
Julian Fuhrer

Implicit Encoding of Seemingly
Unstructured Auditory Stimuli

Thesis Submitted for the Degree of Philosophiae Doctor

Department of Informatics
Faculty of Mathematics and Natural Sciences

RITMO Centre for Interdisciplinary Studies in Rhythm, Time and
Motion

2023



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© Julian Fuhrer, 2023 
 
 
Series of dissertations submitted to the  
Faculty of Mathematics and Natural Sciences, University of Oslo 
No. 2588 
 
ISSN 1501-7710 
 
 
All rights reserved. No part of this publication may be  
reproduced or transmitted, in any form or by any means, without permission.   
 
 
 
 
 
 
 
 
 
Print production: Graphics Center, University of Oslo. 
 
  



FAUST.
Das Pergament, ist das der heil’ge Bronnen,
Woraus ein Trunk den Durst auf ewig stillt?

Erquickung hast du nicht gewonnen,
Wenn sie dir nicht aus eigner Seele quillt.





Abstract

Humans are biased to perceive patterns in random sensory signals. While
there are numerous examples of this phenomenon termed apophenia
comprising the perception of faces in clouds, recognition of words
within noise, constellations or the gambler’s fallacy, the exact underlying
neurophysiological mechanisms are unknown.

Presumably at the core of this phenomenon are internal representations
that map the immediate environment, made possible by automatically
drawing on statistical structures in the unfolding sensory input. Identifying
how and where this processing operates is a core question in research fields
such as statistical learning or predictive processing. Specifically, the exact
role of different involved brain regions remains elusive. Identified areas
are widely spread across the cortex, situating lower as well as higher up
in the cortical hierarchy (e.g., perceptual systems or prefrontal cortices).
This suggests a dynamic network composed of distributed brain regions
carrying out individual actions.

Utilising the high temporal and spectral precision of intracranial
electroencephalography, this thesis identified that the brain automatically
encodes temporal statistical structures between events when exposed to
random acoustic stimuli. This encoding involved a network outside the
auditory system, including hippocampal, frontal and temporal cortices.

To achieve this, the effective representation of neurophysiological signals
through information-theoretical principles was investigated, conceiving
a novel approach titled Encoded Information. This method allows
quantifying differences between recorded responses and consequently offers
to discriminate conditions of a study design. Based on five cortical activity
types originating from intracranial electroencephalography and simulated
neurophysiological recordings suggested approach was compared with
well-established methods and examined through a parameter study. The
proposed procedure performs equally efficiently or better than, for example,
the conventional t-test. In addition, it allows statements about the
sensitivity toward the cortical encoding of unexpected events. Further, it
constituted a viable measure in the main analysis in which it was employed
to represent neurophysiological responses evoked by random acoustic
stimuli which were then compared to estimated statistical structures within
that stimuli.

Overall the present work suggests that the brain continuously attempts
to predict and provide structure from events in the environment, even
when they are not behaviourally relevant and have no evident relation
between them. Linking the theoretical frameworks of statistical learning
and predictive processing, this thesis illuminates the underlying implicit
brain mechanisms that can be crucial for rapidly encoding patterns or
unexpected events in the environment. Further, the method of Encoded
Information introduces an apt candidate to represent and investigate
neurophysiological data through information-theoretical principles.
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The thesis is a collection of three papers presented in chronological order of
writing. The common theme is the investigation of neurophysiological recordings
through information-theoretical principles. The papers are preceded by an
introductory chapter that relates them to each other and chapters providing
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papers, a discussion aiming to set the papers into a bigger context follows.
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Chapter 1

Introduction

The auditory system is an early warning system. It is designed in order for us
to survive. Responsible for this is automatic processing, even active during sleep
or coma (Atienza et al., 1997; Bekinschtein et al., 2009; Fischer et al., 1999).
Mounting evidence suggests that this processing operates through sophisticated
internal perceptual models. Being continuously refined as the sensory input
unfolds, they enable the brain to quickly discover and evaluate structure within
the sensory input stream and to maintain a detailed representation of the
environment (Bastos et al., 2015, 2020; Clark, 2013; Dürschmid et al., 2016;
Friston, 2008, 2010; Paavilainen, 2013; Rao & Ballard, 1999; Saffran et al., 1996;
Thiessen, 2017). When a sensory event inconsistent with the established model
is encountered, a “surprise” response is produced, facilitating a swift reaction
to the respective real cause. This encoding of environmental patterns is made
possible by exploiting statistical structure in space and time within the sensory
signal (Conway, 2020; Daikoku, 2018; Dehaene et al., 2015; Maheu et al., 2019;
Saffran & Kirkham, 2018; Southwell & Chait, 2018; Thiessen, 2017).

Our perceptual systems have been confronted with repeating sensory signals
over thousand of years (Turk-Browne, 2012). Hence these systems were able to
adapt to repeated aspects of the environment, named regularities. Studies have
shown that starting from an early age we are sensitive to two kinds of statistical
regularities, namely distributional and conditional regularities. Distributional
regularities describe the frequency or variability of event types and are presumably
exploited to group similar events into categories. Conditional regularities, on
the other hand, relate different event types to each other and are likely a core
statistical structure used for grouping events into larger elements (e.g., syllables
to words). Importantly, as the sensory input stream unfolds, the brain makes
use of both structures (Baumgarten et al., 2021; Dehaene et al., 2015; Domenech
& Dreher, 2010; Henin et al., 2021; Higashi et al., 2017; Koelsch et al., 2016;
Leonard et al., 2015; Maguire et al., 2019; Maheu et al., 2022; Meyniel &
Dehaene, 2017; Meyniel et al., 2015, 2016; Mittag et al., 2016; Saffran, 2020;
Thiessen, 2017; Turk-Browne, 2012; Turk-Browne et al., 2009).

However, detailed insight into how statistical structures are exploited is sparse.
Specifically, despite the increased attention to this field of study (covering artificial
grammar, sequence, implicit, statistical learning and predictive processing),
there is no clear consensus about the neural basis of the underlying cognitive
mechanisms (Conway, 2020; Dehaene et al., 2015; Denham & Winkler, 2020;
Heilbron & Chait, 2018; Williams, 2020). Brain areas that have shown a
significant involvement in this process are widely distributed and cover nearly
the entire brain, including perceptual regions, parietal cortex, prefrontal cortex,
as well as subcortical regions such as the hippocampus and basal ganglia (Conway,
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1. Introduction

2020; Henin et al., 2021; Karuza et al., 2013; Schapiro et al., 2016).
Different explanations as to why the reported activation is distributed across

studies exist. One is modality (e.g., visual, auditory, tactile, motor etc.). It
might be plausible that a combination of modality-specific and domain-general
mechanisms interact, leading to multiple active regions across the cortex (Frost
et al., 2015). Specifically, it is proposed that areas such as the prefrontal
cortex or the hippocampus contribute to the domain-general mechanisms while
hierarchically lower perceptual regions are the main contributors to the former.
However, detailed knowledge about the exact brain regions subserving this
dynamic and adaptive process is limited (Covington et al., 2018; Daikoku, 2018;
Dehaene et al., 2015; Karuza et al., 2013; Meyniel et al., 2016; Schapiro et al.,
2014; Strange et al., 2005; Thiessen, 2017; Williams, 2020). Consequently, this
suggests that the encoding or learning of statistical regularities is not performed
by one neural area but rather may be supported by multiple regions working in
parallel (Chao et al., 2018; Conway, 2020; Covington et al., 2018; Frost et al.,
2015; Kikuchi et al., 2017; Williams, 2020). Concerning this, it is not yet clear
how this process exactly implements across areas and modalities. That is to
say, whether there is one general mechanism located in a domain-general area
accessible for each modality-specific system or whether each modality-specific
system has its individual and optimised mechanism accessed by higher-cortical
areas (Conway, 2020).

In this context, the design of the study paradigm is highly relevant because the
structure of the employed stimulus sequence (for example, pure tones or linguistic
material for auditory stimuli) or its complexity (ranging from deterministic to
random structures) have a great effect on the engaged brain regions (Conway,
2020; Frost et al., 2015, 2019; Saffran & Kirkham, 2018; Williams, 2020).
This variability makes it additionally difficult to draw generalisations from
the literature. A particularly relevant case is how this mechanism operates
on purely random stimuli when there is no clear meaningful relation between
events. Evidence from behavioural studies suggests that we are prone to perceive
patterns in random phenomena (i.e., we are prone to perform type I errors; Falk
& Konold, 1997). This points towards the indication that brain mechanisms
constantly operate in the attempt to make sense of the environment, regardless of
whether there is any objective or behavioural relevance. Further, paradigms can
either actively or passively expose subjects to stimuli. During active exposure, it
is likely that attention-independent and attention-dependent systems operate
in parallel. It is proposed that the implicit or attention-independent system
is always active and can automatically encode adjacent or local dependencies.
The explicit or attention-dependent system, on the other hand, only engages
when selective attention or working memory becomes important such as for
encoding or learning of non-adjacent dependencies, global patterns, cross-modal
dependencies or rule-based processing (Bekinschtein et al., 2009; Conway, 2020).
However, how exactly these systems are implemented is unclear. One hypothesis
is that both mechanisms can operate in an antagonistic as well as in a synergistic
manner (Conway, 2020). Further, previous studies have shown that during
passive exposure, the brain can automatically encode simple structures that
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are global without intention or awareness (Bekinschtein et al., 2009; Dürschmid
et al., 2016; Williams, 2020).

Consequently, there is a need for studies to further illuminate the fundamental
neural mechanisms of encoding statistical structure. Research that deploys
appropriate neurophysiological methods is critical in that regard since the ratio
of behavioural to neuroimaging experiments is greatly imbalanced. Especially
neuroimaging studies that examine passive or implicit encoding of patterns
are missing (Williams, 2020). Particularity, rendering sub-cortical regions such
as the hippocampus during implicit learning tasks would be substantial since
knowledge about their contribution is little, but is suspected to be fundamental
(Billig et al., 2022; Covington et al., 2018; Frost et al., 2019; Schapiro et al.,
2016). There might be also a necessity for novelty when it comes to paradigm
designs. In previous studies, statistical parameters are often manipulated such
that a high contrast between frequently and rarely occurring patterns is created
(Huettel et al., 2002; Koelsch et al., 2016; Maguire et al., 2019; Mittag et al.,
2016; Pelucchi et al., 2009; Saffran et al., 1996). Less structured or unstructured
stimuli, on the other hand, are rarely deployed. In such stimuli, the chance of
occurrence is similar or equal across event types. Identifying transient structures
in such scenarios is more difficult in comparison to scenarios with highly biased
probabilities. For instance, repeatedly tossing a fair coin versus tossing a highly
biased one. The fair coin produces a maximally random sequence (i.e., an
unstructured stimulus), whereas the sequence of the biased coin exhibits more
structure since one symbol occurrence dominates over the other. Accordingly, it
is more difficult to infer the probabilities of the fair coin in comparison to the
biased one (Hahn & Warren, 2009; Warren et al., 2018). As addressed above,
this has presumably a considerable effect on the modulated brain regions.

The need for more research with neurophysiological recordings and the need
for more diverse stimuli raises the question of whether the current methodologies
and approaches are proper for investigating the collected data. Are there more
efficient methods to analyse recordings other than conventional approaches
(stemming from statistics such as t-test, ANOVA, etc.) that primarily focus
on amplitude, power, phase or latency? Alternative approaches such as neural
frequency tagging (Henin et al., 2021; Picton et al., 2003) or the increased usage
of artificial neural networks (Echeveste et al., 2020) or information-theoretical
principles such as Shannon-entropy or mutual information (Canales-Johnson
et al., 2021; Ince et al., 2017; Timme & Lapish, 2018) proved to be worthwhile
in addressing fundamental questions of neuroscience. This motivates continuing
the exploration of novel approaches to push for understanding the human brain
as thoroughly as possible.

Specifically, a core task of the brain is to continuously encode, integrate and
store information coming from the steady input stream of the sensory organs.
Given the analogy between these mechanisms and principles from information
theory (Piasini & Panzeri, 2019; Timme & Lapish, 2018), it appears plausible
to employ ideas from the latter to analyze neurophysiological signals. This
mathematical theory provides multivariate analysis tools, is not bound to a
single type of data, is model-independent (i.e., it does not require assumptions
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1. Introduction

about the data itself) and can capture nonlinear interactions (Ince et al., 2017;
Li & Vitányi, 2008; Piasini & Panzeri, 2019; Timme & Lapish, 2018). In
particular, the branch of algorithmic information theory would be especially
suited because it enables estimating the absolute value of the information
contained in individual brain responses. While algorithmic information theory
has been applied to discriminate between states of consciousness measured with
neuroimaging techniques such as electroencephalography (EEG), intracranial
EEG (iEEG), magnetoencephalography (MEG) or functional magnetic resonance
imaging (fMRI) recordings (Canales-Johnson et al., 2020; Schartner et al., 2015,
2017; Sitt et al., 2014), its use in neuroscience is limited despite its clear potential.

1.1 Research Questions

This thesis aimed to better understand how the brain functions and to develop
methods to broaden our understanding of these brain functions. Specifically,
I derived two research questions under the main hypothesis that the brain
continuously encodes structure within the sensory input stream and based on
the relevance for further research (given the issues stated above):

Question 1 How does the brain operate when implicitly confronted with an
unstructured auditory sequence?
Current neurophysiological evidence about how the human brain implicitly
exploits statistical structure is sparse. This is especially relevant for
environments showing little structure. One such scenario is environments
with random features. It is plausible that various active brain regions are
needed to build internal models of such complex conditions. Analysing
such scenarios could constitute a contrast to more simple conditions and
help to gain further insights about individual contributions of brain areas.
Sensitive methods such as iEEG are a crucial component in addressing this
issue because they can capture brain activity in detail. Simultaneously, by
addressing the shortcomings outlined above, open questions to research
fields such as the perception of randomness, statistical learning or predictive
processing can be approached.

Question 2 To what extent is algorithmic information theory an apt approach
to effectively represent neurophysiological signals?
The emergence of neuroimaging methods such as EEG, iEEG, MEG or fMRI
opened up new epistemic spaces and constitute fundamental tools in modern
neuroscience. As outlined, based on these tools novel issues concerning
cortical information representation and processing arose. Studying these
information-related issues suggests assessing the information contained
within neurophysiological signals. Especially the branch of algorithmic
information theory appears to be a suitable candidate to do so for it enables
estimating the absolute information contained in individual brain responses
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Research Questions

captured with neuroimaging methods. This research question examined
whether algorithmic information theory with its universal applicability
constitutes an apt candidate to represent signals. An evaluation of this
question draws on empirical comparison to conventional methods.

This thesis is a collection of papers. While I aimed to pin down the
overall thesis and presented the aim of this work in the current chapter, in
the following chapter (Chapter 2), I outline relevant background information
about the underlying perceptual theories and concepts. In Chapter 3, I then
depict the methods used and developed in the thesis. This is followed by a
summary of the resulting research (Chapter 4) and a discussion (Chapter 5) of
the outcomes, where I evaluate the findings in terms of the research questions.
Lastly, I present a conclusion (Chapter 6) and all research articles that resulted
from this project.
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Chapter 2

Background

In this chapter, I outlined the core concepts of the thesis: First, the two
treated research fields (predictive processing and statistical learning) anchored
in perception and learning are introduced. This is followed by a general
perspective on how the brain possibly encodes patterns in the environment.
Lastly, considerations in terms of randomness and its perception are put forward,
followed by a brief introduction to information theory.

2.1 Predictive Processing

Doubtlessly, predictive processing or predictive coding is the current dominant
theoretical framework for the study of perception, action and learning (Fig. 2.1,
Bastos et al., 2020; Denham & Winkler, 2020; Friston, 2018). Perception deals
with the processing of information from external or internal input conveyed
by our senses. As a first general theory, predictive processing aims to explain
both psychological and neural aspects of perception, that is, accounting for
both behavioural and neurophysiological processes (Denham & Winkler, 2020).
According to this theory, human brains perceive through internal models of the
environment by constantly making predictions based on prior expectations in
order to explain away an incoming sensory signal. The better the fit between
top-down predictions and lower-level sensory input, the higher the probability
that the prediction accurately infers the hidden causes of the lower-level activity.
Hence, the brain aims to minimise the discrepancy, that is prediction error or
surprise between prediction and sensory input. This occurs within a hierarchical
bidirectional cascade of cortical processing ranging from an interaction between
individual neurons up to communication between large populations of neurons
(i.e., brain areas). Based on evidence from the frequency decomposition of EEG
and iEEG from humans and other animals, it is hypothesized that top-down alpha
(8 to 14 Hz) or beta (15 to 30 Hz) activity carries descending information and
regulates the processing of bottom-up inputs, whereas ascending information is
served by the gamma band (>30 Hz). In this framework, lower frequencies carry
slower top-down predictions, inhibiting faster gamma activity that processes
external inputs (Arnal & Giraud, 2012; Bastos et al., 2012, 2015, 2020; Chao
et al., 2018; Heilbron & Chait, 2018; Wacongne et al., 2011). Accordingly,
predictions trying to infer a complex cause should be processed at higher cortical
levels (e.g., the pre-frontal cortex) while simpler rules should be implemented in
lower cortical areas (e.g., within the subcortical or primary auditory pathway).
While predictive processing theories afforded novel explanations on how brain
networks process and integrate information based on empirical investigation, its
extensive proof still lies ahead (Denham & Winkler, 2020; Friston, 2018; Heilbron
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2. Background

& Chait, 2018). Especially how the neuro-architectonic structure implements
such a mechanism in the brain is not clear yet. Specifically, while there are
several studies that index prediction errors within neurophysiological recordings,
the demonstration of predictions is sparse (Arnal & Giraud, 2012; Bastos et al.,
2012; Carbajal & Malmierca, 2018; Clark, 2013; Denham & Winkler, 2020;
Friston, 2010; Heilbron & Chait, 2018; Parras et al., 2017; Rubin et al., 2016).
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Implicit Learning
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Figure 2.1: Number of yearly publications from 1990 to 2021 containing the
keywords in the legend within psychology and neuroscience extracted from the
data bank of Web of Science. The dashed line represents the yearly articles
containing both predictive processing and statistical learning as keywords.

2.2 Statistical Learning

Ultimately, the field of statistical learning arose from a study examining language
acquisition (Saffran et al., 1996). This study revealed that eight-month-old infants
are sensitive to conditional regularities between adjacent speech sounds after
only two minutes of exposure to a fake language. This evolved into a rapidly
growing research field (Fig. 2.1) that covers “all phenomena related to perceiving
and learning any forms of patterning in the environment that are either spatial
or temporal in nature” (Frost et al., 2019). Accordingly, it considers the brain’s
capability to extract regularities between features and objects that co-occur in
the environment over space and time (Conway, 2020; Frost et al., 2015; Saffran,
2020; Thiessen, 2017; Turk-Browne, 2012; Williams, 2020). In fluent speech, for
instance, conditional regularities between syllables constitute patterns that help
to identify word-like units, generating candidate words available for mapping to
meaning (Arnal & Giraud, 2012; Conway, 2020; Dehaene et al., 2015; Koelsch
et al., 2016; Saffran, 2020; Thompson & Newport, 2007). Hence, monitoring
conditional statistics enables higher-order learning processes to make sense of
said. Based on that, it is even hypothesised whether that could be a predecessor
component upon which human language evolved (Kikuchi et al., 2017; Saffran
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Perceptual Variables

et al., 1996). Consequently, statistical learning constitutes a major theoretical
construct in cognitive science that is not limited to speech perception or language
acquisition but is also applicable to studies in vision, audition, motor planning,
event processing, reading, semantic memory or social cognition (Frost et al.,
2019; Saffran & Kirkham, 2018).

As mentioned in the introduction, this patterning is indispensable for the
internal perceptual models of the environment, which again is a core concept
of predictive processing. Accordingly, while emerging from different origins,
predictive processing and statistical learning evolved into grand theories that
are closely related. Other related fields in this regard are artificial grammar,
sequence or implicit learning (Fig. 2.1). Implicit learning is of special interest to
this thesis since it considers learning without any intention or awareness involved,
which is also the focus of this project.

From these relations follows that both predictive processing and statistical
learning face similar problems when it comes to pinning down the neurophysiolog-
ical mechanisms. However, studies orientating simultaneously at both fields are
sparse (Fig. 2.1). While for predictive processing, there is a significant amount of
studies that employ neuroimaging techniques (however not so many that investi-
gate statistics as perceptual variables), behavioural studies outweigh the field of
statistical learning. Accordingly, in statistical learning, the brain’s capability
to effectively identify regularities in ongoing sensory input has been sufficiently
observed on a behavioural level in advanced experimental setups across multiple
domains, yet the neurological understanding is less clear. Specifically, the link to
the underlying mechanisms or its motivation through which these patterns are
detected in the first instance (Barascud et al., 2016; Conway, 2020; Covington
et al., 2018; Daltrozzo & Conway, 2014; Saffran, 2020; Schapiro et al., 2014;
Thiessen, 2017).

2.3 Perceptual Variables

The brain is sensitive to two types of regularities, which are either distributional
or conditional (Saffran, 2020; Thiessen, 2017). Accordingly, they describe
the absolute frequency of individual event types or the relationship across
multiple events. The most prominent statistics of the former category are item
frequency (IF) or alternation frequency (AF). Several studies have demonstrated
that the brain is sensitive to both regularities, depending on the structure or
dynamics of the stimuli (Maheu et al., 2019; Saffran, 2020; Thiessen, 2017).
Given a discrete binary sequence (e.g., XYXYXYXXYXYXYYXYYXXYXYX)
IF describes how frequently each event type occurs relative to the total amount
of events within the sequence, i.e., it can be defined as

IF(X) = p(X) = n(X)
n(all) (2.1)

for the event X and the frequency operator n. Consequently, in the above
sequence, the IF for the event X becomes IF(X)=1−IF(Y)=12/23=0.52. IF,
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2. Background

however, neglects how the individual event types are distributed within the
sequence. AF, on the other hand, looks at the number of adjacent transitions
between events. For a binary sequence, it is defined as

AF = p(alternation) = n(X → Y) + n(Y → X)
n(all) − 1 . (2.2)

Accordingly, AF models the number of alternations relative to the total
number of possible alternations and becomes p(alternation) = 1−p(repetition)
= 18/23=0.78 for the sequence above. As the name suggests, both probabilities
model the distribution of a sequence. However, while IF is not accounting for
the order, AF does not cover directionality.

A perceptual variable considering both is the transitional probability (TP). As
a conditional regularity, it entails information regarding AF, IF and directionality.
In general, it can be defined as the ratio of the directional co-occurrence of events
given their frequency (Maheu et al., 2019; Pelucchi et al., 2009; Thiessen, 2017;
Thompson & Newport, 2007). For each possible transition, it is defined as

TP(Y, X) = p(Y|X) = n(X → Y)
n(X) . (2.3)

In the case of a binary sequence, this results in a TP or stochastic matrix of
size R4×4, i.e.,

P =
(

p(X|X) p(X|Y)
p(Y|X) p(Y|Y)

)
. (2.4)

Therefore, TPs describe how likely one event predicts another. For the
example sequence above, this results in p(X|Y)=1−p(Y|Y)=9/11=0.82 and
p(Y|X)=1−p(X|X)=9/11=0.82. When estimating the TPs along a sequence
in an incremental fashion, that is to say for each sample along the time axis,
usually, the principle of indifference is applied for the initial value, leading to
equal probabilities for all initial transitions. See Section 3.2 for more information
on the framework of TP estimation in this project.

Sensitivity to conditional regularity between events has been observed in
humans (Domenech & Dreher, 2010; Henin et al., 2021; Higashi et al., 2017;
Koelsch et al., 2016; Leonard et al., 2015; Maguire et al., 2019; Maheu et al.,
2022; Meyniel & Dehaene, 2017; Meyniel et al., 2015, 2016; Mittag et al., 2016)
and animals (Lu & Vicario, 2014; Yaron et al., 2012). Because events in the
environment rarely occur independently, this pattern extraction is necessary for
the fast and efficient processing of sensory information. In past research, it was
suggested that this regularity is a core structure for implicitly encoding patterns
and most of the statistical learning research focused on designing sequences by
manipulating TPs (leading to high and low TP patterns) (Frost et al., 2019;
Thiessen, 2017).
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Perception of Randomness

2.4 Perception of Randomness

In the current thesis, randomness and its perception play an important role. A
key question in cognitive science is whether the brain can be aware of randomness
or if it always searches for patterns. In other words, does it always try to make
sense of or exploit a given sequence? That would follow the notion that the brain
continually maintains a detailed representation of the structure of the unfolding
sensory input and that this representation shapes the processing of incoming
information (Clark, 2013; Denham & Winkler, 2020; Friston, 2008; Heilbron &
Chait, 2018; Southwell & Chait, 2018).

Applying this notion to randomly distributed sequences, it becomes plausible
that to make predictions about following events the brain exploits regularities
within the random sequences. By doing so, the brain performs a type I error or
perceives patterns in random phenomena (Falk & Konold, 1997). An example
demonstrating this behaviour is depicted in Fig. 2.2. Each graph possesses 100
points. From intuition follows that the right graph is random, whereas the left
plot exhibits too many repetitions or clusters of points to be random. These
clusters enable the identification of patterns or even abstract forms. In reality,
however, the dots on the left-hand side are randomly distributed. The right
one distributes the points uniformly by dividing the plot into 100 boxes where
each box contains one point, and each location is random in that box. This
tendency or intuition to perceive patterns in random data is termed clustering
illusion. The term illusion is chosen because the effect does not vanish by
repeated examination, which is equal to perceptual illusions. Further, random
distributions seem to have too many clusters of the same consecutive outcome,
such that humans struggle to accept their true origin (Gilovich, 1991).

(a) Is this random? (b) Is this random?

Figure 2.2: Two graphs with 100 points each. a: Randomly distributed points.
b: The points obey a uniform distribution by dividing the plane into a grid of
100 boxes. One point is randomly located in each box.

The very nature of randomness enables the identification of patterns,
especially in large data sets. That is consistent with the Ramsey Theory,
which postulates that every large set of numbers exhibits highly regular patterns
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(Graham & Spencer, 1990). Other terms addressing the same tendency as
clustering illusion are apophenia or pareidolia, where the former is defined by
Conrad (1958) as an “unmotivated seeing of connections [accompanied by] a
specific feeling of abnormal meaningfulness”. This phenomenon allows us to see
shapes in clouds, identify words in noise or perceive a face on Mars (Nasa, 2001).

Committing a type I error is also plausible from an evolutionary point of
view. Concerning survival, it is more beneficial to interpret a stream of wind
waving through a dense hedge as something dangerous than to interpret it the
other way around. That is to say, performing a type II error by believing it is
only the wind or assuming something is random when it is not. Another example
is the hot hand in basketball or gambler’s fallacy (Falk & Konold, 1997; Gilovich
et al., 1985; Kahneman & Tversky, 1972; Warren et al., 2018). Repetition is
recognised as something non-random, such that the performance of a basketball
player is ascribed as “hot” or “on fire” when one has a streak of hitting shots
(Gilovich, 1991; Gilovich et al., 1985). Players, coaches and fans believe that once
a player makes a basket their chances of hitting the next one increases. The same
cognitive bias applies to gamblers who tend to assume that after a long sequence
of, for instance, black in roulette, it becomes more likely that the outcome of the
next spin is red. Yet, in each trial, both outcomes are equally likely. Assuming
that the local and global sequences should share the same properties is known
as the gambler’s fallacy (Kahneman & Tversky, 1972; Warren et al., 2018). The
future is not influenced by the past in these cases.

Another factor fostering the encoding of patterns in random stimuli is the
length of a perceived sequence. Here, the terms insensitivity to sample size or
law of small numbers comes into play. That describes the human tendency to
conclude about the whole population given a small sample size (Falk & Konold,
1997; Kahneman & Tversky, 1972; Zhao et al., 2014). For example, for a coin
toss, the probability for head and tail is p(head)=p(tail)=0.5 for each trial. Yet,
(longer) repetitions of one symbol are assessed as non-random without considering
that this behaviour could change with increasing sample size. The opposite
would be over-alternations. In that case, the two states alter consecutively for
a long period, and for both the generation and perception of sequences this
is considered to be maximally random (Falk & Konold, 1997; Kahneman &
Tversky, 1972). In the example of Fig. 2.2, such an over-alternation can be the
distance between dots which is too uniformly distributed in the right graph to
be random. Needless to say, there is also the probability to exactly obtain this
plot by distributing one hundred points randomly, but this again addresses the
question of how randomness is precisely defined and how to measure it, which
goes beyond the scope of this thesis.

From these examples of how we perceive randomness as a meaningful pattern
follows that the brain is not aware that the underlying structure is random or
meaningless. Hence, in scenarios where there is no attention involved, the brain
should not be able to implicitly identify and subsequently disregard something as
being of random nature, to begin with. Accordingly, patterns should always be
implicitly exploited to maintain a detailed representation of the structure of the
unfolding sensory input and then made use of by the brain. A study supporting
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this claim is Southwell and Chait (2018). In this study, the difference between
recorded brain responses to sounds that deviate from standard tones following
either regular or random ordered standard tones was examined. Southwell
and Chait concluded that responses were substantially larger following regular
sequences relative to random ones. Hence, the degree of predictability in the
ongoing sequence context plays a role in how a deviant event is treated.

2.5 Information Content

The second research question considers to what extent information theory qualifies
to treat neuroimaging recordings through an empirical approach. The choice
as to why to use information theory is apparent. On an abstract level, neural
systems constantly encode, integrate, and store information originating from
the steady input stream of the sensory organs. Information theory has been
widely applied to neuroscience research as it offers multivariate analysis tools, is
not bound to a single type of data, is model-independent (i.e., does not require
assumptions about the data itself) and can capture nonlinear interactions (Ince
et al., 2017; Piasini & Panzeri, 2019; Timme & Lapish, 2018). Specifically,
principles of Algorithmic Information Theory or more precisely, Algorithmic
Complexity or Kolmogorov Complexity (K-complexity) have been employed to
discriminate between states of consciousness measured with EEG, iEEG, MEG
or fMRI recordings (Canales-Johnson et al., 2020; Schartner et al., 2015, 2017;
Sitt et al., 2014; Varley et al., 2020). However, its use is less popular than
the classic information theory after Shannon (1948). As opposed to the latter,
K-complexity allows estimating the information content or complexity of an
individual object. To give a short overview of both theories, firstly, ideas of
the K-complexity approach are outlined, followed by the sketch of information
content definition after C.E. Shannon’s theory of communication.

2.5.1 Algorithmic Complexity

Algorithmic information theory was independently developed by R.J. Solomonoff
(Solomonoff, 1964), A.N. Kolmogorov (Kolmogorov, 1968) and G. Chaitin
(Chaitin, 1969). Regarding this theory, the information content of an individual
object can be estimated by measuring the length of its shortest description
(Grünwald & Vitányi, 2004; Li & Vitányi, 2008). For example, the sequence

ABABABABABABABABABABABABAB

can be described as “AB repeats 27 times”. The structure of the sequence

AABBABBBBAABBAAABAAAABBBAA

on the other hand, is less clear. Intuitively, there appears to be no simple
description such that the second sequence is more complex or exhibits a higher
information content than the first sequence. More formally, K-complexity is the
ultimate compressed version or minimum description length of an object or its
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absolute information content (Li & Vitányi, 2008). If the minimum description
length is short (long), an object is characterised as “simple” (“complex”). As
evident from the two example sequences, there can be scenarios where it is
rather difficult to infer a rule that describes an object with minimum description
length. In general, it is not possible to compute the theoretically ideal K-
complexity. Therefore, when applying this theory, an estimate needs to be
chosen, yielding an upper-bound approximation (an estimate of the description
length is always longer than the ultimate theoretically possible minimum
description length). Possible estimation approaches are conventional lossless
data compression programs such as gzip, bzip2 or the Lempel–Ziv–Markov chain
algorithm (LZMA) (Li & Vitányi, 2008; Li et al., 2004). See Fig. 2.3 for example
signals and their compressed value estimated with gzip.
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Figure 2.3: Example functions or signals that underwent compression with
gzip. The two signals of column two in rows one and two resulted from adding
Gaussian white noise to the respective signals in column one. Note how only
regularities such as the saw tooth function enable the compressor to exploit
structures along the sample axis. The triangular pulse, conversely, does not allow
any compression. The signal’s complexity value (C) was computed by dividing
its compressed version by its original signal size. For complexity values greater
than one, the compressor cannot reduce the size of the respective signal.
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2.5.2 Encoded Information

In neuroscientific studies, it is common to have two or more conditions (for
example, control and test conditions) that need to be compared with each other.
The K-measure so far yields an estimate of the absolute information content of a
recording. Fortunately, based on the K-complexity, various metrics were derived
that allow a pairwise comparison between two objects. One instance is the
Normalized Information Distance or its estimation counterpart, the Normalised
Compression Distance (NCD). The NCD allows for the comparison of different
pairs of objects with each other and suggests similarity based on their dominating
features (or a mixture of sub-features) (Cilibrasi & Vitányi, 2005; Li & Vitányi,
2008; Li et al., 2004). This measure has been applied to, for example, cluster
analysis, virology (even to analyse the SARS-CoV-2 virus by two of the original
authors behind this measure (Cilibrasi & Vitányi, 2022)), language, music and
literature (Li & Vitányi, 2008), but as far as know has only been applied once in
the field of neuroscience (i.e., for brain-computer interfaces, Sarasa et al., 2019).
For a pair of strings (x, y), the NCD(x, y) is defined as

NCD(x, y) = C(xy) − min(C(x), C(y))
max(C(x), C(y)) , (2.5)

with C(xy) denoting the compressed size of the concatenation of x and y, and
C(x) and C(y) their respective size after compression (Cilibrasi, 2007; Cilibrasi &
Vitányi, 2005; Li & Vitányi, 2008; Li et al., 2004; Vitányi et al., 2009). Further,
the NCD is non-negative, that is, it is 0 ≤ NCD(x, y) ≤ 1 + ϵ, where the ϵ
accounts for the imperfection of the employed compression technique. Smaller
NCD values suggest similar objects. Higher values suggest rather different objects.
There is an intuitive interpretation of NCD (Cilibrasi, 2007; Vitányi et al., 2009).
For instance, given C(y) ≥ C(x) the compression distance becomes

NCD(x, y) = C(xy) − C(x)
C(y) . (2.6)

Accordingly, it becomes the ratio between the improvement of compressing
y using x as a previously compressed “database” relative to compressing y
from scratch (Cilibrasi, 2007; Li & Vitányi, 2008). Using the definition of the
conditional compressed information C(y|x) = C(xy) − C(x), it can be also
written as

NCD(x, y) = C(y|x)
C(y) , (2.7)

that is, it is the ratio of the information x about y to the information in y
(Cilibrasi, 2007).

Labelling its implementation for neurophysiological data encoded information,
we utilised the complexity-based NCD measure to quantify information-content-
based differences in neurophysiological recordings. Paper II and Paper III
evaluate this approach in detail. Overall, the measure was applied to three
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different neurophysiological (Paper I, Paper II and Paper III) and synthetic data
sets (Paper II). We quantified differences across single trials (evoked responses)
or conditions (mean response across trials) based on five different cortical activity
types for each data set. The signals considered ranged from 0.35 to 2 s. See the
next chapter (Section 3.3 and Section 3.3.1) for more details on the composition
of the different neurophysiological signals.

The general procedure to obtain a compression version C(x) of a signal x
was to first represent the continuous signal by grouping its values into discrete
steps (bins). Accordingly, the signal was simplified by reducing its resolution
along the y-axis (Fig. 2.4; for example into 127 bins). The bins covered equal
distances and were in a range between the global extrema of all recorded signals
(e.g., the global extrema of a channel). After simplifying the signal, a compressor
then received the indices of the bins that contained the elements of the signals
(Canales-Johnson et al., 2020; Sitt et al., 2014). That is to say, each sample
is mapped to a value of the binning vector. This index vector underwent then
compression through a compression routine based on Python’s standard library
and gzip. At this point, it is worth pointing out that the length of the index
vector is invariant to the number of bins. This is because the length of the signal
is not changed during the binning procedure, but only the resolution along the
y-axis. Consequently, each value within the index vector represents a signal
sample in ascending order. Thus, the input length of the compressors remains
constant.

For example, consider the signal x consisting of nine random values

x =
(
3.47 2.14 2.55 −0.18 2.85 1.05 1.20 2.94 1.59

)⊺
.

Using 12 bins that cover equal distances and in a range between the global
extrema, the following (ascending) edges result:

edges =
(
−∞ 0.12 0.43 0.73 1.04 1.34 1.65 1.95 2.26 2.56 2.87 3.17 ∞

)⊺
,

Note that on each end, ∞ is added to account for machine precision. Assigning
each value of the signal to the closest edge then leads to the vector

xbin =
(
12 8 9 1 10 5 5 11 6

)⊺
.

Accordingly, the vector xbin maps each element of x to a value of the binning
vector edges. This simplified and binned vector xbin is subsequently received by
the employed compressor, yielding its compressed version C(x).

Across the three data sets considered (quantifying differences of two
conditions for each of the five cortical activity types, see Paper III), the median
encoded information was 0.7414 ± 0.0528, the minimum 0.5344 ± 0.1206 and the
maximum was 0.9720 ± 0.0708.

2.5.3 Shannon Entropy

In common with algorithmic information theory, Shannon’s information theory
suggests ways to measure the information of an object. However, whereas for
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Figure 2.4: Sketch of the procedure. Based on all recorded trials a mean response
for each condition is computed. The trials (i.e., not the samples within a trial)
are then shuffled, resulting in surrogate mean responses. Subsequently, these
signals undergo a simplification procedure, followed by compression. The output
of the compression routine is the encoded information, quantifying the similarity
between responses. The resulting values are then evaluated, leading to a null
model distribution. This distribution serves to assess the significance of the true
encoded information value.

the K-complexity, individual objects themselves are considered, the approach
after Shannon ignores the meaning of the variable and is only interested in the
transmission of the variable from a sender to a receiver (Grünwald & Vitányi,
2004; Li & Vitányi, 2008). That is to say, it enables estimating the uncertainty
or variability of a random variable by introducing a concept called entropy or
information content. This can be best understood through a random variable
underlying a distribution P. A value x with low occurrence probability P(x)
means it is less likely to occur. Consequently, a receiver or observer would be
surprised to receive it. A value with high probability P(x), conversely, would
be less surprising to the observer (Ince et al., 2017). Accordingly, the surprise
for value x drawn from the distribution P(x) can be defined as − log2P(x) (i.e.,
for P(x)→ 0, − log2 P(x) → ∞ and − log2 1 = 0). The entropy is then defined
as the expected (average) surprise over the distribution, that is for a discrete
distribution, it is defined as

H(x) = −
N∑

k=1
p(xk) log p(xk) , (2.8)

with p(xk) being the occurrence probability for each element xk, . . . , xN of x.
Consequently, if an observer draws several samples from a distribution with lower
entropy means that each draw will be of little surprise for the observer because
the distribution shows little uncertainty. High entropy, on the other hand, means
that each sample has a similar probability, i.e., the distribution is spread out,
such that the outcome of each draw is uncertain. According to this, for a discrete
random variable, the maximal possible entropy exists for a uniform distribution
exhibiting equal probabilities for each sample (for example tossing a fair coin
compared to a highly biased one, Fig. 3.4a&3.4b). To compute the entropy of a
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signal, a probability distribution needs to be estimated. One commonly used
method is to group their values into bins, which is the same procedure described
above in section 2.5.2. Based on the bin distribution, maximum likelihood
estimation is then applied (that is, evaluating in the histogram how many times
each bin occurs relative to the total amount of samples within a signal), yielding
the probability distribution estimate.

Similar to the algorithmic approach, there exists an entropy measure which
allows quantifying the relationship between two variables in terms of differences
in entropies. Named mutual information (MI), it can be defined between two
discrete random variables (x, y) with N or M outcomes as

MI(x; y) = H(x) − H(x|y)
= H(y) − H(y|x)

=
N∑

k=1

M∑
j=1

p(xk, yj) log p(xk, yj)
p(xk)p(yj)

,

(2.9)

with the joint probability p(xk, yj) and the marginal probabilities p(xk) and
p(yj). Important to note is that MI makes no assumptions on the distribution of
the variables or the nature of the relationship between them (Ince et al., 2017;
Timme & Lapish, 2018).
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Chapter 3

Methods
In this chapter, an overview of the methodologies is presented, which I used
for investigating the research questions, and outlines the main experiment of
this thesis. Individual methodologies for each article are presented in Chapter 4,
where each respective publication specifies the details.

3.1 Implicit Listening Paradigm

At the core of this thesis lies a multi-dimensional oddball paradigm named
“Optimum-1 Paradigm” (Näätänen et al., 2004). This paradigm constitutes an
ideal candidate for investigating the outlined research questions. Designed as
an unattended listening task, it targets the auditory system, which is a great
testbed for examining how the sensory input is processed, availing on the auditory
Mismatch Negativity (MMN). This again is an index of automatic information
processing occurring in the auditory cortices and assumedly to be the most
well-studied neural signature of surprise (Carbajal & Malmierca, 2018; Denham
& Winkler, 2020; Heilbron & Chait, 2018; Paavilainen, 2013).

The oddball paradigm used in this study consists of one standard tone and five
tones deviating from the standard tone (Fig. 3.1). Standards had a duration of
75 ms with 7 ms up and down ramps and consisted of three sinusoidal partials of
500, 1000 and 1500 Hz. Deviants varied relative to the standard in the perceived
sound-source location (left or right), intensity (±6 dB), frequency (550, 1100
and 1650 Hz or 450, 900 and 1350 Hz), gap (25 ms silence in the middle) or by a
shortened duration (1/3 or 25 ms shorter). As depicted in Figure 3.1, three of
the five deviant types have an individual variation, namely location, intensity
and frequency deviants.

Standard Location
Left Right

Intensity
Down Up

Frequency
Low High

Gap Duration
Figure 3.1: Illustration of the different tone types. Aside from a standard tone,
five deviant types are presented. Out of the five deviant sounds, three possessed
individual variations.

During the sequence presentation, each standard is followed by a deviant
tone (Fig. 3.2). As each deviant type only varies with one property relative to
the standard, the memory trace of the standard tone is strengthened, with the
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result that each deviant tone presentation elicits an MMN or surprise response
(Näätänen et al., 2004). Within a set of five consecutive deviants (that is, ten
tones in total) each of the five types were presented once. In consecutive sets,
the same deviant type did not repeat from the end of one set to the beginning
of another. For the three deviants that had two stimuli versions, each version
occurred equally often (p=0.5). Except for deviants varying in duration, all
tones had a duration of 75 ms and were presented every 500 ms in blocks of 5 min
consisting of 300 standards and 300 deviants tones. Lastly, at the beginning of
each block, 15 standard tones were played.

Figure 3.2: Snippet of the multi-dimensional auditory oddball paradigm stream.

As the main aim of this project was to examine the brain’s capability to
capture automatic, stimulus-driven processes, participants were asked not to
pay attention to the sounds while reading a book or magazine. They completed
three to ten blocks, providing at least 1800 trials (i.e., evoked event responses).

The sequence exhibits equal probabilities for the different deviant types.
Consequently, based on that random aspect within the paradigm, clusters of
repeating deviant types and patterns between deviant types naturally emerge.
These patterns arise because a finite stream naturally entails temporal patterns
of event occurrence. This is in contrast to a stream where the length converges
towards infinity (for example, a finite coin toss always shows patterns, but when
observed over an infinite horizon no patterns exist).

Based on the main hypothesis that the brain always encodes patterns, the
brain should implicitly encode the naturally arising temporal structures to build
an internal model of the sensory input (Fig. 3.3).

3.2 TP estimation

To systemically investigate this statement I hypothesized in this thesis that
the brain shows sensitivity to TPs mirroring the basic structure of statistical
patterns during the stream of sounds. In the analysis, the theoretically ideal
TPs were incrementally estimated between adjacent deviants in the fashion of an
ideal observer (Eq. 2.3). At each given deviant event (trial), TP estimates were
updated based on all previously presented deviant stimuli. Consequently, TPs
dynamically evolved along the course of the experiment (Maheu et al., 2019).
That can be best imagined by considering a coin toss. As depicted in Fig. 3.4,
there is always a variance from toss to toss for both a fair coin (Fig. 3.4a) or
a biased coin (Fig. 3.4b). The same can be observed for the employed stimuli
(Fig. 3.4c).
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Figure 3.3: Distribution of deviant tones over the sequence. Random patterns
arise by transitioning from one deviant type to another. Gap and duration
deviants only have one version, while two variations for the remaining deviant
tone types exist.

3.3 iEEG

The neurophysiological activity in focus for this project was iEEG. While iEEG
recordings with their low signal-to-noise ratio (SNR) give access to a unique
temporal and spectral resolution, the number and placement of electrodes are
exclusively driven by clinical requirements. Consequently, to make statements
not locally constrained to a specific region, there must be enough subjects to
obtain distributed electrodes across the cortex. For the paradigm introduced
above, iEEG was recorded from 22 subjects (15 at El Cruce Hospital and seven
at Oslo University Hospital) that were self-reported normal hearing adults with
drug-resistant epilepsy (mean age 31 years, range 19 to 50 years, 6 female). They
were potential candidates for resective surgery and as part of their pre-surgical
evaluation underwent invasive intracranial electrocorticography (ECoG) or
stereoelectroencephalography (SEEG). Intracranial electrodes were temporarily
implanted to localise the epileptogenic zone and eloquent cortex. The electrode
shafts were implanted in different regions of the frontal, temporal, occipital,
central parietal and subcortical structures (for further details see Blenkmann
et al., 2019; Fuhrer, Glette, Ivanovic, et al., submitted).

To process the raw iEEG, the data was manually inspected. Electrodes
or epochs with epileptiform activity or abnormal signals were then removed.
Electrodes located in lesional tissue or tissue that was later resected were excluded.
Subsequently, bipolar channels were computed as the difference between signals
recorded from pairs of neighbouring electrodes in the same electrode array. The
resulting data was then low-pass filtered at 180 Hz. Line noise was removed
using bandstop filters at 50, 100 and 150 Hz. Data was then segmented into
2000 ms epochs (−750 ms before and 1250 ms after tone onset) and demeaned.
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(b) Biased coin
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(c) TP courses from the employed auditory stream
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Figure 3.4: Example TP courses, where the principle of indifference is applied
at the beginning. a: The TP courses emerge from a coin toss with equal
probabilities (i.e., p(H)=p(T)=0.5). b: TP courses emerge from a coin toss with
biased probabilities (i.e., p(H)=0.8, p(T)=0.2). c: Example TP courses resulting
from the incremental estimation across the stimuli. The graph represents the TPs
across the sequence for the “frequency high” deviant type. Note that the same
deviant cannot occur adjacently (green and yellow line). Further, all occurring
TPs should converge to 1/6=0.167.
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Based on the segmented recordings, cortical activity types of theta (5 to
7 Hz), alpha (8 to 12 Hz), beta (12 to 24 Hz), high-frequency (HFA; 75 to 145 Hz)
and broadband event-related potential (ERP) were extracted. The procedure
was the same for all data sets considered (see Paper III for numerical details of
each data set).

To obtain the ERP, data was low-pass filtered at 30 Hz using a sixth-order
Butterworth filter. Theta, alpha and beta frequency bands were extracted
from the demeaned signals using wavelet time-frequency transformation (Morlet
wavelets) based on convolution in the time domain (Oostenveld et al., 2011).
All trials were then baseline corrected by subtracting the mean amplitude of
the baseline period of each trial and frequency band from the entire trial (the
paradigm above had a baseline window of −100 to 0 ms relative to tone onset).

3.3.1 High-frequency Activity

To obtain the HFA of the recordings, we filtered the preprocessed data into
eight bands of 10 Hz ranging from 75 to 145 Hz by use of bandpass filters with
Fieldtrip (Oostenveld et al., 2011). Next, the instantaneous amplitude signal of
each filtered signal was computed by applying a Hilbert transform to the filtered
time series leading to the analytic signal (Foster et al., 2016)

ζ(t) = X(t) + iH(X(t)) . (3.1)
The analytic signal ζ(t) for each band is a complex-valued time series. The

real component X(t) is the original band passed signal, and the imaginary
component iH(X(t)) is the Hilbert transform of X(t), defined as

H(X(t)) = 1
π

P.V.
∫ +∞

−∞

X(t)
t − τ

dτ , (3.2)

using the Cauchy principal value denoted as P.V. (Canales-Johnson et al.,
2020; Foster et al., 2016). The Cauchy principal value allows the assignment
of values to improper integrals. This can occur because of the discontinuous
convolution term 1/πt which is undefined at zero and thus possibly renders the
integral improper. We then obtained the analytic amplitude time series a(t) or
signal envelope corresponding to specific frequency bands by applying Pythagoras’
Theorem, that is to say

a(t) =
√

X(t)2 + H(X(t))2 . (3.3)
To obtain one time series across all eight frequency bands we calculated

their mean amplitude value. As the last step, the respective time series were
normalised by dividing them by a mean baseline period which was computed
from all trial recordings. This resulted in a normalised measure which was
relative to the baseline activity and termed HFA. HFA reliably represents the
underlying averaged spiking activity generated by the thousands of neurons
surrounding the contact site of the electrode (Blenkmann et al., 2019; Lachaux
et al., 2012; Ray & Maunsell, 2011; Rich & Wallis, 2017; Watson et al., 2018).
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To eliminate any residual artefacts not rejected by visual inspection, responses
with an amplitude larger than five standard deviations from the mean for more
than 25 consecutive ms or with a power spectral density above five standard
deviations from the mean for more than six consecutive Hz were excluded (this
was applied to all activity types).

3.4 Surrogate Data Testing

Through robust statistical evaluation, surrogate data testing enables to ensure
that the calculated measures are not obtained by chance (Lancaster et al.,
2018). Since we employed information-theoretical principles, surrogate data
testing is one of the most used methods in this project. Accordingly, we utilised
it in most performed analyses. All resulting articles contain surrogate data
approaches to assess the statistical significance of the respective information-
theoretical variables. The realised surrogate tests tested for uncorrelated noise.
That is to say, they statistically tested whether the respective information-
theoretic quantity can be solely reduced to uncorrelated noise. This proceeded
by repeatedly computing a measure of interest based on randomly shuffled
neurophysiological data. These constructed values then build a null model
distribution. To reject the null hypothesis that the measure of interest stems
from uncorrelated noise, the true value should be far outside of any null model
distribution (Fig. 2.4). To obtain a p-value, we then evaluated how many times
the true value is greater or smaller than the surrogate values that build the
null model distribution, divided by the total number of values (Ince et al., 2017;
Lancaster et al., 2018; Timme & Lapish, 2018). This p-value was then directly
used in Paper II and Paper III to compute significance ratios by simply dividing
the number of significant variables by the total amount of considered variables
(e.g., number of significant channels to the total amount of channels).
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Chapter 4

Summary of Papers
In this chapter, the published work resulting from this project is summarised.
Each summary gives the motivation behind the respective article and an overview
of the underlying work. A short teaser of each paper is stated below, followed
by a more detailed summary of each paper. All articles are displayed at the end
of the thesis.

Paper I bundles much of the work and is about the implicit encoding of statistical
structure within an auditory sequence. Specifically, the role of TPs as an
implicit structure supporting the encoding of a random auditory stream is
examined. This proceeds on the basis of information-theoretical principles
and HFA originating from iEEG. In short, this work demonstrates how
the brain continuously encodes structure in random stimuli involving a
network outside of the auditory system, including hippocampal, frontal,
and temporal regions.

Paper II elaborates on the application of the Encoded Information method
proposed in Paper I. This article validated its use by applying it to both
synthetic and real neurophysiological data and compared its efficiency to
the MI measure.

Paper III is a continuation of Paper II, where the Encoded Information measure
is further investigated. More precisely, based on iEEG recordings from
humans and marmoset monkeys, the approach was applied to the activity
types of theta, alpha, beta and evoked related potential (ERP) in addition
to HFA. Further, its performance was compared to that of a conventional
t-test, MI, Gaussian Copula MI and to the method of Neural Frequency
Tagging.
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4. Summary of Papers

4.1 Paper I: Direct Brain Recordings Reveal Continuous
Encoding of Structure in Random Stimuli

Fuhrer, J., Glette, K., Ivanovic, J., Larsson, P. G., Bekinschtein, T.,
Kochen, S., Knight, R. T., Tørresen, J., Solbakk, A.-K., Endestad,
T., & Blenkmann, A. (submitted). Direct brain recordings reveal
continuous encoding of structure in random stimuli. bioRxiv. https:
//doi.org/10.1101/2021.10.01.462295

Motivation

Detailed knowledge about where cortical mechanisms locate during implicit
learning is limited since much of the work on statistical learning studies using
neurophysiological methods deploy active tasks. Particularly, information about
sub-cortical structures such as the hippocampus is limited. This was revealed
when the core hypothesis of this thesis was conceptualised, stating that the
brain is incessantly encoding patterns. Having access to iEEG with its low SNR,
most of the project work invested in investigating these mechanisms through the
introduced paradigm. Consequently, the present publication crystallises most of
the conducted research. The desire was to reveal aspects of these mechanisms,
accordingly contributing to the fundamental understanding of the brain.

Summary

At the beginning of this project part, well-established analysis of power or
amplitude differences in the time series signals (usually evaluated with classic
statistical hypothesis testing, e.g., t-tests) were first considered. Although there
were some tendencies, it occurred that with these methods, no clear statement in
support of the main hypothesis (cf., Chapter 1) could be made. Therefore other,
possibly more sensitive, methods were sought. Approaches from information
theory turned out to be the most promising, such that most analysis in this
work is based on information-theoretical principles.

Individual trials, i.e., evoked responses to sounds, were then represented
through algorithmic information theory, allowing to compare the responses that
stem from standard responses to deviant responses. This part of the analysis took
the role of validation for the suggested measure of encoded information, as there
is quite a considerable amount of neuroimaging research on deviance detection
or MMN. The superior temporal plane (comprising early auditory areas such
as Heschl’s gyrus) showed the highest sensitivity to deviant sounds relative to
standards. This is followed by the posterior part of the insula, anterior cingulate
cortices and the lateral part of the temporal cortex. Higher-order areas such as
the pre-frontal cortex, on the other hand, showed less sensitivity to deviants.
It was possible to confirm this trend by comparing the sensitivity distribution
of deviants with a freely available anatomical hierarchy mapping. In short, the
conducted analysis through algorithmic complexity is in line with the deviance
detection literature.
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Paper I: Direct Brain Recordings Reveal Continuous Encoding of Structure in
Random Stimuli

(a) Overview of the analysis
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(b) TP sensitivity across different brain areas
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Figure 4.1: The two most essential figures from the article. a: A stream of sounds
was presented to participants while recording their event-related electrical brain
activity through intracranial electrodes. Emerging brain responses were treated
through information-theoretical principles. Statistics were then extracted from
the sequence and regressed with the information-based representation of brain
responses. b: The main result of this work showing the sensitivity to TPs for
individual regions during the implicit listening task.
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4. Summary of Papers

The second part was then to investigate if any sensitivity to the perceptual
variables can be found (cf. Chapter 2). Here, the main focus was on the TPs
by performing a trial-by-trial analysis of all 22 subjects (Fig. 4.1a). Based
on this analytic procedure, a picture was crystallised hinting at a sensitivity
of the brain towards TPs in an implicit multi-dimensional listening task with
random features. This emerged from a correlation analysis with HFA and TP
estimates through robust linear regression models. It revealed that the sub-
cortical structure of the hippocampus shows the highest sensitivity towards TP
among all regions considered (Fig. 4.1b). This is an interesting finding, as its role
is highly discussed in the scientific community, and would fit the idea that it is a
rapid supramodal learner of arbitrary or higher-order associations in the sensory
environment. The hippocampus is accompanied by the inferior frontal region.
Its involvement during unattended tasks is less evident from prior reports but
has been hypothesised to be required during complex computations (Conway,
2020). The regions are then followed by temporal regions, which suggests a
network that involves both, higher-order areas and perceptual areas to encode
the TPs. Overall, the findings of this article link the frameworks of statistical
learning and predictive processing and are thus of great interest.

4.2 Paper II: Complexity-based Encoded Information
Quantification in Neurophysiological Recordings

Fuhrer, J., Blenkmann, A., Endestad, T., Solbakk, A.-K., & Glette,
K. (2022). Complexity-based encoded information quantification
in neurophysiological recordings. 2022 44th Annual International
Conference of the IEEE Engineering in Medicine & Biology Society
(EMBC), 2319–2323. https://doi.org/10.1109/EMBC48229.2022.
9871501
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Figure 4.2: Main result from this paper. It shows detection rates over SNR for
different numbers of bins for the measure of encoded information or MI. a: Mean
detection rate across number of bins and SNRs for encoded information. b: The
same results but for MI. c: Difference in the detection rates between encoded
information and MI.
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Paper II: Complexity-based Encoded Information Quantification in
Neurophysiological Recordings

Motivation

One worthwhile analytic procedure that resulted from Paper I was the concept
of Encoded Information. The former analysis considered a representation of a
single trial (that is, single evoked responses). In this publication, the idea to
draft a concept that allows us to compare two conditions based on algorithmic
complexity, similar to that of a conventional t-test, followed. Consequently, the
motivation was to compare mean responses on a channel basis. Therefore, the
aim was to suggest a procedure for how to discriminate conditions based on
algorithmic information theory.

Summary

To compute the encoded information variable of a channel, first, the idea of
compressing the concatenation of all trials (all recorded evoked responses) for
a specific condition was examined. For the iEEG dataset, per subject, there
is 759.50 ± 360.85 number of trials for deviant responses and 715.14 ± 388.12
number of trials for standards. Consequently, the compression of such a long
array turned out to be rather inefficient. For this reason, the procedure to
compare the mean response stemming from the respective conditions was
adopted. This procedure worked more robustly. The significance of the
resulting encoded information variable was then assessed through surrogate
data testing, by repeatedly shuffling trial responses across conditions (Fig. 2.4).
Having established a general procedure, a parameter study and a comparison
to the approach of MI were conducted. The main parameter of this method
is the number of bins during the quantification procedure (section 2.5.2). To
systematically examine this binning parameter, neurophysiological data was
simulated through neural mass models, besides utilising the already treated
iEEG recordings. The former enabled the generation of signals with a specific
SNR such that a matrix of SNR to the number of bins combinations was generated,
followed by an evaluation of both measures’ performances by means of a detection
rate. For both encoded information and MI, we defined the detection rate as
the number of significant p-values to the total number of p-values resulting from
the respective surrogate testing (assessing the statistical significance of encoded
information or MI that discriminate experimental conditions). The outcome of
this study was that a higher number of bins gives more robust detection rates
for encoded information, whereas for MI, too high densities cause a decline in
detection rate. In addition, both measures showed similar performance. However,
the encoded information approach significantly detects more channels than MI.
Especially for lower SNRs. This observation was confirmed by analysing the
iEEG recordings. Accordingly, this information-theory-based procedure is an
apt candidate to represent and investigate neurophysiological data.
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4. Summary of Papers

4.3 Paper III: Quantifying Evoked Responses through
Encoded Information

Fuhrer, J., Glette, K., Endestad, T., Solbakk, A.-K., & Blenkmann,
A. (submitted). Quantifying evoked responses through encoded
information. bioRxiv. https://doi.org/10.1101/2022.11.11.516096
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Figure 4.3: Significance ratios across activities for the different considered
methods based on an iEEG roving oddball paradigm stemming from three
marmoset monkeys.

Motivation

The relevance of this paper constitutes the broader investigation of the encoded
information measure. So far, it only has been applied to HFA, allowing the
question of whether it performs equally well on activity types other than HFA.
Another point was to evaluate the methods on another data set and to compare
the method to approaches other than MI. In short, the idea of this work was to
possibly make a stronger claim about the value of encoded information. While
this article solely focused on the technical aspect of comparing the deviant to
the standard condition using different methods, the respective neuroscientific
interpretation of the results was not part of this work.

Summary

The first data set we considered was the recording treated in Paper I and
Paper II. Besides that, we investigated two additional data sets. The second
data set was based on a roving oddball paradigm recorded from three marmoset
monkeys through iEEG (Canales-Johnson et al., 2021; Komatsu et al., 2015).
The third data set stemmed from iEEG electrodes located in the insular cortex,
where participants (n=12, mean age 31.2 ±11.1 yr, 4 female) performed a verbal
working memory task (vWM or recent-probes task; see Llorens et al., 2022).
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Paper III: Quantifying Evoked Responses through Encoded Information

First, we extracted theta (5 to 7 Hz), alpha (8 to 12 Hz), beta (12 to 24 Hz),
and ERP activity from the recordings of the two data sets. In the case of
the roving oddball paradigm, before that step, recordings were segmented and
cleaned. Subsequently, besides the proposed approach, we applied the methods
of conventional t-test, MI, advanced MI estimation through Gaussian Copula
(GCMI; that is a different procedure as described in Chapter 3) and neural
frequency tagging (NFT) to the data sets. NFT was included for the first
data set because it constitutes a completely different approach compared to
the others as it makes use of peaks in the power spectrum of the raw data
that match a presentation rate of interest. However, because of the infrequent
deviant presentations within the roving oddball paradigm, NFT could not be
applied there. The approach of NFT results in one discrete value, indicating the
sensitivity to deviant tones. The same applies to the encoded information. For
the t-test and the GCMI, on the other hand, a course over all samples within
the length of a trial (evoked response to a deviant or standard) is obtained.
While it is then possible to make statements about time, the entire time series
of the respective statistic also needs to be corrected for multiple comparisons
across channels and trials. Based on 1078 channels from 22 subjects, encoded
information revealed a greater number of sensitive channels than the t-test, MI
and GCMI for alpha, beta and HFA activity. The t-test showed the highest
significance ratio for the ERP activity, which is however not significant on a
subject level. Interestingly, the NFT approach also identified a considerable
channel sensitivity to deviant tone types. This was also confirmed by evaluating
the methods across different brain areas. Further, results from the marmoset
recordings suggest a similar performance of encoded information. In short, from
all methods considered, encoded information and t-test showed the greatest
number of channels with sensitivity to deviant sounds, whereas the former
shows significantly better results for beta and HFA activity. Therefore, the
two most effective methods were further investigated by examining how well
the methods operate when only a limited amount of trials are available for
channels with differing deviant sensitivity. Here, both measures showed similar
effectiveness. Overall, the proposed procedure of encoded information proves as a
worthwhile procedure. Among the methods considered, the encoded information
can compete in detecting channels sensitive to deviating sound types across
activities. Especially for beta and HFA activity, encoded information proves
as a worthwhile method, detecting a higher number of sensitive channels in
comparison to the other measures.
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Chapter 5

Discussion
Besides outlining the conducted work in this thesis, I sketched the underlying
background and methods in the former chapters. In the following, I discuss the
work itself focusing on how the presented papers answer the research questions.
Limitations and concepts for future research then follow.

5.1 How does the Brain Operate when Implicitly Confronted
with an Unstructured Auditory Sequence?

Based on unstructured stimuli, manifested through random occurrences of
tones deviating from a standard sound, this project was able to shed light on
the basic underlying mechanisms that make use of statistical regularities. By
demonstrating that the unattended brain shows sensitivity towards TPs, it was
possible to infer that the brain inexhaustibly scans the environment for patterns
presumably to continuously refine internal perceptual models. That draws on
prior research suggesting that TPs constitute a “scaffold” on which higher-order
processes operate (Dehaene et al., 2015). Besides illuminating this process, this
project was also able to depict how individual brain regions are involved. The
role of identified areas such as the hippocampus and inferior frontal cortices
is highly debated in current research. Consequently, the insights of this thesis
contribute to this discussion. While the hippocampal and inferior frontal cortices
largely showed significant activity during attentive tasks, more and more research
suggests that they could also play an essential role during unattended scenarios
(Billig et al., 2022; Carbajal & Malmierca, 2018; Dürschmid et al., 2016; Frost
et al., 2015; Schapiro et al., 2016; Williams, 2020).

5.1.1 The Brain Encodes TPs in Random Stimulus Sequences

On average, more frequent deviant transitions exhibited less encoded information
in the recorded responses. Conversely, rarer transitions increased the information
encoded in the brain responses. This finding demonstrates that events with low
TP (i.e., less expected or more surprising events) possess higher information
encoded in the deviant responses. Following the notion of predictive processing,
the information encoded in each deviant response can be interpreted as a bottom-
up prediction error signal. According to this, larger prediction errors emerge out
of such an event, deriving from less accurate predictions. Consequently, higher
cortical areas utilise the increased information to update the internal models.
On the other hand, more frequent events (i.e., events with high TPs) are more
expected and thus show less encoded information. Accordingly, the input to
update the internal model is smaller as the prediction error decreases.
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5. Discussion

5.1.2 Involved Cortical Areas are Distributed

From all regions considered, the hippocampus contributes the most to temporal
transition encoding between deviating events (Fig. 4.1b). In contrast to the other
treated areas, the analysis results indicate that hippocampal responses exhibit
high sensitivity to TPs while showing less sensitivity to deviant tones. This
suggests that hippocampal activity may reflect a more generic context sensitivity
to the events’ probabilistic structure. In other words, it is more involved in
learning about event occurrences within a given structure on an abstract level
instead of encoding actual deviating events (Strange et al., 2005). Accordingly,
new evidence for the role of the hippocampus during implicit learning is provided.
This is in line with the recent hypothesis that the hippocampus is a rapid
supramodal learner of arbitrary or higher-order associations in the sensory
environment (Barascud et al., 2016; Billig et al., 2022; Conway, 2020; Covington
et al., 2018; Daikoku, 2018; Frost et al., 2015; Henin et al., 2021; Schapiro et al.,
2014, 2016; Thiessen, 2017; Turk-Browne et al., 2009; Williams, 2020).

Besides the hippocampus, another domain-general area showed sensitivity
towards TP courses. Having a high sensitivity towards TPs and a low sensitivity
to deviant tones, the inferior frontal cortex showed similar behaviour to that of
the hippocampus. However, evidence of inferior frontal involvement in statistics-
driven learning processes is sparse (Barascud et al., 2016; Conway, 2020; Williams,
2020). It mainly relies on explicit learning studies using fMRI (Huettel et al., 2002;
Karuza et al., 2013). Consequently, this project provided supportive evidence
for its role. This fits well with studies examining deviance detection in humans,
where it is assumed to be a higher hierarchical node (Dürschmid et al., 2018;
Phillips et al., 2015, 2016). Also, non-human primate iEEG studies manipulating
the predictability of events showed a spatially dispersed contribution of regions
that includes the prefrontal cortex in both passive auditory (Chao et al., 2018)
and active visual paradigms (Bastos et al., 2020).

The third relevant region is a perceptual region. In contrast to the two
preceding regions, the superior temporal plane showed a high TP sensitivity
and a high deviant tone sensitivity. This suggests vital importance during the
encoding of deviating auditory events and TPs between them. This is in line with
previous reports stating a contribution to statistical learning (Daikoku, 2018;
Karuza et al., 2013; McNealy et al., 2006; Meyniel & Dehaene, 2017; Williams,
2020). For this reason, perceptual processing of individual stimuli in lower
hierarchical areas might be affected by the encoding of temporal patterns (Bell et
al., 2016; Conway, 2020; Lu & Vicario, 2014; Yaron et al., 2012). Possible causes
for this impact can be local processes, modulations from higher hierarchical
areas or a combination of both.

In a recent iEEG study presenting 12 syllables within an auditory stream,
Henin et al. (2021) observed that TPs are encoded in lower-order areas of
the superior temporal plane and not in the hippocampus. The hippocampus
showed sensitivity towards the unique representation of the identity (i.e., the
specific higher-order chunk such as a word) within the treated sequences.
Hence, hippocampal activity did not reflect involvement in forming the neural
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representation of TPs but rather operations that built upon them. The main
factor leading to this difference could be that the study from Paper I is based on
passive listening with pure tones, while Henin et al. used active listening with
syllables.

5.1.3 Main Contribution and Implications

Treating the research question at hand led to a comprehensive picture of neural
correlates of statistical learning. Before, these correlates were bundled together
from multiple studies (Conway, 2020; Daikoku, 2018; Williams, 2020). On an
abstract level, the results point toward an architecture that requires both domain-
general regions (such as the hippocampus or the inferior frontal cortex) as well
as modality-specific brain regions (e.g., superior temporal plane). However, how
exactly those regions interact remains to be investigated.

In this work, as far as is known, we give the first evidence from direct
brain recording showing the encoding of statistical structures within an implicit
listening task. One possible implication of the study is based on the implicitness
or randomness within the paradigm. Assuming that the brain constantly infers
statistics, studies need to be carefully designed. Especially since this mechanism
also operates without any conscious intention. If it is not accounted for that, the
brain might encode confounding patterns. This particularly comes to play if the
control condition allows for such operations. Studies often depend on control
conditions where random stimuli are used as if no relevant cortical processing
occurs. As the present research suggests, that might be premature in some
scenarios. Accordingly, differences between test and control conditions could
be traced back to confounding pattern encoding, possibly engaging different
brain areas. A theoretical example could be repeating cascades of descending or
ascending sound sequences (similar to a musical scale) used to contrast a classic
oddball paradigm (see Carbajal & Malmierca, 2018, Fig. 1b). Having a musical
scale as a control possibly allows for the encoding of patterns. Either within
one block, where one sound predicts the other (the TP matrix has ones on the
diagonal above the main diagonal, else only zeros for the descending sequence) or
across blocks (i.e., on a global scale, where one block constitutes one pattern). As
a consequence, it should become the norm to consider the brain’s sensitivity to
statistical regularities (e.g., computing the TP matrix) for neuroimaging studies
that employ sequences of repeating events. Especially for implicit learning
paradigms, given that the attention-independent systems are presumably always
active yet little neurophysiological evidence exists (Conway, 2020; Williams,
2020). Further, it might be possible that the encoding of statistics could serve
as a plausible hypothesis to investigate. Especially for fields such as deviance
detection or predictive processing where the consideration of perceptual variables
is seldom, this variable could be worth examining.

35



5. Discussion

5.1.4 Limitations

While Paper I thoroughly targets the first research question, it does not cover
all implied aspects. The main finding of this thesis suggests an implicit learning
process in which the brain internally infers TPs. As outlined above, this deduction
is based on correlative but not causal argumentation. Hence, this conclusion
needs to be backed up by prior research but fortunately fits well with the
theoretical frameworks of statistical learning or predictive processing (Clark,
2013; Daikoku, 2018; Frost et al., 2019). Aside from that, for each time step, TPs
were computed given all prior deviant tone occurrences. TPs courses, therefore,
represent the theoretically optimal courses. However, it is more realistic that
the brain’s capability to integrate past tones is limited (Baumgarten et al., 2021;
Maheu et al., 2019). Implementing such a mechanism for the analysis’ TP
estimation potentially allows us to obtain further insights. In this connection,
the activation of the ROIs was also considered only over the entire stimuli. This
step was deemed necessary to have as much statistical power as possible in the
regression models. However, focusing only on specific phases along the time
axis (for example, early or late phase) would be highly relevant to consider,
especially for the two areas showing the highest sensitivity. It is plausible that
the hippocampus, for instance, is only active during the initial phase, and once
the internal model is established, it halts its contribution. That would fit well
with the idea of a hippocampal role responsible for the learning of a more general
or abstract context (Billig et al., 2022; Strange et al., 2005). Such an analysis
would be even more insightful for the inferior frontal cortex. As outlined above,
evidence of its involvement in statistics-driven learning processes mainly relies
on implications from active exposure paradigms or on reports from sensory
processing studies, where TPs are not considered. In this regard, connectivity
measures that estimate the information flow between regions would be valuable.
It would allow drawing a clearer picture of how different areas interact or how
dynamic this network is. It is plausible that there is a phase (for instance the
initial phase) with no sensitivity towards TPs. During this phase, statistics other
than TP (such as IF) could be preferred (Maheu et al., 2019).

Besides that, the recordings originated from clinical patients suffering from
drug-resistant epilepsy who were potential candidates for resective surgery.
While epileptic activity was removed from the recordings, the data is not based
on a healthy cohort. Additionally, the number and placement of electrodes
were exclusively guided by clinical requirements. Consequently, the channel
distribution is not uniform. While having already a considerable amount of
subjects, one possibility to account for both aspects is to further increase the
number of subjects.

5.1.5 Outlook

Following the present analysis, it is now possible to further explore underlying
mechanisms and regional influences. Specifically, adding lower frequency bands
to the analysis would enable disentangling their potential distinct roles in
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information encoding and predictability signalling of sensory inputs. While
alpha or beta activity could carry mechanisms of top-down predictions, it has
rarely been directly identified. Focusing on the pre-onset sound interval of
event response or examining cross-frequency coupling might help to reveal such
predictive mechanisms. Also, considering temporal integration for TPs through
a sliding window or information flow between regions is an interesting follow-up
study. Comparing the TP sensitivity courses to anatomical hierarchy mappings
could help to identify bottom-up or top-down driven processes as described
in Bastos et al. (2015). That could potentially lead to identifying a dynamic
hierarchy, namely functional hierarchy, where the hierarchical organization of
brain areas dynamically changes given the demands of the task performed.
Aside from that, statistics other than TPs could be added (such as IF, AF or
simply time). Parts of this analysis have already been implemented but have
not yet been evaluated. Among them is the analysis of lower frequency bands,
multivariate regression models with multiple covariates or the sliding window
approach of the TPs.

Further, non-adjacent TPs could be examined. That would be especially
interesting in the case of an additional condition that involves attention. That
leads to the next possible steps in terms of conducting future experiments.
The natural choice would be to repeat the same experiment, only this time
participants are instructed to pay attention to the sequence. That could enable
an analysis of how the interplay between areas higher in the cortical hierarchy
interacts with lower hierarchical brain regions. Results could then investigate
how areas differ and whether this supports the hypothesis that two distinguished
brain networks (implicit and explicit systems) exist (Conway, 2020). It is
also possible to replace the pure tones with syllables or chunks of sounds that
mimic natural speech to make the stimuli more realistic. That would possibly
allow stronger links and increase the relevance to the study field of language
acquisition (Conway, 2020; Dehaene et al., 2015; Henin et al., 2021; Vidal et al.,
2019; Williams, 2020). Another worthwhile possibility is to (dynamically) vary
the number of deviants within the sequence. If the brain would show sensitivity
to this variation of deviants, direct learning of these pattern changes would be
demonstrated. This could be further investigated by implementing individual
blocks where, in each block, the TPs are manipulated differently. For example,
one block with uniformly distributed TPs could be followed by a block with
highly biased TPs. This could enable the investigation of how the active brain
regions differ. If there is a dynamic network, it would be highly relevant to
examine how this network changes throughout each block. Another option could
be to use the same block several times, interspersed with randomly generated
blocks. For the interspersed blocks there should be an increased activation in
comparison to the learned regular block. However, it is also possible that it
could be the other way around as recent research suggests (Barascud et al., 2016;
Heilbron & Chait, 2018; Southwell & Chait, 2018). In short, based on these
suggestions, it could be plausible to identify a general core network across the
different scenarios.
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5. Discussion

5.2 To what extent is algorithmic information theory an apt
approach to effectively represent neurophysiological
signals?

Based on EEG, iEEG, MEG or fMRI, algorithmic information theory contributed
to understanding aspects of consciousness (Canales-Johnson et al., 2020; Ruffini,
2017; Schartner et al., 2015, 2017; Sitt et al., 2014; Varley et al., 2020). From
these studies, efficient approaches emerged to analyse brain states. Yet, these
approaches are limited in their ability to directly quantify the level of similarity
or disparity between brain states or conditions. With encoded information, this
thesis addressed this issue by proposing an alternative measure grounded in
algorithmic information theory able to compete with well-established methods.
This novel approach was examined in detail in Paper II and compared to the
popular measure of MI. Such a comparison was especially necessary because
studies interested in quantifying the information contained in individual evoked
brain responses often draw on the concept of Shannon entropy (i.e., classic
information theory). This study concluded that encoded information exhibits an
improved performance compared to MI. One possible explanation for this could
be that encoded information is a compression-based approach. This mechanism
allows compressing the entire time series while making use of structures along
the time axis. That enables the exploitation of complementary structures within
both input signals. Paper III revealed this approach to be particularly sensitive
in detecting differences in beta band activity and HFA. For these signals, the
measure of encoded information performs better, extending beyond the MI
to the well-established analysis of power or amplitude differences in the time
series (usually evaluated with classic statistical hypothesis testing, e.g., t-tests).
For lower frequencies (theta activity) and ERP activity, encoded information’s
performance was similar to that of a power difference or MI.

In Paper II and Paper III we employed encoded information to discriminate
experimental conditions from three different neurophysiological data sets. Two of
these used auditory stimuli and one used visually presented stimuli. Central was
the computation of a mean evoked response per condition given the recorded trials.
Alternatively, it is also possible to directly compress the concatenation of trials
(Fig. 2.4; Canales-Johnson et al., 2020; Sitt et al., 2014). However, this appeared
to be problematic because of each trial’s inherent noise. Thus, more trials lead
to more noise contained within the concatenation. That causes a decrease in
the compressor effectiveness merely based on the number of trials. By using
the approach of computing a mean response from all trials, the noise contained
across trials usually cancels out. That enables a more effective compression
while the shuffling of trials between event types during significance testing still
accounts for their variance. In this context, it is worth highlighting that current
research debates the role of the so-called noise variability (Echeveste et al., 2020),
which concerns the relevance of noise. That could be especially relevant for
iEEG recordings with their high spectral resolution.
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To what extent is algorithmic information theory an apt approach to effectively
represent neurophysiological signals?

Paper I implemented the encoded information measure on a trial level.
While the approach stays the same, the focus in this analysis was on how
the information encoded in individual deviant trials differs concerning evoked
responses to standard sounds. That is to say, principles based on algorithmic
information theory reduced each deviant trial to one discrete value indicating how
much it differs compared to standards. That vastly reduces the dimensions, which
is especially helpful for high-dimensional data sets which exhibit a considerable
amount of channels. Similar to MI, resulting values quantify the similarity of
two signals. Accordingly, this representation is especially useful for subsequent
regression analyses.

5.2.1 Limitations

While the property of making use of the entire time series is a key mechanism in
the proposed measure, it is also one of its limitations. Because the compression
procedure makes use of the temporal structure within the complete time course,
it is difficult to obtain an encoded information time series. That would require
compressing the values across trials for each time sample. Therefore, the
advantage of exploiting the temporal structure would be omitted. Hence no
information about the time course of responses is given. Besides that, signals
need to be binned or simplified for the compressor to be efficient. Accordingly,
some information is lost in that step. However, the chosen number of discrete
steps during the binning procedure also has an effect here. Simulation results
suggest that the performance of, for example, gzip stays about constant from
approximately 32 to 128 bins. Another drawback is that, compared to the t-test,
the statistical evaluation through surrogate data testing is more computationally
demanding. However, choosing cluster-based permutation approaches instead of
simple FDR or Bonferroni correction for the t-test demands similar computational
power.

5.2.2 Outlook

Having applied this approach to iEEG recordings stemming from humans and
other primates, the next natural choice is to evaluate the method’s performance
in terms of other neurophysiological recordings such as MEG or fMRI. Another
option is to focus on the method by employing modern compressors, e.g., neural
network compressors. Given the relations between algorithmic information
theory and Shannon information theory, it also appears attractive to investigate
a hybrid encoded information measure (e.g., using entropy estimation instead
of compression). Another point is to offer more convenient accessibility of the
source code by creating a toolbox compatible with popular toolboxes such as
Fieldtrip (Oostenveld et al., 2011) or MNE (Gramfort et al., 2013).

In short, the proposed procedure grounded in algorithmic information theory
is an apt candidate to represent and investigate neurophysiological data through
information-theoretical principles. Encoded information offers a worthwhile
alternative to conventional approaches. Especially for higher frequency activities,
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5. Discussion

encoded information showed a greater performance in comparison to well-
established methods. Based on this, it can be concluded that algorithmic
information theory is an apt candidate for the representation of neurophysiological
signals. However, more research is needed to gain further insights into the
performance of the encoded information measure.
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Chapter 6

Conclusion
The main objective of this thesis was to investigate the hypothesis postulating
that “the brain continuously encodes structure within the sensory input stream”
(Chapter 1). Taken together, by making use of direct brain recordings, this
project amply explored this hypothesis. In doing so, this thesis contributed
to the understanding of brain functioning as well as to the methodology for
analysing respective neurophysiological recordings.

By addressing the first research question, this thesis identified the brain’s
sensitivity towards the statistical regularity of TPs during an implicit listening
task. That revealed the involvement of a network outside of the auditory cortex,
including hippocampal, frontal and temporal regions. This neurophysiological
evidence indicates an interactive network consisting of domain-general and
modality-specific brain regions. Further, it supports the main hypothesis
suggesting that the unattended brain incessantly encodes patterns attempting
to make sense of the environment – even if they are random.

Treating the second research question, information-theoretical principles
were leveraged. These methodological investigations explored the applicability
of algorithmic information theory to analyse neurophysiological recordings.
Investigations led to a worthwhile measure that efficiently discriminates
conditions in neurophysiological recordings, affirming the present question.

While from this thesis viable insights emerged by considering the research
questions, additional investigations are needed to make more precise statements.
Besides a continuation of the analysis, the most important is the conduction of a
follow-up experiment that involves attention and implements TPs differently. In
addition, further examination of the encoded information measure by analysing
different neurophysiological recordings is necessary.

Taken together, the findings of this thesis take a step forward in overcoming
the present lack of neuroimaging studies investigating statistical structures such
as TPs. TPs might constitute a central statistic for internal perceptual models at
the core of predictive processing and statistical learning. In addition, this written
thesis comprises only a part of the analysis conducted during this PhD project.
The overall project established an interdisciplinary framework. Its particular
composition of neuroscience and information theory yielded encouraging results.
By further elaborating this framework in combination with novel experimental
designs, it is worth continuing this work, facilitating the comprehension of the
unknowns of the brain.
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Abstract

Information theory is a viable candidate to advance our understanding of how the brain processes
information generated in the internal or external environment. With its universal applicability, in-
formation theory enables the analysis of complex data sets, is free of requirements about the data
structure, and can help infer the underlying brain mechanisms. The branch of algorithmic informa-
tion theory seems particularly suitable since it can estimate the information contained in individual
brain responses to different stimuli. Here, we propose a measure grounded in algorithmic information
theory termed Encoded Information as a novel approach to analyze neurophysiological recordings.
Specifically, it enables an assessment of the encoded information that brain responses share with
one another by compressing the respective signals. By applying the approach to event-related poten-
tials and event-related activity in different frequency bands originating from intracranial electroen-
cephalography recordings of humans and marmoset monkeys, we demonstrate that the information-
based encoding can compete well with conventional approaches such as the t-test or Mutual Informa-
tion. Information-based encoding is attractive whenever one is interested in detecting where in the
brain the neural responses differ across experimental conditions.

EEG | SEEG | ECOG | Information Content | Algorithmic Complexity | t-test | Frequency Tagging

Introduction
Efficient processing of information is a core capacity of the brain. It enables us to perceive rapidly, com-
prehend, identify changes, and engage with our environment – sometimes even without conscious effort.
Accordingly, in attempting to understand the underlying brain mechanisms responsible for these capaci-
ties, it is useful to employ approaches that originate from information theory. This mathematical theory
provides multivariate analysis tools, is not bound to a single type of data, is model-independent (i.e., does
not require assumptions about the data itself) and can capture nonlinear interactions (1–4). Hence, those
principles can be utilized for the analysis of neurophysiological recordings originating from scalp elec-
troencephalography (EEG), intracranial EEG (iEEG), magnetoencephalography (MEG), or functional
magnetic resonance imaging (fMRI).
Specifically, by measuring the degree of redundancy, algorithmic information theory (AIT) estimates

the absolute information contained in individual brain responses. The higher the information content, the
more complex its structure. Accordingly, the less compressible or more random the response. Assessing
the absolute information content of responses recorded from different contact sites enables inferring the
complexity of the activity recorded at the respective sensors and potentially identification of underlying
dynamics.
While AIT has been applied to analyses of task-related cognitive operations or to discriminate be-

tween states of consciousness measured with EEG, iEEG, MEG, or fMRI recordings (5–9), its use in

*E-mail address: julianpf@uio.no
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neuroscience has been limited despite its clear potential. Here, we demonstrate the measure of encoded
information (EI; 10) as an advantageous tool to directly quantify the level of similarity between responses
of neurophysiological data across experimental conditions. By use of iEEG recordings stemming from
34 humans (11, 12) and three marmoset monkeys (13, 14) which were exposed to passive and active
paradigms as well as auditory or visual stimuli, we validate this approach of encoded information con-
sidering theta (5 to 7Hz), alpha (8 to 12Hz), beta (12 to 24Hz), high-frequency (HFA; 75 to 145Hz)
and broadband event-related potential (ERP) activity by comparing it to that of a conventional t-test, to
Mutual Information (MI), Gaussian Copula Mutual Information (GCMI; 3), and to Neural Frequency
Tagging (NFT; 15, 16).

Material & Methods
Test Paradigms and Neurophysiological Recordings
To evaluate our proposed method, we examined its sensitivity to discriminate experimental conditions
from three different neurophysiological data sets. Two of these used auditory stimuli and one used visually
presented stimuli. We focused our analysis on the cortical activity types of theta, alpha, beta, HFA, and
ERP activity.

Extraction of Brain Activities

To obtain the ERPs, data were low-pass filtered at 30Hz using a sixth-order Butterworth filter. Theta,
alpha, and beta frequency bands were extracted from the demeaned signals using wavelet time-frequency
transformation (Morlet wavelets) based on convolution in the time domain (17). All trials were then
baseline corrected by subtracting the mean amplitude of the baseline period of each trial and frequency
band from the entire trial (see respective sections for the different data sets for the used baseline intervals).
To extract the HFA, the pre-processed data were filtered into eight bands of 10Hz ranging from 75

to 145Hz by use of bandpass filters. Next, the instantaneous amplitude signal of each filtered signal
was computed by applying a Hilbert transform to the filtered time series leading to the analytic signal
(18), constituting a complex-valued time series. The analytic amplitude time series or signal envelope
corresponding to specific frequency bands was then obtained by applying Pythagoras’ Theorem. To
obtain one time series across all eight frequency bands, their mean amplitude value was calculated. As
the last step, the respective time series were normalized by dividing them by a mean baseline period
which was computed from all trial recordings. This resulted in a normalized measure that was relative to
the baseline activity and termed HFA.
To eliminate any residual artifacts not rejected by visual inspection, responses with an amplitude larger

than five standard deviations from the mean for more than 25 consecutive ms, or with a power spectral
density above five standard deviations from the mean for more than six consecutive Hz were excluded.

Optimum-1 Paradigm

We analyzed experimental iEEG data obtained from intracranial electrodes implanted in (self-reported)
normal-hearing adults with drug-resistant epilepsy. Analyses of this data have been previously presented
in (5, 10, 11). Participants (n=22, mean age 31 years, range 19 to 50 years, 6 female) performed a passive
auditory oddball paradigm where a standard tone alternated with random deviant tones. The tones had
a duration of 75ms and were presented every 500ms in blocks of 5min consisting of 300 standards
and 300 deviants. At the beginning of each block, 15 standards were played. To capture automatic,
stimulus-driven processes, participants were asked not to pay attention to the sounds while reading a
book or magazine. They completed 3 to 10 blocks, providing at least 1800 trials (for details, see 10, 11).
From the 22 participants, a total of 1078 channels (mean: 48, range: 12 to 104) were available after data
cleaning. Data were then segmented into 2000ms epochs (750ms before and 1250ms after tone onset)
and demeaned. The different activity types were then extracted, and for each activity type, differences
between standard and deviant tone responses were evaluated in the 400ms time window following the
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sound onset across channels and subjects. The baseline window was from −100 to 0ms relative to tone
onset. Additionally, for this data set the neural oscillation synchronization to the tone onset frequency
(2Hz) and the frequency for standard and deviants tones (1Hz) were examined by considering the pre-
processed data (needed for the NFT approach).

Roving Oddball Paradigm

Further, we considered experimental iEEGdata collected during a passive auditory roving oddball paradigm
on three awake adult male common marmosets (callithrix jacchus). This experimental data has been pre-
viously studied in (see 13, 14). The paradigm consisted of trains of three, five, or 11 repeated single tones
of 20 different frequencies (250 to 6727Hz with intervals of 1/4 octaves). All tones were pure sinusoidal
tones, lasted 64ms (7ms rise/fall) and there was stimulus onset asynchrony 503ms between them. For
each sound train, all tones were identical but varied across tone trains. Consequently, the mismatch oc-
curred between the transition from one train to another in the form of a frequency change. Accordingly,
the last tone of a train is defined as a standard tone, while the first tone of a new train is considered a
deviant tone. Standard to deviant tone transitions then occurred 240 times during a recording session.
The number of implanted electrodes varied from monkey to monkey. For monkey ”Fr”, 32 channels

were implanted in the left hemisphere epidural space, for ”Go”, 64 channels were implanted in the right
hemisphere, and for monkey ”Kr”, 64 electrodes were implanted in the right hemisphere (Fig. 6c; see
13, 14, for more detailed information). Recorded data were re-referenced through an average reference
montage and epoched into −950 to 2000ms segments relative to the standard or deviant tone onset. The
different activity types were then extracted and baseline corrected (by use of the −100 to 0ms time interval
relative to tone onsets). For the analysis, all recordings were shortened to the −100 to 350ms interval
relative to sound onsets.

Verbal Working Memory Paradigm

As a third data set, we investigated iEEG data stemming from the insular cortex during a verbal working
memory task (vWM; see 12). Participants (n=12, mean age 31.2 ±11.1 yr, 4 female) performed a recent-
probes task, where in each trial a list of five letters was displayed (stimulus duration 500ms, inter-onset
interval 1000ms) on the computer screen. The letter presentation was followed by 4 s maintenance and
a 2 s probe period. During the latter, a probe letter was displayed where the participants had to answer
whether the presented probe letter was in the current list (p=0.5). In total, 144 trials were presented to
each participant in a pseudo-random order within three blocks (each 10min).
From the twelve participants, a total of 90 bipolar channels (mean: 7.5, range: ±5.9) were available

after data cleaning. Data were then segmented into 16 s epochs (−12 s before and 4 s after probe period)
and demeaned. The different activity types were then extracted, and for each activity type, differences
between maintenance (−2 to 0 s) and probe period (0 to 2 s) were evaluated across channels and partic-
ipants. The window for the baseline correction was from −9.5 to −8.5 s, i.e., the second preceding the
presentation of the letter list.

Encoded Information
We estimated the EI of the mean responses of the different experimental conditions as described in (10).
In short, by employing algorithmic or Kolmogorov Complexity (K-complexity), we estimated the EI
between conditions through the measure of Normalized Compression Distance (NCD) (2, 19). For a pair
of signals (𝑥, 𝑦), it is defined as

NCD(𝑥, 𝑦) = 𝐶(𝑥𝑦) − min(𝐶(𝑥), 𝐶(𝑦))
max(𝐶(𝑥), 𝐶(𝑦)) ,

with 𝐶(𝑥𝑦) denoting the compressed size of the concatenation of 𝑥 and 𝑦, and 𝐶(𝑥) and 𝐶(𝑦) their respec-
tive size after compression (2, 19). Further, the NCD is non-negative, that is, it is 0 ≤ NCD(𝑥, 𝑦) ≤ 1+𝜖,
where the 𝜖 accounts for the imperfection of the employed compression technique. Small NCD values
suggest similar signals, and high values indicate rather different signals.
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To obtain a compressed version of a signal, it was first simplified by grouping its values into 128
discrete steps (bins). The bins covered equal distances and in a range between the global extrema of all
the signals considered. The compressor received the indices of the bins that contained the elements of
the signal (6, 7). Compression then proceeded through a compression routine based on Python’s standard
library with gzip. The statistical hypothesis testing was then performed through a permutation-based
approach as described below.
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Figure 1: Sketch of the procedure for an example electrode. Based on the trials, a mean response for
each condition is computed. Trials are then shuffled, resulting in surrogate mean responses. Subse-
quently, these signals undergo a simplification procedure, followed by their compression. The output of
the compression routine is the EI, quantifying the similarity between responses. The resulting values are
then evaluated, leading to a null model distribution. This distribution serves to assess the significance of
the actual EI value.

t-test
The t-test is one of the most common methods to compare amplitude or power time series mean value
differences across experimental conditions. For each sample and channel, a two-sided t-test was per-
formed, where the resulting t-value represented the activity difference between the two conditions (e.g.,
standard or deviant). To correct for multiple comparisons across samples and channels, a False Discovery
Rate (FDR) adjustment was applied with an FDR of 0.05.

Neural Frequency Tagging
For the optimum-1 data, we used NFT to identify the brain’s capability to automatically segment the
continuous auditory stream (15, 16). In the respective auditory sequence, the two main segments are rep-
resented by the frequency of sound onsets (2Hz) or by the frequency of transitions between standards to
standards or deviants to deviants (i.e., half the frequency or 1Hz). If the neural activity of a recording site
showed such ”tagging” of frequency-specific properties within the stimuli, we defined it as ”responsive”.
If it tagged half the frequency, we identified it as sensitive to the pattern of a standard-deviant alternation.
To assess this tagging, we computed the power-spectral density (PSD) of the epoched raw data using

Welch’s method (Fig. 2; 20). Subsequently, we estimated the signal-to-noise ratio (SNR) of the PSD
(21). Here, SNR defined the ratio of power in a given frequency (signal) to the average power in the
surrounding frequencies (noise). By doing so, we normalized the spectrum and accounted for the 1/f
power decay (20). We then identified significant peaks through a lower threshold consisting of two times
the standard deviation. The latter was estimated by computing the median absolute deviation, which
was obtained by taking the median SNR multiplied by the constant distribution-dependent scale factor
(Fig. 2). In the case of normally distributed observations, it reflects the 50% of the standard normal
cumulative distribution function, leading to a scale factor of 1.4826 (22, 23).
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Figure 2: PSD and SNR of a responsive channel located in the superior temporal sulcus of a human. The
activity of the channel shows synchrony to the main frequency of tone onsets, which is around 2Hz. The
displayed deviation is due to a constant lag of tone presentation during recording (resulting theoretical
main sequence is at 1.919Hz). Further, it shows synchrony to half the main frequency indicating that the
underlying region of this channel tags the presentation rate of solely standard or deviant tones. Thus, it
discriminates between standard and deviant conditions. The dashed line indicates the statistical threshold.

Mutual Information
Besides the t-test and NFT, EI was compared to the measure of MI. While it also grounds in information
theory, in contrast to EI it draws on the concept of Shannon entropy (i.e., classic information theory). For
a discrete random variable x with N outcomes, the entropy can be defined as

𝐻(𝑥) = −
N

∑
𝑘=1

p(𝑥k) log p(𝑥k) , (1)

with p(𝑥k) being the occurrence probability for each element 𝑥k, … , 𝑥N of 𝑥. Given this definition, the
MI between two discrete random variables (𝑥, 𝑦) with N or M outcomes can be defined as

MI(𝑥; 𝑦) = 𝐻(𝑥) − 𝐻(𝑥|𝑦)
= 𝐻(𝑦) − 𝐻(𝑦|𝑥)

=
N

∑
k=1

M

∑
j=1

𝑝(𝑥k, 𝑦j) log
𝑝(𝑥k, 𝑦j)

𝑝(𝑥k)𝑝(𝑦j)
,

(2)

with the joint probability 𝑝(𝑥k, 𝑦j) and the marginal probabilities 𝑝(𝑥k) and 𝑝(𝑦j).
This estimation ofMI requires estimating the probability distribution of Eq. 2 by binning the signal into

discrete steps. This is followed by a maximum likelihood estimation, yielding the probability distribution
estimates. In our analysis, the respective signals were binned into four bins (1, 3).
Besides this binning approach, a novel estimation technique of MI after Ince et al. (3) was employed.

With this approach, MI is estimated via Gaussian Copula. In short, each univariate marginal distribution
is transformed into a standard normal. Subsequently, a Gaussian parametric MI estimate is applied. That
yields a lower bound estimate of MI, named GCMI. Statistical significance testing was then estimated
through surrogate data testing.
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Surrogate Testing
The statistical significance of the information-based measures (EI, MI, and GCMI) was assessed through
surrogate data testing. Accordingly, p-values were obtained by evaluating the observed information-
based quantity in terms of a null distribution (Fig. 1). For EI and binnedMI, null distributions were created
by repeatedly shuffling the trials (i.e., single evoked responses) between conditions (e.g. standard and
deviant) and then re-computing the information-based measure. For the GCMI, this proceeded for each
sample of the time series signal. Single-sided p-values lower or equal to 0.05 were considered statistically
significant. To correct for multiple comparisons across channels, FDR adjustment was applied with an
FDR of 0.05.

Significance Ratio
To compare the different methods, the ratio of significant channels to the total amount of channels was
determined. This was computed either for each subject, where the total significance ratio was the mean
ratio across all subjects accompanied by a bootstrapped 95% confidence interval. Or by taking the total
ratio by collapsing across all channels (regardless of subjects). The latter was used when considering
individual brain regions, where the number of channels was limited, leading to distorted ratios with large
confidence intervals. For the roving oddball data, the ratio of each monkey was considered individually.

Results
Based on three neurophysiological data sets, we compared our method’s performance on discriminating
evoked responses to that of a conventional t-test, MI, and GCMI across five different cortical activity
types. Additionally, we compared it to NFT. Overall, EI and t-test showed the greatest significance ratios
(Fig. 3a, 6a, and 7a).
Across the 1078 channels stemming from the optimum-1 paradigm, for alpha, beta, and HFA activ-

ity, EI’s significance ratio was significantly greater than for all methods considered (Fig. 3a) while the
t-test showed the greatest significance ratio for the ERP activity (EI and t-test comparison on a subject
level: two-sided paired t-tests, p=[1.43e−3, 3.61e−2, 2.87e−3 and 6.44e−3]). MI resulted in the low-
est ratios, although it was only significantly lower on a subject level for HFA (two-sided paired t-test,
pmin=3.02𝑒−2). Note that for human iEEG, the number of channels and their distribution is not constant
across subjects and can thus vary greatly. Consequently, the fewer channels for a subject, the less robust
the estimated individual significance ratio.
The observations from this data set are in line with the results from the marmoset recordings, which

had 128 channels in total. Based on the significance ratio of each marmoset monkey, for theta, alpha, and
beta activity, EI detected more channels than the other approaches. For HFA, GCMI and EI performed
similarly well, while for ERP, GCMI and t-test performed best (Fig. 6a). Additionally, common to all
methods was the variability in significance ratios across monkeys.
A similar observation was made by considering EI’s performance for the vWM task (Fig. 7a). Across

all activities, EI showed the highest significance ratios. Interestingly, for the ERPs, both EI and GCMI
had a significantly greater significance ratio than the t-test (pmin = 3.80e−2). Besides that, especially
GCMI exhibited a consistently higher significance ratio across activities in comparison to the optimum-1
and roving oddball data sets.
To assess channels that themethods commonly detected, we divided the absolute numbers of significant

channels by the total amount of significant channels for each pairwise method combination (Fig. 6c, i.e.,
each method’s specific unique set of significant channels plus their intersection) and defined this ratio as
the intersection ratio. For the optimum-1 paradigm, the intersection ratio between the t-test and GCMI
was the greatest across all activity types, reaching its maximum for the ERP activity (Fig. 3b). For beta
and HFA activity, there was also a high intersection ratio between the t-test and GCMI. However, for these
activities, the number of significant channels was low (Fig. 3a), which led to higher percentages. This can
also be observed by correlating the method-specific channel distributions across subjects (Fig. 3c), i.e.,
by correlating the significance ratios across subjects for each method-to-method combination. Besides
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that, the approaches correlated the least for beta activity, which was also the activity with the lowest
significance ratios. Overall, there was a high correlation across methods (Fig. 3c).
The relatively high intersection ratio between the t-test and GCMI across activities was not observable

for the roving oddball paradigm and the vWM task. For the former, the intersection ratios were the
highest for HFA and ERP activity (Fig. 6b), while for the latter it was highest for ERP (Fig. 7b&7c).
Furthermore, the same effect as for the optimum-1 paradigm recordings occurred for the roving oddball
paradigm. For HFA, the monkey Fr showed maximum intersection ratios between t-test, GCMI, or MI.
Of note, the respective significance ratios were rather low (Fig. 6a). Moreover, when comparing Kr to
Go it appeared that the latter had a smaller number of significant and overlapping channels for EI and
t-test. However, because Kr exhibited more significant channels for both methods, the intersection ratio
was of comparable magnitude for both monkeys.
For the optimum-1 paradigm data set, we further evaluated the NFT of all contact sites. The number

of responsive channels, i.e., the number of channels that solely tagged the frequency of standards or
deviants, was lower in comparison to all other methods (two-sided paired t-test between NFT and MI,
p=6.87e−3).
Given the differing sensitivity to deviating sounds across individual brain regions and the number

of participants for the optimum-1 paradigm, we then compared the methods’ significance ratios across
individual cortical areas. For this reason, we evaluated the methods’ performances across different areas
comprising temporal, frontal, insular, peri-central sulci, and anterior cingulate cortices (ACC), as well as
the hippocampus (Fig. 4; see 5, for exact definitions). Overall, the significance ratios of EI aligned with
the other methods across brain regions and activity types. Specifically, the ratio for higher cortical areas
such as the superior or middle frontal cortex was low while being higher in areas such as the superior
temporal plane (which includes Heschl’s gyrus). The NFT method together with MI showed the lowest
sensitivities across brain regions. However, there were higher or equally high ratios in responsive brain
areas such as the superior temporal plane or posterior insular cortices.
To examine the capabilities of the two best-performing methods, we further applied the approach of EI

and t-test to scenarios where only a reduced number of trials were available. The number of trials varied
from 1 to 100% of all available trials (759.50 ± 360.85 trials for deviant responses and 715.14 ± 388.12
trials for standards across all channels). For each percentage and condition, trials were randomly chosen.
This step was repeated 50 times for each trial increment to obtain an average p-value as a function of the
number of trials (Fig. 5). Channels were selected from the optimum-1 paradigm with differing sensitivity
to deviating tones. The channels were located in the respective 25, 50, 75, and 97.5-percentiles of the t-
value distribution emerging fromHFA. As can be seen in Fig. 5, the twomethods only marginally differed
in reaching statistical significance, although EI tended to reach this threshold slightly earlier.

Discussion
Despite its ability to estimate the absolute information contained in individual brain responses, the use of
AIT in neuroscience is limited. Hence, information-theoretical approaches in neuroscience are needed to
facilitate its use. With the measure of EI, we proposed information-based task condition discrimination
as an alternative to the classical t-test approach. Using compression as the core principle, this procedure
quantifies the similarity between recordings stemming from different conditions. By applying this proce-
dure to five cortical activity types and comparing it to that of t-test, MI, GCMI, and NFT, we demonstrate
the high sensitivity of EI.
Besides their individual procedures in estimating test statistics, the examined methods also differ in

how the data were processed. While for the t-test and GCMI approach, each sample or time point across
trials is considered independently, EI, and alsoMI in its current implementation make use of all time sam-
ples by computing the respective mean responses across trials. Consequently, for each channel, the first
two methods result in test statistics along the time axis, while the last two output one concrete channel-
dependent test statistic. Such a time course is advantageous when the core interest is within the time
domain or latency of responses, i.e., at which time point responses differ most. However, when it comes
to assessing how sensitive contact sites are towards different conditions, this time course is of a minor
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(c) Correlation of methods’ performances across subjects.

Figure 3: Performance of the different methods. The error bars indicate the 95% CIs across subjects.
Importantly, each subject has a unique electrode distribution such that the range of significant channels
can greatly vary. a: Significance ratio across electrophysiological activity types. Statistical significance
is indicated with * p≤5𝑒−2, ** p≤1𝑒−2, *** p≤1𝑒−3 and **** p≤1𝑒−4. b: Intersection of the signifi-
cant iEEG channels for each method combination. Each number is shown relative to the total number
of significant channels. c: Correlation matrices comparing the subject-specific significant ratios. The
respective p-value is annotated in each square.
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Figure 5: Performance in the case of a limited amount of data. The number of trials was reduced by
randomly selecting a varying number of trials for each condition. This was followed by repeatedly ap-
plying the measures (50 times for each percentage). The dashed line represents the significance threshold
(p=0.05). Note that the y-range is limited to 6 (corresponding to a p-value of 2.5𝑒−3). 100% of the trials
was around 759.50 ± 360.85 trials for deviant responses and 715.14 ± 388.12 trials for standards for each
channel. The dots on the significance line indicate the trial percentage when each method exceeded the
significance level.
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Figure 6: Performance of the different methods across the three marmoset monkeys ”Go”, ”Kr” and
”Fr”. a: Global significance ratio for each marmoset. b: Intersection of the significant channels for each
method combination. Each number is shown relative to the total number of significant channels for each
method combination. c: Location of the significant channels for EI and t-test for HFA (monkey ”Go” has
64, ”Kr” 62, and ”Fr” exhibits 32 channels).
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(c) Correlation of methods’ performances across subjects.

Figure 7: Performance of the different methods across subjects for the vWM task. a: Performance of
the different methods. The error bars indicate the 95% CIs across subjects. b: Significance ratio across
iEEG activity types. Statistical significance is indicated with * p≤5𝑒−2, ** p≤1𝑒−2, *** p≤1𝑒−3 and
**** p≤1𝑒−4. c: Correlation matrices comparing the subject-specific significance ratios. The respective
p-value is annotated in each square.
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role. By masking a channel’s significance, it is necessary to reduce the time course of the test statistics
to one concrete value. Additionally, the complete time series of the respective statistic also needs to be
corrected for multiple comparisons across channels and trials (i.e., correction of a 2D array that covers
samples and channels versus a 1D array that only includes channels).
Adopting the sample-based approach mentioned above is not beneficial for EI. The measure of EI is a

compression-based approach and thus compresses the entire time series while exploiting structures along
the time axis. This mechanism is a key feature of this approach and is possibly responsible for the higher
significance ratios across activities (Fig. 3a, 4, 6a, and 7a). In using the trials for each sample, this feature
would be removed. Especially for responses that are close in magnitude (Fig. 1), this mechanism proves
beneficial. By exploiting complementary structures within both responses, subtle information-grounded
differences that extend beyond the width of one sample can be identified in such scenarios. Additionally,
the binning parameter or resolution along the time axis plays a minor importance, while it can have a
great effect on the computation time of GCMI or cluster-based t-test.
Especially for beta and HFA activity, EI appears to be a useful tool for detecting active channels

(Fig.3a). For all data sets, EI exhibited the highest significance ratios compared to the t-test, MI, and
GCMI. HFA presumably carries stimulus mismatch or prediction error signals (24). In that regard, detect-
ing a high number of channels in HFA discriminating between standard and deviating sounds in regions
such as the hippocampus appears to be especially interesting (Fig. 4 and 7a).
For the ERP activity, the t-test showed the greatest significance ratios for the optimum-1 and roving

oddball paradigm. One possible reason for this could be the generally low variance (or standard error) in
EPRs compared to the other electrophysiological activity types. This low variance leads to statistically
strong differences in ERP amplitudes resulting from the different stimulus conditions. Further, the number
of samples that significantly differ in amplitude after correcting for multiple comparisons can be low for
a channel (i.e., the whole trial versus only a few sample points). EI, on the other hand, considers the full-
time course and only assesses channels as significant when the information content of the entire mean
responses differs. However, the high performance of the t-test is not observable for the vWM task. Here,
both EI and GCMI detected a greater number of responsive channels, while also showing a relatively
high intersection ratio between t-tests, respectively.
Overall, the sample-based approaches of t-test and GCMI correlated the most (Fig. 3c). Besides that,

there was no clear outlier apparent for both data sets. The same conclusion can be drawn considering the
significance ratios across individual brain regions (Fig. 4). This can be seen as a validation of the EI mea-
sure: While showing higher significance ratios in some ROIs (e.g., hippocampus or pre-central sulcus), it
performed similarly well as the other methods across brain areas and did not indicate implausible results.
Compared to EI, t-test, MI, and GCMI, the NFT approach had an inferior performance. However, when

considering individual ROIs, it performed equally well for regions close to or belonging to the temporal
cortex. Notably, NFT is based on a different procedure. It exploits the static presentation rates of stimuli
visible in the spectral decomposition of the entire sequence. Fig. 2 shows such a ”tagging” effect, where
the brain synchronizes to the exact frequency of the stimuli presentation. The highest SNR or power
was contained at 1.92Hz which was the presentation rate of the standard or deviant tones. In addition,
it also showed a peak at half this frequency, which is the combination of either standard-to-standard or
deviant-to-deviant tones. This implies that the brain discriminates between standard and deviant tones.
One prerequisite here is that the presentation rate is static. Any temporal jitter during the presentation
critically disturbs this “tagging” effect. A possible reason for the relatively low performance could be
related to this unique feature of NFT, together with the employed multidimensional oddball paradigm. It
may perform better in paradigms with fewer deviant types than in the present task containing eight types
of deviant tones.
When it comes to performance, MIwas close to NFT. It detected fewer channels than the othermethods,

especially for alpha, beta, and HFA activity. It is important to notice that for comparison reasons, we
implemented MI in the same way as EI. That is, the entire time series of a mean response was considered.
It is also possible to implement it in the sample-based fashion of GCMI, where it has been shown to
operate similarly well (3).
Furthermore, the number of bins during the binning procedure across the data sets was held constant.
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We chose 128 bins for EI and four bins for MI (3, 5, 10). Adapting this parameter might be needed when
the relevant trials are of increasing length, i.e., for longer-lasting trials, it might be necessary to reduce
the number of bins for the EI measure. The main motivation for this step is to simplify the signal to an
extent that ensures that the compressor keeps operating effectively. However, both EI and MI should be
robust to this parameter choice. For example, EI showed similar results when varying the number of bins
from 128 to 64, but showed a decreased performance when using only 32 bins (6, 7, 10). An alternative to
adapting the number of bins is to segment the time series into shorter segments, which would then yield
segments of EI values along the trials, or to down-sample the signal along the time axis.
Lastly, in the case of limited data availability, the two best-performing methods showed relatively

similar performance (Fig. 5). For lower t-values (below the 75-percentile, both methods needed around
50% of the maximally available trials to identify a channel as event-responsive. However, EI appeared to
require slightly fewer trials than the t-test. Notice, that for channels with relatively distinct responses to
standards and deviants (above the 97.5-percentile), both measures only required around 3% (ca. 22 trials)
of the available trials to identify the respective channel as significant.
Altogether, the examined neurophysiological data sets stem from two species (human and non-human

primates) and employ both passive and active paradigms as well as auditory or visual stimuli. Note that
in contrast to the optimum-1 and roving oddball paradigms, in the vWM study subjects were instructed
to solve a memory task where they were exposed to visual stimuli. Moreover, as opposed to comparing
standard with deviant tones responses, for the vWM paradigm, the probe period was compared to the
baseline period based on one cortical region. Regardless of these differences, EI performed robustly
across all data sets (Fig. 3a, 6a, and 7a).

Conclusion
Taken together, our findings demonstrate that EI stands out as a highly advantageous procedure to discrim-
inate differences in neurophysiological recordings of evoked responses. Among the methods considered,
EI competed well in detecting iEEG channels sensitive to deviating sound types across diverse types of
electrophysiological responses. Especially for beta and HFA activity, EI detected a higher number of
sensitive channels in comparison to the other procedures. Future studies could explore this further by
extending EI through a hybrid approach, i.e., using Shannon’s information theory besides AIT. Another
possibility is to focus on the compression method. Modern compressors such as LZMA, Brotli, or neural
network compressors might be able to increase its performance. In sum, our proposed information-based
encoding measure proved to be favorable for assessing where in the brain neural responses differ across
experimental conditions.
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