OIKOS

Seasonal release from competition explains partial migration in European moose

Journal:	Oikos
Manuscript ID	OIK-07875.R1
Wiley - Manuscript type:	Research
Keywords:	ideal-free distribution, seasonal habitat selection, resource selection functions, ungulates
	Partial migration, whereby a proportion of a population migrates between distinct seasonal ranges, is common throughout the animal kingdom. However, studies linking existing theoretical models of migration probability, with empirical data are lacking. The competitive release hypothesis for partial migration predicts that due to density- dependent habitat selection, the proportion of migrants increases as the relative quality and size of the seasonal range increases, but decreases with increasing migration cost and population density. To test this prediction, we developed a quantitative framework to predict the proportion of migrants, using empirical data from 545 individually GPS-
marked moose (Alces alces) from across Fennoscandia, spanning	
latitudes of 56 to 68N. Mose contracted their ranges to common and	
spatially limited winter areas (typically at lower elevation), but expanded	
them during summer due to an increase in suitable habitat (at highland	
ranges). As predicted from our model, a better and larger highland range	
relative to the lowland range corresponded to a higher proportion of	
migrants in an area. Quantitative predictions coupling the balance of	
habitat availability of seasonal ranges with the probability of migrating in	
a large herbivore is a necessary step towards an enhanced	
understanding of the mechanisms underlying migration at the population	
level.	

Introduction

Migration is a behavioral adaptation to seasonal changes in the geographic distribution of suitable habitat either through genotypic (Boyle and Conway 2007, Holt and Fryxell 2011) or phenotypic changes in habitat selection (Van Moorter et al. 2020). Partial migration, whereby a fraction of a population migrates, is widespread across the animal kingdom (Lack 1943, Chapman et al. 2011a and 2011b, Berg et al. 2019). Several mechanisms have been proposed for the persistence of different movement strategies within a single population. Chapman et al. (2011b) reviewed eight such hypotheses to explain partial migration: arrival time, competitive release, fasting endurance, predation vulnerability, sexual conflict, social fence, thermal tolerance, and trophic polymorphism (see also Berg et al. 2019 for a discussion focused on ungulates). Underlying all these hypotheses is either individual variation in tolerance of environmental constraints or some form of inter-individual competition resulting in density-dependent habitat selection. In the absence of individual variation in tolerance to adverse conditions, theoretical models suggest that density-dependent habitat selection is necessary to explain partial migration (e.g. Kaitala et al. 1993, Taylor and Norris 2007, Holt and Fryxell 2011, Fryxell and Holt 2013, Van Moorter et al., 2020).

Partial migration can exist in populations where residents and migrants either share a common summer ground and separate during winter (i.e. non-breeding partial migration or shared breeding) or share a common wintering area and separate during summer (i.e. breeding partial migration or shared non-breeding). Although, both forms of partial migration have been described in a range of species (Griswold et al. 2010, Chapman et al. 2011b), it is shared non-breeding that is most common among ungulates at northern latitudes (Mysterud et al. 2011, Berg et al. 2019). Ungulates are often forced from areas with high snow depth during winter (e.g. Mysterud, Bjørnsen and Østbye, 1997) due to reduced access to food (Schwab, Pitt, and Schwab 1987) and increased cost of locomotion (Telfer and Kelsall 1979,
1984) into areas with less snow cover, which results in an elevational migration from highland to lowland ranges often observed in ungulates at northern latitudes (Mysterud et al. 2011, Berg et al. 2019). Spatiotemporal variation in forage quality - as proposed by the forage maturation hypothesis (FMH) - is a common explanation (Fryxell and Sinclair 1988, Albon and Langvatn 1992, Hebblewhite et al. 2008) for individuals migrating away from the winter area during summer. Migration, according to the FMH, is a tactic to exploit spatial variation in plant phenology (or forage maturation) as the animals move along a gradient of early plant growth, which provides high-quality forage, during spring green-up. Although there is little doubt that ungulates move along the spring green-up wave (Bischof et al. 2012, Van Moorter et al. 2013, Merkle et al. 2016, Aikens et al. 2017), it fails to explain why some individuals do not follow this migration pattern in partially migratory populations.

The Competitive Release Hypothesis (CRH) suggests that certain individuals opt for a different movement tactic to avoid intraspecific competition on the sympatric range (Chapman et al 2011b, Berg et al. 2019). Van Moorter et al. (2020) presented a model for the CRH based on density-dependent habitat selection. In general, density-dependent habitat selection is a major mechanism resulting in an 'ideal free distribution' (IFD; Fretwell and Lucas 1969, 1972). Under an IFD, individuals will experience equal fitness across patches under a Nash equilibrium, i.e. moving from one patch to another will not increase individual fitness. Van Moorter et al. (2020) showed that when the distribution of the most suitable habitat changes across seasons, density-dependent habitat selection results in partial migration. Moreover, they found that the migration rate should increase as the suitability (intrinsic growth and/or carrying capacity) of the highland range increases compared to the lowland range (Van Moorter et al. 2020).

In this study, we tested the predicted ideal free migration rates from the model presented by Van Moorter et al. (2020) for migratory ungulates. These migrations are often
elevational from lowland ranges in winter to highland ranges in summer (e.g. Mysterud et al. 2011). We will use seasons (summer and winter) exclusively to indicate periods of the year and adopt the geographic reference ('highland' and 'lowland' respectively) for the seasonal ranges for simplicity and to avoid confusion. The model predicts that the proportion of migrants increases as the relative habitat suitability of the highland range increases compared to the lowland range (in agreement with the CRH; e.g. Chapman et al. 2011b, Berg et al. 2019). We define habitat suitability as habitat-dependent individual fitness, which is densitydependent and corresponds to the intrinsic growth or carrying capacity in a habitat patch at respectively low and high population densities (reviewed in Johnson 2007). In practice, however, these two components are often highly correlated across habitats (Griffen and Drake 2008 and references therein).

We tested the main prediction from the model using migration data from a large set of GPS-tracked moose (Alces alces; $n=545$) throughout Norway, Sweden, and Finland and moose harvest statistics as an index of relative local population abundance, estimated at the moose management area level. The tracking data, combined with remotely-sensed environmental characteristics, allowed us to assess the suitability of highland and lowland ranges for moose using resource selection functions (Manly et la. 2002, Boyce et al. 2002, Boyce et al. 2016), which we validated using the harvest data. Vegetation and snow cover are the most important factors determining seasonal ranges for moose (Ball, Nordengren and Wallin, 2001, Allen et al. 2016). We expected a strong effect of snow (or a lack of) driving seasonal habitat suitability: only the lowland range would be suitable habitat during winter, whereas both the low- and highland range would be suitable during summer (baseline Prediction 0). We then related local differences in the relative suitability of the highland compared to the lowland range during summer to the proportion of migratory moose. Following the CRH and more specifically our model predictions, we predicted that the
proportion of migratory moose would increase with both higher suitability of habitat (Prediction 1) and overall greater availability of suitable habitat (Prediction 2) on the highland range compared to the lowland range.

Material and Methods

Model for partial migration

To investigate the relationship between seasonal variation in habitat suitability and the proportion of migrants, we used the model presented by Van Moorter et al. (2020). This model builds upon the two-patch population model from Fryxell and Holt (2013) and Holt and Fryxell (2011), in which the dynamics of population size in each patch follow a Ricker model (Ricker 1954, which is a discrete-time model); with scaled densities (i.e. $N=N^{\prime} / K^{\prime}$, where N^{\prime} is the unscaled population size in spring just prior to the calving period (May-June), and K^{\prime} is the carrying capacity during summer or population size at which each individual, on average, replaces itself). Following Fryxell and Holt (2013), we assumed recruitment (r) during summer to be density-dependent and mortality during winter (μ) to be densityindependent as supported by many empirical studies of ungulates (Saether 1997, Gaillard et al. 2000). The two patches or seasonal ranges are linked through the movement of migratory animals, which move with migration probability, m, and a demographic cost, c, after the winter season from range L to H and back after summer. The range L is defined as the range with the lowest winter mortality (i.e. $\mu_{L} \leq \mu_{H}$). See Van Moorter et al. (2020) for more details (and the Supplementary Material for a summary).

The ideal-free migration strategy (Mariani et al., 2016; Van Moorter et al. 2020), where the ideal-free migration probability (\hat{m}) equalizes the summer fitness for lowland residents and migrants, is calculated as follows:

$$
\begin{equation*}
\hat{m}=\frac{1-\frac{r_{L}}{r_{H}}[1-N]-\frac{c}{r_{H}}}{\left[\frac{r_{L}}{r_{H}}+\frac{K_{L}^{\prime}}{k_{H}^{k_{H}^{\prime}}} N\right.} \tag{Eq. 1}
\end{equation*}
$$

This ideal-free migration probability is determined by three main components: migration cost (scaled by the recruitment on the highland range), relative habitat suitability of highland versus lowland range both in terms of the relative intrinsic growth $\left(\frac{r_{H}}{r_{L}}\right)$ and the relative carrying capacity $\left(\frac{K_{H}^{\prime}}{K_{L}^{\prime}}\right)$, and population density or saturation with respect to the lowland range (N). Consequently, increasing the cost of migration leads to a reduction in the migration probability. However, as the cost of migration seems negligible for moose (Rolandsen et al. 2017), we will assume zero migration cost. Whereas, increasing the benefits of migration from access to suitable habitat (increasing $\frac{r_{H}}{r_{L}}$ or $\frac{K_{H}^{\prime}}{K_{L}^{\prime}}$) increases migration probability (Figure 1). If the intrinsic growth rate differs between migrants and residents, then the migration rate will be density-dependent (Figure 1). If the intrinsic growth rate of migrants is higher than those of residents (e.g. due to higher quality forage following the forage maturation hypothesis; Fryxell and Sinclair 1988, Hebblewhite et al. 2008), all individuals of the population would be migrating at low densities. As the highland range becomes more crowded due to increasing population density, some individuals will shift to a resident strategy. The opposite will occur if the migrants experience a lower intrinsic growth on the highland ranges (red line in Figure 1), and then individuals will only start migrating once the population density on the lowland range is sufficiently high.

The study area

The study area covers nearly the whole of Fennoscandia: Norway, Sweden, and Finland (Fig. 2). Climate varies greatly with latitude, elevation, and distance from the ocean. We find subarctic conditions in the north and more temperate conditions in the south. High elevation
areas are characterized by alpine conditions. Coastal areas are characterized by higher precipitation than inland areas. The most common land cover class is coniferous forest, especially in the north. Moors and heathland, and broad-leaved and mixed forests are also commonly found in Fennoscandia. Even though most of the forested land is managed for silviculture, human inhabited areas occupy only a small fraction of the land cover. Most areas experience a snow free period of about 6 months, with longer snow cover and greater snow depths in the north and at higher elevations.

Data

We analyzed both GPS-tracking data from adult moose (see Bunnefeld et al. 2010 for further details) and harvest data from Finland, Norway, and Sweden, during 2005-2011. The GPStracking data were collated in the Wireless Remote Animal Monitoring (Dettki et al. 2013) database system for data validation and management. We screened these data using the approach developed by Bjørneraas et al. (2010) and subsampled data to obtain one location randomly throughout each day. We considered data from mid-January through mid-March as winter data, and from July through the end of August as summer data, as moose during these periods have usually finished their fall and spring migration, respectively (Rolandsen et al. 2010, Bunnefeld et al. 2010, Singh et al. 2012). All moose $(\mathrm{n}=545)$ included in our analysis had a complete summer and winter season. We used harvest statistics as a proxy for abundance of moose at the moose management area level (Ueno et al 2014). Annual harvest statistics (number of moose shot per year) were collected at municipality level in Norway $(\mathrm{n}=356)$, hunting district level in Sweden $(\mathrm{n}=308)$, and county level in Finland $(\mathrm{n}=60)$.

We focused on two large-scale environmental variables: vegetation type or land cover and snow cover. We used CORINE land cover data from 2006 (Büttner et al. 2004), which has European coverage, including Finland, Norway, and Sweden. Snow cover is an important
environmental variable that restricts access to forage for moose during winter (except conifers). Unfortunately, no common snow depth model was available for Fennoscandia, so instead we used the duration of snow cover as a proxy. We followed a similar approach to Dietz et al. (2015) to estimate the length of snow cover from MODIS remote-sensing composites from an 8-day period (MOD10A2) with an approximately 500 m spatial resolution. We linearly interpolated a maximum gap of 3 missing scenes (i.e. a gap of a month). Using these data, we derived the average proportion of the year with snow cover during the study period (2000-2011). The MODIS sensors require light to detect snow and during the darkest period in winter no sun light is available above the arctic circle; we will therefore likely underestimate the length of the snow season as we move north. However, as few animals moved distances long enough to exploit latitudinal variation, we did not expect this to affect our results.

Analysis

To quantify seasonal ranges (labeled 'lowland' and 'highland' to avoid confusion, see above), we used seasonal resource selection probability functions (RSPF) instead of relying on the actual geographic ranges occupied by moose in each season. We did this to avoid risking circularity in our argument, as we relied on moose geographic space use to determine their migratory status. The seasonal RSPF were based on a used and available points comparison in environmental space, which comprises multiple dimensions representing different biotic and abiotic environmental variables (Aarts et al. 2008). We assumed that moose in Fennoscandia are generally well-adapted and select the most suitable locations for that season from those available during winter and summer (i.e. those locations that give the highest individual seasonal fitness with low winter mortality and high summer recruitment respectively).

Testing the predictions from Equation 1 requires the quantification of habitat suitability of the highland and lowland range during the summer season both in terms of intrinsic growth rate and carrying capacity. These correspond to individual fitness at respectively low and high population density. Griffen and Drake (2008) argue that the intrinsic growth rate and carrying capacity refer to a population's response to the quality and quantity of available habitat respectively. Indeed, in their experimental study on Daphnia magna, Griffen and Drake (2008) found that both the quality and size of the habitat affect the carrying capacity, whereas habitat quality mainly affects the intrinsic growth rate. We used the selection probability of a habitat as an index of its quality or suitability (Manly 2002, Boyce et al. 2002, Boyce et al. 2016), and tested this assumption using harvest statistics (see below). The integrated (i.e. summed) selection probability over each range summarizes both the quality and quantity of habitat available to moose, which we used as a proxy for the carrying capacity. The maximum (i.e. 95 percentile) selection probability of each range summarized the best available habitat, which we used as a proxy for the intrinsic growth rate.

Habitat selection and Range prediction

To identify the ranges that moose selected more during summer than during winter (i.e. highland) or vice versa (i.e. lowland), we compared the selection probability in each predicted pixel from the RSPF, which compares available and used habitat. We represented the area available to each moose by the 99% Minimum Convex Polygon for the locations of each individual with a 10 km buffer. For each GPS-location (i.e. used point) we sampled 10 points randomly from the available area to represent the habitat types available to each moose. We estimated the maximum likelihood estimators of the RSPF with a logit-link function from these use-available data using the combination of partial likelihood and data cloning implemented in the ResourceSelection library (Lele and Keim, 2006; Lele, 2009) for

R (R Development Core Team, 2011). We analyzed the used locations from both seasons separately to obtain a population-level summer and winter RSPF, and the locations were matched with random points by individual to account for differential availability of habitat among individuals. We evaluated these RSPF using cross validation (similar to Boyce et al. 2002) based on a leave-one-out approach. For this cross validation, we re-fitted the model to all but one individual and then predicted habitat use for this individual. We divided these predicted values into 10 equal sized bins, and then computed the spearman rank correlation between the bin number and the proportion of used versus available locations within each bin (see Boyce et al. 2002 for more details).

Following Lele et al. (2013): "The resource selection probability function, RSPF, [...] is defined as the probability that a resource unit of type x is selected (or, becomes part of the use set) when encountered." As our analysis is focusing on regions where moose are generally present and moose have large ranging capabilities, we can assume all resource units to be available to moose. We therefore interpret our seasonal predictions as the higher probability of moose occurrence in a given location during winter or summer. We rescaled these probabilities to conserve the probability of moose occurrence over Fennoscandia across seasons.

We defined 'lowland' ranges as those pixels (x) that are more or equally selected (s) during winter than during summer (i.e. $s_{s}(x) \leq s_{w}(x)$), and the 'highland' ranges as those that are more selected during summer than during winter (i.e. $s_{s}(x)>s_{w}(x)$). We approximated the summer carrying capacity of these ranges using the integrated selection probability during the summer. Thus, we estimated the ratio of the summer and winter carrying (K) capacity as:

$$
\frac{K_{H}}{K_{L}}=\frac{\Sigma_{x \in A}\left[s_{s}(x)>s_{w}(x)\right] s_{s}(x)}{\sum_{x \in A}\left[s_{s}(x) \leq s_{w}(x)\right] s_{s}(x)}
$$

where numerator and denominator are the sum of selection probabilities during summer $\left(s_{s}\right)$ for all pixels of the area available to a 'population' (A; which is defined below) that are part of respectively its highland range $\left(s_{s}(x)>s_{w}(x)\right)$ and its lowland range $\left(s_{s}(x) \leq s_{w}(x)\right)$. The summer intrinsic growth rate (r) of these ranges was approximated using the 95 percentile of the selection probability during the summer:

$$
\frac{r_{H}}{r_{L}}=\frac{\operatorname{perc}\left(s_{s}(x)\right) \text { for } s_{s}(x)>s_{w}(x)}{\operatorname{perc}\left(s_{s}(x)\right) \text { for } s_{s}(x) \leq s_{w}(x)}
$$

Harvest statistics and Population distribution

First, to test the appropriateness of the RSPF as a proxy for habitat suitability, we investigated the relationship between the average annual harvest (2005-2011) and the total RSPF for each reporting unit with linear regression. We log-transformed both harvest and summer and winter RSPF to reduce skew. Moose harvest in Fennoscandia takes place during fall, with most individuals harvested during September - October. As the main migration of moose to their winter range generally occurs later in the year (i.e. November-December; see Bunnefeld et al. 2010, Allen et al. 2016), most individuals will be harvested from their summer range. We therefore expected the summer RSPF to be a better predictor of harvest than the winter RSPF.

Second, to estimate the distribution (N ') of moose within Fennoscandia, we distributed the mean number of harvested moose within each management unit in proportion to the summer RSPF for each pixel. The population density (N) is computed as the ratio of the abundance (N^{\prime}) and carrying capacity (K^{\prime}), see the model description above. This density was computed for each 'population' cluster, see below.

Proportion of migrants

To quantify the proportion of migrants, we need first to identify the migratory status for each individual, and second to group individuals into 'population' clusters. Following Cagnacci et al. (2016), we assessed the migratory status of each individual using two methods: first, by the overlap between seasonal home ranges, and second, by the movement distance between them. Overlap in seasonal home ranges was determined using the volume of intersection for the kernel utilization distributions (Fieberg and Kochanny 2005) from winter and summer locations (respectively: January $15^{\text {th }}$ till March $15^{\text {th }}$ and July $1^{\text {st }}$ till August $31^{\text {st }}$). We considered migrating animals to be those that had less than 1% overlap between their seasonal home ranges. We used adehabitatHR library (Calenge 2006) for R (R Development Core Team, 2011) to calculate seasonal home range overlap. We based the second migration criterion on the straight-line distance between the median summer and the median winter locations. We considered animals with migration distances $>10 \mathrm{~km}$ as migratory animals, whereas animals with shorter distances were considered resident (see Hjeljord 2001).

Second, although moose throughout Scandinavia experience different local conditions, there are no distinct boundaries between different 'populations'. To analyze the proportion of migrants as a function of local environmental conditions, we therefore performed a clustering analysis on the median winter location of each moose. We used hierarchical clustering ('hclust') with the gap-statistic to identify the optimal number of clusters (Tibshirani et al., 2001) in R with the factoextra library. We do not assume these clusters to correspond to separate sub-populations, they merely represent clusters of moose that experience similar local conditions.

We then computed the proportion of migrants for each cluster using either the overlap or distance criterion between seasonal home ranges. We considered the area within 300 km of a cluster to be available to the moose within that cluster, with this distance combining both the long-distance migrations observed in moose (up to about 200 km , see Bunnefeld et al.
2010) and the spatial variation in location of moose within each cluster. For this area, we computed the ratio of the highland and lowland range intrinsic growth and carrying capacity as explained above. The density of moose for each cluster was computed as the sum of the moose distribution within the area (derived from the annual harvest, see above) divided by the carrying capacity.

Hypothesis testing

Finally, to test our hypotheses, we fitted four statistical models to the data. First, a basic logistic regression used the range ratios as predictors of the proportion of migrants. However, as the correlation between the ratio of the intrinsic growth rate and carrying capacity was very high ($r=0.97$), we did not include them in the same model:

$$
\begin{align*}
& m=\beta_{0}+\beta_{1}{ }^{r_{H}} / r_{L}+\varepsilon \\
& m=\beta_{0}+\beta_{1}{ }^{K_{H}} / K_{L}+\varepsilon
\end{align*}
$$

Second, using nonlinear least-squares estimates ('nls' from the nlme-library [Pinheiro et al. 2012] in R [R Development Core Team, 2011]), we parameterized Equation 1, assuming no cost to migration:

$$
\begin{equation*}
m=\frac{1-\beta_{1}{ }^{r_{L}} / r_{H}\left(1-\beta_{3} N\right)}{\left(\beta_{1}{ }^{{ }_{L}} / r_{H}+\beta_{2}{ }^{K_{L}} / K_{H}\right){ }^{\left(\beta_{3} N\right)}} \tag{Eq. 3}
\end{equation*}
$$

here β_{1} estimates the effect of the ratio of intrinsic growth rates between lowland and highland range, β_{2} the effect of the ratio of carrying capacity on both ranges, and β_{3} the effect of the density of moose in Fennoscandia on the lowland ranges during summer. We expected $\beta_{1}=\beta_{2}=1$ according to Equation 1, whereas β_{3} represents the proportional constant between our proxy for density and the actual population density.

Third, given the coarseness of our density proxy, we also fitted a simplified model where we assumed a constant density across Fennoscandia:

$$
\begin{equation*}
m=\frac{1-\beta_{1}{ }^{r_{L}} / r_{H}{ }^{\left(1-\beta_{3}\right)}}{\left(\beta_{1}{ }^{r_{L}} / r_{H}+\beta_{2}{ }^{K_{L}} / K_{H}\right) \beta_{3}} \tag{Eq. 4}
\end{equation*}
$$

Finally, we further simplified the model by assuming both $N=1$ and $r_{L} / r_{H}=1$ to focus exclusively on the ratio between the highland and lowland range of availability of suitable habitat:

$$
\begin{equation*}
m=\frac{1}{\beta_{1}+\beta_{2}{ }^{K_{L} / K_{H}}} \tag{Eq. 5}
\end{equation*}
$$

Results

Habitat selection and Range prediction

Duration of the snow cover season and the land cover classes affected moose habitat selection both in summer and winter. As expected (Prediction 0), the duration of the snow-free period had a stronger effect on space use during winter (slope \pm SE: 12.23 ± 0.43) than during summer (slope \pm SE: -2.55 ± 0.14). In addition, considerable differences existed in the selection of the land cover classes. Moose avoided most other land cover classes compared to coniferous forests, and selected only a few land cover classes over it (Table 1). In summer, moose selected for broad-leaved forests over coniferous forests, whereas broad-leaved forests were avoided during winter. A similar effect, albeit much weaker, was found for mixed forests, which moose selected during summer and avoided during winter compared to coniferous forests. In winter, woodland-shrub tended to be strongly selected over coniferous forests, a selection that was much weaker in effect during summer. The habitat selection models showed high cross validation performance based on the leave-one-out approach (see Supplementary Figure S2), both during summer (correlation: median, mean \pm SE: $0.53,0.45$
± 0.02) and during winter (correlation: median, mean \pm SE: $0.64,0.56 \pm 0.01$). We used these habitat selection models to predict the preferred 'highland' and 'lowland' ranges (see Figure 2), which as expected occur on average at different elevations (average elevation on the lowland and highland range was respectively 174 m and $401 \mathrm{~m}, p$-value <0.001; see Supplementary Figure S6).

Harvest and Habitat suitability

We found a positive relationship between harvest and the RSPF (see Figure 3), which supported our interpretation of the RSPF as a metric for habitat suitability. Somewhat surprisingly, we found a lower AIC for the RSPF from winter than from summer (Δ $A I C=6.6)$. The relationship between the RSPF and harvest was close to unity on a logarithmic scale (winter: $\beta \pm S E: 1.05 \pm 0.04$; summer: $\beta \pm S E: 0.95 \pm 0.04$), with half the variance in harvest explained by the RSPF (for either the winter or summer RSPF). A notable deviation from the predicted relationship between harvest and RSPF occurred in Western Norway (see Supplementary Figure S3), where, despite the presence of suitable moose habitat, harvest is close or equal to zero. This is probably due to a combination of historical overharvesting, movement barriers, and competition with local red deer populations. As these areas are not occupied by a sizable moose population, they are not part of our study area on moose migration. Removing these areas would result in a stronger relationship between harvest and RSPF (see Supplementary Figure S4), with the harvest better predicted by the summer than winter $\operatorname{RSPF}(\triangle A I C=236.5)$, as expected.

Migration probability

When clustering individuals into groups experiencing a similar environment, the gap-statistic kept increasing up to 37 clusters, with extremely small cluster sizes. We therefore opted to
apply the 'elbow' criterion by selecting the number of clusters where the increase in gapstatistic decelerated. We clustered the moose into 19 clusters, where moose within a cluster were on average 35 km apart (and up to 165 km).

Our two migration criteria, based on the overlap versus the distance between winter and summer home ranges (see above for a detailed description), gave very similar results for each individual: there was 85% agreement between methods. The proportion of migrants in each cluster was highly correlated ($r>0.95$, see Supplementary Figure S8), giving qualitatively identical results. We therefore only report the results from the range overlap criterion.

We found a strong positive correlation between the ratio of the intrinsic population growth rate and the ratio of the carrying capacity between highland and lowland ranges ($r=0.96, p<0.001$); therefore, we did not use both variables simultaneously in the logistic regression. We found a significant positive effect of both ratios on the proportion of migrants (Table 2; ratio of intrinsic growth: $\beta_{1} \pm$ SE: 0.85 ± 0.14, p-value <0.001; ratio of carrying capacity: $\beta_{1} \pm$ SE: $0.36 \pm 0.07, p$-value <0.001). The AIC was lower for the model explaining the proportion of migrants based on the proxy for intrinsic growth than for the proxy for carrying capacity $(\triangle \mathrm{AIC}=6)$.

Estimating the parameters in Equation 1 (assuming $\operatorname{cost} c=0$), we found that the best model was the one in which we made the additional assumptions of constant intrinsic growth rate ratios and the population density to be one across clusters (Eq. 5, Table 2). The fully parameterized model (Eq. 3) suffered from convergence issues, while after constraining the parameter range to realistic values, some estimates corresponded to those boundaries (see Table 2). Thus, the estimates for Eq. 3 are unreliable. Assuming constant density across clusters (Eq. 4) allowed the model to converge with a density of one (i.e. high population density).

In the best model (i.e. Eq. 5), the intrinsic growth rates on the highland and lowland ranges were not significantly different (Table $2 ; \beta_{1}(\pm$ SE) $1.37(\pm 0.33) \approx 1)$. As expected from Equation 1, the effect of the ratio of the carrying capacity between the lowland and highland ranges was not significantly different from one (Table 2 and Figure $3 ; \beta_{2} \pm$ SE: 0.98 $\pm 0.68)$.

Discussion

Multiple explanations have been proposed for the evolution of differential migratory tendencies among individuals within a population (reviewed in Chapman et al. 2011b and Berg et al. 2019), but there is still lack of a quantitative framework to predict the level of partial migration. Using a simple density-dependent habitat selection model from Van Moorter et al. (2020), we propose (Eq. 1 and Figure 1) that the ideal-free migration probability is determined by three main components: migration cost (scaled by the recruitment on the highland range), relative habitat suitability of the seasonal range (i.e. $\frac{r_{H}}{r_{L}}$ and $\frac{K_{H}^{\prime}}{K_{L}^{\prime}}$, and population density or saturation (N). Given its basis in ideal-free migration, the proposed model presents a formal representation of the Competitive Release Hypothesis, as individuals opt for a different strategy to escape from competition on the sympatric range (e.g. Berg et al. 2019). In our empirical test of this model, we found that moose ranges in Fennoscandia do indeed show an expansion-contraction dynamic during summer and winter (Prediction 0), and that the proportion of migrants increased with the amount of suitable habitat becoming available during summer (Prediction 2). However, the proportion of migrants did not increase with their access to higher quality habitat per se (Prediction 1).

We found seasonal changes in moose's selection of land cover classes, such as an increased selection for broad-leaved forest, natural grassland, moors and heathland during the summer. However, the main driver for the seasonal range expansion-contraction dynamic was the difference in duration of the snow-free period due to elevational gradients. The link between the almost universal seasonal range contraction of cervids in fall and snow has been known for decades (e.g. Brazda 1953, LeResche 1974). Surprisingly, an underlying explanation of range expansion in spring including the mechanism of density-dependent habitat selection where partial migration is a competition avoidance tactic (Kaitala et al. 1993, Taylor and Norris 2007, Holt and Fryxell 2011) - has rarely been focused on. In our case, this is addressed in the ratio of the suitability of the highland range relative to the lowland range.

In our tests of the model predictions, we found support for the expected increase in migration probability as the relative high-density suitability of the highland range increased compared to the lowland range $\left(\frac{K^{\prime} H}{K_{L}^{\prime}}\right.$; in support of Prediction 2). Moreover, the observed increase was not significantly different from the model prediction (observed slope \approx predicted slope $=1$). However, our best model did not lend support to the relative low-density suitability of highland versus lowland range $\left(\frac{r_{H}}{r_{L}}\right)$ as a driver for migration (not supporting Prediction 1). This absence of an effect of the intrinsic growth rate could be due to (1) our proxy not adequately capturing the spatial heterogeneity in intrinsic growth, or (2) the similar response of intrinsic growth and carrying capacity to spatial heterogeneity, which resulted in highly correlated metrics. Although different from a theoretical perspective, intrinsic growth and carrying capacity respond relatively similarly to changes in habitat quality and quantity (Griffen and Drake 2008). Alternatively, (3) the role of variation in intrinsic growth rate may be dependent upon the level of population saturation on the lowland range during summer, as predicted by the model (Figure 1). Moose densities in Fennoscandia are generally high
(Lavsund et al. 2003, Jensen et al. 2020), which could lead to the intrinsic growth rate not being that important for migration in Fennoscandia.

Population Density and Habitat Suitability

Previous studies have found conflicting roles of increasing population density on the proportion of migrants in partially migratory populations. For instance, Geremia et al. (2011) found an increase in the proportion of bison in Yellowstone that migrated outside the park, whereas Mysterud et al. (2011) reported a decrease in the number of migratory red deer (Cervus elaphus), with an increase in density. Part of this discrepancy could be due to using a spatial contrast in density rather than temporal variation in density in the latter case, and the link to competition therefore being uncertain. However, migrants' access to high quality forage (following the Forage Maturation Hypothesis) would lead to migration in spring even at low population density (Figure 1; Mysterud et al. 2012), which could explain a reverse density-dependence with a reduced proportion of migrants until high elevation ranges fill up at high density. In the model (Eq.1), whether migration rates increase or decrease with population density depends upon the intrinsic quality of the lowland compared to the highland range (Fig. 1). At low densities, all individuals would migrate towards an intrinsically better highland range or remain resident in an intrinsically better lowland range. Whereas, as densities increase, an increasing proportion of individuals would adopt the opposite tactic to get released from competition. Thus, contrasting effects of density on the migration rate are predicted by this model.

In our study, we did not find support for an effect of spatial variation in local moose densities on the migration rate (as expected from Equation 1). However, the proportion of migrants is most sensitive to changes in population density at low densities and when the intrinsic growth rate differs between the highland and lowland ranges (Figure 1). We found
no support for an effect of differences in intrinsic population growth on proportion of migratory moose, and moose densities in Fennoscandia are generally relatively high (Lavsund et al. 2003, Jensen et al. 2020).

Limitations and Further Developments

As with all models, we made several simplifying assumptions (cf. Holt and Fryxell 2011; Fryxell and Holt 2013; Van Moorter et al. 2020). For instance, our model does not include ecological interactions other than immediate density-mediated competition during the summer season (see also Fryxell and Holt, 2013). When allowing for density-dependent competition during both seasons, as in the original Holt and Fryxell (2011) model, no simple solution exists for the proportion of migrants and more complex dynamics may occur (Steinar Engen, pers. comm.).

To avoid confusion with seasons as periods of the year, we referred to the winter range and exclusive summer range as respectively the "lowland" and "highland" range. This was a convenient terminology because the seasonal range dynamics were largely driven by differences in the duration of the snow-free period linked to an elevational gradient, as is often observed with ungulates at northern latitudes (Mysterud et al. 2011). Although, while the "lowland" ranges on average were at lower elevation than the "highland" ranges (see also Supplementary Figure S6), it should be noted that deviations from this elevational pattern occur as the choice of seasonal range is not only driven by snow cover (Ball et al. 2001). We found differences in land cover classes between the seasonal ranges. Previous studies have also documented marked differences in forest composition between summer and winter ranges linked to seasonal shifts in the diet (Histøl and Hjeljord 1993, Månsson et al. 2007, Wam and Hjeljord, 2010). This may also explain why moose may choose an opposite strategy where they migrate towards higher elevation winter areas (Andersen 1991). Thus, the
terms lowland and highland range in this paper refer to areas that are respectively more or less preferred during winter than during summer, rather than strictly the elevation of those areas.

For browsing herbivores, like moose, one expects a lagged decrease in forage availability on the lowland range after the presence of many animals during winter (Persson, Danell, and Bergström 2005; van Beest et al. 2010). Illius and O'Connor (2000) explored the ecological effects of range expansion and contraction due to seasonal rainfall in semi-arid grazing systems. They found that increased range contraction leads to increased pressure on the contracted area and decreased pressure on the expansion area. Such lagged effects of density were not implemented in our model and may reduce carrying capacity and intrinsic growth rate on the lowland range during summer, and could lead to a higher migration probability.

Our model did not include individual heterogeneity such as age, which are known to influence migration probability in moose, or unequal competition between migrants and residents on the lowland range (Histøl and Hjeljord 1993, Singh et al. 2012). Several explanations for partial migration are based on individual heterogeneity (see Chapman et al. 2011b). The transition equations (e.g. Supplementary Material Eq. S2) could easily be extended to include individual heterogeneity, which is an interesting avenue for future research. Although, some variation in body size between resident and migrant individuals has been observed in moose (Rolandsen et al. 2017), this was considered a consequence rather than the cause of their different migratory behavior.

The assumption of habitat selection as a proxy for habitat suitability is not trivial (e.g. Gaillard et al. 2010). Remotely-sensed data such as length of snow cover are relatively crude proxies for ecological dynamics and so are land use - land cover maps. For instance, moose
are likely more affected by the conditions (wet vs. dry) and depth of the snow than by the cover per se (Ball et al. 2001, Singh et al. 2012). In addition, the habitat selection process itself may also be more complex than addressed in a simple RSPF, for instance, selection for habitat features may depend upon population density (van Beest et al. 2013, Avgar et al. 2020). Fortunately, the strong positive relationship we found between the annual moose harvest in areas with more selected habitat (Figure 2) is supportive of this assumption in our study, indicating that the RSPF also represents the main dynamics affecting habitat suitability.

Finally, we did not address the cost of migration and assumed it was zero in our analysis. In our study system, the demographic cost of migration, if there is any, seems extremely low (Rolandsen et al. 2017), as given by the extremely low natural mortality rate of adult moose in Fennoscandia (Solberg et al. 2005). Also, the pure energetic cost associated with migration is likely rather limited for moose, as their migrations seem to result more from their movements becoming more directional, than by a strong increase in their movement rate (Van Moorter et al. 2013).

Conclusions

Our results show that spatial variation in the proportion of migrants is partly explained by spatial variation in seasonal changes in suitable habitat, which results in range expansioncontraction. This can contribute to an improved management and conservation of partially migratory species (Allen and Singh 2016), which is crucially needed as migratory behavior in large ungulates is under pressure from human fragmentation and climate change (Berger 2004, Bolger et al. 2008). Migratory species can range over larger areas than administrative units of management (Meisingset et al. 2018), which complicates their management
substantially (Thirgood et al. 2004, Skonhoft 2005). For example, Nilsen et al. (2009) showed that migratory moose can cause a dissociation of costs (i.e. browsing damage and moosevehicle collisions) and benefits (i.e. harvest) associated with moose, leading to non-optimal management. Therefore, areas with larger range expansion-contraction face more challenges in reaching management and conservation goals for partially migratory species (Allen et al. 2016). Moreover, as changes in snow cover due to climate change are likely to affect the benefits of migration at northern latitudes, our framework can be extended to predict developments of partial migration under climate change.

References

Aarts, G., MacKenzie, M., McConnell, B., Fedak, M., and Matthiopoulos, J. 2008. Estimating space-use and habitat preference from wildlife telemetry data. Ecography 31(1): 140-160.

Aikens, E.O., Kauffman, M.J., Merkle, J.A., Dwinnell, S.P.H., Fralick, G.L., and Monteith, K.L. 2017. The greenscape shapes surfing of resource waves in a large migratory herbivore. - Ecology Letters 20:741-750.

Albon, S. D., and Langvatn, R. 1992. Plant phenology and the benefits of migration in a temperate ungulate. - Oikos 65:502-513.

Allen, A., Månson, J., Sand, H., Malmsten, J., Ericsson, G., and Singh, N.J. 2016. Scaling up movements: from individual space use to population patterns? - Ecosphere 7(10):e01524. Allen, A.M., and Singh, N.J. 2016. Linking Movement Ecology with Wildlife Management and Conservation. - Frontiers in Ecology and Evolution 3:155.

Andersen, R. 1991. Habitat deterioration and the migratory behaviour of moose (Alces alces L.) in Norway. - Journal of Applied Ecology 28:102-108.

Avgar, T., Betini, G. S., \& Fryxell, J. M. 2020. Habitat selection patterns are density dependent under the ideal free distribution. Journal of Animal Ecology, 89(12), 2777-2787.

Ball, J. P., Nordengren, C., and Wallin, K. 2001. Partial migration by large ungulates: characteristics of seasonal moose Alces alces ranges in northern Sweden. - Wildlife Biology 7:39-47.

Berg, J.E., Hebblewhite, M., St Clair, C. C., and Merrill, E. H. 2019. Prevalence and mechanisms of partial migration in ungulates. Frontiers in Ecology and Evolution 7, 325. Berger, J. 2004. The last mile: how to sustain long-distance migration in mammals. Conservation Biology 18:320-331.

Bischof, R., Loe, L.E., Meisingset, E.L., Zimmermann, B., Van Moorter, B., and Mysterud, A. 2012. A migratory ungulate in the pursuit of spring: jumping or surfing the green wave? - American Naturalist 180:407-424.

Bjørneraas, K., Van Moorter, B., Rolandsen, C.M., and Herfindal, I. 2010. Screening Global Positioning System Location Data for Errors Using Animal Movement Characteristics. Journal of Wildlife Management 74:1361-1366.

Bolger, D. T., Newmark, W. D., Morrison, T. A., and Doak, D. F. 2008. The need for integrative approaches to understand and conserve migratory ungulates. - Ecology Letters 11:63-77.

Boyce, M. S., Vernier, P. R., Nielsen, S. E., \& Schmiegelow, F. K. 2002. Evaluating resource selection functions. - Ecological modelling 157(2-3): 281-300.

Boyce M.S., Johnson C.J., Merrill E.H., Nielsen S.E., Solberg E.J., and Van Moorter B. 2016 Can habitat selection predict abundance? - Journal of Animal Ecology 85(1):11-20.

Boyle, W. A., and Conway, C. J. 2007. Why migrate? A test of the evolutionary precursor hypothesis. - American Naturalist 169:344-359.

Brazda. A.R. 1953. Elk migration patterns, and some of the factors affecting movements in the Gallatin river drainage, Montana. - Journal of Wildlife Management 17:9-23.

Bunnefeld, N., Börger, L., van Moorter, B., Rolandsen, C. M., Dettki, H., Solberg, E. J., and Ericsson, G. 2011. A model-driven approach to quantify migration patterns: individual, regional and yearly differences. - Journal of Animal Ecology 80: 466-476.

Büttner, G., Feranec, J., Jaffrain, G., Mari, L., Maucha, G., Soukup, T. 2004. The CORINE Land Cover 2000 project. In: Reuter R, editor. EARSeL eProceedings, vol. 3. Paris: EARSeL0; p. 331-346.

Cagnacci, F., Focardi, S., Ghisla, A., Van Moorter, B., Merrill, E.H., Gurarie, E., Heurich, M., Mysterud, A., Linnell, J., Panzacchi, M. and May, R. 2016. How many routes lead to migration? Comparison of methods to assess and characterize migratory movements. Journal of Animal Ecology 85:54-68.

Calenge, C. 2006. The package 'adehabitat' for the R software: A tool for the analysis of space and habitat use by animals. - Ecological Modelling 197:516-519.

Chapman, B. B., Brönmark, C., Nilsson, J., and Hansson, L. 2011a. Partial migration: an introduction. - Oikos 120:1761-1763.

Chapman, B. B., Brönmark, C., Nilsson, J., and Hansson, L. 2011b. The ecology and evolution of partial migration. - Oikos 120:1764-1775.

Dettki, H., Ericsson, G., Giles, T., and Norrsken-Ericsson, M. 2013. Wireless Remote Animal Monitoring (WRAM) - A new international database e-infrastructure for telemetry sensor data from fish and wildlife. In: Proceedings ETC 2012: Convention for Telemetry, Test Instrumentation and Telecontrol. Books on Demand: 247-256.

Dietz, A.J., Claudia, K., and Stefan, D. 2015. Global SnowPack: A New Set of Snow Cover Parameters for Studying Status and Dynamics of the Planetary Snow Cover Extent. Remote Sensing Letters 6: 844-53.

Fieberg, J., and Kochanny, C. O. 2005. Quantifying home-range overlap: The importance of the utilization distribution. - Journal of Wildlife Management 69:1346-1359.

Fretwell, S. D. 1972. Populations in a seasonal environment. Princeton University Press. Fretwell, S.D., and Lucas, H.L. 1969. On territorial behavior and other factors influencing habitat distribution in birds. Acta biotheoretica - 19:16-36.

Fryxell, J.M., and Holt, R.D. 2013 Environmental Change and the Evolution of Migration. Ecology 94:1274-1279.

Fryxell, J. M., and Sinclair, A. R. E. 1988. Causes and consequences of migration by large herbivores. - Trends in Ecology \& Evolution 3: 237-241.

Gaillard, J. M., Festa-Bianchet, M., Yoccoz, N. G., Loison, A., and Toigo, C. 2000. Temporal variation in fitness components and population dynamics of large herbivores. - Annual Review of ecology and Systematics 31(1): 367-393.

Geremia, C., White, P. J., Wallen, R. L., Watson, F. G. R., Treanor, J. J., Borkowski, J., Potter, C. S., et al. 2011. Predicting Bison Migration out of Yellowstone National Park Using Bayesian Models. - PLoS ONE, 6(2), e16848.

Griffen, B.D., and Drake, J.M. 2008. Effects of habitat quality and size on extinction in experimental populations. - Proceedings of the Royal Society B 275(1648): 2251-2256.

Griswold, C. K., Taylor, C. M., and Norris, D. R. 2010. The evolution of migration in a seasonal environment. - Proceedings of the Royal Society B 277: 2711-2720. Hebblewhite, M., Merrill, E., and McDermid, G. 2008. A multi-scale test of the forage maturation hypothesis in a partially migratory ungulate population. - Ecological Monographs 78:141-166.

Histøl, T. and O. Hjeljord. 1993. Winter feeding strategies of migrating and nonmigrating moose. - Canadian Journal of Zoology 71:1421-1428.

Hjeljord, O. 2001. Dispersal and migration in northern forest deer-are there unifying concepts? - Alces 37: 353-370.

Holt, R.D. and J.M. Fryxell. 2011. Theoretical reflections on the evolution of migration. Pages 17-31 in E.J. Milner-Gulland, J.M. Fryxell and A.R.E. Sinclair, eds. Animal Migrations: A Synthesis. Oxford University Press.

Illius, A. W., and O'Connor, T. G. 2000. Resource heterogeneity and ungulate population dynamics. - Oikos 89: 283-294.

Jensen, W. F., Rea, R. V., Penner, C. E., Smith, J. R., Bragina, E. V., Razenkova, E., ... \& Widemo, F. 2020. A review of circumpolar moose populations with emphasis on Eurasian moose distributions and densities. - Alces 56: 63-78.

Johnson, M. D. 2007. Measuring habitat quality: a review. - The Condor 109(3): 489-504.
Kaitala, A., Kaitala, V., and Lundberg, P. 1993. A Theory of Partial Migration. - The American Naturalist 142: 59-81.

Lack, D. 1943. The problem of partial migration. - British Birds 37: 122-130.
Lavsund, S., T. Nygren and E. J. Solberg. 2003. Status of moose populations and challenges to moose management in Fennoscandia. - Alces 39: 109-130.

Lele, S. R., Merrill, E. H., Keim, J., and Boyce, M. S. 2013. Selection, use, choice and occupancy: clarifying concepts in resource selection studies. - Journal of Animal Ecology 82:1183-1191.

Lele, S. R. 2009. A New Method for Estimation of Resource Selection Probability Function. - Journal of Wildlife Management 73: 122-127.

Lele, S. R., and Keim, J. L. 2006. Weighted distributions and estimation of resource selection probability functions. - Ecology 87: 3021-3028.

LeResche, R.E. 1974. Moose migrations in North America. - Naturaliste Canadien 101:393415.

Manly, B.F.L., McDonald, L., Thomas, D.L., McDonald, T.L. and Erickson, W.P., 2002. Resource selection by animals: statistical design and analysis for field studies. Kluwer Academic Publishers.

Mariani, P., Křivan, V., MacKenzie, B. R., and Mullon, C. 2016. The migration game in habitat network: the case of tuna. - Theoretical ecology 9: 219-232.

Meisingset, E.L., Loe, Ø. Brekkum, L.E., Bischof, R., Rivrud, I.M., Lande, U.S., Zimmermann, B., Veiberg, V., and Mysterud, A. 2018. Spatial mismatch between management units and movement ecology of a partially migratory ungulate. - Journal of Applied Ecology 55:745-753.

Merkle, J.A., Monteith, K.L., Aikens, E.O., Hayes, M.M., Hersey, K.R., Middleton, A.D., Oates, B.A., Sawyer, H., Scurlock, B.M., and Kauffman, M.J. 2016. Large herbivores surf waves of green-up during spring. - Proceedings of the Royal Society of London B: Biological Sciences 283 (1833): 20160456.

Mysterud, A., Bischof, R., Loe, L.E., Odden, J., and Linnell, J. D. C. 2012. Contrasting migration tendency of sympatric red deer and roe deer suggest multiple causes of migration in ungulates. - Ecosphere 3:e92.

Mysterud, A., Bjornsen, B. H., and Ostbye, E. 1997. Effects of snow depth on food and habitat selection by roe deer Capreolus capreolus along an altitudinal gradient in southcentral Norway. - Wildlife Biology 3:27-33.

Mysterud, A., Loe, L. E., Zimmermann, B., Bischof, R., Veiberg, V., and Meisingset, E. 2011. Partial migration in expanding red deer populations at northern latitudes - a role for density dependence? - Oikos 120: 1817-1825.

Månsson, J., Andrén, H., Pehrson, Å., \& Bergström, R. 2007. Moose browsing and forage availability: a scale-dependent relationship? - Canadian Journal of Zoology 85(3): 372-380.

Nilsen, E. B., Skonhoft, A., Mysterud, A., Milner, J. M., Solberg, E. J., Andreassen, H. P., Stenseth, C., et al. 2009. The role of ecological and economic factors in the management of a spatially structured moose Alces alces population. - Wildlife Biology 15: 10-23.

Persson, I.L., Danell, K. and Bergström, R. 2005. Different moose densities and accompanied changes in tree morphology and browse production. - Ecological Applications 15:12961305.

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and R Development Core Team. 2012. nlme: Linear and Nonlinear Mixed Effects Models, R package version 3.1-103.

R Development Core Team. 2011. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Ricker, W. E. (1954). Stock and recruitment. - Journal of the Fisheries Board of Canada, 11(5), 559-623.

Rolandsen, C. M., Solberg, E. J., Sæther, B.-E., Moorter, B. V., Herfindal, I. and Bjørneraas, K. 2017. On fitness and partial migration in a large herbivore - migratory moose have higher reproductive performance than residents. - Oikos 126:547-555.

Rolandsen, C.M., Solberg, E.J., Bjørneraas, K., Heim, M., Van Moorter, B., Herfindal, I., Garel, M., Pedersen, P.H., Sæther, B.E., Lykkja, O.N. and Os, Ø. 2010. Elgundersøkelsene i Nord-Trøndelag, Bindal og Rissa 2005-2010. Sluttrapport. NINA report.

Sand, H., Bergström, R., Cederlund, G., Östergren, M., amd Stålfelt, F. 1996. Densitydependent variation in reproduction and body mass in female moose Alces alces. - Wildlife Biology 2(3): 233-245.

Schwab, F. E., Pitt, M. D., and Schwab, S. W. 1987. Browse Burial Related to Snow Depth and Canopy Cover in Northcentral British Columbia. - Journal of Wildlife Management 51:337-342.

Singh, N. J., Börger, L., Dettki, H., Bunnefeld, N., and Ericsson, G. 2012. From migration to nomadism: movement variability in a northern ungulate across its latitudinal range. Ecological Applications, 22(7), 2007-2020.

Skonhoft, A. 2005. The costs and benefits of a migratory species under different management schemes. - Journal of Environmental Management 76: 167-175.

Solberg, E. J., V. Grøtan, C. M. Rolandsen, H. Brøseth and S. Brainerd 2005. Change-in-sexratio as an estimator of population size for Norwegian moose. - Wildlife Biology 11: 91100.

Sæther, B. E. 1997. Environmental stochasticity and population dynamics of large herbivores: a search for mechanisms. - Trends in Ecology \& Evolution 12(4): 143-149.

Taylor, C. M., and Norris, D. R. 2007. Predicting conditions for migration: effects of density dependence and habitat quality. - Biology Letters 3:280-284.

Tibshirani, R., Walther, G., and Hastie, T. 2001. Estimating the number of clusters in a data set via the gap statistic. - Journal of the Royal Statistical Society: Series B 63(2): 411-423. Tiilikainen, R., Solberg, E. J., Nygren, T. and Pusenius, J. 2012. Spatiotemporal relationship between calf body mass and population productivity in Fennoscandian moose Alces alces. Wildlife Biology 18: 304-317.

Telfer, E. S., and Kelsall, J. P. 1979. Studies of morphological parameters affecting ungulate locomotion in snow. Canadian Journal of Zoology 57:2153-2159.

Telfer, E. S., and Kelsall, J. P. 1984. Adaptation of some large North American mammals for survival in snow. - Ecology 65:1828-1834.

Thirgood S., Mosser A., Tham S., Hopcraft G., Mwangomo E., Mlengeya T., Kilewo M., et al. 2004. Can parks protect migratory ungulates? The case of the Serengeti wildebeest. Animal Conservation 7:113-120.

Ueno, M., Solberg, E. J., Iijima, H., Rolandsen, C. M., \& Gangsei, L. E. 2014. Performance of hunting statistics as spatiotemporal density indices of moose (Alces alces) in Norway. Ecosphere 5(2): 1-20.
van Beest, F. M., Uzal, A., Vander Wal, E., Laforge, M. P., Contasti, A. L., Colville, D., \& McLoughlin, P. D. 2014. Increasing density leads to generalization in both coarse-grained habitat selection and fine-grained resource selection in a large mammal. - Journal of Animal Ecology 83(1): 147-156.
van Beest, F., Mysterud, A., Loe, L.E., and Milner, J.M. 2010. Forage quantity, quality and depletion as scale-dependent mechanisms driving habitat selection of a large browser, the moose. - Journal of Animal Ecology 79: 910-922.

Van Moorter, B., Bunnefeld, N., Panzacchi, M., Rolandsen, C. M., Solberg, E. J., \& Sæther, B. E. 2013. Understanding scales of movement: animals ride waves and ripples of environmental change. - Journal of Animal Ecology 82(4): 770-780.

Van Moorter, B., Engen, S., Fryxell, J.M., Panzacchi M., Nilsen E.B., and Mysterud A. 2020. Consequences of barriers and changing seasonality on population dynamics and harvest of migratory ungulates. - Theoretical Ecology.

Wam, H. K., and Hjeljord, O. 2010. Moose summer and winter diets along a large scale gradient of forage availability in southern Norway. - European journal of wildlife research 56(5): 745-755.
in Fennoscandia.

	Summer		Winter	
	$\beta \pm S E$	p-value	$\beta \pm S E$	p-value
Intercept	-1.98 ± 0.99	<0.001	-7.87 ± 0.18	<0.001
Length snow-free period	-2.55 ± 0.14	<0.001	12.23 ± 0.43	<0.001
Artificial structures	-2.81 ± 0.22	<0.001	-3.68 ± 0.15	<0.001
Homogeneous agriculture	-0.86 ± 0.04	<0.001	-1.88 ± 0.07	<0.001
Heterogeneous agriculture	-0.31 ± 0.03	<0.001	-0.52 ± 0.05	<0.001
Broad-leaved forest	1.23 ± 0.05	<0.001	-1.83 ± 0.04	<0.001
Mixed forest	0.41 ± 0.03	<0.001	-0.10 ± 0.04	<0.01
Natural grassland	-0.77 ± 0.12	<0.001	-2.26 ± 0.26	<0.001
Moors and heathland	-0.49 ± 0.03	<0.001	-3.13 ± 0.05	<0.001
Woodland shrub	0.35 ± 0.02	<0.001	1.32 ± 0.04	<0.001
Sparse vegetation	-2.00 ± 0.06	<0.001	-2.75 ± 0.09	<0.001
Wetlands	-0.07 ± 0.03	<0.005	-1.16 ± 0.04	<0.001
Water bodies	-2.63 ± 0.08	<0.001	-4.76 ± 0.13	<0.001
Unclassified	0.94 ± 0.08	<0.001	-3.31 ± 0.50	<0.001

TABLES

Table 1

Parameter estimates for moose Resource Selection Functions in summer and winter. The reference land cover class was coniferous forest, which is the most common land cover class

Eq. 2 b
Eq. 2 a

$$
\beta_{0}+\beta_{1}^{r_{H}} / r_{L}
$$

Eq. 3

Eq. 4
AIC:
224
$\begin{array}{ll}\beta_{0} \pm \text { SE: } & -1.60 \pm 0.28 \\ \beta_{1} \pm \text { SE: } & 0.85 \pm 0.14\end{array}$
$\begin{array}{ll}\beta_{0} \pm \text { SE: } & -1.60 \pm 0.28 \\ \beta_{1} \pm \text { SE: } & 0.85 \pm 0.14\end{array}$
AIC: 230
$\beta_{0} \pm$ SE: $\quad-0.81 \pm 0.18$
$\beta_{1} \pm$ SE: $\quad 0.36 \pm 0.07$
AIC: $\quad 15$
$\beta_{1} \pm$ SE: $\quad 1.11 \pm 1.28$
$\beta_{2} \pm$ SE: $\quad 5.00^{*} \pm 5.51$
$\beta_{3} \pm$ SE: $\quad 20.00^{*} \pm 19.47$
AIC: 6
$\beta_{1} \pm$ SE: $\quad 3.88 \pm 1.44$
$\beta_{2} \pm$ SE: $\quad 0.06 \pm 2.37$
$\beta_{3} \pm$ SE: $\quad 1.00^{*} \pm 0.28$
AIC: $\quad-0.4$
$\begin{array}{ll}\beta_{1} \pm \text { SE: } & 1.37 \pm 0.33 \\ \beta_{2} \pm \text { SE: } & 0.98 \pm 0.68\end{array}$
Table 2
Parameter estimates from the analyses of the proportion of moose migrants (migrants had less than 1% overlap between the summer and winter home ranges). We performed five analyses: ordinary logistic regression using intrinsic growth rate ratio (Eq. 2a in the main text) or carrying capacity ratio (Eq. 2b), and non-linear least squares parameterization of Eq. 1 in the main text based on three sets of additional assumptions (corresponding to Eq. 3, 4, and 5 in the main text). See the main text for further details.
.

$$
\frac{1-\beta_{1}^{r_{L}} / r_{H}\left(1-\beta_{3} N\right)}{\left(\beta_{1}^{r_{L}} / r_{H}+\beta_{2}^{K_{L}} / K_{H}\right)\left(\beta_{3} N\right)}
$$

$$
\begin{gathered}
\frac{1-\beta_{1}^{r_{L}} / r_{H}\left(1-\beta_{3}\right)}{\left(\beta_{1}^{\left.r_{L} / r_{H}+\beta_{2}^{K_{L}} / K_{H}\right) \beta_{3}}\right.} \begin{array}{c}
\frac{1}{\beta_{1}+\beta_{2}^{K_{L} / K_{H}}}
\end{array} .
\end{gathered}
$$

FIGURES

Figure captions

Figure 1
The proportion of moose migrants as a function of population density, growth rate, and carrying capacity. Following Equation 1, the proportion of migrants depends on the migration cost (here assumed zero), population density on the lowland range, the ratio of the lowland and highland range growth rates (lines in red $=1.05$, in black $=1$, in light blue $=0.95$, and in dark blue $=0.9$), and the ratio of the lowland and highland range carrying capacity (solid lines $=2$, dashed $=1$, dot-dashed $=0.5$, and dotted lines $=0.33$). Note, for clarity we only displayed the $r_{L} / r_{H}=1.05$ (red line) for the low carrying capacity ratio $\left(K_{L} / K_{H}=2\right)$. See main text for further discussion.

Figure 2
The seasonal ranges and the proportion of moose migrants (black) versus residents (grey) for 19 clusters in Fennoscandia. The lowland range is shown in blue and the highland range in green. See Supplementary Figure S7 for an overview of the number, sex, and age of the individuals in each cluster.

Figure 3
The relationship between moose harvest and habitat suitability in Fennoscandia. The logarithm of the average annual harvest plotted against the total summer suitability for each reporting unit in Fennoscandia with the fitted regression line.

Figure 4

The proportion of migrants versus the size of the ratio in highland and lowland range carrying capacity for each cluster. The proportion of migrants is calculated using the seasonal range overlap criterion. The clusters are marked with the first letter of the country (i.e. Finland, Norway, and Sweden) from which most moose originated. The full grey line represents the expected proportion of migrants following Eq. 1, when both ranges would not differ in intrinsic growth $\left(r_{L} / r_{H}=1\right)$, are fully saturated $\left(N_{w}=1\right)$, and migration is cost-free $(c=0)$. The different fitted models from Eq. 2b, 3, 4, and 5 are represented respectively by a dashed, dot-dashed, dotted, and full black line. See Table 1 for the model performance and parameter estimates, and the main text for further explanations.

Figure 2

Figure 3

Supplementary Material

Model for partial migration

To investigate the relationship between seasonal variation in habitat suitability and the proportion of migrations, we used the model presented by Van Moorter et al. (2020). This model builds upon the population model from Fryxell and Holt (2013), we refer to Van Moorter et al. in which the dynamics of population size follow a Ricker model (Ricker 1954, which is a discrete-time model); with scaled densities (i.e. $N=N^{\prime} / K^{\prime}$, where N^{\prime} is the unscaled population size in spring just prior to the reproduction season, and K^{\prime} is the population size at which on average each individual replaces itself during summer). Following Fryxell and Holt (2013), we assumed recruitment (r) during summer to be density-dependent and mortality during winter (μ) to be density-independent as supported by many empirical studies of ungulates (Saether 1997, Gaillard et al. 2000).

Using the Ricker formula to represent episodes of summer reproduction, the multiplicative growth rate equals $\exp \left(r\left[1-N^{\prime} / K^{\prime}\right]\right)=\exp (r[1-N])$, where e^{r} is the maximum per capita recruitment during summer. Assuming density-independent winter survival probability $e^{-\mu}$, the number of animals after one year at the end of winter is calculated as follows:

$$
N(t+1)=N(t) \exp (r[1-N(t)]-\mu)
$$

Following Fryxell and Holt (2013), we linked two seasonal ranges through the movement of migratory animals, which move with migration probability, m, and cost, c, after the winter season from range L to H and back after summer. We define range L as the range with the lowest winter mortality (i.e. $\mu_{L} \leq \mu_{H}$). Therefore, we assumed only migration during spring from L to H ; we did not consider individuals moving in the opposite direction, the so called 'perverse' migrants (sensu Fryxell and Holt, 2013). Importantly, we focus our analysis on migration from the shared lowland range in winter towards a highland range used only in summer, i.e. the highland range can either not sustain residents year-round or highland residents are outcompeted by migrants who benefit from lower mortality on the lowland range (see for more details Van Moorter et al. 2020).

Following the population model in Equation S1, the number of animals at the end of winter in the lowland range, N, after 1 year is the sum of residents in L and migrants:

$$
\begin{array}{r}
N(t+1)=(1-m) N(t) \exp \left(r_{L}[1-(1-m) N(t)]-\mu_{L}\right)+ \\
m N(t) \exp \left(r_{H}\left[1-\frac{{K_{L}^{\prime}}_{L}^{\prime}}{K_{H}^{\prime}} m N(t)\right]-\mu_{L}-c\right)
\end{array}
$$

where m is the migration probability, and c is the demographic cost of migration. For simplicity, we assumed that the migration cost was incurred after summer. Density-dependent recruitment (r) takes place during summer, which is for migrants in range H (i.e. r_{H}) and for lowland residents in range L (i.e. r_{L}), whereas the density-independent winter mortality (μ) occurs when migrants and lowland range residents share their common lowland range L.

As more animals migrate (i.e. increasing migration probability, m) from range L, the density of animals in L decreases and the summer fitness of residents in L increases, whereas the density of animals in H increases and the summer fitness of migrants in L decreases. We assumed an ideal-free migration strategy (Mariani et al., 2016; Van Moorter et al. 2020), where the ideal-free migration probability (\hat{m}) equalizes the summer fitness for lowland residents and migrants, calculated from Equation S2:

$$
\exp \left(r_{L}[1-(1-m) N(t)]\right)=\exp \left(r_{H}\left[1-\frac{{K_{L}^{\prime}}_{L}^{\prime}}{{K^{\prime}}_{H}} m N(t)\right]-c\right)
$$

Since this equation is linear in m, the ideal-free migration probability (\hat{m}) is calculated as follows:

$$
\hat{m}=\frac{1-\frac{r_{L}}{r_{H}}[1-N]-\frac{c}{r_{H}}}{\left[\frac{r_{L}}{r_{H}}+\frac{K_{L}^{\prime}}{K_{H}^{\prime}}\right] N}
$$

This ideal-free migration probability is determined by three main components: migration cost (scaled by the recruitment on the highland range), relative habitat suitability of highland versus lowland range both in terms of the relative intrinsic growth $\left(\frac{r_{H}}{r_{L}}\right)$ and the relative carrying capacity $\left(\frac{K_{H}^{\prime}}{K_{L}^{\prime}}\right)$, and population density or saturation with respect to the lowland range (N). Consequently, increasing the cost of migration leads to a reduction in the migration probability. However, as the cost of migration seems negligible for moose (Rolandsen et al. 2017), we will assume zero migration cost in this paper. Whereas, increasing the benefits of migration from access to suitable habitat (increasing $\frac{r_{H}}{r_{L}}$ or $\frac{K_{H}^{\prime}{ }_{H}^{\prime}}{K_{L}^{\prime}}$) increases migration probability (Figure 1). If the intrinsic growth rate differs between migrants and residents, then the migration rate will be density-dependent (Figure 1). If the intrinsic growth rate of migrants is higher than those of residents (e.g. due to higher quality forage following the forage maturation hypothesis; Fryxell and Sinclair 1988, Hebblewhite et al. 2008), all individuals of the population would be migrating at low densities. As the highland range becomes more crowded due to increasing population density, some individuals will shift to a resident strategy. The opposite will occur if the migrants experience a lower intrinsic growth on the highland ranges (red line in Figure 1), then individuals will only start migrating once the population density on the lowland range is sufficiently high.

Supplementary Figures

Figure S1
Moose migration in Fennoscandia
For each moose in our study the centroid of the summer (in green) and winter (in blue) locations are connected with a red line.

Moose migration in Fennoscandia

Figure S2
Boxplot with the "leave-one-out" cross validation
The Spearman rank correlation for each moose between the observed and predicted occupancy from a model without the focal moose (i.e. leave-one-out cross validation) for the summer and winter resource selection probability function.

Leave-one-out cross validation

Figure S3
Residuals from the relationship between harvest and habitat suitability in Fennoscandia
The residuals from the linear regression between the average annual harvest and the total summer suitability for each mapping unit in Fennoscandia $\left(\log\right.$ (harvest) $=\beta_{0}+\beta_{1}$ $\left.\log \left(R S P F_{\text {summer }}\right)+\varepsilon\right)$. The largest deviation from the prediction occurs in the Norwegian west coast, which has extremely low numbers of moose compared with the amount of available habitat. This area is generally not considered part of the moose range in Fennoscandia, however, the mechanisms for this are not well understood. It could be a combination of historical overharvest combined with difficulties in recolonization due to topography and local competition with red deer. If we removed those municipalities from the analysis, we obtained an even stronger relationship between the amount of suitable habitat and moose harvest (see Figure S5). Note that none of the other results, related to moose migration, are affected by the in- or exclusion of the Norwegian west coast, as for obvious reasons we studied migration only in areas where moose are present.

residuals

Figure S4
Relationship between harvest and habitat suitability in Fennoscandia
The logarithm of the average annual harvest plotted against the total summer suitability for each reporting unit in Fennoscandia. As noted above, an important deviation from the prediction occurs in Western Norway (see Figure S4). After removal of this area the linear regression $\left(\log (\right.$ harvest $\left.)=\beta_{0}+\beta_{1} \log \left(R S P F_{\text {summer }}\right)+\varepsilon\right)$ explains 66% of the variance in harvest (compared to a variance explained of 50% reported in the main text, and $\beta_{1}=0.86$).

Figure S5
Moose population distribution during summer in Fennoscandia
The population distribution of moose (in harvested individuals per km^{2}) derived from the harvest data and the predicted summer RSPF.

Figure S6
Boxplot with the distribution of elevation at the lowland and highland range across Fennoscandia. We labelled the geographic areas that were more selected during winter than during summer as lowland ranges and those that were more selected during summer than during winter as highland ranges. We used these geographic labels instead of summer and winter ranges to avoid confusion with summer and winter in reference to seasons. Although, altitude is unlikely to be a direct driver of migration itself, it is common to observe altitudinal migration in response to ecological variables with an altitudinal gradient. For instance, in our study snow was an important variable related to migration. Not surprising and in support of our a priori labels, we did observe lower elevations in the areas more selected during winter, and higher elevations in the areas more selected during summer.

Figure S7
Descriptive details for the different clusters: number of individuals (N), number of males, number of females, number of migrants \& residents (VI criterion), mean age of the moose at marking (note that age was not available for all clusters).

Name	$\mathrm{N}_{\text {total }}$	$\mathrm{N}_{\text {male }}$	$\mathrm{N}_{\text {female }}$	$\mathrm{N}_{\text {migrant }}$	$\mathrm{N}_{\text {resident }}$	avg(age)
A	30	9	21	29	1	4.9
B	54	8	46	31	23	4.8
C	54	8	46	49	5	5.2
D	19	6	13	16	3	5.5
E	16	4	12	7	9	5.8
F	21	2	19	1	20	8.4
G	42	20	22	31	11	NA
H	29	7	22	15	14	NA
I	13	4	9	5	8	NA
J	13	8	5	7	6	NA
K	24	3	21	0	24	7.1
L	22	5	17	1	21	6.7
M	43	6	37	15	28	3.0
N	31	10	21	17	14	2.7
O	13	2	11	8	5	3.1
P	41	13	28	11	30	NA
Q	22	4	18	2	20	NA
R	26	0	26	13	13	7.1
S	32	0	32	15	17	8.7

Figure S8
Relationship between different migration criteria
The proportion of migrants in each cluster determined by the Volume of Intersection VI criterion on the x-axis and the distance above 10 km criterion on the y -axis. Given the high agreement between both criteria results were qualitatively identical, we therefore only reported those for the VI criterion.

