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ABSTRACT 18 

Precipitation efficiency (PE) relates cloud condensation to precipitation and intrinsically binds 19 

atmospheric circulation to the hydrological cycle. Due to PE’s inherent microphysical 20 

dependencies, definitions and estimates vary immensely. Consequently, PE’s sensitivity to 21 

greenhouse warming and implications for climate change are poorly understood. Here, we quantify 22 

PE’s role in climate change by defining a simple index 𝜖 as the ratio of surface precipitation to 23 

condensed water path. This macroscopic metric is reconcilable with microphysical PE measures 24 

and higher 𝜖 is associated with stronger mean Walker circulation. We further find that state-of-25 

the-art climate models disagree on the sign and magnitude of future 𝜖  changes. This sign 26 

disagreement originates from models’ convective parameterizations. Critically, models with 27 

increasing 𝜖 under greenhouse warming, in line with cloud-resolving simulations, show greater 28 

slowdown of the large-scale Hadley and Walker circulations and a two-fold greater increase in 29 

extreme rainfall than models with decreasing 𝜖.  30 
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Precipitation efficiency (PE) quantifies the fraction of condensed water in a cloud to reach the 31 

surface as precipitation. In the tropics, precipitation is dominated by highly transient, spatially 32 

restricted, deep convective events driving intense upwards mass fluxes that, in aggregate, compose 33 

the ascending branches of the meridional Hadley and zonal Walker circulations. As an air parcel 34 

rises within a cumulus cloud and some of the water vapor it contains condenses, it rains out a 35 

fraction of its water content leaving the remaining condensate to interact with incoming and 36 

outgoing radiation. Some of the precipitation evaporates as it falls back through the atmosphere, 37 

which cools the air and directly drives local downward mass fluxes. A higher PE implies lower 38 

evaporation of hydrometeors and greater net latent heat release by convective towers. Total cloud 39 

condensation and re-evaporation of falling precipitation are both macrophysical manifestations of 40 

inherently microphysical processes. PE can be applied to larger scales by considering a cloud 41 

ensemble - the statistical average over multiple transient deep-convective updrafts and downdrafts 42 

[1]. 43 

Environmental controls on PE can be combined into three groups: cloud microphysics, 44 

entrainment and convection dynamics [2], but work to understand how these controls relate to 45 

climate and anthropogenic influence is only now coming to the fore. A recent local-scale 46 

observational study at Darwin, Australia found that PE increases with free-tropospheric humidity 47 

and decreases with both surface temperature (𝑇!) and convective available potential energy [3]. In 48 

contrast, limited domain cloud-resolving model (CRM) studies of radiative convective equilibrium 49 

indicate that PE increases with 𝑇! [4, 5]. Further, aerosol loading can also modulate PE in shallow 50 

and deep clouds by modifying microphysical processes [6, 7]. 51 

Changes in PE are of significant interest because they could relate to a number of changes 52 

at planetary and smaller scales in contemporary climate. Firstly, since PE controls the relationship 53 
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between upward and downward convective mass fluxes and aggregate convective mass fluxes 54 

result in large-scale overturning, PE may provide insight into how the tropical circulation responds 55 

to greenhouse gases [1]. Secondly, limited-domain cloud resolving modeling indicates that the 56 

microphysical processes encapsulated by PE [4, 8] may be useful in understanding projections of 57 

increases in precipitation extremes with warming [9]. Lastly, since higher PE results in less 58 

detrainment of cloud condensate at high altitudes, PE has been hypothesized to play a role in cloud 59 

feedback [10-14]. 60 

In a warmer atmosphere, it is unclear whether PE will decrease [3], remain constant [15, 61 

16], or increase [4, 5, 17]. A theoretical constraint on PE based on an entraining plume model is 62 

that PE should be greater than or equal to one minus relative humidity [18]. This is, however, only 63 

a weak constraint for PE as updrafts are typically near saturation. With higher temperature and 64 

more radiative cooling, precipitation increases and convective mass flux decreases [1]. This 65 

implies an increase in the intensity of precipitation or increase in PE, but this expectation is 66 

unconfirmed in observations and models alike. Global Climate Models (GCMs) predict a robust 67 

increase of 2-3% in global precipitation per degree Celsius (°C) of warming [19, 20]. Meanwhile, 68 

cloud condensation is sensitive to a multitude of environmental conditions such as tropospheric 69 

temperature, humidity, and stratification, and may increase [5] or decrease [21] with warming at 70 

different altitudes. Thus, changes to PE – being the ratio of precipitation to condensation – are 71 

equivocal.  72 

The question of how PE will change with warming is challenging to address, due to the 73 

wide diversity in PE definitions across studies using observations, CRMs, and GCMs (see [22] for 74 

the latest review). Definitions of PE can be generally categorized into large-scale PE 𝜖"! and cloud 75 

microphysical PE 𝜖# [23].	𝜖"!, the ratio of surface precipitation 𝑃! to the sub-cloud water vapor 76 
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convergence, has been widely used to study thunderstorms. 𝜖"! takes values ranging from 0.1 to 77 

greater than 1 [24] depending on environmental factors, such as vertical wind shear, sub-cloud 78 

humidity, and cloud base areal extent [25]. However, this measure of PE is limited to studying 79 

individual convective events. When averaged over space and time,  𝜖"! is by definition equal to 80 

unity since what goes up must come down. As 𝜖"! is sensitive to the spatial and temporal scales 81 

considered [26], it is inappropriate for climatological PE analysis. 82 

 By contrast, 𝜖# – the ratio of 𝑃! to the column-integrated condensation rate 𝐶 – is typically 83 

less than unity over various spatiotemporal scales owing to the evaporation of falling hydrometeors 84 

before they reach the surface as precipitation. However, 𝜖# is difficult to directly observe due to 85 

its inherent microphysical dependence. The typical range of 𝜖# averaged over a limited domain 86 

CRM in radiative convective equilibrium is 0.2 to 0.5 [5, 27, 28], which is similar to that inferred 87 

in observational studies of tropical convection [29], mid-latitude squall lines [30], and mid-latitude 88 

cyclones [31]. The magnitude of 𝜖# is sensitive (up to 50% relative change) to the computational 89 

implementation of condensate removal in the CRM [5], which occurs at multiple levels 90 

simultaneously. 91 

Given the inherent problems in using 𝜖"! and 𝜖# across different models and observations, 92 

the goal of this paper is to introduce a simple physical measure of PE applicable across different 93 

spatial scales to serve as a metric linking the macro and microphysical approaches.  We will then 94 

quantify the relation between PE and the mean climatological state in the tropics and investigate 95 

the role of PE in climate change. 96 

 97 

DEFINING A PRECIPITATION EFFICIENCY MEASURE 98 

In this study, we define a PE measure as: 99 
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𝜖 =
𝑃!

𝐶𝑊𝑃	[𝑢𝑛𝑖𝑡𝑠:	𝑠
$%]			(1) 100 

where 𝐶𝑊𝑃 is the condensed water path, i.e., the column integrated cloud liquid and ice content. 101 

See Methods for a brief discussion of the uncertainties. Similar expressions have been used in 102 

previous studies for water vapor cycling [31] and warm clouds [17, 32]; 𝜖 differs from those in 103 

that it uses the total condensate budget. Since PE is a manifestation of microphysical processes, it 104 

is critically important that an index quantifying it can be linked to this microphysics. Limited 105 

domain CRM studies have been able to explicitly compute microphysical 𝜖#  by outputting 106 

condensation rates at each vertical level [5]. However, this is not feasible in climatological 107 

observations of nature nor in GCMs. Therefore, we validate the use of 𝜖 as a measure of PE by 108 

running a set of CRM experiments (Methods) and computing both 𝜖 and 𝜖#. The macrophysical 109 

𝜖 of Equation (1) is tightly correlated to the microphysical 𝜖# (𝑟 = 0.86; Extended Fig. 1 and 110 

Extended Fig. 2). The exclusive use of macrophysical variables in	𝜖 enables comparison between 111 

observations, CRMs, and GCMs.  112 

Unlike the parameter 𝜖# , the present formulation for 𝜖 is dimensional. As such, it is a 113 

general measure or index of PE and not an efficiency defined as a fraction of unity. For brevity 114 

and given the tight correlation of 𝜖 with 𝜖#,	we herein refer to the parameter 𝜖 as PE.   115 

The 𝜖 metric could be calculated at various spatial and temporal resolutions. Within time-116 

space aggregated values, the average is composed of a variety of cloud types, such as non-117 

precipitating shallow clouds and mixed-phase clouds. Within each of these cloud types, PE will 118 

vary in correspondence with the relevant cloud physics. We use climatological 𝜖 to represent the 119 

net effect of these clouds within the tropical cloud ensemble. 120 

The inverse 𝜖$% = 𝜏 is a characteristic residence timescale for the total condensed cloud 121 

water across an ensemble of cloud types, or a characteristic drying timescale for the atmosphere if 122 
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condensation has stopped. Satellite-based observations indicate a tropical-mean 𝜏  of about 46 123 

minutes (Fig. 1; [33]). This low 𝜏  value reflects the vigorous hydrological cycling of the 124 

atmosphere, constantly requiring high rates of condensation to maintain the atmospheric stock of 125 

CWP. In this timescale interpretation, precipitation is assumed to be a first-order process within 126 

the CWP budget (Methods). This assumption holds well in satellite observations (Fig. S1) and, to 127 

some degree, in GCMs. As such, we think of 𝜖 as an emergent diagnostic linked to the drying 128 

timescale of the atmosphere. Its value is close to, but slightly different from the e-folding rate of 129 

condensed water removal. 130 

The spatial pattern of annual-mean observed 𝜖 is broadly correlated with regions of high 131 

climatological precipitation (Fig. 1a). Regions of high 𝜖  ( > 0.8 × 10$&𝑠$% ) are tropical 132 

convergence zones with intense time-mean precipitation, such as the Indo-Pacific warm pool (WP; 133 

20S-20N, 80E–170E). Low 𝜖  (< 0.2 × 10$&𝑠$% ) is found in subsidence regions such as the 134 

Eastern Pacific (EP; 20S–20N, 140W–80W) and Atlantic subtropics. Local 𝜖 can be large due to 135 

small CWP, such as on the coast of the Arabian Peninsula, but these arid regions have little 136 

climatological precipitation and 𝜖 is thus not a suitable index there. Over the WP, 𝜖 increases 137 

spatially with 𝑇!. Deep convection preferentially occurs over warm SSTs and this favors stronger 138 

updrafts and more precipitation. From 26 to 29°C, 𝜖  doubles from 0.4 × 10$&𝑠$%  to 0.8 139 

× 10$&𝑠$% , halving the residence time (Fig. 1b). With reduced residence time, microphysical 140 

processes such as re-evaporation of raindrops and entrainment of dry and less buoyant air are less 141 

effective at reducing the flux of hydrometeors reaching the surface. This corresponds to weaker 142 

downdrafts and greater net latent heat release by convective updrafts. 143 

The observed interannual standard deviation of tropical 𝜖 is 2.8%. The 2002-2020 period 144 

of these available observations includes the global warming hiatus [34], hindering the monitoring 145 
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of the temperature sensitivity of 𝜖 . Regional magnitudes of 𝜖  are sensitive to 𝑇! , which is 146 

dominated by the inter-annual variability of sea surface temperatures (SSTs) in the Pacific Ocean 147 

(Fig. 2). During El Nino, when the EP warms due to suppressed ocean upwelling, the zonal SST 148 

gradient is reduced. The atmosphere responds with more frequent deep convection, resulting in 149 

more cloudiness and higher 𝑃! in the central and eastern Pacific. This is corroborated by a positive 150 

correlation (𝑟 = 0.60) between the Nino3.4 SST index and EP-mean 𝜖, and a negative correlation 151 

between the Nino3.4 index and 𝜖 averaged over the WP, 𝜖'(   (𝑟 = −0.74; Extended Fig. 3). 152 

During El Nino, 𝜖'(  is lower and 𝜖  averaged over the EP is higher (Fig. 2). The regionally 153 

different responses of 𝜖  to underlying SST, combined with the ENSO correlations, reveal the 154 

significance of non-local dynamics on local PE. 155 

 156 

LINKING PE TO THE TROPICAL MEAN-STATE 157 

We find significant negative temporal correlations between the observed monthly Outgoing 158 

Longwave Radiation (OLR) and 𝜖'(  (Fig. 3a). The local OLR vs. 𝜖'(  correlations are 159 

particularly strong over the WP and equatorial South America, associating high PE with deep 160 

convection of higher intensity or frequency. The sign of the observed convection-PE relationship 161 

in the WP is captured by the ERA5 reanalysis and the majority of CMIP6 models (Fig. S2). 162 

Consistent with these correlations, over the past two decades, there was an intensification of WP 163 

precipitation [35] coinciding with trends of increased occurrence frequency of deep anvil clouds 164 

[36]. 165 

The correlations between OLR and 𝜖'( in Fig. 3a display a similar spatial pattern to the 166 

mean-state Walker circulation. This is seen in negative correlations in the dominant ascending 167 

branches over the WP and northern South America and positive correlations in descending 168 
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branches over the subtropical eastern Pacific and equatorial Atlantic. The strength of the Pacific 169 

Walker circulation, measured by the mean sea level pressure difference (𝑑𝑆𝐿𝑃) between the 170 

western and eastern equatorial Pacific (Methods), is robustly correlated with 𝜖'( across CMIP6 171 

models (𝑟 = 0.63; Fig. 3b). High PE implies a greater rate of net latent heat release by precipitation 172 

per convective cloud. Concurrently, a stronger Walker circulation is sustained, with stronger 173 

ascending motion in the WP. Although observationally-based ERA5 data also exhibits a positive 174 

correlation between 𝜖  and Walker Circulation strength of similar magnitude (not shown), this 175 

relationship is complicated by strong El Niño impacts on 𝜖. 176 

 177 

CHANGES IN 𝛜 WITH GREENHOUSE WARMING 178 

During periods covered by satellite observations (2002-2020) and reanalysis (1979-2021) tropical 179 

mean temperature variability is constrained to within 0.5 °C. These records are unfortunately 180 

therefore limited guides to the sensitivity of 𝜖 to 𝑇!, 𝜕𝜖/𝜕𝑇!. By contrast, the CMIP6 ensemble 181 

explores tropical temperature increases up to 4 °C in a large number of individual models (Fig. 4). 182 

We find very large dispersion between CMIP6 models in the slope of 𝜕𝜖/𝜕𝑇! . After 2 °C of 183 

warming, the ensemble mean PE response is 2.5%, with an intra-model range of −7% to +12%. 184 

This range reflects relative changes in both 𝑃! and CWP (Extended Fig. 4). Intra-model diversity 185 

in the representation of convection is a likely cause of this wide range in 𝜖 sensitivity. Given this, 186 

we use a limited domain cloud resolving model SAM (Methods) in which convection is explicitly 187 

resolved to explore the range of tropical temperatures found in the CMIP6 SSP5-8.5 simulations 188 

of twenty-first century anthropogenic warming. In these SAM simulations, 𝜖  increases with 189 

temperature (Fig. 4), consistent with a previous study [5] that used the same model but studied a 190 

microphysical measure of PE. 191 
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While the relationship between convective aggregation and warming remains an unsettled 192 

research question [37], convective aggregation prefers warmer SSTs and is associated with high 193 

PE [38]. Within aggregated convection, precipitation falls through columns of high humidity air, 194 

resulting in less evaporation and implying higher PE [39]. On the other hand, the abundance of 195 

clear-sky regions in aggregated convection favors the presence of boundary layer clouds which 196 

typically re-evaporate with near zero PE [5]. We investigate these competing effects upon cloud 197 

ensemble PE by running two sets of SAM simulations – a large domain (1024 by 1024 km2, SAM-198 

L) and a small domain (512 by 512 km2, SAM-S). Self-aggregation of convection is known to be 199 

inhibited in smaller domain sizes [37] and indeed the principal difference between SAM-L and 200 

SAM-S is that convection is aggregated in the former and disaggregated in the latter (Extended 201 

Fig. 5). In the absence of self-aggregation, ϵ increases with 𝑇!  at a rate of 2% per °C. When 202 

convection is aggregated, 𝜕𝜖/𝜕𝑇! increases to a rate of 5% per °C. This suggests that the impact 203 

of reduced evaporation of rainfall (raising cloud ensemble PE) dominates over the impact of more 204 

prevalent low clouds (lowering cloud ensemble PE). While the sign of these CRM-estimated 205 

𝜕𝜖/𝜕𝑇! are positive, consistent with [5], its magnitude may depend on precipitation microphysics 206 

in the CRM, requiring future work. 207 

Generally, there exists two groups of GCMs in Fig. 4, divided cleanly on the sign of their 208 

sensitivity of ϵ to 𝑇!: (1) models in which ϵ increases with 𝑇! and (2) models in which ϵ decreases 209 

with 𝑇!. We find that this disagreement can be traced to whether or not precipitation is represented 210 

as dependent (e.g. [40]) or independent (e.g. [41]) of ascending mass flux in a convective grid cell 211 

within these GCM’s convective parameterizations (see Supplementary Table 1). The mass-flux 212 

dependence of convective precipitation allows higher ϵ when the environmental conditions favor 213 

strong vertical ascent. This dependence is absent in GCMs with convective precipitation 214 
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proportional to cloud water only, which collectively show weak or negative sensitivity of 𝜖 to 𝑇!. 215 

The response of ϵ to warming in models that possess this mass-flux dependence is similar in 216 

magnitude and slope to those predicted by CRM simulations. The magnitude of mean-state ϵ in 217 

some models can be different up to a factor of 2-3 compared to observations and CRMs, which 218 

should be noted and requires future work (Fig. S3). Thus, a longer record of ϵ is required to 219 

confirm the positive 𝜕𝜖/𝜕𝑇!  relationship predicted by the CRM and the CMIP6 GCMs with 220 

updraft dependent precipitation parameterizations. 221 

 222 

IMPLICATIONS FOR FUTURE CLIMATE 223 

Next, we investigate the role of precipitation efficiency in climate change, focusing on 224 

several key interwoven questions: What role does PE play in controlling the response of large-225 

scale atmospheric circulation, temperature distribution and precipitation extremes to greenhouse 226 

warming? Does the sign of 𝜕𝜖/𝜕𝑇! across CMIP6 models affect climate change projections? 227 

The tropical circulation is expected to weaken under anthropogenic climate change from 228 

both dynamic [42] and thermodynamic [43] perspectives. GCMs generally predict the Hadley cells 229 

will widen and weaken in the twenty-first century [44]. The Southern Hemisphere cell’s response 230 

is expected to be dominated by widening, while the Northern Hemisphere cell is predicted mostly 231 

to weaken [45], consistent with the changes shown in Fig. 5. The predicted magnitudes of Northern 232 

Hemisphere Hadley cell weakening are highly variable between models in CMIP5 [44] and CMIP6 233 

(this lack of consensus is visualized as the absence of shading between 5–30ºN in Extended Fig. 234 

6). This range in predictions is not well understood [45]. We find here that much of this intra-235 

model disagreement in projected Northern Hemisphere Hadley cell slowdown (Extended Fig. 6) 236 

is directly aligned with differences in the warming response of PE (Fig. 5b).  237 
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Binning GCMs into two groups based on the sign of 𝜕𝜖/𝜕𝑇!, we find that models with 238 

positive 𝜕𝜖/𝜕𝑇!  exhibit stronger warming responses (Fig. 5a) and amplified reductions of the 239 

zonal-mean mass streamfunction 𝜓  under greenhouse warming (Fig. 5b). Robust weakening 240 

signals are present in the Hadley Circulation northern and southern branches, indicated by the 241 

opposite sign of present-day 𝜓 and its warming response ∆𝜓. Regional differences in ∆𝜓 can be 242 

as large as 30%. These results suggest that, all else being equal, models with positive 𝜕𝜖/𝜕𝑇! 243 

possess efficient deep convective towers that collectively release more net latent heat (or 244 

equivalently, have less evaporative cooling). On the other hand, deep convective towers become 245 

less efficient in models with negative 𝜕𝜖/𝜕𝑇! , requiring a stronger circulation to sustain more 246 

latent heating. This argument conforms to the mass flux view [43] of tropical circulation slowdown 247 

Fig. S4). Considering the difference in the maximum overturning as a measure of Hadley cell 248 

intensity, positive 𝜕𝜖/𝜕𝑇! corresponds to 4.5% more weakening of the northern cell compared to 249 

negative 𝜕𝜖/𝜕𝑇! (Fig. 6). This difference in Hadley circulation weakening north of the equator, 250 

reduced when normalized by temperature (Extended Fig. 7), is strongly coupled to the overall 251 

planetary temperature response. Weakening of the southern cell is less pronounced in CMIP6 [45] 252 

and hence the differences between model groups are not statistically significant. 253 

The Pacific Walker circulation also exhibits relative changes different between the two 254 

model groups. Measured by the subsiding pressure velocity in the eastern equatorial Pacific 255 

(Methods), the Walker circulation weakens by 30% in positive 𝜕𝜖/𝜕𝑇! models compared to 16% 256 

in negative 𝜕𝜖/𝜕𝑇! models, (Fig. 6). Thus, the demonstrated link between future changes in 𝜖 and 257 

the large-scale circulation suggests that the assumption of constant PE in changing tropical 258 

circulations is inadequate. After normalizing by temperature (Extended Fig. 7), these differences 259 
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are less pronounced but remain statistically significant, suggesting both dynamic and 260 

thermodynamic contributions to the Pacific Walker cell response. 261 

We also find that the expected increase in extreme precipitation under climate change [46], 262 

measured as the 99.9th percentile of daily-mean precipitation (𝑃)).)), is more than twice as strong 263 

in positive 𝜕𝜖/𝜕𝑇!  models than in negative 𝜕𝜖/𝜕𝑇!  models. Specifically, global 𝑃)).)  increases 264 

19.5% in positive 𝜕𝜖/𝜕𝑇! models, versus only 9.4% in negative 𝜕𝜖/𝜕𝑇! models. These differences 265 

remain statistically significant after normalizing 𝑃)).) by effective climate sensitivity (Extended 266 

Fig. 7). This implies that the CMIP6 ensemble estimate of precipitation extreme increase could 267 

underestimate the true value by over a third, in line with the results of [47]. This result quantifies 268 

the microphysical contribution to hydrological cycle sensitivity, generally divided only into 269 

dynamic and thermodynamic contributions. 270 

Aerosol and indirect greenhouse gas effects can add higher order complexity to the 271 

temperature related effects on 𝜖 discussed in the present study. This can be further explored in 272 

existing model intercomparison projects such as Ref [48], an avenue for future work.  273 

In summary, we have defined and explored the observed climatology of the PE index, 𝜖, 274 

its temporal variation and link to the large-scale tropical circulation and precipitation extremes. 275 

We find that the CMIP6 GCMs that have precipitation represented as independent of vertical mass 276 

flux in their deep convection parameterization schemes all simulate decreasing 𝜖 with warming. 277 

This opposes predictions by CRM simulations of projected twenty-first century tropical surface 278 

temperatures. GCMs that predict positive 𝜕𝜖/𝜕𝑇! show robust additional weakening of the Hadley 279 

and Walker circulations, amplified atmospheric warming, and higher sensitivity of extreme 280 

precipitation events. Consequently, constraining the sensitivity of 𝜖 to temperature is critical for 281 

quantifying the climate response to anthropogenic forcing. 282 
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FIGURE CAPTIONS 299 

Fig. 1. Climatology and correspondence of precipitation efficiency index 𝝐 with temperature. 300 

(a) Spatial distributions of annual-mean 𝜖 in units 10$&𝑠$% estimated from satellite observations. 301 

Green contours outline regions with 6 mm per day or more surface precipitation in the annual 302 

mean. (b) Annual-mean 𝜖 scattered against surface temperature 𝑇! within the broad Indo-Pacific 303 

warm pool region (defined as the left box in panel a). Satellite observations are derived from 304 

MODIS and TRMM (see Methods) spanning July 2002 to September 2019.   305 
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Fig. 2. Time evolution of 𝝐. Observed 𝜖 and 𝑇! averaged over the entire tropics (30°S–30°N; solid 306 

red and blue lines), the Indo-Pacific warm pool (20°S–20°N, 80°E–170°E; dashed lines), and the 307 

Eastern Pacific (20°S–20°N, 140°W–80°W; dotted lines). 12-month smoothing is applied to 308 

remove the annual cycle. Note several El Niño events, including in 2006, 2009 and 2015.  309 
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 310 

Fig. 3. Precipitation efficiency 𝝐  and the large-scale tropical circulation. (a) Temporal 311 

correlation coefficients between outgoing longwave radiation (OLR) and annual-mean 𝜖'(  in 312 

satellite observations, with hatching where the p-value for the correlation is lower than 0.05. (b) 313 

The strength of the Pacific Walker circulation versus 𝜖'(  in 44 CMIP6 models, a reanalysis 314 

(ERA5), and satellite observations. The line represents a linear regression over all blue points. 𝜖'( 315 

denotes the spatial average of 𝜖 over the Indo-Pacific Warm Pool (Box in panel a). Here, east-west 316 

sea level pressure difference along the equator, 𝑑𝑆𝐿𝑃 , is used as a measure of the Walker 317 

circulation (Methods).  318 
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 319 

Fig. 4. Sensitivity of 𝛜 to surface temperature. Changes in precipitation efficiency index 𝜖 with 320 

surface temperature 𝑇! in observations (black squares), ERA5 reanalysis (grey squares), CRMs 321 

(diamonds), and 30 CMIP6 GCMs with 22 mass-flux dependent models (Group 1; solid color lines) 322 

and 8 mass-flux independent models (Group 2; dashed color lines) in their parameterizations of 323 

deep convective precipitation (See Methods). Multi-model mean slopes are estimated by 324 

regressing 𝜖 onto 𝑇!, then taking the average, for Group 1 (solid black line), Group 2 (dashed black 325 

line), and all models (dotted black line). Both 𝜖 and 𝑇! are annual-means and averaged spatially 326 

over the entire Tropics (30ºS–30ºN), with the exception of SAM-S (blue diamonds) and SAM-L 327 

(red diamonds), which are 15-day and computational domain averages. 10-year smoothing is 328 

applied to improve clarity.   329 



 21 

 330 

Fig. 5. Impact of 𝝐 on Changes in Temperature and Atmospheric Meridional Circulation 331 

under Greenhouse Warming. Difference in the anthropogenic response (defined here as the 332 

2085-2100 average minus the 2015-2030 average in the SSP5-8.5 warming scenario) of (a) zonal-333 

mean temperature (ΔT) and (b) mass streamfunction (Δ𝜓; colors) between two groups of CMIP6 334 

GCMs: models with positive 𝜕𝜖/𝜕𝑇! (22 models) minus those with negative 𝜕𝜖/𝜕𝑇! (8 models) 335 

as displayed in Fig. 4. The multi-model-mean zonal-mean circulation averaged from 2015 to 2030 336 

is shown in solid (positive and counter-clockwise) and dotted (negative and clockwise) contours. 337 

Hatching represents p-values less than 0.1 using Student’s t-test. Note the greater atmospheric 338 

warming and more pronounced weakening of the northern Hadley cell for the models with positive 339 

𝜕𝜖/𝜕𝑇!.  340 
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 341 

Fig. 6. Role of 𝝐 in Climate Change. The response to greenhouse warming of the northern (𝜓#+,- ) 342 

and southern branches (𝜓#+,. ) of the Hadley circulation, the Pacific Walker circulation (𝜔/(), and 343 

extreme precipitation (global 99.9th percentile daily precipitation, 𝑃)).)) averaged among two 344 

groups of CMIP6 models with positive 𝜕𝜖/𝜕𝑇!  (red) and negative 𝜕𝜖/𝜕𝑇!  (blue) under the 345 

SSP585 scenario. Maximum zonal-mean streamfunction 𝜓 and eastern equatorial Pacific pressure 346 

velocity 𝜔 are used as measures of the Hadley and Walker circulations, respectively (Methods). 347 

Changes are defined as years 2085-2100 minus years 2015-2030. Error bars show multi-model 348 

spread. Differences in 𝜓#+,- , 𝜔/(  and 𝑃)).) have p-values less than 0.05 using Student’s t-test. 349 

Models with increasing 𝜖  under greenhouse warming show greater large-scale atmospheric 350 

circulation slowdown and a greater increase in extreme rainfall than models with decreasing 𝜖.  351 
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METHODS 498 

𝜖 and the e-folding timescale of condensed water removal 499 

In a static atmosphere, assuming no sources and allowing complete dry out, condensate removal 500 

can conceptually be represented by the power law relationship 501 

𝑑
𝑑𝑡
(𝐶𝑊𝑃) = 𝛼(𝐶𝑊𝑃)0 , (2) 502 

for a power 𝜁 and inverse timescale 𝛼. 𝛼 in this idealized atmosphere is analogous to 𝜖 in the real 503 

atmosphere. If 𝜁 = 1, Equation (2) becomes the exponential decay equation where CWP has an e-504 

folding timescale of 𝛼$%. For 𝜁 ≠ 1, the solution is 505 

𝐶𝑊𝑃(𝑡) = [𝛼(𝜁 − 1)𝑡 + 1]
%
%$0 		(3) 506 

This leads to an e-folding timescale 𝑡1 of 507 

𝑡1 =
1
𝛼
𝑒0$% − 1
𝜁 − 1 = 𝜂/𝛼, 508 

 509 

Where 𝜂 is the correction coefficient for the e-folding timescale of 𝛼$%. As 𝜂 approaches 1, the e-510 

folding timescale approaches 𝛼$%. From the satellite observations, 𝜁 = 0.64 and 𝜂 is 0.84 (Fig. 511 

S1). The assumption in Equation (2) of zero condensation sources makes the 𝜖$%  “drying” 512 

timescale an upper bound. In reality, condensing clouds oppose this drying and depart from the e-513 

folding timescale 𝜖$%. 514 

 515 

Observations 516 

We use monthly liquid water path and ice water path data from the MODerate-resolution Imaging 517 

Spectroradiometer (MODIS) Level 3 Atmosphere Monthly Product [49] at 1° by 1° horizontal 518 

resolution. For surface precipitation data we use the Tropical Rainfall Measuring Mission (TRMM) 519 
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Multisatellite Precipitation Analysis 3B42RT daily precipitation product [50]. Its native horizontal 520 

resolution of 0.25° by 0.25° was re-gridded to 1° by 1° to match the MODIS data. Measurements 521 

of monthly top-of-atmosphere longwave radiative fluxes used in this study were from the Clouds 522 

and Earth’s Radiation Energy System (CERES) SYN1deg-Ed4A product, which combines data 523 

from Aqua and Terra [51]. Monthly gridded surface temperature data (land and ocean) are from 524 

the Berkeley Earth Surface Temperatures dataset, available at 525 

http://berkeleyearth.org/archive/data/. Monthly SLP data is from the Hadley Centre Sea Level 526 

Pressure Dataset [52], available at https://psl.noaa.gov/data/gridded/data.hadslp2.html. 527 

 528 

Uncertainty in Precipitation and Cloud Water Path Observations 529 

Observed liquid water path (LWP) and ice water path (IWP) are in-cloud values. These are 530 

weighted by cloud fraction to render them comparable with the models’ grid-box averaged cloud 531 

water path, computed by the following expression at each grid point: 532 

𝐶𝑊𝑃23! = 𝑓23!(𝐼𝑊𝑃23! + 𝐿𝑊𝑃23!) 533 

Where the subscript obs indicates observational data and f is cloud fraction. 534 

Uncertainty in 𝜖  can be estimated using the individual uncertainties in 𝑃!  and 𝐶𝑊𝑃 . 535 

MODIS sensors are calibrated with high accuracy. Ref [53] conducted an analysis of available 536 

satellite estimates of LWP against passive microwave observations and found that MODIS 537 

outperforms all other satellite observational products. In the three regions they analyzed, MODIS 538 

estimates generally underestimate the monthly-mean LWP by 8-9% relative to terrestrial 539 

microwave estimates. However, the correlation coefficient between monthly MODIS and 540 

microwave data is 0.9. Similar estimates are unavailable for IWP. TRMM exhibits lower errors 541 

than other real-time precipitation observational products at most temporal scales. Ref [54] 542 



 32 

analyzed monthly surface precipitation (𝑃! ) data over the maritime continents and found that 543 

TRMM underestimates 𝑃!  by 6% compared to rain gauge measurements, with a monthly 544 

correlation coefficient of 𝑟 = 0.86. Using the error estimates, 6% in 𝑃! and 9% in 𝐶𝑊𝑃 (assuming 545 

that IWP uncertainties are similar magnitude to the LWP range), we estimate the uncertainty of 𝜖 546 

Δ𝜖
𝜖 = [\

Δ𝑃!
𝑃!
]
4

+ \
Δ𝐶𝑊𝑃
𝐶𝑊𝑃 ]

4

^

%
4
≈ 11% 547 

 548 

ERA5 Reanalysis 549 

Data from the ERA5 Reanalysis [55] are obtained from the Climate Data Store (available at 550 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-monthly-551 

means) and interpolated to the same grid as the observations (1° by 1° resolution). 552 

 553 

CRM experiments 554 

Idealized experiments of radiative convective equilibrium in limited domains are performed using 555 

the System for Atmospheric Modeling (SAM; [56]), three-dimensional cloud resolving model that 556 

employs the anelastic equations of motion. As in previous studies of convective self-aggregation 557 

with SAM, we use a 1-moment microphysics package. The model grid is a staggered Arakawa C-558 

type grid with a uniform horizontal resolution of 2 km and stretched in the vertical. The lowest 559 

model level is 37 m and the grid spacing is 75 m, increasing to 500 m above 3.5 km. The lateral 560 

boundary conditions are doubly periodic. We achieve radiative-convective equilibrium by forcing 561 

the model with perpetual sun (no diurnal cycle), no mean wind, no rotation, and no other external 562 

forcing. Independent experiments were run with fixed SSTs at 299K, 300K, 301K, and 303K. The 563 
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two sets of experiments shown in Fig. 4 are SAM-S and SAM-L which employ a 512 x 512 km2 564 

domain and a 1024 x 1024 km2 domain, respectively. 565 

All SAM-L experiments self-aggregate to form a single cluster of convection after day 80 566 

of the simulation. The SAM-S experiments do not self-aggregate due to the domain size limitation. 567 

This domain size dependence of self-aggregation has been previously well studied [57, 58]. We 568 

used the domain-size difference between SAM-L and SAM-S to isolate the effects of self-569 

aggregation while keeping the external forcing identical. Each experiment is averaged from day 570 

80 to 100 after reaching statistical equilibrium. 571 

 572 

CMIP6 Models 573 

We use the CMIP6 archive [59] to obtain data for 44 GCMs in the preindustrial control simulation 574 

(piControl) and 28 models in the SSP585 scenario. This represents all models with available output 575 

to compute 𝜖 at the time of analysis. Warming responses are computed by taking the difference 576 

between years 2085-2100 and years 2015-2030 in the SSP585 scenario.  577 

 578 

Parameterization of Convective Precipitation in CMIP6 Models 579 

The two representative convective parameterization schemes in CMIP6 are the Tiedtke scheme 580 

([42]; hereafter T89) and the Zhang and McFarlane scheme ([41]; hereafter ZM95). In T89, deep 581 

convection is triggered when there is net water vapor convergence in the atmospheric column and 582 

air lifted from the surface to above cloud base remains buoyant. The conversion from cloud 583 

droplets to convective precipitation is given by: 584 

𝑃56)(𝑧) = 𝐾(𝑧)𝑙 585 
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where 𝑃56)(𝑧) is the precipitation rate at height z, 𝑙 is the cloud water content in mm, and K(z) is 586 

a step function that takes the value of 0.002𝑠$% above a constant offset above cloud base and zero 587 

elsewhere. 𝑃56) depends only on the cloud water content. 588 

In ZM95, deep convection is triggered in a column if the convective available potential 589 

energy, after accounting for dilution from entrainment of dry air, exceeds 70	𝐽𝑘𝑔$%. Convective 590 

precipitation is given by the following expression [60]: 591 

𝜌𝑃78)9(𝑧) = 𝐶:𝑀;𝑙 592 

where 𝐶: = 0.002𝑚$%, 𝑀; is the updraft mass flux, and 𝜌 is the air density, and 𝑙 is the cloud 593 

water content. 𝑃78)9 is proportional to both 𝑀; and 𝑙. 594 

 595 

Strength of the Pacific Walker Circulation 596 

Following [61], to measure the mean strength of the Pacific Walker circulation (Fig. 3b) we 597 

compute Sea Level Pressure (SLP) averaged over the equatorial Western  Pacific (𝑆𝐿𝑃'; 5°S–5°N, 598 

80°–160°E) and equatorial Eastern Pacific (𝑆𝐿𝑃/; 5°S–5°N, 160°–80°W), and use their difference, 599 

denoted as 𝑑𝑆𝐿𝑃:  600 

𝑑𝑆𝐿𝑃 = 𝑆𝐿𝑃/ − 𝑆𝐿𝑃' 601 

To measure projected changes in the strength of the Walker circulation, we compute the 602 

average pressure velocity at 800ℎ𝑃𝑎  over the equatorial Eastern Pacific (𝜔/( ; 10°S–10°N, 603 

160°E–100°W). This definition shows the strongest correlation with changes in the SST gradient 604 

between the eastern and western equatorial Pacific, in which the Pacific Walker Circulation is 605 

tightly coupled to. We find that this measure provides more robust results on future Walker cell 606 

changes across different models as it is less dependent on the choice of the averaging boxes than 607 

dSLP. 608 
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 609 

Strength of the Hadley Circulation 610 

To measure the strength of the Hadley circulation, we firstly estimate the ITCZ location (𝜙<5=7) 611 

defined as the zeroth crossing of the zonal-mean mass streamfunction 𝜓 closest to the equator. The 612 

Hadley cell’s meridional extent in each hemisphere is the distance between 𝜙<5=7 and the first 613 

zeroth crossing of 𝜓 poleward of 𝜙<5=7. The strength of the Hadley Circulation in each hemisphere 614 

is estimated by taking the maximum of 𝜓 between 700 and 300 hPa throughout its meridional 615 

extent [62]. 616 

 617 

  618 
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DATA AVAILABILITY 619 

TRMM data is obtained from https://gpm.nasa.gov/missions/trmm are interpolated from their 620 

native 0.25° by 0.25° resolution to 1° by 1° to match that of the MODIS monthly data available at 621 

https://atmosphere-imager.gsfc.nasa.gov/products/monthly. Monthly surface temperature 622 

(http://berkeleyearth.org/archive/data/) and SLP observations 623 

(https://psl.noaa.gov/data/gridded/data.hadslp2.html) are also publicly available. Monthly-mean 624 

Nino 3.4 SST data is obtained from: 625 

https://www.ncdc.noaa.gov/teleconnections/enso/indicators/sst/. ERA5 data are downloaded from 626 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-monthly-627 

means and interpolated from their native 0.25° by 0.25° grid to 1° by 1° resolution. The CMIP6 628 

data supporting this study are available from https://pcmdi.llnl.gov/CMIP6/. Data from the CRM 629 

experiments and satellite derived observations of 𝜖  are available at 630 

https://doi.org/10.5061/dryad.g4f4qrfsr [63]. 631 
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