

Get to know participant

- Please tell me about yourself and what you do at [company]

- Role?

- Background?

- Team size?

 User behavior

- What solutions do you use to track issues?

- How is you teams «practice» of registering TD/SD in Jira? (Registering all issues or only larges issues?)

 - labels?

- How many open TD and SD issues in Jira?

- How do you prioritize TD and SD?

- After registering TD/SD in Jira, how do you decide which items to fix and not fix?

 - how much time do you spend on planning?

 - how often do you plan?

- Currently using any visualizations in Jira (or other places) as a part of the planning and prioritization of TD/SD?

 - What kinds of visualizations?

 - What do you like about these visualizations?

 - What do you not like about these visualizations?

- Can you think of any visualizations that could make this planning/prioritizing process easier?

Solution process

- Under what circumstances would you want to receive an alert in Jira? (Maximum amount of time that a task could
be in Jira?)

* Share dashboard * (30 min)

- What do you see here? What are you looking at now?

Visualization 1

Demonstrate visualization

- What do you think this visualization is for?

- How could it be used? What could it be used for?

- Who would have used it?

- When would it be used?

- What do you think is missing?

Visualization 2

Demonstrate visualization

- What do you think this visualization is for?

- How could it be used? What could it be used for?

- Who would have used it?

- When would it be used?

- What do you think is missing?

Visualization 3

Demonstrate visualization

- What do you think this visualization is for?

- How could it be used? What could it be used for?

- Who would have used it?

- When would it be used?

- What do you think is missing?

Visualization 4

Demonstrate visualization

- What do you think this visualization is for?

- How could it be used? What could it be used for?

- Who would have used it?

- When would it be used?

- What do you think is missing?

Closing interview (5 min)

- What haven’t I asked you today that you think would be valuable for me to know?

- May I contact you if I have any other questions on this topic?

C Observed and expected counts

109

Priority Issue type Fixed Not fixed

Overall

TD (all) 5007 3152
5176 2983

TD (projects) 4573 2767
4730 2610

SD 929 269
760 438

Low

TD (all) 238 290
247 281

TD (projects) 223 269
232 260

SD 59 48
50 57

Medium

TD (all) 4255 2655
4364 2546

TD (projects) 3899 2335
4000 2234

SD 630 195
521 304

High

TD (all) 396 157
427 126

TD (projects) 363 151
395 119

SD 223 25
192 56

Critical

TD (all) 118 23
120 21

TD (projects) 88 12
89 11

SD 17 1
15 3

Table 8.1: Observed and expected counts for the Chi-Square Test of Independence.
The expected counts are shown in bold and rounded to its nearest integer.

110

	Abstract
	Acknowledgements
	Introduction
	Structure

	Background
	Technical debt
	Security debt
	Framework used to classify security debt issues

	Debt management
	Technical debt process
	Security debt process

	Issue tracking systems
	Jira

	Analyzing debt evolution
	Analysis of debt backlog

	Software visualization
	Visualizing technical debt
	Visualizations in dashboards

	Methodology
	Company context
	Design Science Research
	Design Science Research process

	Methods for data collection
	Document analysis
	Interview

	Data analysis
	Quantitative data analysis
	Qualitative data analysis

	Research ethics

	Results from quantitative data analysis
	RQ1. How different is the amount of fixed issues for technical debt and security debt?
	RQ2. How different is the lead time for fixing technical debt and security debt?

	Iterations
	Defining the objectives for a solution
	First iteration
	Design and development
	Evaluation

	Second iteration
	Refining the visualizations
	Evaluation

	Artefact
	Technology
	Jira Cloud Platform
	EazyBI
	Forge app
	Custom Chart for Jira

	Dashboard

	Discussion
	RQ1 How different is the amount of fixed issues for technical debt and security debt?
	RQ2 How different is the lead time for technical debt and security debt?
	RQ3 How can visualizations of historical data in issue trackers support the prioritizing of the repayment of technical debt and security debt?
	Support debt prioritization

	Contributions
	Implications for research
	Implications for practice

	Validity and limitations
	Validity

	Conclusion
	Bibliography
	A Interview guide (first iteration)
	B Interview guide (second iteration)
	C Observed and expected counts

