
Design and Implementation of Scalable Online
Evolvable Hardware Pattern Recognition Systems

Ph.D. thesis

Kyrre Glette

October 13, 2008

© Kyrre Glette, 2008

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
Nr. 790

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Inger Sandved Anfinsen.
Printed in Norway: AiT e-dit AS, Oslo, 2008.

Produced in co-operation with Unipub AS.
The thesis is produced by Unipub AS merely in connection with the
thesis defence. Kindly direct all inquiries regarding the thesis to the copyright
holder or the unit which grants the doctorate.

Unipub AS is owned by
The University Foundation for Student Life (SiO)

Abstract

Evolvable hardware (EHW) is a method where hardware is designed and/or modified auto-
matically by optimization algorithms called evolutionary algorithms (EAs). The results so far
are promising but somewhat limited partly because of a scalability problem of the EHW design
method. It is hard to generate circuits which are capable of handling large real-world problems
in a competitive manner. Schemes for dealing with the scalability problem have been proposed
earlier, however the application of these to run-time adaptive EHW systems has been limited.

This thesis addresses the challenge to generate autonomous run-time adaptive digital EHW
systems for solving large real-world problems. The challenge consists of dealing with the lack
of scalability in EAs, combined with the challenge of designing an adaptive hardware architec-
ture for the evolution.

Specifically, hardware classifiers are developed for accurate classification of inputs with a
large number of features. For experimentation with online adaptation, an on-chip evolutionary
system has been proposed and implemented, making use of an on-chip processor. In order to
overcome the scalability problem, the use of data buses and high-level building blocks has been
investigated. Further, these elements have been combined with incremental evolution into a
specialized high-speed classifier architecture for online evolution. The architecture has been
applied to several difficult application benchmarks and compared to traditional approaches as
well as previously presented EHW approaches.

The work has resulted in a flexible system for on-chip evolution. The proposed online archi-
tecture is capable of classifying problems with a larger number of inputs than previous online
EHW classifiers, and it gives a higher accuracy for these problems than previously presented
EHW systems. These systems have often been based on offline evolution – regarded as less
challenging than online evolution. In addition, the amount of evaluations needed for the evolu-
tionary search is low compared to previously presented systems. The system has also shown to
be competitive to traditional classification approaches for the applied benchmarks.

Preface

This thesis has been submitted to the Faculty of Mathematics and Natural Sciences at the Uni-
versity of Oslo in partial fulfillment of the requirements for the degree of Philosophiae Doctor
(Ph.D.).

The research project has been funded by the Research Council of Norway through the
project Biological-Inspired Design of Systems for Complex Real-World Applications with project
number 160308/V30. The research has been conducted at the Microelectronics group and later
the Robotics and Intelligent Systems group at the Department of Informatics during the period
2004-2008, under the supervision of Prof. Jim Tørresen and the co-supervision of Assoc. Prof.
Mats Høvin. In 2006 the author stayed for six months as a visiting researcher at the Integrated
Systems Laboratory, University of Tsukuba, Japan. The head of the laboratory, Prof. Moritoshi
Yasunaga, functioned as a host and a co-supervisor during this period. In 2007 a cooperation
with Prof. Marco Platzner and Mr. Paul Kaufmann at the University of Paderborn was initiated.
The cooperation was funded by the German Academic Exchange Service / Research Council
of Norway through the collaborative project Autonomously Adaptable System-on-Chip under
project number D/06/12740. During 2007 and 2008 several research meetings of short duration
have been conducted in both Germany and Norway.

Acknowledgements

Firstly, I would like to thank my supervisor Prof. Jim Tørresen for all the valuable advice and
support given during the research process. I would also like to thank my co-supervisor Assoc.
Prof. Mats Høvin for constructive feedback and interesting discussions. Further, I wish to thank
Prof. Moritoshi Yasunaga for hosting and supervising me during my stay at the University of
Tsukuba, and Assoc. Prof. Yoshiki Yamaguchi for giving valuable feedback on my research. I
would also like to thank Prof. Marco Platzner and especially Paul Kaufmann at the University
of Paderborn for a very good collaboration. Further, I wish to thank Dr. Bernhard Sick and
Thiemo Gruber at the University of Passau for contributing with their expertise on classifiers.

Moreover, I would like to thank my colleagues at the Nanoelectronics and the Robotics and
Intelligent Systems groups at the University of Oslo for providing a friendly working environ-
ment, and the people at the Integrated Systems Laboratory at the University of Tsukuba for
welcoming and inspiring me. In particular I would like to mention Marcus Furuholmen and
Hiroyuki Kawai, with whom I have spent many office and lab hours. Finally I would to thank
my friends, my family and Natalia for optimism and support.

vi

Contents

Abstract iii

Preface v

1 Introduction 1
1.1 Introduction . 1
1.2 Research Objectives . 2
1.3 Thesis Outline . 2

2 Background 3
2.1 Evolutionary Algorithms . 3

2.1.1 Algorithm Outline . 3
2.2 Evolvable Hardware . 4

2.2.1 Principle . 4
2.2.2 EHW Variants . 5
2.2.3 Scalability . 6
2.2.4 EHW for Pattern Recognition . 8

3 Research Summary 11
3.1 Overview . 11
3.2 Papers . 11

3.2.1 Paper I . 11
3.2.2 Paper II . 12
3.2.3 Paper III . 13
3.2.4 Paper IV . 14
3.2.5 Paper V . 14
3.2.6 Paper VI . 15
3.2.7 Paper VII . 16

3.3 List of Publications . 17

4 Discussion 19
4.1 Discussion of Approach and Results . 19

4.1.1 Scalability . 19
4.1.2 Online Evolution . 20
4.1.3 Competitiveness . 21

4.2 Conclusion . 22

viii Contents

4.3 Future Work . 23

Papers 31
I A Flexible On-Chip Evolution System Implemented on a Xilinx Virtex-II Pro

Device . 33
II On-Chip Evolution Using a Soft Processor Core Applied to Image Recognition 45
III Online Evolvable Pattern Recognition Hardware 55
IV Online Evolution for a High-Speed Image Recognition System Implemented

On a Virtex-II Pro FPGA . 73
V An Online EHW Pattern Recognition System Applied to Sonar Spectrum Clas-

sification . 83
VI Comparing Evolvable Hardware to Conventional Classifiers for Electromyo-

graphic Prosthetic Hand Control . 97
VII A Comparison of Evolvable Hardware Architectures for Classification Tasks . . 107

Chapter 1

Introduction

This chapter introduces the thesis. The motivation for the research is presented, and research
objectives are formulated. An outline of the thesis is presented.

1.1 Introduction

Evolvable hardware (EHW) is a relatively young research field concerning automatic tuning
or design of electrical circuits or other kinds of hardware. By specifying a target behavior,
good circuits according to this specification can be found through the means of a search. Can-
didate circuits are defined, through mappings, by strings upon which the search is performed.
Although in principle any kind of optimization algorithm could be employed, evolutionary algo-
rithms (EAs) have been found efficient for this kind of search, giving rise to the name evolvable
hardware.

By employing EHW as a design method, new and original solutions can be found to prob-
lems, as a product of the search exploring methods not thought of by human designers. These
solutions could prove to give higher performance than traditional human-designed solutions in
aspects such as circuit speed, resource usage or functionality. Such a search would also be
useful and efficient for tuning or optimizing systems with many (interdependent) parameters,
where the alternative is a lengthy manual tuning process with no established approach. In ad-
dition, EHW gives the possibility of systems which at run-time, that is, while the system is
operational, can adapt themselves to changes in requirements or the environment. In a similar
manner, fault-tolerant systems could be devised, repairing themselves if malfunctions occur.

Several applications of EHW have been proposed, of which some have been very successful.
Examples include data compression for printers [33], analog filters [18], evolved image filters
[28], and evolved shapes for space antennas [22]. However, many of the applications so far have
been on limited, simple problems, with little comparison to traditional approaches. One of the
reasons for this is the well-known scalability problem of the evolutionary search. As the circuits
to be generated become larger, the string describing the circuit also grows, effectively increasing
the search space dimensionality. This gives rise to an above-linear increase in computational
effort with the circuit size.

Several methods have been proposed for dealing with the scalability problem. An obvious
but limited approach is to increase the amount of computing power available for the search,

2 Chapter 1. Introduction

by the use of multiple processors or dedicated hardware. Some approaches try to make the bit
string length variable, only coding for the active parts of a circuit, and therefore speeding up
the search. Another approach is to make high level building blocks available to the evolution,
instead of logic gates. These building blocks could be pre-specified or automatically defined.
The approach of incremental evolution consists of dividing the application into smaller sub-
problems, which can be more easily evolved, before assembling the subsystems into a complete
system. Further, by inputting a priori knowledge to the evolutionary process, by limiting the
freedom of the search, desired solutions could be found more easily. The study of artificial
development, which consists of an advanced mapping process from the bit string to the final
circuit, could be a promising approach for larger circuits. However, few "useful" circuits have
been found by this method so far.

This thesis aims at developing systems for large and/or difficult real-world problems. This
includes investigating feasible methods for scalable evolution and run-time adaptation for hard-
ware systems. These two requirements impose limitations on what kind of schemes that can
be employed for dealing with the scalability, and much of the work in this thesis deals with
investigations in this field. Finally, it is a goal to make systems which are better than previ-
ous EHW approaches and competitive with traditional methods. Experiments are conducted by
means of software simulations and hardware implementations with prototyping on field pro-
grammable gate arrays (FPGAs). Standard realistic benchmarks for traditional solutions are
employed in order to get impressions of performance for real-world systems and to compare
with the performance of traditional solutions.

1.2 Research Objectives

The main research objective for this thesis is:

Develop online evolvable hardware schemes that could evolve systems for large
real-world applications.

This can be divided into several sub-goals:

• Develop scalable evolvable hardware schemes for solving large and/or difficult problems.

• Experiment with on-line evolvable systems

• Demonstrate that the developed systems are competitive for selected applications.

1.3 Thesis Outline

The thesis is a collection of papers. The research contribution of this thesis is thus constituted
of the seven included research papers, in their original publication format. The rest of the thesis
is organized as follows: Chapter 1 (this chapter) gives an introduction to the thesis. Chapter 2
presents relevant background information for the research. Chapter 3 summarizes the research
process and gives an overview over the papers constituting the research contribution. Chapter 4
presents conclusions and proposes future work.

Chapter 2

Background

This chapter describes background information relevant to the work presented in the thesis.

2.1 Evolutionary Algorithms

EAs are a set of optimization algorithms inspired by evolution in nature. The most commonly
known variants are genetic algorithms (GAs), genetic programming (GP), evolution strategies
(ESs) and evolutionary programming (EP). EAs are inspired by natural evolution in that they
are often population-based, adopting heritance, selection and variation mechanisms.

2.1.1 Algorithm Outline

An outline of an EA can be described with the following steps:

1. Generate a population of individuals with random genomes

2. Perform a genotype-phenotype mapping process on each individual

3. Evaluate the obtained phenotypes with regard to a fitness function and assign scores to
individuals

4. If the termination criterion is reached, terminate the algorithm

5. Select individuals according to fitness scores and apply genetic operators in order to create
a population of new individuals

6. Repeat from step 2.

Possible solutions, also called individuals, are usually coded in a string of symbols, called
a genome or chromosome. At the starting point of the algorithm, a collection of individuals – a
population – is generated with random genomes. In order to evaluate the solutions coded in the
population, a mapping or decoding process is usually performed. This process transforms the
genome into a candidate solution which can be evaluated, also called a phenotype.

The fitness function gives a measure of how good the solution is performing for the target
task. In order for the search to perform well, it should be possible to grade different solutions

4 Chapter 2. Background

with a high resolution, i.e. the output should not just be "good" or "bad". If the fitness of the
solutions is measured with regard to multiple qualities, it is called multi-objective optimization.

There are several ways to select individuals for creating a new population. A common way
is to use fitness-proportionate selection, where an individual is given a probability of being
drawn for reproduction proportional to the individual’s fitness score. An alternative to this is
tournament selection where a number of individuals are drawn randomly and the individual
with the highest fitness score of this selection is chosen for reproduction.

The selected individuals are subject to variation operators before they are inserted into the
population of individuals constituting the new generation: The most common form of varia-
tion operator is called mutation, where a small change of the original genome is performed.
Recombination is simulated using the crossover operator - where parts of one individual are
exchanged with another individual. A common way of speeding up the EA is to include elitism
– this consists of directly transferring the fittest individual of the current generation to the next
generation without any variation operators applied. This strategy of always keeping the best
solution found so far often speeds up the search considerably. However, this depends on the
context and there could be situations where elitism is not advantageous, or even contributing to
a too early convergence.

One of the most popular variants of EAs, GA, was introduced in [13]. For this approach,
the genome consists of a string of consecutive genes, often single bits, which can be mapped
into a phenotype. In this case mutation consists of inverting one or a few bits. However, it
is also possible to operate on higher-level components such as integer or floating point data
types, with more advanced mutation operators. The crossover operation has several variations
on exchanging chunks of genes between two genomes.

Another popular version of EAs is the family of algorithms known as ESs. ESs were orig-
inally defined for numerical optimization over real numbers. The algorithms differ from GAs
in that only the best solution from the current generation is kept and used as a basis for the new
generation. The new generation is filled up with individuals which are mutated variations of the
best individual. In addition an elitist strategy of keeping the best individual is applied. Muta-
tions are decided by adding normally distributed values to genes, however in simpler variants
where only bits are used, bit inversion is applied like with GAs. ESs can also have the prop-
erty of self-adaptation, where parameters (typically mutation parameters) are adapted during
the evolution.

2.2 Evolvable Hardware

This section gives relevant background information on the field of EHW.

2.2.1 Principle

EHW originated in [4, 10] as a method for automatically designing hardware by the use of
EAs. The principle involves decoding the genome bit string from an EA into a hardware circuit
phenotype, and then testing the resulting circuit on a fitness function. The fitness function
dictates the desired functionality of the circuit, and would typically contain desired input/output

2.2. Evolvable Hardware 5

behavior. It is however possible to also include other aspects in the fitness function, for example
circuit size, fault-tolerance, or power consumption.

The research field of EHW can be categorized into two main interest fields, presented below:

• The biology-focused view. This view concentrates on the biological aspects and possibil-
ities offered by modeling biological systems in HW. This includes using EHW to build
biologically-inspired structures such as virtual cells [41], artificial immune systems [2]
and artificial brains [5]. In addition, this view experiments with possible substrates for
hardware evolution [9, 34]. The development stage of hardware systems is also under
research [40]. Research in this area focuses primarily on biological mechanisms which
can eventually lead to techniques for improved HW design, and focus on real-world ap-
plications is thus so far limited.

• The application-focused view. The other field of interest for EHW researchers is to cre-
ate EHW systems which can perform tasks better than traditional hardware or software
approaches. This area of interest thus focuses on real-world applications and evolution is
therefore more directly employed as a search/invention tool in the engineering of hard-
ware systems. This includes using evolution for invention of new hardware (circuits) to
be included in conventional systems [20, 22, 25]. In the other end of the scale, evolution
is used as a search algorithm for modifying or tuning parameters of already deployed,
reconfigurable, hardware [12, 32].

2.2.2 EHW Variants

Approaches for EHW fitness evaluation can be divided into two main categories: Offline and
online fitness evaluation. Offline fitness evaluation, also called extrinsic EHW, evaluates the
fitness of the hardware by simulating it on a host computer, which could be the same computer
as the one running the EA. Actual hardware is produced only after evolution is terminated and
a best solution is found. Online fitness evaluation, also called intrinsic EHW, performs fitness
evaluation on the target hardware. This usually requires having some kind of reconfigurable
hardware, such that several possible solutions can be evaluated on the same physical piece of
hardware, one at a time. The online approach has three possible advantages over the offline
approach: Firstly, evaluating real hardware could significantly reduce the time needed for eval-
uation compared to a simulation. Secondly, by evaluating on real hardware, physical aspects
not covered by the simulator could be explored by evolution. Thirdly, the evolved solution is
known to be valid since it is evaluated on the real system and not on a possibly inaccurate model
or simulator.

When evolving hardware for a chip, online evolution can be further divided into off-chip
evolution and on-chip evolution. In the case of off-chip evolution, the EA is running on a
system separated from the device containing the reconfigurable circuit. However, with on-chip
evolution the EA is implemented to run on the same chip as the reconfigurable circuit itself,
giving a self-contained EHW chip. This gives the possibilities of having a compact system
which could constantly re-evolve and adapt during the application lifetime of the system. In
this case it would be possible to implement the EA completely in hardware – giving complete

6 Chapter 2. Background

HW evolution, or the EA could be running in SW on an embedded processor with optional HW
acceleration of time-consuming tasks.

In order to have online fitness evaluation, reconfigurable hardware is the only practical ap-
proach. In addition, it is desirable to have a short reconfiguration time in order to not slow down
the evolutionary process. Although FPGAs are popular reconfigurable devices, going from a
high-level circuit description to an FPGA configuration bitstream is normally a lengthy pro-
cess. This involves invoking vendor-specific tools for implementing the design by a multi-step
process including steps such as synthesis, place and route, mapping and floorplanning. Earlier
FPGA models (such as the XC6200 series by Xilinx) allowed direct bitstream manipulation,
where no combination could be harmful for the FPGA. In addition, the coding of the bitstream
was publicly available. This made it possible to run evolution directly on FPGA bitstreams,
allowing quick reconfiguration and evaluation [34]. However, most modern FPGAs do not al-
low this kind of direct bitstream manipulation, and have a proprietary, undisclosed bitstream
format1.

In some cases it is still possible to modify the contents of lookup tables (LUTs) inside the
FPGA, by reverse engineering of the bitstream, by utility functions, or even by configuring the
LUTs while in a special shift register mode. The first two approaches can be combined with the
use of the Internal Configuration Access Port (ICAP) found in recent Xilinx Virtex FPGAs. This
allows for one part of the design to reconfigure another part of the chip with a partial bitstream,
and is an interesting possibility for EHW. Work on reverse engineering the bitstream in order
to reconfigure LUTs through the ICAP in EHW systems has been performed in [42]. Another
EHW approach using the ICAP and Xilinx utility functions in order to reconfigure LUTs can be
found in [23]. The third EHW approach shifts configuration data into LUTs by using the shift
register behavior of Xilinx Virtex LUTs [39].

An alternative approach to modifying the configuration of the FPGA itself is to implement
a circuit with user-defined reconfigurability on the FPGA. Functionality could in this case be
modified by for example using registers to control the multiplexing of different outputs. By
writing to these registers fast reconfiguration can be obtained. This virtual reconfiguration ap-
proach also has the advantage of being less technology-dependent than direct bitstream manip-
ulation methods, and a higher reconfiguration flexibility can be obtained. A disadvantage of the
approach is the increased resource usage overhead associated with having to implement all pos-
sible connections and functionality. This method has been termed virtual reconfigurable circuit
(VRC) [30] or virtual FPGA [8] in earlier work.

Another approach to reconfigurable HW in the EHW context is to design a custom recon-
figurable ASIC. This allows for full control of the reconfigurability and the reconfiguration
process, making it possible to have chips tailored for online evolution. Custom ASIC imple-
mentations of reconfigurable circuits are proposed in [27] and [31].

2.2.3 Scalability

An often pointed-out challenge about EHW is what is referred to as the scalability problem. Es-
pecially with direct genotype-phenotype mappings, an increase in the size of the circuit requires

1Detailed bitstream documentation is available for some recent devices, such as Atmel FPSLIC FPGAs, allow-
ing for direct bitstream manipulation [24].

2.2. Evolvable Hardware 7

a proportional increase in the size of the genome. This is equivalent to an increase of the search
space for the EA. Thus, a linear increase in circuit size gives an exponential increase in pos-
sible searchable solutions. Although EAs may have a better performance on searches of high
dimensionality than other metaheuristics, it is evident that the described phenomenon limits the
efficiency of the search for larger circuits. Consequently, few circuits of large size have been
evolved. As an example, the experiments with evolving digital multiplier circuits by Miller et
al. [25] were successful with evolving relatively small circuits, such as 2-bit multipliers. 3-bit
multipliers were also successfully evolved, however this required a much higher computational
effort. The practical limit to the size of directly evolvable multiplier circuits seems, from the
experiments in [43], to be 4 bits.

Given the scalability limitation, researchers have experimented with several approaches
which could evolve larger EHW systems. A brute-force method would be to make more com-
putational power available to the EA, by techniques such as parallelization [3]. However, given
the high increase in computing time observed even for small problems, such an approach would
probably still be limited by practical reasons.

Experiments have been conducted using a variable length genome [14]. This approach
consists of storing in the genome only the connections which contribute to the functional circuit.
The idea is to keep the genome shorter and has shown through experiments to evolve large
circuits more quickly than a traditional circuit representation.

Another approach consists of using function level evolution as opposed to gate level evolu-
tion. By evolving circuits with higher level building blocks than logic gates, less information
is required in the genome in order to achieve the same level of functionality. This approach
was employed for online EHW in [26]. Here, an array of fixed functions such as floating point
addition and multiplication was available for the evolution of various test circuits. Function
level evolution has also been applied successfully to the online evolution of image filters and
other image operators [28]. A set of functions which operated on 8-bit integer pixel values were
organized in an array-style configuration.

Experiments have also been conducted on using automatically defined building blocks. The
principle of automatically defined functions (ADFs) from GP [21] has been applied to the evo-
lution of analog circuits [19]. An alternative approach, called embedded cartesian genetic pro-
gramming (ECGP), has been applied to the evolution of digital circuits [44]. Both approaches
select portions from a solution at random and create building blocks from them. These building
blocks are then available to evolution as single primitives. Both of the approaches to automati-
cally defined building blocks have concentrated on offline evolutionary experiments.

Another approach to the scalability problem has been to limit evolution to subsystems which
are evolved one at a time before assembling them into a final system [37]. This approach, called
incremental evolution, has the effect of shortening the genome compared to what would have
been required in order to evolve a complete system directly. Thus, the dimensionality of the
search space can be reduced. In addition, by letting subsystems concentrate on different sub-
tasks the search space can also be simplified (i.e. making it easier to find a solution) compared to
a system which needs to be evolved with all functionality simultaneously [35]. The incremental
approach requires that the systems to evolve are divisible, i.e. their functionality can be parti-
tioned and measured at a subsystem level. Such a partitioning can be decided manually and will
in some cases be a logical consequence of the application, e.g. for classification applications,

8 Chapter 2. Background

where one category to be classified could be the task of one subsystem. However, work has
also been undertaken on automatic partitioning [17]. This process consists of breaking down
circuits into sub-circuits and combining them again in order to achieve not only evolvable but
also compact circuits. Incremental evolution has been applied to the digital multiplier problem
[36], resulting in multipliers having more inputs than those evolved with a direct evolutionary
approach.

Another approach to the scalability problem is called artificial development. This approach
is inspired by the development from genomes to multicellular bodies (phenotypes) observed in
nature, and consists of having indirect mapping processes from the genome to the candidate
solution. For EHW one possible way of applying development would be to evolve programs
at the genotype level. By executing the program (the genotype) a circuit (the phenotype) is
constructed. Such an approach, where the genotype is a GP program, can be seen in [20]. One
property which could be desirable for the evolution of digital circuits would be the possibility to
generate large circuits consisting of recurring elements and regular patterns, such that circuits
for an arbitrary number of input elements could be constructed. Developmental processes could
be useful for evolving these kinds of structures. Research has been undertaken in [1, 29] where
development is employed in order to evolve arbitrarily large sorting networks and multipliers.
An alternative approach to artificial development for EHW concentrates on models closer to
biology [38].

2.2.4 EHW for Pattern Recognition

Pattern recognition consists of classifying input data into different categories (classes). This
process, also referred to as classification, has often been an application of EHW. Pattern recog-
nition systems could benefit from EHW in having a high speed of classification, as well as
being contained in a compact and energy-saving circuit. Further, pattern recognition systems
could benefit from run-time adaptation, where EHW could have an advantage. Another reason
for EHW researchers of applying EHW to classification could be the use of classification as a
benchmark: Classification problems come in a large variety of sizes and difficulties in terms of
number of inputs, number of classes and the difficulty of separating these. It is thus a possible
application for comparing EHW methods by looking at the size and difficulty of the problems
the circuits can handle. Further, classification benchmarks exist which make it more practical
to compare with results from traditional approaches.

An early use of EHW for pattern recognition was reported in [11]. Originally, the architec-
ture was applied to character classification but later on used for classification in a prosthetic hand
controller [15, 16]. The classifier architecture is a programmable logic array (PLA)-like struc-
ture of AND gates followed by OR gates. The configuration of the architecture was evolved
using a GA implemented on the same chip as the classifier, resulting in an online adaptable
system. The system had 16 input feature bits, could classify six different categories, and its
classification accuracy was shown to be competitive to an artificial neural network (ANN).

Experiments on two-phase incremental evolution of an EHW architecture applied to pros-
thetic hand control (PHC) were presented in [35]. The two-phase approach consists of first
evolving category subsystems separately and then assembling them, through evolution, in a
second phase. The results showed that the approach can lead to a better generalization perfor-

2.2. Evolvable Hardware 9

mance than both traditional direct evolution and ANNs.
EHW classification architectures applied to domains other than PHC include, for example,

the function level evolution of [26]. This architecture was applied to typical ANN applications,
however, with fewer inputs and outputs, and attained accuracies comparable to ANNs.

A different EHW pattern classification system, Logic Design using Evolved Truth Tables
(LoDETT), was presented in [45, 46]. LoDETT allows for high accuracy classification on
problems with a much higher number of inputs and outputs. An example is face image recog-
nition with 512 inputs and 40 different categories. Although providing high classification ac-
curacy, also outperforming an ANN, the system lacks the ability of online evolution and relies
on synthesis in software before the circuit is implemented on an FPGA. The approach utilizes
incremental evolution, i.e., sub-circuits are evolved separately before being assembled into a
final system.

10 Chapter 2. Background

Chapter 3

Research Summary

This chapter summarizes the research conducted in the proposed thesis. First, a brief overview
of the research process is given. Then motivations and abstracts for each included paper are
presented. Finally, the publications produced during the project are listed.

3.1 Overview

The work started with the sub-goal of experimenting with online systems. Paper I addresses the
establishment of an on-chip self-adaptable evolutionary platform. Next, focus was shifted to
the sub-goal of developing schemes for solving large problems. Here, preliminary explorations
were undertaken in Paper II, while a more scalable solution was presented in Paper III. Paper IV
focused on an improved evolutionary platform for the architecture presented in Paper III. While
Paper III initially covered a realistic application, further applications were explored in Papers V
and VI. At this stage, the focus was also shifted towards evaluating the competitiveness of
the proposed system, and Paper VI included a comparison with state-of-the-art conventional
methods. Paper VII further focused on evaluation of the system, this time against other EHW
schemes.

3.2 Papers

This section presents details on the motivations and contributions for each paper together with
the paper abstracts.

3.2.1 Paper I

A Flexible On-Chip Evolution System Implemented on a Xilinx Virtex-II Pro Device

As online EHW systems for real-world applications were one of the main goals of the research,
it was desirable to perform experiments with real hardware. This paper addresses the develop-
ment of an FPGA-based hardware platform which could serve as a base for further experiments.
With evolution speed and embedded applications in mind, a single-chip solution, capable of
performing evolution and fitness evaluation on the same chip, was developed. While having
an on-chip system with online fitness evaluation it was still desirable to have the possibility for

12 Chapter 3. Research Summary

flexible experimentation with the EA itself. It was therefore chosen to implement parts of the
EA in SW running on an embedded processor core on the target FPGA.

The work resulted in a novel on-chip EHW system which allowed for flexibility by combining
the use of an on-chip processor for the EA and reconfigurable logic for online fitness evaluation.

Abstract

There have been introduced a number of systems with evolvable hardware on a single chip. To
overcome the lack of flexibility in these systems, we propose a single-chip evolutionary system
with the evolutionary algorithm implemented in software on a built-in processor. This archi-
tecture is implemented in a Xilinx Virtex-II Pro FPGA with an embedded PowerPC processor.
This allows for a rapid processing of the time consuming parts in hardware and leaving other
parts to more easily modifiable software. This platform will be beneficial for future work re-
garding both cost and compactness. Experiments have been performed on the physical device
with software running in parallel with fitness computation in digital logic. The results show
that the system uses only twice as much time when compared to a PC running at 10 times faster
clock speed.

3.2.2 Paper II

On-Chip Evolution Using a Soft Processor Core Applied to Image Recognition

With the experimental platform from Paper I in place, research could focus more on challenges
in applications and EHW schemes. Pattern recognition was recognized as an application with
properties of having important real-world applications as well as being a good candidate for
testing the scalability of an architecture/method. Several pattern recognition benchmarks built
from realistic data exist, which vary in number of input features, number of classes, and dif-
ficulty. In this paper, an architecture consisting of functional units arranged in a rectangular
array, popular from earlier EHW approaches, was employed to a face recognition application.
However, the architecture operated with high-level functions on picture elements (pixels) in an
attempt to make evolution feasible on the high number of inputs, as well as to achieve a good
classification accuracy. In addition, it was experimented with using a "soft" processor core in-
stead of an embedded "hard" core, in order to potentially expand the platform to FPGA devices
not containing embedded cores.

The work resulted in a step towards an online EHW pattern recognition system capable of
many inputs by using function level evolution.

Abstract

To increase the flexibility of single-chip evolvable hardware systems, we explore possibilities of
systems with the evolutionary algorithm implemented in software on an on-chip processor. This
gives higher flexibility compared to implementing an evolutionary algorithm directly in hard-
ware, since the parameters and behavior of the algorithm can easily be changed, and complex
operators are more feasible to implement. In this paper a Xilinx MicroBlaze soft core processor
is used, and the system is implemented in a Xilinx FPGA. A suitable hardware architecture for

3.2. Papers 13

image recognition has been proposed, and it is applied to a face recognition task. Data buses and
higher level functions have been utilized in order to reduce the search space for the evolution-
ary algorithm. Experiments have been performed on the physical device, with software running
in parallel with fitness computation in digital logic. Results show that the MicroBlaze system
evolves at half the speed of a Pentium M system running at 17 times the FPGA clock frequency.
The distinction of a certain face from others is performed at 94.9% accuracy. In addition, the
possibilities for evolutionary adaptation over time are explored by introducing changes in the
training set. The system shows ability to adapt to these changes.

3.2.3 Paper III

Online Evolvable Pattern Recognition Hardware

This book chapter will be included in the book Evolutionary Image Analysis and Signal Pro-
cessing (provisional title) and is an extension of the paper An Online EHW Pattern Recognition
System Applied to Face Image Recognition [6].

Although the architecture proposed in Paper II was successful for classification on a single
category, it is not straightforward to scale it to classify several categories. Firstly, the resource
usage for the virtual circuit proposed is high, and thus an increase up to the number of cate-
gories required (40) would not be very practical for the image recognition task described. The
array-like structure employed is very general and many functional units would be unused in
each circuit. Secondly, even if the circuit could be duplicated to the number of categories re-
quired, there would be a problem distinguishing the outputs since the nature of the utilized
functions lead to each circuit outputting values equivalent to "true" or "false". Research effort
was therefore put into a more scalable architecture. Inspired by Yasunaga’s LoDETT system,
with several possible matching rules for each category, a specialized classification architec-
ture for online evolution, the functional unit row (FUR) architecture, was developed. Although
bearing similarities to the LoDETT system, it also distinguishes itself in several ways. Firstly,
the proposed system allows for online evolution while LoDETT is based on offline evolution.
Secondly, the classification "rules"/rows in the proposed system are based on functions differ-
ent from the LoDETT system. Thirdly, the "rules" are not derived directly from the training
data, and therefore any number of rows is allowed, allowing for a more flexible system. The
classification results in this paper were based on software simulations.

The work resulted in an online EHW pattern recognition architecture capable of having
many inputs, more than previous online EHW systems, and classifying into more categories.
Classification accuracy was better than the best previously proposed (offline) EHW system and
comparable to several traditional approaches.

Abstract

We propose an evolvable hardware (EHW) architecture for pattern recognition. Compared to
an earlier offline EHW pattern recognition approach, the proposed architecture is advantageous
in its suitability for online adaptation, while a very high recognition speed is maintained. With
its support for virtual run-time reconfiguration, the architecture is suitable for implementation
in an on-chip evolution system. Function level modules and data buses are employed in the

14 Chapter 3. Research Summary

architecture in order to reduce the search space. Furthermore, incremental evolution is applied,
which shortens evolution time and allows for the evolution of a larger system. The use of
incremental evolution also has the advantage of reducing the size of the evolution hardware
in an on-chip evolution system. Variations in architecture parameters are explored, and it is
found that the size of the system can be reduced at the cost of longer evolution time or lower
recognition accuracy. The architecture is applied to a face image recognition task, for which a
recognition accuracy of 96.25% is demonstrated. This result is better than previously proposed
offline EHW architectures.

3.2.4 Paper IV

Online Evolution for a High-Speed Image Recognition System Implemented On a Virtex-
II Pro FPGA

Having developed the architecture presented in Paper III, it was in this paper chosen to look
further into the hardware issues, focusing in particular on the aspects of online evolution. Using
the same application as in Paper III, work was undertaken on developing a fitness evaluation
module for the evolutionary process which could function in parallel with the classification
system. In addition to uninterrupted classification operation, another motivation for developing
an autonomous fitness evaluation module was to speed up the task of feeding training vectors
to the system and reading back the results, taking much time in the initial system presented in
Paper I.

The work demonstrated the implementation of a fitness evaluation module for the FUR
architecture in hardware for a significant speedup of the evolution time. Fitness evaluation
in parallel and little resource utilization compared to the total classifier system were demon-
strated.

Abstract

Online incremental evolution for a complex high-speed pattern recognition architecture has
been implemented on a Xilinx Virtex-II Pro FPGA. The fitness evaluation module is entirely
hardware-based in order to increase the speed of the circuit evaluation which uses a large train-
ing set (360 images/23040 bytes). The fitness evaluation time for 1000 generations consisting
of 16 individuals is 623ms, twice as fast as software fitness evaluation performed on a work-
station running at a 30 times higher clock frequency. The rest of the genetic algorithm (GA)
runs in software on a PowerPC 405 processor core on the FPGA. The total evolution time for
1000 generations is 1313ms, equivalent to the total time used by the workstation. Resource
utilization for the fitness evaluation module is 1393 slices (10%) of a XC2VP30 device.

3.2.5 Paper V

An Online EHW Pattern Recognition System Applied to Sonar Spectrum Classification

While showing good accuracy on the face image recognition application, it was desirable to test
the developed architecture on more problems. The sonar spectrum data set [7] is a widely known
benchmark, and has been shown to be more difficult for the LoDETT system to classify than

3.2. Papers 15

the face image recognition task [46]. It would therefore be an interesting test for the developed
classifier system. Given the high feature variation for vectors in each category, an enhanced
fitness function was developed which stimulated the recognition of distinct features within each
category. In addition, experiments were conducted on stopping evolution earlier in order to
reduce overfitting.

The work demonstrated that a high classification accuracy could be achieved for the FUR
architecture on a difficult signal classification task. This was significantly better than a previous
EHW approach and an ANN approach, and the high accuracy was partly obtained by training
different submodules on different training set partitions.

Abstract

An evolvable hardware (EHW) system for high-speed sonar return classification has been pro-
posed. The system demonstrates an average accuracy of 91.4% on a sonar spectrum data set.
This is better than a feed-forward neural network and previously proposed EHW architectures.
Furthermore, this system is designed for online evolution. Incremental evolution, data buses
and high level modules have been utilized in order to make the evolution of the 480 bit-input
classifier feasible. The classification has been implemented for a Xilinx XC2VP30 FPGA with
a resource utilization of 81% and a classification time of 0.5μs.

3.2.6 Paper VI

Comparing Evolvable Hardware to Conventional Classifiers for Electromyographic Pros-
thetic Hand Control

A third application, PHC, was selected as a base for further experiments. In cooperation with
Paul Kaufmann and Marco Platzner at the University of Paderborn, a dataset of muscle elec-
tromyographic (EMG) signals were collected and processed in order to serve as a base for eval-
uation and comparison of our two different EHW approaches. While my approach was the FUR
architecture presented in paper III, the approach of Kaufmann and Platzner was an ECGP-based
model. With one of the research goals of the thesis being to demonstrate competitive schemes,
it was desirable to compare our EHW approaches with state-of-the-art conventional classifiers.
In cooperation with Thiemo Gruber and Bernhard Sick at the University of Passau, comparison
experiments with three conventional classification techniques were undertaken. Experiments
showed that the FUR architecture delivered a high classification performance on the signals,
close to that of support vector machines (SVMs).

The work addressed the need for a direct comparison of EHW with state-of-the-art tra-
ditional classifier approaches, and showed that the FUR architecture had competitive perfor-
mance to these classifiers.

Abstract

Evolvable hardware has shown to be a promising approach for prosthetic hand controllers as
it features self-adaptation, fast training, and a compact system-on-chip implementation. Be-
sides these intriguing features, the classification performance is paramount to success for any

16 Chapter 3. Research Summary

classifier. However, evolvable hardware classifiers have not yet been sufficiently compared
to state-of-the-art conventional classifiers. In this paper, we compare two evolvable hardware
approaches for signal classification to three conventional classification techniques: k-nearest-
neighbor, decision trees, and support vector machines. We provide all classifiers with features
extracted from electromyographic signals taken from forearm muscle contractions, and try to
recognize eight different hand movements. Experimental results demonstrate that evolvable
hardware approaches are indeed able to compete with state-of-the-art classifiers. Specifically,
one of our evolvable hardware approaches delivers a generalization performance similar to that
of support vector machines.

3.2.7 Paper VII

A Comparison of Evolvable Hardware Architectures for Classification Tasks

With competitiveness still in mind, it was desirable to compare the proposed methods with ear-
lier presented EHW classification architectures. The collected EMG dataset provided a good
basis for a comparison with earlier EHW classifiers targeting EMG signals. By simulating the
architectural principles of previously presented EHW EMG classifiers, a comparison between
different architectural concepts could be made. The concepts to investigate included various
degrees of incremental evolution and the use of building blocks, as well as the application-
specific features of the approaches. It was of interest to see if the application-specific features
and the use of building blocks of the ECGP-based model and the FUR architecture could in-
crease classification accuracy. It was also of special interest to see how the FUR architecture
would compare in terms of number of evaluations required for the search, as this can indicate
the suitability for run-time adaptation applications.

The work sought to compare the FUR architecture with other EHW approaches on the same
application, and showed that the FUR approach gives a high recognition accuracy significantly
faster than the other approaches.

Abstract

We analyze and compare four different evolvable hardware approaches for classification tasks:
An approach based on a programmable logic array architecture, an approach based on two-
phase incremental evolution, a generic logic architecture with automatic definition of building
blocks, and a specialized coarse-grained architecture with pre-defined building blocks. We base
the comparison on a common data set and report on classification accuracy and training effort.
The results show that classification accuracy can be increased by using modular, specialized
classifier architectures. Furthermore, function level evolution, either with predefined functions
derived from domain-specific knowledge or with functions that are automatically defined dur-
ing evolution, also gives higher accuracy. Incremental and function level evolution reduce the
search space and thus shortens the training effort.

3.3. List of Publications 17

3.3 List of Publications

Papers Included in Thesis

I K. Glette and J. Torresen. A Flexible On-Chip Evolution System Implemented on a Xilinx
Virtex-II Pro Device. In International Conference on Evolvable Systems (ICES), pages
66–75, Springer 2005.

II K. Glette and J. Torresen and M. Yasunaga and Y. Yamaguchi. On-Chip Evolution Using
a Soft Processor Core Applied to Image Recognition. In Adaptive Hardware and Systems,
pages 373–380, IEEE 2006.

III K. Glette and J. Torresen and M. Yasunaga. Online Evolvable Pattern Recognition Hard-
ware. To appear in Evolutionary Image Analysis and Signal Processing (provisional title),
Studies in Computational Intelligence series, Springer 2008 (est.).

IV K. Glette and J. Torresen and M. Yasunaga. Online Evolution for a High-Speed Image
Recognition System Implemented On a Virtex-II Pro FPGA. In Adaptive Hardware and
Systems, pages 463–470, IEEE 2007.

V K. Glette and J. Torresen and M. Yasunaga. An Online EHW Pattern Recognition System
Applied to Sonar Spectrum Classification. In International Conference on Evolvable
Systems (ICES), pages 1–12, Springer 2007.

VI K. Glette and J. Torresen and T. Gruber and B. Sick and P. Kaufmann and M. Platzner.
Comparing Evolvable Hardware to Conventional Classifiers for Electromyographic Pros-
thetic Hand Control. In Adaptive Hardware and Systems, pages 32–39, IEEE 2008.

VII K. Glette and J. Torresen and P. Kaufmann and M. Platzner. A Comparison of Evolvable
Hardware Architectures for Classification Tasks. In International Conference on Evolv-
able Systems (ICES), Springer 2008.

Other Papers

• K. Glette and J. Torresen and M. Yasunaga. An Online EHW Pattern Recognition Sys-
tem Applied to Face Image Recognition. In Applications of Evolutionary Computing
(EvoWorkshops2007), pages 271–280, Springer 2007.

• J. Torresen and J. Norendal and K. Glette. Establishing a New Course in Reconfigurable
Logic System Design. In Proceedings of the 10th IEEE Workshop on Design & Diagnos-
tics of Electronic Circuits & Systems (DDECS), pages 1–4, IEEE 2007.

• J. Torresen and K. Glette. Making Hardware Soft in Intelligent Systems. In ECSIS Sym-
posium on Bio-inspired, Learning, and Intelligent Systems for Security (BLISS), pages
87–90, IEEE 2007.

• J. Torresen and K. Glette. Improving Flexibility in On-Line Evolvable Systems by Recon-
figurable Computing. In International Conference on Evolvable Systems (ICES), pages
391–402, Springer 2007.

18 Chapter 3. Research Summary

• M. Furuholmen and M. Hovin and J. Torresen and K. Glette. Continuous Adaptation in
Robotic Systems by Indirect Online Evolution. In ECSIS Symposium on Learning and
Adaptive Behavior in Robotic Systems (LAB-RS), IEEE 2008.

• M. Furuholmen and K. Glette and J. Torresen and M. Hovin. Indirect Online Evolution -
a Conceptual Framework for Adaptation in Industrial Robotic Systems. In International
Conference on Evolvable Systems (ICES), Springer 2008.

• H. Kawai and Y. Yamaguchi and M. Yasunaga and K. Glette and J. Torresen. An Adaptive
Pattern Recognition Hardware with On-chip Shift Register-based Partial Reconfiguration.
To appear in International Conference on Field-Programmable Technology (ICFPT), IEEE
2008.

• J. Torresen and G. A. Senland and K. Glette. Partial Reconfiguration Applied in an On-
line Evolvable Pattern Recognition System. To appear in 26th Norchip Conference, IEEE
2008.

Chapter 4

Discussion

This chapter discusses the approach followed in the thesis. In addition, the results are summa-
rized and discussed. Finally, a conclusion is given and directions for possible future work are
suggested.

4.1 Discussion of Approach and Results

The primary goal of this thesis was to develop online evolvable hardware schemes that could
evolve systems for large real-world applications. A run-time adaptable on-chip EHW classifier
architecture has been developed which allows for a large number of categories and inputs, ca-
pable of good classification performance on well-known classifier benchmarks including both
image recognition and signal classification.

4.1.1 Scalability

The following schemes have been adopted and combined in the pursuit of designing scalable
systems for large applications:

• High-level building blocks with predefined functions, operating on input elements rather
than single bit signals. When the number of input lines to an EHW system becomes high,
operating with fine-grained logic on single bit lines quickly makes the search space very
large. This is due to the large amount of possible routing configurations of single lines
and the amount of possible function configurations. By grouping the input lines according
to signal-specific elements (such as image pixels of 8 bits) and operating with pre-defined
functions on these elements, the search space is greatly reduced. However, this approach
requires domain knowledge both in terms of suitable data elements and operators on these.
While suitable data elements are often given by only a little knowledge about the input,
the operators can be found through experimentation and also design experience. The
first experiments on using building blocks and data buses for pattern recognition were
conducted in paper II while more refined building blocks were proposed in paper III.

• An application domain-specific architecture. While the architecture in paper II was a
relatively general array of functional units, the architecture presented in paper III is cus-
tomized. By tailoring the EHW architecture to the evolution of classifier systems, the

20 Chapter 4. Discussion

search is more directed towards working classifiers. The inclusion of counter modules
inputting a number of "rules" forces the solutions to include the property of gradual dis-
tinction of different categories. Such a property could be hard for the search to discover
by itself. The number of elements and the way elements can be connected are also lim-
ited. From an online EHW and virtual reconfiguration (see Sec. 2.2.2) perspective, these
limitations allow a large amount of hardware resources to be saved. This is therefore a
critical property when large circuits are to be evolved.

• Incremental evolution of subsystems before assembling them into a final system. By de-
signing for modularity in the EHW system, like in paper III, incremental evolution can
be applied. A direct advantage of incremental evolution is that the search space for each
evolution run is reduced significantly, due to the decreased genome size. As an example
the genomes for the subsystems in papers III – VII have been between 44 and 120 bits
long. Further, as shown in paper IV, the incremental approach makes it possible to have
an evaluation module in parallel with the classification module without much resource
overhead, which is an advantage for online adaptable systems. In addition, a significant
increase in recognition accuracy was observed in paper V when subsystems were trained
with different partitions of the training set. The use of incremental evolution has been
facilitated through the pre-defined and relatively fine-grained modularity of the specific
architecture. For applications where architectural modularity is unclear, automatically
defined modules could be an interesting approach. It is however not clear at the moment
how such an approach, with changing and different subsystem sizes, could be mapped to
an online evolutionary system in a practical way.

These schemes have the effect of reducing the genome length, and thus the search space, as
well as eliminating a number of non-working solutions. As a consequence, it becomes possible
to evolve, in a realistic timeframe, a system which is larger and has a higher performance com-
pared to more direct evolutionary approaches. In addition, when compared with other EHW ap-
proaches on smaller problems, Paper VII shows that the proposed system provides significantly
shorter evolution time: At 213 evaluations, the FUR architecture obtains a better recognition
accuracy than what the other architectures obtain after at least 32 times more evaluations.

The employed schemes are all relying more or less on a priori knowledge in order to direct
evolution towards working systems. It can be argued that this approach reduces the possibilities
for evolution to find new and inventive designs. However, in this context, evolution is used
not so much as an invention machine but rather as a tool for achieving an adaptable and self-
optimizing system.

4.1.2 Online Evolution

It should be noted that the system has been designed with online evolution, and thus quickly
reconfigurable hardware architectures, in mind. A consequence of this is that much of the
structural flexibility allowed by a synthesis/place and route process is not available, implying
restricted freedom for evolution. In addition, a virtual reconfiguration approach in general im-
plies high resource usage since all possible connections and functions have to be implemented.
This size-limiting factor has been approached by limiting the number of available functions

4.1. Discussion of Approach and Results 21

to the FUs. Further, the use of time multiplexing of the input data saves resources required
for multiplexers. This could possibly be extended with a more sequential use of the available
hardware resources, where the number of rows in the actual classifier is higher than the num-
ber of rows available in hardware. Such resource-saving methods will of course come at the
expense of slower classification, however this is a tradeoff which could be considered for each
application.

The on-chip online EHW experimental platform developed has shown in papers I and IV
that it is feasible to do on-chip evolution also when offloading some parts of the EA to an
on-chip processor. Results show that the total evolution time for the on-chip system is the
same as for a workstation with a more powerful processor running at 10 to 30 times the clock
speed of the on-chip system. However, the results indicate that in the current on-chip system,
the processor seems to be a bottleneck and therefore, when fast training is a priority, further
optimization needs to be performed. This could be either in terms of software optimizations or
simplifications, or by implementing more of the algorithm in hardware.

4.1.3 Competitiveness

The goal of developing a system for real-world applications has been pursued. However, at this
early stage of research it has been judged too time-consuming to target operational systems for
specific real-world applications. Instead, standard benchmarks for traditional classifiers with
difficult and relatively realistic data have been employed. In this way, the problem difficulty is
high, while at the same time possibilities for comparison with other approaches are maintained.
It should be noted that in a final operational system extra work will be needed in terms of
preprocessing of the input data. Further, other themes than those covered by the employed
benchmarks may be more suited to the architecture’s advantages.

One of the sub-goals was to demonstrate that the developed schemes are competitive for se-
lected applications. The competitiveness against other offline EHW approaches capable of the
same number of inputs has been covered in papers III, V, and VI, showing accuracy improve-
ments. Specifically, the FUR architecture achieved 96.2% accuracy versus 94.7% accuracy for
the LoDETT architecture for the face image recognition task. Further, an accuracy of 91.4%
versus the 83% for the LoDETT system was achieved for the sonar return recognition bench-
mark. Finally, the FUR system obtained an accuracy of 91.6% versus 89.4% for the ECGP
system on the EMG signal classification task.

The competitiveness against earlier proposed online and online-friendly EHW systems has
been studied in paper VII. Since no other online systems designed for the same number of
inputs as the FUR system are known, the comparisons were performed on an application with
a reduced number of inputs. The results indicate that the FUR architecture indeed gives better
accuracy. Specifically, the FUR architecture obtained an accuracy of 90.0% compared to 74.1%
for the PLA-based approach and 79.8% for the ICE architecture.

The competitiveness against traditional classifiers (including state-of-the-art) has been ad-
dressed in papers III and V, while a more thorough comparison has been performed in paper
VI. Accuracies equal to or better than Eigenfaces, Fisherfaces, and ANNs have been indicated
in papers III and V. Specifically, the FUR architecture achieved an accuracy of 95.1% for the
conditions where Eigenfaces scored 90.1% and Fisherfaces scored 95.0% for the face image

22 Chapter 4. Discussion

recognition task. Further, FUR obtains 91.4% for the sonar return classification task, where the
original ANN approach scored 90.4%. Papers III, V and in particular VI address the compari-
son with SVM, today regarded as the best of the traditional classifier methods. The results show
somewhat lower accuracies for the FUR classifier: 96.2% (FUR) versus 98.0% (SVM) for the
image recognition task, 91.4% versus 95.2% for the sonar classification task, and 91.6% versus
94.6% for the EMG classification task. This indicates that at present, SVMs will most likely be
a better choice for applications where classification accuracy is the most important requirement.
The EHW classifier system is, at its present stage, better suited for applications which also have
requirements such as high classification speed (classification in 0.5μs is possible) or possibly
fast training and/or adaptation.

4.2 Conclusion

The main contributions of this thesis can be summarized as follows:

• It has been demonstrated how schemes like incremental evolution, high-level building
blocks, and a specialized architecture can be combined and make it possible to evolve
relatively large online EHW systems for relatively large applications. This makes it pos-
sible to evolve systems for relatively large applications in a reasonable amount of time
and systems for small applications with fewer evaluations than other known comparable
EHW approaches.

• Possible solutions for on-chip run-time adaptive EHW systems, including the use of an
on-chip processor and HW/SW co-design, have been presented. It is demonstrated how
flexibility can be achieved by implementing parts of the EA in SW, while fitness evalua-
tion can be accelerated in HW for training speed. On-chip evolution speed equal to the
speed of a workstation with a much higher clock rate was shown. It is demonstrated how a
small hardware fitness evaluation module can run in parallel with the full-size operational
module in an incremental EHW system.

• A high-performance online EHW classifier architecture has been presented, which classi-
fies realistic standard benchmarks more accurately than earlier presented EHW architec-
tures. Further, it handles larger applications with more inputs and classes than previous
online EHW systems. The classification accuracy is competitive to traditional classifica-
tion methods, while the classification speed is very high because of the parallel imple-
mentation.

It can be concluded that this thesis has contributed to the initial goal of developing schemes
for evolving scalable EHW for real-world applications, with a focus on pattern recognition
systems. Hopefully some of the methods and results could also be of use for the evolution of
other types of systems.

4.3. Future Work 23

4.3 Future Work

Improvements to the presented results could be made, and the following is a list of possible
focus areas of future work:

• A prototype system for a real-world application should be developed. This includes a
search for a suitable application, which would preferably have requirements such as high-
speed classification and/or online adaptation. In addition, further optimization of the EA
SW running on the on-chip processor could be performed in order to reduce bottleneck
problems, and a suitable HW/SW balance could be investigated.

• Improvements to the classifier architecture could be investigated, in the search for even
better classification or less resource usage. In this theme, more flexible or hierarchical
classification rules could be an interesting direction. In addition, better partitioning of the
training set for each FU row could be investigated.

• It could be desirable to classify more categories than what is actually implemented in
hardware. In light of this, a system with "virtual" categories would be interesting, where
classification is partly serialized depending on the available hardware, and the configura-
tion of this is automated.

• Further experiments on online adaptation could be conducted. This could include in-
vestigating applications which would benefit from online adaptation and see how the
architecture performs with regard to changes in the training set.

• The mapping of more flexible schemes into online EHW, such as automatically defined
building blocks, could be an interesting and challenging avenue to investigate.

24 Chapter 4. Discussion

Bibliography

[1] M. Bidlo. Evolutionary design of generic combinational multipliers using development.
In Evolvable Systems: From Biology to Hardware, volume 4684 of Lecture Notes in Com-
puter Science, pages 77–88, 2007.

[2] R. O. Canham and A. M. Tyrrell. A hardware artificial immune system and embryonic
array for fault tolerant systems. Genetic Programming and Evolvable Machines, 4(4):
359–382, 2003. ISSN 1389-2576. doi: http://dx.doi.org/10.1023/A:1026143128448.

[3] E. Cantu-Paz. A survey of parallel genetic algorithms. Calculateurs Paralleles, Reseaux
et Systems Repartis, 10(2):141–171, 1998.

[4] H. de Garis. Evolvable hardware: Genetic programming of a Darwin machine. In C. R. R.
et al., editor, Artificial Neural Nets and Genetic Algorithms - Proc. of the International
Conference in Innsbruck, Austria, pages 441–449. Springer-Verlag, 1993.

[5] H. de Garis. Cam-brain project: The evolution of a billion neuron artificial brain by 2001.
In E. Sanchez and M. Tomassini, editors, Towards Evolvable Hardware: The evolutionary
Engineering Approach. Springer-Verlag, 1996. Lecture Notes in Computer Science, vol.
1062.

[6] K. Glette, J. Torresen, and M. Yasunaga. An Online EHW Pattern Recognition System
Applied to Face Image Recognition. In Proceedings Applications of Evolutionary Com-
puting (EvoWorkshops2007), volume 4448 of Lecture Notes in Computer Science, pages
271–280. Springer, 2007.

[7] R. P. Gorman and T. J. Sejnowski. Analysis of hidden units in a layered network trained
to classify sonar targets. Neural Networks, 1(1):75–89, 1988.

[8] P. Haddow and G. Tufte. Bridging the genotype-phenotype mapping for digital FPGAs.
In Proc. of the Second NASA/DoD Workshop on Evolvable Hardware, 2001.

[9] S. Harding and J. Miller. Evolution in materio: a real-time robot controller in liquid
crystal. Evolvable Hardware, 2005. Proceedings. 2005 NASA/DoD Conference on, pages
229–238, June-1 July 2005. ISSN 1550-6029.

[10] T. Higuchi, T. Niwa, T. Tanaka, H. Iba, H. de Garis, and T. Furuya. Evolving hardware
with genetic learning: a first step towards building a darwin machine. In Proceedings of
the second international conference on From animals to animats 2 : simulation of adaptive
behavior, pages 417–424, Cambridge, MA, USA, 1993. MIT Press. ISBN 0-262-63149-0.

26 Bibliography

[11] T. Higuchi, M. Iwata, I. Kajitani, H. Iba, Y. Hirao, B. Manderick, and T. Furuya. Evolvable
Hardware and its Applications to Pattern Recognition and Fault-Tolerant Systems. In
Towards Evolvable Hardware: The evolutionary Engineering Approach, volume 1062 of
LNCS, pages 118–135. Springer, April 1996.

[12] T. Higuchi, M. Iwata, D. Keymeulen, H. Sakanashi, M. Murakawa, I. Kajitani, E. Taka-
hashi, K. Toda, M. Salami, N. Kajihara, and N. Otsu. Real-world applications of analog
and digital evolvable hardware. IEEE Trans. Evolutionary Computation, 3(3):220–235,
1999.

[13] J. H. Holland. Adaption in Natural and Artificial Systems. The University of Michigan
Press, 1975. Ann Arbor, Michigan.

[14] I. Kajitani, T. Hoshino, M. Iwata, and T. Higuchi. Variable Length Chromosome GA for
Evolvable Hardware. In International Conference on Evolutionary Computation (ICEC),
pages 443–447. IEEE, 1996.

[15] I. Kajitani, T. Hoshino, D. Nishikawa, H. Yokoi, S. Nakaya, T. Yamauchi, T. Inuo, N. Ka-
jihara, M. Iwata, D. Keymeulen, and T. Higuchi. A Gate-Level EHW Chip: Implementing
GA Operations and Reconfigurable Hardware on a Single LSI. In Proceedings 2nd In-
ternational Conference on Evolvable Systems (ICES), volume 1478 of LNCS, pages 1–12.
Springer, 1998. ISBN 3-540-64954-9.

[16] I. Kajitani, I. Sekita, N. Otsu, and T. Higuchi. Improvements to the Action Decision Rate
for a Multi-Function Prosthetic Hand. In Proceedings 1st International Symposium on
Measurement, Analysis and Modeling of Human Functions (ISHF), pages 84–89, 2001.

[17] T. Kalganova. Bidirectional incremental evolution in extrinsic evolvable hardware. In J. L.
et al., editor, Proc. of the 2nd NASA/DoD Workshop on Evolvable Hardware, pages 65–74.
IEEE Computer Society, Silicon Valley, USA, July 2000.

[18] J. Koza, M. Keane, and M. Streeter. Routine high-return human-competitive evolvable
hardware. Evolvable Hardware, 2004. Proceedings. 2004 NASA/DoD Conference on,
pages 3–17, June 2004.

[19] J. Koza et al. The importance of reuse and development in evolvable hardware. In J. L.
et al., editor, Proc. of the 2003 NASA/DoD Conference on Evolvable Hardware, pages
33–42. IEEE, 2003.

[20] J. R. Koza. Automated design of both the topology and sizing of analog electrical circuits
using genetic programming. In J. S. Gero and F. Sudweeks, editors, Artificial Intelligence
in Design ’96. Dordrecht: Kluwer Academic Publishers, 1996.

[21] J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs. The
MIT Press, 1994.

[22] J. Lohn, G. Hornby, and D. Linden. Evolutionary antenna design for a NASA spacecraft.
In U.-M. O’Reilly, T. Yu, R. L. Riolo, and B. Worzel, editors, Genetic Programming

Bibliography 27

Theory and Practice II, chapter 18, pages 301–315. Springer, Ann Arbor, 13-15 May
2004. ISBN 0-387-23253-2.

[23] S. Lynch. A platform for intrinsic evolution of digital circuits on Virtex II pro. B.E. elec-
tronic and computer engineering project report, National University of Ireland, Galway,
2006.

[24] A. Megacz. A library and platform for FPGA bitstream manipulation. In FCCM ’07:
Proceedings of the 15th Annual IEEE Symposium on Field-Programmable Custom Com-
puting Machines, pages 45–54, Washington, DC, USA, 2007. IEEE Computer Society.
ISBN 0-7695-2940-2.

[25] J. Miller, D. Job, and V. Vassilev. Principles in the evolutionary design of digital circuits
– Part I. Journal of Genetic Programming and Evolvable Machines, 1(1):8–35, 2000.

[26] M. Murakawa, S. Yoshizawa, I. Kajitani, T. Furuya, M. Iwata, and T. Higuchi. Hardware
Evolution at Function Level. In Proceedings 4th Parallel Problem Solving from Nature
(PPSN), volume 1141 of LNCS, pages 62–71. Springer, September 1996.

[27] M. Murakawa et al. The grd chip: Genetic reconfiguration of dsps for neural network
processing. IEEE Transactions on Computers, 48(6):628–638, June 1999.

[28] L. Sekanina. Evolvable Components: From theory to Hardware Implementations.
Springer-Verlag, 2004. ISBN 3-540-40377-9.

[29] L. Sekanina and M. Bidlo. Evolutionary design of arbitrarily large sorting networks using
development. Genetic Programming and Evolvable Machines, 6(3):319–347, 2005. ISSN
1389-2576.

[30] L. Sekanina and R. Ruzicka. Design of the Special Fast Reconfigurable Chip Using Com-
mon FPGA. In Proceedings of the IEEE Conference on Design and Diagnostics of Elec-
tronic Circuits and Systems (DDECS), pages 161–168, 2000.

[31] A. Stoica, D. Keymeulen, R. Tawel, C. Salazar-Lazaro, and W. te Li. Evolutionary experi-
ments with a fine-grained reconfigurable architecture for analog and digital cmos circuits.
In Proceedings of the 1st NASA/DOD workshop on Evolvable Hardware, page 76, Wash-
ington, DC, USA, 1999. IEEE Computer Society. ISBN 0-7695-0256-3.

[32] A. Stoica, D. Keymeulen, and R. Zebulum. Evolvable hardware solutions for extreme
temperature electronics. In Proceedings of the 3rd NASA/DOD workshop on Evolvable
Hardware, page 93, Los Alamitos, CA, USA, 2001. IEEE Computer Society. ISBN 0-
7695-1180-5.

[33] M. Tanaka, H. Sakanashi, M. Salami, M. Iwata, T. Kurita, and T. Higuchi. Data compres-
sion for digital color electrophotographic printer with evolvable hardware. In M. Sipper
et al., editors, Evolvable Systems: From Biology to Hardware. Second International Con-
ference, ICES 98, volume 1478 of Lecture Notes in Computer Science, pages 106–114.
Springer-Verlag, 1998.

28 Bibliography

[34] A. Thompson. Silicon evolution. In Proc. of Genetic Programming, 1996.

[35] J. Torresen. Two-Step Incremental Evolution of a Digital Logic Gate Based Prosthetic
Hand Controller. In Proceedings 4th International Conference on Evolvable Systems
(ICES), volume 2210 of Lecture Notes in Computer Science, pages 1–13. Springer, 2001.

[36] J. Torresen. Evolving multiplier circuits by training set and training vector partitioning. In
P. H. A. Tyrrell and J. Torresen, editors, Evolvable Systems: From Biology to Hardware.
Fifth International Conference, ICES’03, volume 2606 of Lecture Notes in Computer Sci-
ence, pages 228–237. Springer-Verlag, 2003.

[37] J. Torresen. A divide-and-conquer approach to evolvable hardware. In M. Sipper et al.,
editors, Evolvable Systems: From Biology to Hardware. Second International Conference,
ICES 98, volume 1478 of Lecture Notes in Computer Science, pages 57–65. Springer-
Verlag, 1998.

[38] G. Tufte and P. C. Haddow. Building knowledge into development rules for circuit design.
In Proceedings of 5th International Conference on Evolvable Systems: From Biology to
Hardware, ICES2003, volume 2606, pages 117–128, Trondheim, Norway, 2003. Springer-
Verlag.

[39] G. Tufte and P. C. Haddow. Biologically-inspired: A rule-based self-reconfiguration of
a virtex chip. In M. Bubak, G. D. van Albada, and P. M. A. S. et al., editors, Proc. of
International Conference on Computational Science 2004, volume 3038 of Lecture Notes
in Computer Science, pages 1249–1256, May 2004.

[40] G. Tufte and P. C. Haddow. Towards development on a silicon-based cellular computing
machine. Natural Computing: an international journal, 4(4):387–416, 2005. ISSN 1567-
7818.

[41] A. M. Tyrrell, E. Sanchez, D. Floreano, G. Tempesti, D. Mange, J. M. Moreno, J. Rosen-
berg, and A. E. P. Villa. POEtic tissue: An integrated architecture for bio-inspired hard-
ware. In ICES, pages 129–140, 2003.

[42] A. Upegui. Dynamically Reconfigurable Bio-inspired Hardware. PhD thesis, Ecole Poly-
technique Fédérale de Lausanne (EPFL), 2006. Thesis No. 3632.

[43] D. J. V. Vassilev and J. Miller. Towards the automatic design of more efficient digital cir-
cuits. In J. L. et al., editor, Proc. of the 2nd NASA/DoD Workshop on Evolvable Hardware,
pages 151–160. IEEE Computer Society, Silicon Valley, USA, July 2000.

[44] J. A. Walker and J. F. Miller. Evolution and acquisition of modules in cartesian genetic
programming. In Genetic Programming, 7th European Conference, EuroGP2004, pages
187–197, 2004.

[45] M. Yasunaga, T. Nakamura, and I. Yoshihara. Evolvable Sonar Spectrum Discrimination
Chip Designed by Genetic Algorithm. In Systems, Man and Cybernetics, volume 5, pages
585–590. IEEE, 1999.

Bibliography 29

[46] M. Yasunaga, T. Nakamura, I. Yoshihara, and J. Kim. Genetic Algorithm-based Design
Methodology for Pattern Recognition Hardware. In Proceedings 3rd International Con-
ference on Evolvable Systems (ICES), volume 1801 of Lecture Notes in Computer Science,
pages 264–273. Springer, 2000.

