University of Oslo
Department of Informatics

Teaching OOP
using graphical
programming
environments

An experimental study

Richard Edvin Borge

13th January 2004

This thesis is written as a part of the COOL project. The COOL pro-
ject, short for Comprehensive Object Oriented Learning, was started by
Kristen Nygaard in 2002 and is a project with many participants from
different academic environments. The main objectives of the COOL pro-
ject are: Exploring the complex area of learning (and teaching) object-
oriented concepts; Maintaining and further developing the Norwegian
(Scandinavian) heritage from object-orientation; Designing blended learn-
ing environments. My focus is on learning environments and it is my
hope that this thesis will be a helpful contribution to the COOL project.

I would like to thank my supervisor Jens Kaasbell for much con-
structive input and for making this thesis a very enjoyable process. I
would also like to thank Christin Borge, Vera Louise Hauge and Annita
Fjuk for reading through my thesis and giving me helpful pointers. Fi-
nally I want to thank all the members of the COOL project group for
helping me realize how interesting the field of learning and teaching
computer programming really is.

ii

Contents

1 Introduction

2 0O theory and use

2.1 Whatis OOP? e
2.2 Comparing Procedural and Object Oriented
2.2.1 A Procedural house: Brick by brick
2.2.2 An Object Oriented house: Section by section
2.2.3 Differentviews
2.3 Some OO and Javatheory
2.3.1 Abstractiono
2.3.2 Encapsulation
2.3.3 Inheritance
2.3.4 Polymorphism
2.3.5 Otheraspectsof OOP
2.3.6 General concepts in programming

3 Learning theory

3.1 Learning psychology
3.1.1 Behaviorism.,
3.1.2 Constructivism it
3.1.3 MEmMOTY . . . o oo e e e e e e e e e e e e e e

3.2 Methods of teaching how to program
3.2.1 Pair programming
3.2.2 Reading, testing and running code
3.2.3 Playingagame,

3.3 Structure of coursework

3.4 Approaches to teaching OOP
3.4.1 Procedures First
3.4.2 Objectsfirst. o....

3.5 Puttingitall together

iii

4 Graphical environments
4.1 Logo,whereitstarted
4.2 00 environments v v i vttt it
4.2.1 BlueJ e e e
4.2.2 Robocode
423 Karel J o e
4.2.4 BlueJ vs. Robocodevs. KarelJ

Summary

5 Methods
5.1 Qualitative methods
5.1.1 Casestudyresearch.....................
5.1.2 Experimentresearch
5.1.3 Actionresearch
5.1.4 Ethnographicresearch
5.1.5 Groundedtheory
5.2 Quantitativemethods
5.3 Summaryofmethods

6 The Experiments
6.1 Pilotexperiment,
6.1.1 Summary of the experiment.
6.2 Experiment 2
6.2.1 Dayl:Karel J.
6.2.2 Day 2: Repetition, more imperative and Robocode . .
6.2.3 Day 3: Karel J + repetition
6.3 Progress of themaingroups.
6.3.1 Gl.Day1l
6.3.2 G2.Day 1l e
6.3.3 Gl.Day2 e e
6.3.4 G2.Day 2 e e
6.3.5 Gl.Day3 e
6.3.6 G2.Day3 e e
6.3.7 The code from day 3 for each group
6.4 Comparing Gland G2
6.5 The experiments,doanddon’t
6.5.1 Experimentl,
6.5.2 Experiment 2
6.6 The students after the experiment

iv

29
29
31
31
33
36
38

41

43
44
44
45
48
49
50
50
51

7 Discussion
7.1 The environments, revisited
7.1.1 Graphical representation.
7.1.2 Whatwasdifficult
713 Usage oo e e e e e e e e e e e e e e e e
7.2 Any OO theory learned?
7.2.1 Abstraction, understanding the setting
7.2.2 Encapsulation
7.2.3 Inheritance
7.2.4 Polymorphism
7.2.5 Reuseofcode
7.2.6 Object generation and pointers.
7.2.7 Activeobjects
7.2.8 Constructor i i i e e e e e e e e
7.2.9 Methods and parameters.
7.210Variables e
7.3 Ways of working and learning
7.3.1 Pair programming and discussion
7.3.2 Playingagame
7.3.3 Testing and running code
7.4 The good progress in experiment 2, allus?
7.4.1 Selectionofstudents
74.2 SizeoftheClass
7.5 Structure of the coursework
7.6 2 days of Karel vs. 3 months of traditional OOP

8 Conclusion
8.1 The Experiments eenenen.
8.2 Theenvironments i enenenen.
8.3 What was hard and what was easy?
8.4 Top tenreasons,revisited
8.5 Are graphical environments the ultimate answer?
8.6 Futurework e

A Robocode handout
B Karel J handouts

C Code listings from day 3

77
77
77
78
78
79
80
81
83
84
85
85
86
87
87
88
89
89
90
91
92
93
93
94
94

99
99
101
102
103
105
106

113
119

121

vi

Chapter 1

Introduction

When I learned to program in Java, I did not like it much. I liked the
idea of programming and being able to tell the computer what to do,
but I did not really understand Java. It was not until I had a course that
looked more into Object Oriented design that a light bulb went on in my
head and programming in Java became much easier. Object Oriented
design was for me a new way to make Java programs as opposed to my
introductory course.

Computer programming is a fairly young discipline seen in a his-
torical perspective, and the discipline of OOP! is even younger. Object
Orientation was first introduced with the creation of SIMULA 1 in 1965
[16] but was largely constrained to research. One can say that the term
object-oriented became a fashion word in the 1980‘s. However, in the
early 90‘s there was still a broad reluctance in bringing the OO paradigm
into the undergraduate curriculum [27]. The main focus on program-
ming was procedural programming, e.g. Pascal and C, and OOP was still
reserved for the more advanced courses.

When OOP was introduced to the undergraduate curriculum, the "pro-
cedural” approach to teaching programming remained and students star-
ted learning OOP the procedural way. Many educators claim that this is
not a good way to teach OOP and that one has to change not just the way
of thinking but also the way of teaching. Hence, the field of teaching OOP
in a CS12 course is divided into two main fractions: Those who think the
education should start off with objects right away, and those who think
it is important to give the students some practical programming experi-
ence before they learn OO concepts. The first fraction mentioned is also
referred to as the Objects First [13] fraction, while the second fraction is

100P means Object Oriented Programming and will be the standard abbreviation
for the rest of this thesis

2CS1 is short for Computer Science 1 and is very often the abbreviation for a intro-
ductory course in computer science and computer programming.

referred to as Procedures First. Here follows quotes from one represent-
ative from each side. First, Jeremy Gibbons [18]:

J

We argue that for computing majors, it is better to use a 'why
approach to teaching programming than a ’how’ approach;
this involves (among other things) teaching structured pro-
gramming before progressing to higher-level styles such as
object-oriented programming. (...) Java is a reasonable lan-
guage for doing so.

The ’how’ and the 'why’ are names for approaches used. In a ’how’ ap-
proach, the students learn methods for how to solve an assignment. In a
'why’ approach, the students also learn why they use a particular method
to solve an assignment.

Second, Joseph Bergin [10]:

My conclusion is that procedural programming is no more a
good introduction to object-oriented programming than it is
to functional or logic programiming.

The most common languages used in CS1 today are Java and C++,
both object oriented languages. In C++ it is possible however, to pro-
gram in a procedural C style if one wants too, and it is possible to com-
bine procedural programming and OOP. In Java, on the other hand, one
is introduced to the Object-Oriented philosophy right away: Even your
first program must be wrapped in a class3.

Many Object Oriented languages have been introduced for teaching
OOP in undergraduate courses, e.g. Smalltalk, ADA and Eiffel, with var-
ied degrees of success. Also, many educators were reluctant to switch
from procedural to object oriented programming. Some of the reasons
for this reluctance were mentioned and dispelled in [17]. According to
this article, the top ten reasons why OO should not be taught in CS1 are:

1. OOP is just a fad!

2. OOP is too hard for my CS1 students!
3. The dreaded paradigm shift!

4. You still need algorithms!

5. The "O0P-ish” overhead!

6. OOP languages are ugly!

7. There’s already too much material in CS1!

3An OO program is made up of classes.

8. It screws up the rest of our curriculum!
9. It fits perfectly with CS2 and data structures!

10. OOP is too hard for us!

This article was written in relation to C++ and its introduction into
a CS1 course in a college. T will come back to this list in chapter 8 and
discuss some of these reasons in relation to the work I do in this thesis.

Many papers have been written on the use of Objects First, but little
empirical data exist on the success/failure of such an approach. An ex-
ample of this is [10] quoted above. This article adds many arguments
to the discussion about Objects First versus Procedures First program-
ming, but as far as empirical data, there is none. An example of an article
with empirical data on the use of Objects First is a case study Béstler, Jo-
hansson and Nordstrém [5]. In this case study, the approach was Objects
First using BlueJ* and CRC (Class Responsibility Collaboration) cards.

The results of our case study indicate faster and better under-
standing for object-oriented concepts through delaying the
introduction to complete applications and I/0. Being able to
explore classes and methods without worrying about the con-
text in which they appear, supports understanding without
the confusing syntactical details.

The article is fairly new (2002) and illustrates an approach used in an
Objects First coursework that shows an improvement in results.

We note that Blue] is a graphical environment and in the case study
above, this was used in combination with CRC as supporting tools to an
Objects First approach. In this thesis I have chosen to test an alternative
Objects First approach: The use of graphical environments as the only
supporting tool. My main research question is:

In an Objects First approach to learning OOP and specific-
ally Java, how does the use of graphical environments in-
fluence learning?

I am looking at Java because this is the language being taught at my
faculty and it is a language where you can not avoid the use of classes.
In C++ it is possible to program procedural C as well, but this is not
possible in Java in the same way: One still need to use OO specific ter-
minology such as class even if the program never generates any objects.

Many educators have for a long time suggested and tried the use of
graphical environments as an aid to teach OOP. These environments give
a visual display of programs and might be able to make the teaching of

4Blue] is a tool that I will be presenting more thoroughly later in this thesis

OOP easier. In this thesis I look more closely and examine two graphical
environments: Karel J] and Robocode. In addition I will look at Blue],
but not in the same degree as the two other. These environments will be
presented in chapter 4.

A basis for answering my main research question will be two experi-
ments with students using the Karel J and Robocode environments. The
reason for not doing an experiment with Blue] is that there is a limit to
how much time I have. I therefore chosen not to focus on Blue] because
it is the environment that has been tested most of the three mentioned
above. One result of a course where Blue] was tested is quoted above.
There exist little material on the effects of the use of Karel J and Rob-
ocode in the literature. Blue] also differs a lot from the two other en-
vironments: In Blue], the code is represented in a UML like diagram. In
Karel J and Robocode, during the program execution, each object in the
code is represented with moving objects in a certain setting: A grid for
Karel J and a battlefield for Robocode. In Blue] it is possible to make any
kind of program and system and this will be visualized in the diagram.
In Robocode and Karel J, the programs are made specifically for the en-
vironments, the students are limited in that the program must work with
the environment.

To help me answer my main research question, two supporting ques-
tions must be answered:

1. What do the students learn during teaching with Karel J and Rob-
ocode?

2. What do the students find difficult?

This thesis is divided into seven chapters:

In the first chapter I will look at some general theory about OOP and
briefly mention concepts that are important for OO understanding in or-
der to see if I am able to recognize these in my experiments. The next
chapter outlines some basic learning theory, both general learning the-
ory and more specific learning theory concerning teaching of computer
science. These two chapters are the basis for my experiments.

In chapter 4, I take a closer look at the programming environments
I have focused on. These environments represent three different ap-
proaches to OOP and cover the general thought behind many other en-
vironments not mentioned here.

In chapter 5 I describe various possible methods for gathering data
and explain the methods I have chosen, namely experiments and ob-
servation. The experiments are described in depth in the next chapter,
where I also give a long summary of them as a basis for my discussion.

In chapters 7 and 8 I link the data from the experiments to the theory
mentioned in earlier chapters, tie up loose ends and make conclusions.

Chapter 2

OO theory and use

In this chapter, I will present some basic concepts from OO theory and
motivate the use of OOP. This theory is general and applies to all OO
languages. In later chapters, I will look back at what I have presented
here and see if the theory is supported by the environments! I have
chosen to use in my experiment.

2.1 What is OOP?

The thought behind the use of OO is that the world we wish to model,
or ‘make a computer program of‘, can be separated into classes, repres-
enting different parts of this world. Each class contains the data and
methods unique for the part of the world this class represents. From
these classes we can generate objects, representing one unique entity of
the class with its own set of data.

In brief, when making a program using OOP we split the program
into parts sharing the same data and responsibility, so the program is
easier to organize. For instance, if we are making a bank system, we can
say: ‘OK, the customers need this data stored about them, and they will
need these methods . We therefore make a class called customer, and
then the responsibility for the customers has been assigned to this class,
and we do not have to think more about how to implement methods for
the customers. Instead, we can use the methods implemented, knowing
what sort of result they produce.

Procedural oriented programming languages also have the option to
store data in separate parts, e.g. structs in C. However this can only store
data and not methods. OOP offers a way to store everything related to
certain part in a separate chunk and in that way represent a program in
a way that will be easier to implement and maintain.

IThese environments will be explained explained more in depth in the next chapter

Uk W N

A big problem with OO programming languages, and especially Java,
is that because of the use of classes and objects, short programs come
with just as much wrapping as long programs (see example below). Stu-
dents are introduced to many new concepts from the start. In the ex-
ample below, a much used starting example, there are many new terms
introduced in addition to the method that prints the text: class, public,
static?, void, main, String, [].

Listing 2.1: Intro example

class HelloWorld {
public static void main(String [] args) {
System.out.printin("Hello World!");
}

The problems this can cause in teaching OOP will be looked at in the
next chapter.

2.2 Comparing Procedural and Object Oriented

What is the difference between procedural and object oriented program-
ming? Is one approach easier than the other for students to learn? In a
study on the use of different methodologies for developing requirements
specification in information systems, Vessey and Conger conclude the
following [15]:

Results suggest the process methodology was the easiest for
novice analysts to learn over time, followed by the data and
then the object methodology.

This suggest that people are not so familiar with the object oriented
approach as with the procedural approach to a problem. Later in this
thesis, experiments will show that the object oriented approach may not
be so hard to understand after all. I will now continue with comparing
the procedural and object oriented approach.

I am now going to build two houses, first by using a procedural ap-
proach, then using an object oriented approach:

2This is a very complicated term and one that many lecturers avoid, using different
strategies. The word static is also a very bad name for what it does in the program,
as it refers to the idea that a static variable has the same value for all objects in the
class also called a class variable. Static can often be confused with final, referring to a
variable that can not be changed.

2.2.1 A Procedural house: Brick by brick

40-50 years ago, nearly everyone knew or were expected to know how
to build their own house, and so most did. Now I will do the same, I
might skip some details as I am really not a good builder. I start out
with digging out the area where I want my house, using some tools, like
a bulldozer and maybe some dynamite and set up water and plumbing
with some help from someone who has done it before (maybe an older
brother or friend who has already built a house). Then I start building the
foundation, with bricks and cement. After the foundation is done, I build
the framework with a hammer nails and a saw. After the framework is
done, I put in windows and a roof. Then I dress the outside walls, isolate
and put up the electrics before dressing the inside walls. After this, the
painting and wallpapering start before putting in furniture and such.

This was a very short and faulty house-project, and the key concept
from this approach is: I do all the operations, I build everything and
therefore need knowledge of the whole process. I might get some help
from some people I know to do some of the hardest bits, but I mainly
do things myself, brick by brick. I have to be aware of all the flow of
information flowing through this project, in fact I am the one holding all
the information.

2.2.2 An Object Oriented house: Section by section

Today, few people know how to build their own house, actually, it is
not allowed due to rules and regulations. So what do I do now then? I
hire people to do the jobs for me. All T am left with now is knowing the
logical order of the different sections and who can do the different jobs.
First I hire someone to dig out my property and then someone to do the
plumbing. Then I hire someone to build the foundation, before I hire
someone to make the framework. Then a roof worker, an electrician and
a painter.

The key point from this process is this: I want the job done, but I
don’t know how the different parts are made, only how they are to be
put together in the end. I don't need the knowledge of how to do a job,
I just need to know who can do it and that they can actually do it. I
no longer need to keep track of all the information flowing through this
project, it is held by many different actors, I just need to know of results
and the most important information: The logics of the house project.

2.2.3 Different views

The two ways of building a house can be translated into the world of
computer programming. To answer the question "What is the differ-

ence between Procedural and OOP?”: Procedural programming requires
a lower-level knowledge of programming than in an object oriented set-
ting. This means that as a programmer one must know the specifics of
all the methods and in many situations one must write these methods.
And argument here is: The methods must be written in OOP too. This
is true, but often in OOP one reuse classes previously written. These
classes contain more information than just a few specific methods and
will therefore be more flexible than procedural methods that can be re-
used.

Object oriented programming is like a client-to-server relationship:
The classes of the program are servers that provide some sort of service
that the client needs, and the client uses these services without having
any knowledge of how the job is done as long as it is done correctly.

In a small program where the amount of information is small, it is
more tempting to use a procedural language because of the amount of
code that need to be written. Object Oriented languages need a lot of
wrapping of code even for very short programs and will in some cases
result in more wrapping than code. No one would ever use Java if the
problem was printing some text to a screen, but rather use languages
like BASIC or C. But when the amount of information flowing through
the program becomes vast, OOP offers a better structure and the risk of
making errors decrease.

Is the object oriented way of viewing the world so very far from how
the real world is? Every day we use services without having any idea of
how they work. All we know is that they do what we want them to do.
This sort of high-level knowledge is something we all have but might
not reflect to much on. I believe that this way of thinking can be taught
just as easily as a procedural way of thinking. To think object oriented,
being a technical wiz in imperative programming 3 is not necessary and
the code specific aspects of programming can come at a later stage: For
instance, Java offers many sorting, storing and search algorithms that
are ready for use.

2.3 Some OO and Java theory

Moving past language specific terminology, OOP has four key concepts
(van der Linden): Abstraction, Encapsulation, Inheritance and Poly-
morphism. These concepts are collected from ”Just Java” by Peter van
der Linden [28]. There are of course other aspects of OOP, some of which
will also be presented here.

3 A programming style that describes computation in terms of a program state and
statements that change the program state (Wikipedia on-line encyclopedia).

2.3.1 Abstraction

When making a computer program to represent a part of the real world,
we have to extract the characteristics that are relevant for our program.
These characteristics are dependent on what we are trying to do. To
illustrate, I will use a car as an example: A repair shop would repres-
ent the car in their computer system by license plate number, billing
information, past work, work description and owner. An insurance com-
pany would represent the car in their computer system with owner, past
damage, price of the car, model, and so on.

These are examples of abstractions of data. Abstraction of data can
be seen as removing insignificant details from an object so that what
is left is that which is important in our computer system. The objects
then become a model or representation of the part of the reality that the
computer system is made for.

Abstraction is not something that only applies to OOP of course, ab-
straction is a skill that is applied to any programming language. How-
ever, abstraction leads up to a very important concept in OOP: Encapsu-
lation.

2.3.2 Encapsulation

Encapsulation goes one step further than abstraction. Just as data is
important, so are the operations that can be performed on it. Putting
the data and the operations together is the principle of encapsulation.
Then one easily sees that there are some data representing an object
and that there are some legal operations that can be performed on these
objects.

Another aspect of encapsulation is the opportunity to hide certain
data and prevent that these data are changed by accident (by using the
private or protected keywords).

In C for example it is possible to collect all data about an object
in a class like structure (called a struct), but it is not possible to put
any methods in this struct. This is something that makes OO languages
unique: Collecting data and methods associated to this data and putting
everything in one part of the computer system for later use.

Going back to the car example from the previous sub chapter: Once
we have abstracted the data we feel are relevant for this type of car
system, say physical data like color etc., owner, license plate, price and
frame number (unique to each car to prevent theft), we can put this into a
class called Car. In this class we declare all these variables and methods
the Car class can perform. These methods include changeOwner(String
name) and printData() to mention a few. The frame number would be
declared private to prevent it from being changed anywhere but in the

9

object itself. In this way we can control that no outside system can easily
access or change this frame number by putting a control method in the
object for when access or change is requested.

The strength of encapsulation is that one has the opportunity to com-
plete parts of the program with methods and variables and then put
these parts away and only use the methods required later in the pro-
gram. This reduces the amount of information the coder has to keep
track of while designing and writing her program.

2.3.3 Inheritance

Inheritance is also an OO concept. As an example, consider the hier-
archy of how different species have evolved: All species that live today
has inherited some characteristics from earlier extinct species. Take hu-
mans for example; we have inherited some common characteristics from
earlier species that make us into humans, along with many other char-
acteristics we have inherited from later species that makes us unique.
In OOP this relation between older and younger species is referred to as
Subclasses and Superclasses.

Let us say that I want to make a registry of animals in a zoo. All an-
imals have some common data about them (name, id, cage number, age
etc.), but there are also many differences: The penguin does not eat the
same as the lion, and they do not share the same preference for water. It
would be hard to make a common class of all animals without having to
write many special methods and cases within the class. It will also be a
bit redundant to make two classes where much of the information must
be repeated. A possible solution and indeed much of the power of OOP
can be seen in figure 2.1: We declare a superclass called Animal, where
all common characteristics for the animals are stored. Then we declare
a subclass for each species of animal where the characteristics unique
for a certain animal is stored.

Now the Lion and Penguin classes have inherited all the methods and
variables from the Animal class while keeping their unique characterist-
ics as well. In a zoo there are many different species, so making many
subclass levels is possible, for instance: Animal -; Mamal -; Predator -;
Lion.

Inheritance is only possible because of encapsulation. A hierarchy
over different entities in a computer system will make expansion and
alteration of the system much easier, just imagine wanting to add a new
data field to only the predators in the zoo, not any of the other animals.

The Lion and Penguin may share methods from the superclass, like
for instance feed() or cleanCage(), but these methods would not con-
tain the same data: Cleaning the cage of a lion requires more preparation
than just having a sardine to ward off annoying penguins. So the method

10

Figure 2.1 Inheritance

Lion mm

is shared, but the contents of the method may vary. This leads us to an-
other key concept: Polymorphism.

2.3.4 Polymorphism

Polymorphism is the final key concept from OOP suggested by [28]. In
Greek, this word means 'many shapes’ and in OOP it refers to redefining
or rewriting previously defined methods. I will illustrate with examples
from the two types of polymorphism that exists in Java: Overloading
and Overriding.

Overloading

Overloading means that you use two methods with the same name but
with different signatures®. Here is an example of two methods with the
same name but with different signatures (example from the Java String
class):

int indexOf(String str)
int indexOf(String str, int fromIndex)

When this program is compiled, the compiler will know which of
these methods to use based on whether the method call in the program
has one or two parameters.

4A signature of a method will be the name of the method plus the number of para-
meters plus the returntype: int indexOf(String str)

11

© 0 N Ul kW N =

[
o= O

Overriding

Overriding is best illustrated with an example. Let us say we want to
rewrite the HashMap method remove and extend it with a return mes-
sage:

Listing 2.2: Example HashMap
class HashMap2 extends HashMap {

public HashMap2() {
super(Q);
}

Object remove(Object key) {
super.remove(key);
System.out.printin(key.toString() +

"

removed!");

If we now make a HashMap2 class, we will be able to use all the
methods that HashMap has because we are extending the class, but in
addition, we will get a little extra message when calling the remove
method. As we see in the example, the remove method also calls the
superclass method remove. As we see again, overriding is possible
because of inheritance and encapsulation.

2.3.5 Other aspects of OOP

OOP has, of course, many other aspects, and I will mention them briefly
below. These help in the general knowledge of OOP.

Implementing one domain in another

As seen above, an advantage with encapsulation is that it is possible to
complete parts of a program and store this in separate classes to be used
later in other domains®. To illustrate with an example: In a programming
environment called Karel J presented in depth in chapter 4, students
program robots in order to learn to program in Java. These robots have
some commands that are used to maneuver around and pick up or place
items in a grid. Using these robots to place items around in a grid, it
is suddenly possible to make drawings with these items. It could then
be possible to make separate classes for making lines, circles, diagonals
etc.

>By domains I mean another program that illustrate another part of the world

12

This is a good way of illustrating reuse of code and that classes in a
program are stand-alone entities that can be used for different purposes.

Active objects
Active objects can be understood in different ways.

1. One way is to think of objects as independent entities that can
communicate with each other and behave according to each other
instead of taking commands from the programmer, i.e. handling
events based on the other objects in the system.

2. The second way to think about active objects is as objects that
work dependent on conditions set in its own code, i.e. if it is
Sunday in the system, the objects handling customers add interest
to the accounts.

The concept that objects in a program are entities that operate inde-
pendent of each other and communicate, stems all the way back to the
birth of OOP. It was always the thought of Nygaard and Dahl, the invent-
ors of the first Object Oriented language SIMULA, that objects are active
parts of the program. This is mentioned in the first book written about
teaching OOP [11]:

We think of a system as a collection of objects, each operat-
ing more or less independently from the others according to
specified action patterns.

A programming environment called Robocode, presented in depth in
chapter 4, illustrates active objects very well. In this environment, tanks
battle it out on a square battlefield. Whenever one tank sees another
tank or is hit by a bullet or crash into another tank, an event is created
that the tank can work with. It is the student’s task to decide how a tank
shall handle these events.

Modeling the world

In the book Objects first with Java - A practical introduction using Blue]
(2003) [3] the concept of modeling the world outside the computer us-
ing objects is used as the approach for teaching students OOP. These
object represent the part of the reality that the program is supposed to
model. In this approach, modeling skills are developed before coding
skills. Making models of the world require that the classes contain some
data that is recognized by the students and can be related to the real
world. Below is an example that is revisited in chapter 4, figure 4.2:

13

© 0 N D U R W N =

e el e e
© 00 N Ul kW N = O

20
21

Listing 2.3: A car dealership

// The Super class

pubTlic class Cars {
// Common attributes
private String regNumber;
private Color color;
// And more. ..

// Common methods

pubTlic void displayColor() {
// Method definition...

}

pubTlic void changeReg(String newReg) {
// Method definition...

}
// And more...

}

// Subclass of Cars -> SUV
class SUV extends Cars {
// Attributes only for SUV
private int vat;
private boolean terrain;
// And more...

// Methods only for SUV
pubTic void changeTax(int newVAT) {

// Method definition
}

}

// Similar for the other classes

Using cars as an example is used by many educators as cars contain
a lot of data and because cars are something most students can relate
to.

Objects and pointers

A program written in an OO language consists of objects working to-
gether, exchanging information, producing results, storing and retriev-
ing data and much more. Each object has a certain responsibility, such
as reading a file, storing data about a customer in a bank, running a
thread etc. Knowing how to make objects and access their information
and methods is the essence of OOP and it comes with understanding
many of the concepts above.

14

Constructors

Constructors are common for object oriented languages. In brief a, con-
structor is a method that is initiated when a new object of a class is
created to assign certain values to the object and otherwise start the ob-
ject (by initiating new methods). Constructors can be empty and there
can be multiple constructors, called with different parameters, a reason
why polymorphism is important to understand.

In the sub chapter "Methods and Parameters” a little further down, I
will briefly look at the difficulties of methods and parameters. If an Ob-
jects First approach is used, will the introduction of constructors gener-
ate serious problems of understanding?

2.3.6 General concepts in programming

There are concepts in OO languages that are common for most program-
ming languages and students will meet these concepts sooner or later as
they learn to program. I will only mention a few I see as important for
my context. These concepts will be mentioned in my discussion when
looking over my cases to find out what sort of knowledge the subjects
in my experiments acquired.

Variables

The declaration, storage and use of variables are normally taught very
early in a programming course. The difference between local and global
values is something that can be a bit confusing for many students. The
notion that variables declared inside a method can not be reached from
outside is not so easily understood at first, and can lead to many confus-
ing errors®. In my own experience as a tutor in introductory program-
ming courses, many students solve this problem by making the variable
global instead of passing it as a parameter to another method, some-
thing I will mention in the next sub chapter.

Methods and parameters

Jens Kaasbell describes in [20] problems many educators perceive as dif-
ficult for students to comprehend, one of these being methods and para-
meters. Methods are of course well known to all who have done some
programming, and can briefly be described as a chunk of code perform-
ing one or more tasks, given a name so that it can be called multiple
times without having to rewrite any of the code. Some students have

6Here I speak from my own experience as an instructor for a group of students in a
CS1 course.

15

problems understanding that the execution of a program can suddenly
“jump” to a method and then back and that methods can produce a res-
ult. However, when parameters are introduced I have experienced that
more students face problems, especially if the name of the parameter is
the same as a variable used earlier in the program. I have experienced
that drawing a flowchart of the program execution can aid in explaining
methods, just showing code that work will not help.

16

Chapter 3

Learning theory

In this chapter I will present some learning theory as a basis for obser-
vation in the experiments. There are many factors that are said to affect
learning and I will here present those I see as most important for this
thesis. When conducting the experiments, I will see if these factors play
a part when the students learn programming.

When teaching a course, the goal of the course is important for what
kind of focus the teacher choose. If the goal is scientific programming in
for instance FORTRAN, the focus would be on the mathematical aspect
and formulas, and if the goal is to learn Java the focus should be on
topics important for Java and design of object oriented programs.

Shirley Booth mentions two main views at teaching computer pro-
gramming: The traditional view, where students learn the syntax of the
programming language before looking at how to put the syntax together
in the semantics of the language. The second view is the spesificational,
where "the students learn to devise solutions to problems and formu-
late specifications from them in such a way that a program can thereby
be developed” [12]. A parallel can be drawn to Procedures First (tra-
ditional) vs. Objects First (spesificational) in the teaching of OOP. As
object oriented languages often have a much larger class library for use
than procedural languages, e.g. the Java API, students do not need to
know more advanced algorithms to program. In Java, storing, sorting
and searching, for example, is implemented in the API and ready for
use. An objection is "we are not educating users, we are educating pro-
grammers”, referring to using the algorithms vs. knowing how they are
built.

17

3.1 Learning psychology

There are two main branches when it comes to the views on how people
learn!, referred to as behaviorism and constructivism.

3.1.1 Behaviorism

From nature, people have certain reflexes based on stimulus, like for
instance the Babinski reflex?. The Babinski reflex is an unconditioned
reflex (response) and the tickling of the foot is an unconditioned stimu-
lus.

One path in behaviorism says that people can learn a conditioned
response from a conditioned stimulus through manipulation of the un-
conditioned response and stimulus:

Returning to the Babinski reflex: If a doctor induced the Bab-
inski reflex many times in a little child by tickling his foot
and at the same time introducing another stimulus, for in-
stance shaking a rattle at the same time as the foot curled,
something would happen: The rattle, a conditioned stimu-
lus, would be associated to the unconditioned response of the
Babinski reflex. After many repetitions the child’s foot might
curl even without the tickling of the foot. The Babinski re-
flex would then be a conditioned response to the conditioned
stimulus of the rattle.

One can say that the doctor "short circuit” the natural responses in the
child’s brain to react to a different type of stimulus. The Bambinski
reflex is the desired response that the doctor wants, but he wants to
control how this response is induced.

A different path in behaviorism says that people can learn a certain
behavior through how a persons actions are rewarded, either through
positive or negative reinforcement:

A classic example of reinforcement is that of the hungry rat
pressing a lever to get food: If a hungry rat presses a lever
by accident and receives food, the likelihood of the rat press-
ing that lever again will increase. This is positive reinforce-
ment: The subject receives positive feedback on its actions
and therefore it is likely the action will be performed again.
If, however the rat receives some sort of punishment when it

1Learning can also be explained as the gaining of knowledge

2The Babinski reflex is a test done on infants and it stems from our ancestor apes:
When a child is tickled on the sole of his foot, the foot curls in-wards. This is from
when apes instinctively grabs a tree trunk with their feet when they climb.

18

pushes the lever, the likelihood of the action being performed
again will decrease.

This is a different way of getting a subject to perform a desired action,
by awarding the correct action and punishing the undesired action.

Yet another aspect of behaviorism is how people transfer concepts
from one part of their understanding to another part.

In 1982, Pea [25] did a study on different mistakes that novice pro-
grammers make, one of them being the confusion of programming lan-
guage with natural language. This is an example of negative transfer,
where the novice tries to relate the program to natural language when
attempting to understand how the language works. This can be help-
ful in the beginning but it will soon lead the programmer into trouble.
Positive transfer is something that occurs when faced with a task sim-
ilar to one that has been solved before. The programmer can then use
this knowledge to solve this new task more easily than if she had no
prior knowledge of this type of program. This [12] positive transfer will
then reinforce the knowledge. Reinforcement is an important aspect of
learning as this helps commit knowledge to the long term memory.

3.1.2 Constructivism

Behaviorism bases itself on that knowledge is somewhere ready made,
either out there in the world or inside people, and that we get this know-
ledge in different ways (a couple mentioned above). In constructivism,
the knowledge is not ready made, but is constructed in a person’s psyche
through the interaction with the environment around them. The mech-
anisms used to adapt this knowledge are accommodation and assimila-
tion. [1] explains these concepts the following way:

Assimilation: fit practice to theory. Complex but familiar
external object are simplified to fit pre-existent categories in
your head.

Accommodation: fit theory to practice. You have to change
the ideas in your head to fit the realities of external objects.

In constructivism there are two tools for analyzing how students learn:
Individual and Social. With respect to individual constructivism, the re-
searcher looks at how the individual constructs her knowledge through
experience and interaction with the environment around her. With re-
spect to social constructivism, the researcher looks at how individuals
in a group learn.

19

3.1.3 Memory

There is no learning if one does not remember what one is taught. Much
research exist on the field of human memory and a crucial point is that
of rehearsal as an aid to memory. Students who review subjects they are
taught remember what was taught to them much better than students
who do not review3. Allowing students to have time to review old ma-
terial before starting on something new is important for a good learning
curve.

3.2 Methods of teaching how to program

There are many different methods that are said to have a positive effect
on learning and I will consider a few here.

3.2.1 Pair programming

Pair programming is exactly what it sounds like: Two people sit together
and work with a program on one computer. The usual dynamics* of a
pair programming team works thus: One person sits and program, and
one person sits and keeps an overview of the progress, giving instruc-
tions and correcting errors as they pop up. Both members of a pair pro-
gramming team participate in the discussion and development, but they
have different responsibilities that circulate among them (one writes for
an hour while the other inspects and then vice versa).

In [23], the effects of Pair Programming are well spoken of: Better
quality of code, fewer bugs, faster production and better use of the time.
Many interesting points are discussed in this article, but there is espe-
cially one thing in the article that is of particular relevance to this thesis.
That point is that pair programming is a good chance for the members
to learn by discussing the problems at hand and drawing on each other’s
experience, as an example of social constructivism mentioned above.

A problem with pair programming can be if one person is more
skilled than the other and does not take well to corrections. It is import-
ant that both members of the pair programming team to be motivated
for the working style.

An argument against pair programming is that it is very easy for one
person to become a passenger on the project while the other person
does everything. A way to avoid this problem is that both parts of the
team should write parts of the time to ensure that both are involved.

3http://brain.web-us.com/memory/memory_and_related learning_prin.htm
41 say usual dynamics because this is how pair programming was meant to work,
but that is not always the case.

20

@0 N U R W N =

©

3.2.2 Reading, testing and running code

Zeller [29] reports in his article on the use of a system called the Prakto-
mat to make students read and review other students’ code. 61.5% of the
students reported that it helped reading and reviewing other students’
programs and another 19.2% were partially pleased. 63.5% of the stu-
dents said it helped that others reviewed their code and another 13.5%
were partially pleased.

At the same time, grades went up for students who read many other
students’ code. The grade also went up for students who received re-
views on their own code”.

The above mentioned article gives good evidence that the students
learned from reading other student’s code. However, the good grades
might be just because students who review more code are more fascin-
ated with programming and have a better motivation for learning and
working more. Of this, the article says nothing. In this article the stu-
dents were able to validate code also by having tests run on it. It is
important to understand that a program is first correct when it behaves
the way it is supposed to.

Zeller shows us that looking at code examples will be of good help,
but not just as reading; the students must be able to test the code they
read as well as to see it performing on the computer screen.

When a student runs code, she will get a good chance at seeing ex-
actly what her code has done. Then, by doing a small change in the code
and re-run it, she will see how changes affect the execution of the pro-
gram. This is a way of learning how programs works and gives hands-on
experience that is invaluable in learning to program.

It is important that the code produce comprehensive output so that
changes to the code will be visible outside the computer. Complicated
algorithms with much calculation and little result will be hard to un-
derstand just from its output. Look at this simple example, illustrating
computation that takes place over more than one line of code:

Listing 3.1: Program with a simple output.

* Simple calculation program that prints out a

* result of a computation.

*/

class Calculate {

pubTlic static void main(String [] args) {

final int MAX = 15;
int result = 3;
String [] prints = new String[MAX];

>This was on average, there were some who still got a lower grade even though they
reviewed many programs and got many reviews

21

10
11
12
13
14
15
16
17

for(int i = 0; i < MAX; i++) {

result = result++;

prints[i] = "Result " + i + ": " + result++;
}
// Print the string at place 5 in the array.
System.out.printin(prints[5]);

Try changing line 11 to
result = ++result

and you will get a completely different answer. Since result is calculated
in two places (line 11 and 12) it is not apparent what has happened with
the calculation of result®.

In behaviorism, positive reinforcement is seen as an important as-
pect when learning. The example above (3.1) does not give a very helpful
feedback, just a different answer and does not help to reinforce the un-
derstanding of pre-increment.

3.2.3 Playing a game

One view on learning how to program by playing a game is that it can
be very inspiring and motivating to play around with graphics and many
moving objects. In many games there are also the aspect of competition
to encourage students to "play” harder. A question that arises is: Can
the competition introduced by some of these games work as an added
stress factor for the students and in this way have a negative effect on
learning? Through some communication with a student in the USA, I
learned that the course instructor there used Robocode in his course
and that the grade of the students depended on how many battles they
won in contest with other students. Will this solely work as a motivator
or is it over the top? It certainly encourages students to do well but will
many feel too much pressure and leave the course? Another objection
to the use of games can be that game-playing might overshadow the
reasons for using the game in the first place. Winning the game can be
more important than actually learning. Still, students will learn from
this experience as well, even if it is only how to win a game.

(Amy Bruckman: MOOSE Crossing) The MOOSE Crossing offers a
simple scripting language a bit more advanced than LOGO to create dif-
ferent objects in a text based world. In her doctoral thesis (ref) Bruckman
describes the following experience in the MOOSE Crossing project:

6By changing the order of the ++ notation, java computes in a different order. When
++ is written before the result (called a pre-increment), result is incremented twice at
line 11.

22

One Friday afternoon in April of 1996, I accepted the MOOSE
Crossing application of a new member, a twelve-year-old girl
who chose the character name Storm, and then I left town for
the weekend. (...) When I returned on Sunday, I was surprised
to learn that Storm now knew the basics of how to program.
She had had limited previous experience she had once tried
Logo in school. Over the weekend, she made Jasper (a frog
you can hug),(...) collaborated with Rachael (girl, age 13) (...)
Storm and Rachael spent most of the weekend together, talk-
ing and helping one another with their projects.

This is a clear statement on the positive effects games can have on learn-
ing how to program.

3.3 Structure of coursework

When structuring a beginner’s course in computer programming there
are many factors to take into consideration. If the students are faced
with problems they have no qualification for knowing or understanding,
learning will be hampered.

In this section, I would like to write a little about my personal ex-
perience with observations of a course where I study (the University of
Oslo). What I say about students behavior and understandings and mis-
understanding below, I draw from my own experience as an instructor
for a group of students in an introductory Java course and an article
submitted to NIK (Norwegian Conference on Informatics) this year [8]:

Starting out with the HelloWorld example mentioned earlier (2.1),
students in a CS1 course are shown their first Java program. This is not a
program illustrating a good way to use Java or showing Java’s strengths,
it is the minimal amount of code needed to successfully compile and
run a Java program that produces output. No experienced programmer
would ever use Java to write out a text string. The students are shown
the wrong tool for the problem. But students have no problem under-
standing and replicating this type of code as long as they are told that
the words class, public, static, void, String are "magical” words needed
to make the whole thing work.

The next steps from this example is more programming in main
using variables and most likely some custom made input/output class’
and then imperative programming (the use of if, for and while) and con-
trol structures. These are all concepts that students learn easily as soon

“Input and output in Java is not very easy to understand right away and there are
many things to learn at the same time to use this way of input and output. The solution
is therefore that instructors make easy-to-use input and output classes.

23

@ N DU R W N =

S
N Uk WY = O O

as they are comfortable maneuvering inside the main method. The way
up to this point has been a procedural approach and the next logical
steps will be arrays and methods. Methods of course being "magically”
static. Methods are a bit harder to explain and the students spend some
time learning that and the difference between local and global variables.
Thereafter the first OO problem arises. The problem may not look ex-
actly like this, but it is most likely closely related:

The String variable in Java is, in a Procedural First approach, treated
as a primitive variable such as int and char in that it is assigned a
value as a primitive (ex: String temp = "Hello”). When using a Procedural
First approach, arrays and if-tests come before classes and objects. The
following code or similar might pop up in an assignment:

Listing 3.2: A student register with names.

class Register {
public static void main(String [] args) {
// Array that can contain 100 strings
String [] students = new String[100];
// Code to register a couple of students
// omitted...

// Serch for a student:
String find = "John Doe";
for(int i = 0; i < students.length; i++) {
if(students[i] == find) {
System.out.printin("Found " + find);
break;
}
}
}
}

The first error in this program is found on line 11. Strings can not be
compared in this way. The correct way to write this comparison is:

if(studentsli].equals(find))

Students may be confused and not understand why the comparison has
to made in this way. The students might see this as a more cumbersome
way of comparing two strings, when it was so easy with int and char.
Can they do this with the int and char too? Of course they can’t, so
they wonder why, but it is possible to convince the students that "this is
the way it is done”.

Now a second problem arises: If the array is not completely full, line
11 will after the previous correction resultin a NullPointerException®.

8 An error in Java, that occurs when the program tries to use a method or variable
in an object that is not yet instantiated and is therefore null.

24

What is that? Why do I get that? What is a pointer? How do I avoid it? It
compiled OK, why does this happen? Explaining the concept of null and
that it is illegal to point at something that is null will be met by nods and
smiles, but the students are confused. This is an example of problems
one is faced with when doing a Procedural First approach, and there are
many more examples. About this time, classes and objects show their
ugly faces. I say ugly faces because this is how many students perceive
it. ”This is not proper Java, we have already learned how to program,
why are you showing us this?” It is not very satisfying to be told that
"this is the proper way, what you have learned up to now is not the cor-
rect way.” At the same time as the appearance of classes and objects,
assignments grow fast and the students, not used to structuring? will be
stuck.

When teaching OOP, the structure is important, and the structure is
based on the approach chosen and the approach chosen should be based
on the goal of the course.

3.4 Approaches to teaching OOP

As we have seen, there are two different approaches to teach OOP to
students: Objects First and Procedures First. Procedures First has long
been the leading approach although there is a trend to wards more OO
theory earlier and earlier in OO courses.

3.4.1 Procedures First

Procedures First is described in the example above.

An advantage with this approach is that the programs can be very
small and be expanded one line at the time. A problem with this ap-
proach, is that the shift from procedural to object oriented can be hard.
Bergin writes that experienced programmers can spend as much as 18
months making the shift from procedural to object oriented thinking
(see below).

I am not saying that Procedures First is a bad approach all in all, it is
the only approach if the goal of the course is to teach a procedural lan-
guage. However, there are examples that a procedural approach doesn’t
work [10]:

The experience of the industry is that an experienced proced-
ural programmer will take a year to 18 months to make the

91 will go as far as saying they can not structure at all, an example of this is that
the students when asked to hand in UML diagrams with their assignments, draw the
diagrams after the code is written, not before. It may sound harsh, but they have
totally missed the point.

25

switch (from procedural to OO). (...) If you do a really excel-
lent job of teaching them (students) to think like a procedural
programmer, they will face this 12 to 18 month paradigm
shift. I don’t know where to put this year of confusion in a
four-year educational program.

3.4.2 Objects first

Starting off by introducing objects right away is an approach that offers
a solution to the problem mentioned above. There are different ways of
introducing objects to begin with, [13] lists some of these:

e Modeling the world: Illustrate objects as models of the real world.

e Implementing one domain in another: Illustrate that objects in a
program can be used in other settings as well.

¢ Active objects: Show that objects can communicate with each other
and affect each other.

e Introducing object oriented concepts: Introduce object oriented
concepts as early as possible in a course.

An advantage of using the Objects First approach is that the students
get used to the OO way of thinking from the start and therefore will not
have problems making the shift from procedural to OOP. In OOP the stu-
dents learn to put methods into classes and therefore learn procedural
programming in the objects.

A challenge is finding a first example advanced enough to illustrate
OOP, yet simple enough for students to understand.

3.5 Putting it all together

"I know how to code all the small bits, but where do I put them?” A
problem when lecturing using slides or similar is that there is limited
space on the foil and large programs are hard to show. One of the main
problems for most students is to see "the big picture”, putting all their
little code-bits together. When a program becomes too large, it is hard to
keep track of all the information that flows and wherein the code things
happen. Pea ([25]) reports on this as one of the high-frequency "bugs”
that students make.

Here OOP has an advantage: One can split up the program in many
short files and responsibilities and this might help keeping track of all
the code.

26

During the period from March to May in 2003, I was part of observing
an introductory course in OOP [8]. During this time we observed many
common problems for the students, for instance

o translating their mental model!? of the computer system into code.
The students knew what to do but not where in the code or how;

« being able to make a class diagram!! of the system prior to coding,
these diagrams were made after the coding was done;

e seeing the data flow. The students had very good knowledge of
imperative topics (variables, loops) but lacked knowledge about the
overall flow.

Some of these problems can be contributed to the fact that students
have to relate to a very complex world (figure 3.1). We see in this fig-
ure that there are five different domains that the students must relate
to. These domains are all a part of the computer program and relate
to eachother. Without training, students will have problems knowing
where to put their focus and in what order to concentrate on these. For
instance, the "permanent data file” is important when the functions for
reading and writing data are written but not while making the data struc-
ture. In addition to having 5 domains to relate to, we see from the figure
that there are 10 relations between these domains to relate to.

Being able to simplify this world for the students and limiting the
areas of attention the students must focus on (figure 3.2). In this figure,
the "program execution” domain, the "permanent data file” domain and
the "real world domain” have been removed. What we are left with are
the ”"code” and the "screen display and typing”. Both these domains are
visible to the students.

This simplification can be achieved by the use of a graphical environ-
ment. My experiments will hopefully support this claim.

10A mental model here means that the students knew for instance that they needed
to store customers in a register, type in their information and store them to file.

with class diagram, I mean a UML diagram showing the different classes in the
computer system

27

Figure 3.1 The complex world the students must relate to

Program execution

The real world domain g
Cannot be experienced

To be represented 1 the

i Cuest Food
rogram execution -
Prog : No Namd Shrimp |
Tota] 130] Price[100]
Order / " | TveCrdered
dishes

Screen display and typing

Direct experience

Code ‘
Visible

Class Food{
String name; \ / /
Int price;

VO D) Permanent data file

} S

Class Guest { Visible
Shrimps 73
Salmon 34

Figure 3.2 A simpler world

Screen display and typing

Direct experience

Code ﬁ
Visible et
Duck dolly = new Duck(3); i

Cat pussy = new Cat(); %‘

for (i=1, 1, 10) new Fish(); ———— KA &
Dolly.swim{left);
pussy.moveCloser{dolly};

28

Chapter 4

Graphical environments

As announced in the introduction, my main research question relates to
the use of different graphical environments to help teaching Object Ori-
ented programming, and more specifically Java, using an Objects First
approach.

By graphical environments I mean the use of a program or environ-
ment of some sort that represents ‘a different reality’ than the one the
students are used to.

The term graphical environment should not be confused with the use
of common pedagogical examples such as making a student register sys-
tem or airport system. This different reality will be something other than
just a text editor and a terminal where output is seen. There are different
ways of representing this graphical environment. This can be done by
both graphical output on screen done by predefined packages imported
into the programs (examples discussed later) or something completely
removed from the computer screen, e.g. LEGO Mindstorms.

4.1 Logo, where it started

The use of graphical programming environments is not a new idea. In
the 1960°‘s, Seymour Papert, Daniel Bobrow and Wallace Feurzieg de-
veloped a language called LOGO. This program was based on giving
simple commands to a little mechanical robot called the Turtle. The
image below (figure 4.1) shows two children playing with this turtle.
The turtle was equipped with a pencil and with this the turtle could
draw simple drawings. As seen in the picture, the turtle was hooked
up to a computer via a cable where the children could input different
commands. An example of a command would be FORWARD 50, result-
ing in the turtle moving 50 units (where units are predefined) forward.
Children used the computer to talk to the turtle, and they would crawl
around on the floor acting like turtles in order to envision how the turtle

29

D Ul kW N =

would respond to certain commands. Papert viewed the turtle as an ob-
ject to think with thus giving the children a very visual and real link to
the computer language [24].

Figure 4.1 Early stages of LOGO

The newer versions of the LOGO programming language that were
moved to the computer screen instead of the mechanical turtle is a
simple place to start if you are being introduced to a structured and
procedural language. However, as an introduction to Object Oriented
Programming the LOGO language falls short. The concept of an object
or series of objects will not be apparent in LOGO as it focuses on giving
commands to a single turtle that is never in any way instantiated as an
object. A program in LOGO's spirit focused on OOP has been tried in a
CS1 course learning Java by Stephen Schaub. The author reports that it
has lead to more students completing the course [26]. What was done
was that Schaub made a graphical package for the students to import.
Drawing the letter T with this package would then look like this in a Java
program:

Listing 4.1: Turtle eksample

import cpsll0.turtle.*; // Import the package

class DrawT {
pubTlic static void main(String [] args) {
Turtle t = new Turtle("Herb"); // Make a new turtle
// Draw the T

30

.pendown();
.forward(30);
.right(90);
.forward(10);
.backward(20);

Attt ot ot

Schaub also made other packages with graphics, and as mentioned,
he writes that more students completed the course when using these
packages. From this article [26] it is apparant that a graphical program-
ming environment was a motivating factor and helped the students com-
plete the course. The article says nothing about whether or not the av-
arage grade improved. Looking at the example above, one sees that this
is a step in the right direction of introducing Object Oriented concepts,
as the student makes a new turtle object which is represented in a win-
dow and it is clear that the object has certain methods connected with it.
But I miss a more thorough exploration of all the possibilities that this
package might introduce, such as making more turtles, drawing complex
shapes and maybe illustrating algorithms such as trees with a drawing.

4.2 0O environments

There are three environments that have stood out in my search for Ob-
ject Oriented programming environments. One is Karel J, another is Rob-
ocode, and a third is Blue]. I will briefly touch upon Blue] before going
more deeply into the use of Robocode and Karel J. These three envir-
onments have been frequently mentioned in the literature and are also
being actively updated and used. Another reason for looking at these
three environments is that Karel J, Blue]J and Robocode all represent
different styles of presentation, different methods of teaching and dif-
ferent focuses on what is important. Although different in these ways,
they are all built on the same philosophy that a visual representation is
important.

4.2.1 Blue]

Blue] stems from an older language called Blue, developed in 1996 by
Michael Kélling and John Rosenberg to teach OOP to CS1 students [21].
This language was was built on C++. Blue] was developed in 2001 by the
same people and was purely based on Java [22].

Blue] separates itself from the other two environments first of all
because it is not a game, and second of all because one does not have a

31

framework of code where one can change a few lines and see the result
in form of movement. In Blue]J, the classes modelled in a program are
shown in a UML-style! window (figure 4.2).

Figure 4.2 Blue]: Example of a car dealership

Project Edit Tools View Help

MNew Class.. e
cars
T R e

Compile | SalesMan |

bl

Wi ey

¥ Uses __SUV___ StatipnWagon

[¥l Inheritance

| ——
-

In the figure we see the classes marked in yellow boxes and the ar-
rows marks the relationships between them. Solid arrows denotes an
"inheritance” relationship and the final arrow denotes a "uses” relation-
ship. Clicking on these boxes will open an editor that displays the code
for the specific class where it is possible to edit the code.

When running the program, the student can see the objects generated
during runtime and also the execution of the code itself. The student
has the aopportunity to inspect the objects, check their state, add new
data and so on. The classes can also be opened in an editor where it is
possible to edit the code, recompile and run the program again.

Blue] does not put the emphasis on the program as something run-
ning in a computer, but as a model of a real world domain. Students
are able to see the classes that are needed to model the problem domain
and the different objects that are generated from these classes.

A positive thing with Blue] is that it offers a complete tool where it
is possible to design, edit code, comment using Javadoc, execute and

1UML - Unified Modelling Language. A language used to describe a system by, among
other things, modelling its classes.

32

debug the program. Blue] should not, however, be confused with a UML
development tool.

Blue] has been tested in many courses world wide?. In addition there
exist a textbook on Blue] [3], a website with discussion forums?3 and
many articles on the use of Blue], however there exist few articles on
experiences with using the tool, one article reffered to in chapter 1 [5].
Blue] is therefore a well documented tool and its use in many courses is
an indication that Blue] works.

4.2.2 Robocode

Robocode is an old-style fighting game developed by Mat Nelson at IBM
alphaWorks. The rules of the game are very simple and illustrated in
figure 4.3:

Figure 4.3 One tank destroyed in the battle

Battle Robot Options Help

"Resume @

1: A number of tanks battle it out in a square arena.
2: In order for one tank or team of tanks to win, all opponents
must be destroyed.

2Browsing courses on different Universities all over the world gives clear evidence
of this.
Shttp://www.bluej.org

33

So far it all seems straight forward, but when one looks more closely
at how the tanks are controlled, Robocode gets interesting. Every tank
in the battlefield is a separate Java class written to dictate the behaviour
of the tank. When it is time to start programming a tank, Robocode
has a predefined API where it is possible to find many simple methods
for controlling the tank. In addition, when programming a new tank,
Robocode will set up the basic framework so it is possible to start right
away with entering commands and method calls without having to learn
many standard Java phrases®. These phrases can instead be learned
when the need or curiosity arises. In this way, the student can learn the
phrase needed and at the same time see how and where it is used.

Robocode comes with its own editor where it is possible to write and
compile the code for the tank (figure 4.4).

Looking at the code in figure 4.4, one sees a distinct resemblance to
Seymour Papert’s LOGO: For instance, the command ahead(100) will
give the same result as the FORWARD command in LOGO. In a way, the
tanks in Robocode can in the same way as the turtle in LOGO capture
the imagination of the student programming but on a more imaginary
level. In the same way as a child would crawl around on the floor acting
like the turtle drawing [24], the student using Robocode can imagine
sitting in a tank controlling the gun. It might seem like a far fetched
idea when thinking that imitating a turtle is quite easy as everyone has
seen or played with a turtle up close, but not many people have seen a
tank in real life and even fewer have sat in one. But when considering
the amount of computer games that are out on the market it is not as
hard to imagine driving a tank and fighting other tanks as it might seem.

At a first glance, Robocode does not give a very object oriented feel.
One can see the class modifier and extends and import, but other
than that there are mostly a series of methods and a few while loops
and if tests. What Robocode does have however, is a set of methods
that directly and visually affect the tank itself, giving students a very
interactive first glance at method calls with parameters.

Robocode is a very visual and engaging game that quickly can spark
interest in students as it introduces both a nice interface and an ele-
ment of competition. The argument against the use of Robocode can be
that the high game factor easily can overshadow the fact that there is
supposed to be an element of learning involved.

Robocode has developed quite a big society on the Internet where
people upload their own robots and compete with others>. It is inter-
esting to see how the discussion board is a good example of an online
learning community. As far as documented experience on the use of

4Standard Java phrases can be class, import, public static
Shttp://www.alphaworks.ibm.com/forum/robocode.nsf/current?OpenView&Start=1&Count=100

34

Figure 4.4 Robocode editor

File Compiler Help

[& Editing - /ififtyrfing /h26 frichared / hfag f'r_n’h_umd_e-,r"rd'hm.'s.,"ﬂéI’:-Pﬁi@;a@.
'\‘\'i{ a
public class Richard extends Robot

1

)’WW
* run: Richard's default behaviaor
i

public wveid runcd {

S After trying out your robot, try uncommenting the impo

Ff and the next line:
SisetColors{Color.red,Color.blue,Color.green) ;
whilel(true) {
F/ Replace the next 4 Tines with any behavior you wou &
ahead{100);
turnounRight(3a0d;
back{100);
TturnGunRight(360);

35

Robocode there exist little. In a didactics project at the University of
Oslo, three students tested the Robocode environment on 14-16 year
old boys with an interest in computing. After about 4 hours of training
the students were able to make methods with parameters ©.

I was in contact with a student whose class was given Robocode as
a project (Rochester University). The student’s grade depended on how
many points they accumulated in a 10 round battle. The students were
free to copy and modify code, but they had to explain their code. This
is an example of how Robocode can be used as a project for teaching.
Although I think making course marks depend on a contest is a bit ex-
treme in the sense that the contest to poorly reflect the quality of the
students’ understanding of the code, it is a way to motivate students to
work with code.

4.2.3 Karel]

Karel J is, like Robocode a game-like environment. However, Karel J
separates itself from Robocode in a few ways. First of all, Karel J is not a
very action filled game and second of all, Karel J is more designed with
the thought of being used in an educational setting.

Karel was developed by Richard Pattis and was first used to teach Pas-
cal to programming students (1981), but was later rewritten by Joseph
Bergin, Mark Stehlik, Jim Roberts and Richard Pattis to teach C++ [6].
In 2001 Karel++ (the name of the C++ version of Karel) was rewritten
completely in Java by Joseph Bergin, and Karel J was born.

Karel is a little two dimensional robot that lives in a two dimensional
world. The world is built as a grid (figure 4.5) with streets and avenues.
In addition the streets and avenues can be blocked by walls. In this world
Karel works and does small tasks. These tasks involve either picking up
or placing out beepers.

Being a robot, Karel must be told everything he has to do. This is
the job of the programmer. The tasks given to Karel are solved when
the student writes a program that compiles and get executed correctly”.
One might say that having to build an entire program right away might
be difficult for a beginner student. However, there is no problem for
the lecturer to hand out a program skeleton in the lectures and ask the
students only to fill in the blanks.

Karel J shows one of its strengths over Robocode in that it is more
flexible. By this I mean that Karel J does not set many boundries on
the programs. In Robocode the students find themselves in a particular
setting and have to follow the rules set up by the game. Karel J has

SINF-DID course, 2002. Bording, Kyrvestad and Pedersen
7A correct program means that Karel solves his task

36

Figure 4.5 Karel’s world with walls and beepers

1

X

no rules, the students are free to solve the tasks any way they choose,
unless told otherwise by their instructors.

Karel J can be made to be very easy or very complicated. It is possible
to illustrate everything from making objects to recursion and threads.
The reason this works so well is that the world Karel lives in is very free
when it comes to what can be done. Karel has only a few basic methods,
the rest must be written by the student. The Karel robot class is like any
other Java class and it is therefore possible to make multiple objects of
it, make subclasses, override methods etc.

Karel J was designed for teaching OOP and work as a pedagogical
environment whereas Robocode was designed as a game. I feel that both
robots and tanks are suitable for illustrating objects as they are both
mechanical things with a fixed set of instructions or methods.

I have focused much of my attention on Karel J because I feel that
it has a strength over the other two environments presented. As men-
tioned above I feel that Karel J is much more free and more focused on
the educational setting than Robocode. At the same time it is more il-
lustrative than Blue]. In the next section I will make a small comparison
of the three based on what concepts they introduce and how they would
then typically present these concepts.

37

N Uk W N

= = e e
w o= O ©

4.2.4 Blue] vs. Robocode vs. Karel]

Specifics Blue] Robocode Karel J

Editor In application In application Uses texteditor

Compiling | In application In application Uses terminal

Concepts Blue] Robocode Karel]

Classes Shown in UML style | Coded by the Coded by the
students in Java students in Java
programs programs

Objects of | Shown when the Only has subclasses Coded in normal

classes program is run of abstract classes style and created
and objects are with new, shown
graphically created as robots.

Methods Shown when the Shown as behaviour in | Shown as behaviour

program is run, the tanks in robots when the
depending on code program runs

Inheritance | Shown in UML style | Subclasses of Possible to make
abstract classes subclasses, it is

encouraged

As mentioned in the beginning of this chapter, BlueJ, Robocode and

Karel J all have different approaches to OOP.

Blue] focuses on modelling the world and showing objects and classes
as models of the reality. The students learn to relate to programs as ob-
jects and classes that models the part of the reality that the program is

used in.

Robocode focuses on displaying objects as separate entities that can
interact and communicate as active objects. In these objects the stu-
dents program behaviour using imperative programming thus learning
the more technical side of programming, but locked in classes and ob-

jects. As seen in the example below:

Listing 4.2: Example Robocode

/-.‘:
* Eksample of a tank programmed in Robocode.
:‘:/

class Example extends Robot {

// Main run method
pubTic void run() {
// Controll structure
whiTe(true) {
turnGunRight(180);
forward(100);
backward(100) ;

38

15
16
17
18
19
20
21
22
23
24
25
26

© N D U e W N -

}

// Method called when a tank 1is scanned.
// ScannedRobotEvent points at the scanned tank object
void onScannedRobot(ScannedRobotEvent e) {
// Determine what to do based on the object’s data
if (e.getDistance() > 200) { fire(l); }
else if (e.getDistance() > 100) { fire(2); }
else { fire(3); }

Karel J focuses on introducing OO concepts by using a visual aid so
that students have something to relate the concepts to. Karel J is very
small and simple so that students start off programming simple Java
programs but with the visual aid of a small robot.

Listing 4.3: Example of Karel J

package kareltherobot;

class Karel implements Directions {
pubTlic static void main(String [] args) {
// Make a new robot called karel
ur_Robot karel = new ur_Robot(1l, 4, North, 0);
// Instruct the robot

karel
karel
karel
karel
karel
}
// Load

static {
World.
World.

}
}

.move(); // Move one step

.move();

.turnLeft(); // Turn 90 degrees
.pickBeeper(); // Pick up a beeper
.turnOffQ;

the correct map

readWorld("eks6-1.kwld");
setVisible(true);

What these three environments have in common is that they all use
an Objects First approach to learning Java.

39

40

Summary

Before I start writing about the experiments I have conducted, I will give
a short summary of the theory I have introduced so far and highlight the
important aspects with respect to this thesis.

What sort of OO concepts that the students learn and how easily they
learn them are the main issues for studying in the experiments. I will
be looking for the concepts introduced in chapter 3, namely van der
Linden’s four main concepts abstraction, encapsulation, inheritance
and polymorphism, and furthermore the concepts active objects, mod-
eling the world, constructors and methods. For each concept, I will also
try to find out what the students find as hard.

When it comes to the learning part, there are many aspects I will be look-
ing for. My hope is to see that the environments used in the experiments
will help stimulate the methods noted in chapter 3.

In the more theoretical field I will be looking for signs of construct-
ivistic and behavioristic learning. When analyzing my experiments with
respect to how students learn I will be looking through both the "indi-
vidual lens” and the ”social lens”.

With respect to the more specific computer aids, I will be looking
for the use of pair programming, reading of code, testing, debugging,
visualization, tools and the use of the Objects First approach.

I hope to observe as many aids as possible in the experiments I will
conduct. I will not claim that the experiments were a bigger success if
the students used all the aids rather than if only a few aids were used.
However, I will use these aids and how they were used as some sort of
guideline in my discussion in 7 and 8.

41

42

Chapter 5

Methods

I will now look at various methods for collecting empirical data and jus-
tify the methods I have chosen.

My main research question is: ”In an Objects First approach to learn-
ing OOP and specifically Java, how does the use of graphical environ-
ments influence learning?” To try to answer this, I will be conducting
two experiments on students using two different environments. In one
experiment I will only observe how the students use the environment
without any guidelines from me, while in the other experiment the stu-
dents will be given tasks to solve and also taught some theory. This will
of course influence my choice of methods.

Before I start looking into the different methods, I will briefly present my
experiments so it will be easier to relate to my choice of methods. The
experiments will be discussed in depth in the next chapter.

In the first experiment, I will observe how students use an environ-
ment called Robocode. Through conversations with the students, I will
try to get an overview of how they use the environment and if the envir-
onment stimulates understanding of any OO concepts.

The second experiment will be focused on the use of an environment
called Karel J. In this experiment a course will be tested on a group of
students and this will all be put on videotape. We will be filming pairs
of students to get their conversations and behavior recorded. Conversa-
tions with the students is also important to gather information.

When choosing methods for collecting empirical data, one can either
choose to use Qualitative methods or Quantitative methods or both.

43

5.1 Qualitative methods

One formal definition of qualitative research methods is given in [2, page
51

Qualitative research methods were originally developed in the
social sciences to enable researchers to study social and cul-
tural phenomena. (...) Qualitative data sources include obser-
vation and participant observation (fieldwork), interviews and
questionnaires, documents and texts, and the researcher’s
impressions and reactions.

The data given in qualitative research is often coming from a rather
small population of research subjects. On the other hand, the data is
more thorough and in-depth.

In an Information Systems (IS) course, and in my case: Informatics
Didactics, qualitative methods seem like the way to go. Both qualitat-
ive and quantitative methods can be applied to the study of social and
human aspects to a problem, but in a qualitative approach, each sub-
ject in the study is observed more closely. This is why I have chosen to
use qualitative methods in my research as I am interested in getting a
deeper understanding of how different individuals react to the environ-
ments I introduce to them. For me, I feel it is better to get a solid picture
of maybe 10 different people and their experiences rather than a rating
from 1-10 of the environment from 400 people where little is told about
the environment itself or how the individual react to and interact with
the environment.

I will now look at some different qualitative research methods.

5.1.1 Case study research

The definitions of case study research are many, and there is no specific
definition that is better than the others. In [7, page 81], we find the
following definition.

A case study examines a phenomenon in its natural setting,
employing multiple methods of data collection to gather in-
formation from one or a few entities (people, groups or or-
ganizations). The boundaries of the phenomenon are not
clearly evident at the outset of the research and no experi-
mental control or manipulation is used.

Case studies are very often used in IS as this is a way to investigate a
phenomenon within its real-life context. Information can be collected
by many different means, discussed in more detail below. The data col-
lected are focused on the phenomenon (case) you want to investigate

44

closer. Case studies are useful for answering the "why-s” and "how-s” of
a phenomenon. The questions are decided beforehand and the setting is
also decided upon.

5.1.2 Experiment research

Experiment research differs from case study research in that in an ex-
periment, the terms are set by the researcher. The researcher creates
a phenomenon that she wishes to study instead of looking at a natural
phenomenon.

I will be conducting two experiments, having made an educational
setting where coursework partly designed by me will be tested.

In both case study research and experiment research, the researcher
must decide on several issues: Unit selection, site selection, data collec-
tion methods and data analysis.

Unit selection

The researcher should decide on who the study should focus on. Should
the researcher focus on individuals, groups or parts of an organization?
The selection will of course depend on the goal of the research and the
case: If the goal is to test an application used by individuals independent
of each other, one selects individuals for the experiment to get non-
influenced feedback from the user!.

If the goal is to test an application used for teamwork or coopera-
tion between people in a group, then one chooses to focus on groups
for research. This is because as a group they must all evaluate the ap-
plication. Similarly, if the goal is to evaluate an application used in an
organization as a whole, then one looks at parts of the organization and
then puts these parts together for a bigger view.

In my first experiment I will focus on individuals and in the second
experiment I will use pairs of students working together. This is because
the environments I am considering are used to enhance learning experi-
ence for the individual students, but I am also interested in seeing how
well one of the environments encourage discussion and cooperation. I
have chosen to look at a two experiments and those will be the use of
graphical environments used by students that are connected to an in-
troductory course in programming, whether they are just starting or are
nearly completed.

IResearch has shown that an individual’s answer to a specific question will be influ-
enced by other individuals in for example group interviews or teamwork.

45

Site selection

The choice of site where the case study or experiment is to be conducted
must be considered well. It should be a place that fits well with the goal
of the research. For instance, if the goal is to examine some sort of ap-
plication used by a particular branch of business, e.g. law firm, software
company, insurance etc., the site should be a place of that particular
branch and ideally some place where a new system is needed.

My choice of site comes very naturally. In order to look at students
using a programming environment I must choose a place where the stu-
dents usually work. I therefore choose to observe students while they
are working in front of a computer at the University. This is because
this is the place students usually combine with programming, assign-
ments and learning. I want to see what sort of stimulation the different
graphical environments offer in this type of setting.

Data collection

There are many ways of collecting data: Active and passive observation,
interviews, questionnaires and documentation.

In active and passive observation, the researcher gets his subjects to
work with either the application or method that is the focus of the re-
search. The researcher then observes how the subjects are using the
application/method, either by watching quietly and letting the subjects
work it out for themselves (passive) or by working with the subjects (act-
ive).

Demonstration as a part of observation is a good way to get hands-
on experience of the usage of an application/method, and can usually
reveal many strengths or weaknesses that the researcher never found
while testing the application/method. Later interviews with the subjects
will also be easier as the researcher has had the opportunity to learn
more about the interview subjects and the situation from their point of
view. A problem with demonstration can often be setting it up. The
equipment used (video cameras, computers etc.) must work properly,
the experiment must fit into everyone’s time-schedule and there must be
rooms available. This means a lot of work on the researcher’s part and
there is always a chance the demonstration might fail due to unforeseen
events.

In one of my experiments, video recording will be used. This is be-
cause I will play an active part in this experiment, helping the students
with their assignments, and it is impossible for me to collect data at the
same time. Video will therefore be a helpful aid when going over the

46

experiment later.

Interviewing gives the researcher the opportunity to have a closer talk
with the subjects in the research. The researcher is free to structure
the interview the way she likes: Either structured with many predeter-
mined questions where the interviewer sticks to the questions, or an
unstructured interview. In the latter case, the interviewer has put down
some general questions and let the conversation circulate around these,
with the opportunity to stray from the questions. In some interviews it
is better to use a structured interview, and sometimes an unstructured
interview gives the best result.

An example of when to use a structured interview is interviewing
someone where the interviewer is on a time schedule. There is often not
much time for unstructured talk. An example of when to use an unstruc-
tured interview is when the interviewer wishes to get some information
that might be hard to get if he/she comes off as too professional.

In my experiments, I will be walking around having unstructured
talks with the students about the taske they are undertaking, answer-
ing questions and guiding. This will help me to get an understanding
of the situation of the students. Through these unstructured talks, I
will also try to get some information about the students’ programming
background.

Questionnaires are a good way to collect data that one wishes to rep-
resent graphically (i.e. pie chart or bars). With a questionnaire it is
possible to gather data from many research subjects at the same time.
There are however negative sides to questionnaires: The questions must
be well prepared so that the people answering the questionnaire under-
stand exactly what the researcher wants to find out. In questionnaires
with multiple choice answers the answers must fit well with the ques-
tion. Questions on the form On a scale from one to ten, how well do you
like the environment? is less interesting for me than to see the envir-
onment in action. It is also quite easy for a subject not to answer the
questionnaire unless he/she is encouraged. It is easy to feel one can get
away from the extra work by just staying invisible in the crowd.

One good thing about questionnaires however, is that they can be
easier for a subject to answer truthfully on the questions as they (the
subjects) are anonymous to the researcher analyzing the material. In
my research I will not use questionnaires. The main reason for this is
that I will not get a large enough population of subjects to justify the
quantified data that will come out of the questionnaire. In addition,
questionaires takes along time to make and evaluate.

Documentation is different kinds of written material like formal reports

47

or newspaper clippings. Documentation can later be used in the research
either as direct quotes in interviews (for example: But sir, the report from
last meeting clearly states that...) or they can be used in the research
paper as an introduction or for quotes.

One obvious kind of documentation that I will use is the user manu-
als and specifications of the graphical environments. Another sort of
documentation I use is the collected computer programs that the stu-
dents have written in the graphical environment they have tested. These
programs can be very interesting to see for several reasons: First of all
it can be interesting to see what sort of chances the students dare to
take when programming. Another thing that can be interesting to see
is if the students have tried to make their own methods instead of just
calling the already given methods in the program.

5.1.3 Action research

Action research is a method that is very applicable in IS. It is not easy to
find a good definition of action research that is easily understandable.
One definition is given in [4, page 136]:

The type of learning created by action research represents en-
hanced understanding of a complex problem. The researcher
obtains information about a particular situation and a partic-
ular environment. (...) The aim is the understanding of the
complex human process rather than a universal perspective
truth.

In action research, the researcher is an active participant in the develop-
ment of a system, but at the same time he/she is interested in evaluating
a certain intervention technique [7, page 82]. In this type of research, it
might be hard to stay neutral in the middle of the workers, administra-
tion and programmers. I believe it can take a while for the researcher
to earn everybody’s trust and get all the information he/she wants. It
can be discussed whether it would be an advantage or a disadvantage
for the researcher to be employed in the company the research is taking
place. On one hand one gets access to more information and people as
an employee. On the other hand, other employees or management might
think the researcher has a hidden agenda and therefore are reluctant to
give out information.

Action research can be said to be research into how the changing of
a part of a person’s reality affects this person. Usually the course of this
research goes as: First the researcher analyse and find facts about what
he wants to change?. Then the researcher plans how this change shall

2Change here can also mean adding something to the reality of the research subject,
not just change what is currently there

48

happen, by making some part of the system which shall be introduced to
the subjects. Then the researcher looks at how the subjects react to this
new change and then evaluate what the change meant. This is actually
something I will do in my research: I will introduce a new environment
into the learning experience and see how the students react. However, I
will only try this on some students, I will not make a change in an entire
organisation (in my case a course). So on some level I will conduct an
action research, but I will not look at the relationship between the ad-
ministration and the workers (in my case the lecturers and the students).

This means that I will use some of the principles and strategies of
action research. For instance, I will be actively involved with the stu-
dents, working with them, showing them the environments, maybe even
program a little with them to see how they work with the environment. I
will also try to set up a discussion with a few of the students like we were
both on the same level and I am not some authority figure telling them
what to do. However looking at the system from an intervention point
or looking at conflicts between administration and worker is not some-
thing I will do. As stated earlier, I be a part of designing a coursework
for one experiment and be an active observer in another. I will therefore
not be changing an existing course, I will be making a new one. Both
experiments are new courses except that in the experiment where I am
an active observer I will only be using an existing tool, not adding any
course material too it, save from a quick introduction. Action research
will therefore not be possible to use in my experiments.

5.1.4 Ethnographic research

Ethnographic research means that the researcher gets very close to the
people he/she is observing. Ethnographic research is explained in [19,
page 177]:

Ethnography offers a rigorous approach to the analysis of the
institutional context of information systems practices, with
the notion of context being one of the social construction of
meaning frameworks. Ethnography, as a research method,
is well suited to providing information systems researchers
with rich development and application.

Ethnographic research has the weakness that it can become too narrow
in its’ study. To be able to develop a more general knowledge of a situ-
ation, the researcher has to research many more situations, and this can
be a very time consuming process. Ethnographic research could actu-
ally be a very interesting approach in my research, as it can enable me
to look at a computer course as a complex social and cultural system

49

and see if there are any social factors involved in learning computing3.
An interesting part of ethnographic research that I will also use in my
research is the study of how the student’s different social backgrounds
affect their learning. I will try to make some mental notes of things I find
interesting as the experiments develop.

5.1.5 Grounded theory
[2] has this to say on grounded theory:

Grounded theory is a research method that seeks to develop
theory that is grounded in data systematically gathered and
analyzed. (..) Grounded theory approaches are becoming
increasingly common in IS research literature because the
method is extremely useful in developing context-based, process-
oriented descriptions and explanations of the phenomenon.

In my research, grounded theory can be a good way to go, but at the
same time, I need to be careful not to spend too much time on the pro-
ject, as mentioned above in the previous section. I think a big draw-
back in grounded theory is the amount of time spent on the gathering
and analysis of data, especially if you have done something wrong in
your research, this can mean a lot of time wasted. A positive thing with
grounded theory is that you have a very solid base for your theory and
in that way can persuade your readers that you are correct.

5.2 Quantitative methods

A definition of quantitative research is this [2, page 5]:

Quantitative research methods were originally developed in

the natural sciences to study a phenomena. Examples of
quantitative methods now well accepted in the social sciences

include survey methods, laboratory experiments, formal meth-
ods (for example, econometrics) and numerical methods such

as mathematical modelling.

Something that is typical about quantitative methods is large amount of
data. Often data from an experiment that has been run many times on a
computer? or from laboratory experiments. The data are often collected
with some sort of instrument (computer, scale, laser etc.) and is easy to

3Articles have been written around the positive factors of for instance pair-
programming and a 50-50 male-female class or more female than male students

4It’s common to run simulations of experiments thousands of times on a computer
and store the data.

50

quantify and then use charts as basis for a conclusion of the problem
researched.

I find the social and human perspective more interesting and want
to be very close to my subjects. Quantitative research does not offer
this opportunity in the same way as qualitative research. Quantitat-
ive research is better suited for a researcher doing research theoretical
field like physics and mathematics. I see that it will be hard for me to
use quantitative methods in my research as I feel I will not get enough
subjects for my research to have a good basis to quantify well enough.
Another thing is that I will conduct my empirical studies in only one
semester of my work on this thesis®, and therefore I will probably just
have one set of data as I will focus on one class for my study.

5.3 Summary of methods

To summarize, I focus on experiment research with active and passive
observations and unstructured talks. This is because it fits well into the
area of research I am concentrating on. In addition I will bring in some
elements of other research methods as well as they prove usefull to me.
My main concern no matter what methods I choose, is the time frame I
have to work within. It is very important that I manage to limit my area
of research just as much as to make it exciting. A problem with doing
research is that there will probably show up many interesting points
during the period of research that would be fun to look into but which I
am unable too because of the time constraint.

On a final note, the establishment of a formal research agreement is
important, especially in, an organization where there is sensitive inform-
ation and people’s jobs might be at stake. In the classroom environment
I will work in, everything will happen on a voluntary basis and the only
thing at stake is a person spending some of his studying time on me. It
is important however, to assure the students that the things they pro-
gram and tell me will not in any way be evaluated or shown to anyone
besides me.

It will also be important to get a good tone with the students I use
in my study. This is both to make them open up to me more and to
ensure that the experience of testing the environments is a positive one.
I want to learn as much as I can from the students, but at the same time,
I believe the students will learn a lot too, both about programming and
also to get a look into what sort of work is being done at a Master level
here at the Department of Informatics.

>My thesis work looks roughly like this: 1.sem: Read theory and conduct a few
experiments to learn; 2.sem: Empirical studies and collect data; 3.sem: Writing of
thesis

51

52

Chapter 6

The Experiments

As my thesis is based on testing different programming environments
and their use in teaching OOP, it was natural that these environments
were tested in a classroom setting with students that had little or no
experience with programming. On two occasions did I carry out experi-
ments using different environments.

6.1 Pilot experiment

As noted, I wanted students with no experience from OOP. However, in
my first experiment I used students with some months of a semester
of programming experience and therefore they did not fit my criteria
of proper subjects. On the other hand, one can hardly say that stu-
dents with one semester of programming training are experienced pro-
grammers. The pilot experiment was an opportunity for me to practice
conducting experiments as this was something that I had never done be-
fore. It was a three hour test of the environment Robocode. I announced
the experiment at a lecture and asked people who were interested to
show up at an appointed place. Only three people showed up at this
experiment as it was a bit close to the course exam and late announce-
ment. After a short introduction to the environment, I let the students
play around with Robocode on their own, using the info they got from a
handout I gave them (found in Appendix A) and the API of Robocode on
the Internet!. What I was looking for in this experiment was if the envir-
onment encouraged the students to play around with coding. The stu-
dents sat alone in front of a computer and programmed without much
help from me. I walked around, talking with the students and answering
whatever questions they might have for me. These were seldom pro-
gramming related, more technical ("How do I start this? How do I set up

Thttp://robocode.alphaworks.ibm.com/docs/robocode/index.html

53

the game?”). There is a code example in chapter 7, code listing 7.4.

6.1.1 Summary of the experiment

The students had some experience as they were first year programming
students. They were about two or three weeks away from their final
exam in the programming course they were attending, meaning they had
studied programming for about 13 weeks. So the introduction went fast
as they were already familiar with programming expressions and the
basic dynamics of a program. The students managed to work independ-
ently and did not ask many questions from me. What i noticed was that
two of the students, obviously friends, had a sort of friendly competition
between them. During those three hours, the subjects seemed to under-
stand the basic functions of Robocode and be able to program some
new behavior. How much new Java programming they learned during
two hours might not be much but I am sure they got a new illustration
of how objects interact and communicate. The subjects were given a re-
petition of the use of while and for loops and if statements. One fairly
new concept they were introduced to was Event handling: Seeing how an
object reacts to and handles a certain event. This event can be getting
hit by a bullet, hitting a wall or seeing another tank.

6.2 Experiment 2

The second experiment was a part of the COOL project and was aimed at
testing Karel J on students that had no programming experience. In this
experiment, I was not alone as there were others from the COOL project
that were also interested in playing a part.

Prior to the experiment, we had to structure the material we were
going to use and hand out to the students. As I wrote in chapter 3, the
structure of the coursework needs much consideration. The designer of
Karel J, M. J. Bergin has designed a course based on Karel J. We chose
to base our course structure on this?. We did not have time to cover
everything in our 2.5 days, so this was what we covered:

1. Making one object and manipulating it to move around by using
the methods associated with the object. We expanded the methods
that were able to be used one by one so they got familiar with one
method at the time.

2. Making two objects of one class, emphasizing that they had to have
different names so that it was possible to separate them. Then we

http://csis.pace.edu/~bergin/KarelJava2ed/Karel++JavaEdition.html

54

manipulated the two objects using the different names to illustrate
our point. No new methods were introduced.

3. Making a subclass of the robot class and adding a turnRight method
that we then called from main and used the new method implemen-
ted.

4. Making a more advanced method in the subclass to illustrate a
good use for subclasses.

5. Starting with if and while.

6. Making an example where the constructor is somewhat more clearly
illustrated.

7. Advanced examples using Robocode.

Weeks prior to the experiment, emails were sent to 150 random
people who were going to start at the university that semester. We asked
for people with no OOP experience. 12 people answered this call within
a week. We set a max limit at 20 so this was a good result. On the
day of the experiment, only 6 people showed up. We can only speculate
about the reasons for this, but the important thing is that we had some
subjects that filled the criteria we had set. The subjects were all male
and from 19-23 of age. The six subjects had some experience with using
computers before but programming wise they were all fresh apart from
one who had tried a little BASIC.

The experiment was conducted over 3 days with a total of approx-
imately 15 hours. We set the students up two and two on computers to
encourage discussions that we could observe. The tools we used in this
experiment was ordinary blackboard and a video projector so we had a
way of demonstrating programs on a PC. In addition we had some writ-
ten material that we handed out as the different activities unfolded, see
appendix for the complete hand out. The basic outline of the hand-outs
were examples of code and drawing of Karels world and how the code
affected this world. We tried to keep the amount of written material to
a minimum, relying more on hands-on experience while using what we
had written as an aid for the students to remember syntax. Four people
worked on the experiment: Two were teachers, me being one of them
and the other two were observers. The students were not bothered at
all by being observed. During the experiment we tried our best to be
aware of how we used our language, trying not to use advanced words
and be coherent in what we said to the students. The reason for this was
that we felt that the students could easily be confused by two teachers
explaining theory using different language.

55

6.2.1 Day 1: Karel J

As we have no video from this day, taking notes was very important. It
is however, harder to get a good analysis from written notes. This is
a personal preference. I usually have trouble remembering something
right after it has happened and so many of my impressions are lost.
Recording also offers the possibility of running through the observations
many times and capture small subtleties that are not easily spotted.

We started out by talking a bit about computers and reminded the
students how primitive computers really are and that they just do as
they are told. We then continued by introducing Karel], describing the
world and trying to get the students to imagine the robot world where
the robots are ordered from a factory based on descriptions or work
drawings. We referred to all robots as objects from the start, but not in
a programming sense, more just to make the students used to using the
word object of physical things in the world. We did not use the word
class yet as that would be useless without some code to illustrate with.
During this introduction we handed out "karel intro” but not giving the
students time to read it.

After the 25 minute introduction we started the students on Activity
one, making an object. We handed out "karel 1” and "Activity 1”. Activity
1 was as follows:

Look at the map (here, figure 6.1) and make a robot that can
move from the intersection of 1. street and 4. avenue to pick
up the beeper.

We demonstrated, using a video projector, how to make a new pro-
gram, we introduced the first line of the program and showed how to
save, compile and run.

We wrote the following line:

ur_Robot karel = new ur_Robot(1, 4, North, 0);

At this point, we got the first question asking if "karel” was the object.
The answer of this question was yes. This is of course a modification
of the truth: "karel” is only the reference to an object of ur_Robot, but
it seems that the students were creating a sort of mental model of the
program that they found easy to understand and we did not want to say
too much right away that might be hard for the students to handle. I
was quite amazed at how easy the students started to use object ori-
ented terminology. After having written this line, compiled and run the
program, we introduced the next line and compiled again:

karel.move();

56

Figure 6.1 Map in Activity 1

1

9

=

3
61— &
| L
- HH
E;

2

iy

After this the students started talking among each other, pointing at the
screen, looking through the handouts, drawing on the map and count-
ing. Soon, all the students had completed the assignment and reached
their objective. The students compiled and ran the program many times
as they wrote new lines. Upon completion, they started experimenting:
What happens if we crash into a wall? Can the robot put out beepers
as well? 1t was apparent that the students were encouraged to exper-
iment because of the graphical representation of Karel J and the fact
that they saw results fast. After this, we handed out "Summary 1” and
talked a little about what we had done, showing that we had to use the
name of the object to access its properties (methods3) At the same time
we explained that the robot could not turn to the right, having to use
turnLeft() three times instead.

We then went on to the next activity, multiple objects. We explained
that it was possible to order more robots of the same type from the fact-
ory. Then we handed out "karel 2” and ”Activity 2” and let the students
work. Activity 2 was as follows:

Look at the map (here figure 6.2). Make two robots that can

3We did not use the word “methods” right away. We kept the terminology at a
minimum for a reason: Get students comfortable with words they understood fully
and then advance.

57

pick up one beeper each. One robot starts in the crossing (1,
4) and the other robot starts in the crossing (1, 8):

Figure 6.2 Map in Activity 2

9

One of the students pointed out to the other that they had to give the
objects different names while another student asked if they could work
in parallel. T answered that it was a bit hard but possible. He said the
closest suggestion he had was letting each robot execute one line each
all through the program. It seemed that all the students understood
and executed the task well. We rounded off by handing out "Summary
2” and talking about the importance of different names on objects and
being able to separate them with at least one property that was not the
same for each object. In addition to using the robot analogy, we used a
car analogy to aid us just to be able to draw parallels to other examples.
The students did not know the difference between a reference and an
object, but we felt they had a good grasp of what was going on any way.

These activities lasted until lunch. We may have proceeded a bit fast
and should have been repeating some more, but we were also interested
in seeing how far we could reach. After lunch we started on activity 3,
sub classing. We handed out "karel 3” and "Activity 3-1, 3-2”. Activity
3-1 is as follows (Activity 3-2 explained further down):

Look at the map (here figure 6.3). Make a robot that under-
stands the command “turnRight”. Starting in (1, 4), pick up

58

the beeper.

Figure 6.3 Map in Activity 3-1
1

]

B

We said we wanted to make an improved version of the factory’s
robot that understood the turnRight() command. We said it was pos-
sible to hand in our own description or work plan to the factory. Mak-
ing the turnRight() property would mean making three turnLeft. A
question was then posed why we couldn’t just tell the robot to turn 90
degrees to the right instead of 270 degrees to the left. Our answer was
formulated thus:

The way to communicate with the computer is built up of
layers. In the bottom we have byte code, but that is too hard
to use, so we have built a more understandable layer on top of
that with some means of interpreting this layer to the lower
level. And so we have built many layers, trying to make the
means of communication easier for each layer. Karel is such
a layer, and changing or adding some functionality of a layer
requires knowledge of that layer, and since we don’t have
that, we use the tools we have.

We then started to program on the projector, going through each line:

class ur_Robot2 extends ur_Robot

59

@ N U R W N =

e S S S Yy
S © N DU R W N = O ©

We now used the word class for the first time. We said that a work
description of a new type of robot is called a "class” in the programming
language. The extends keyword falls very natural when we have already
said that we want to make new extensions of the old robot. We then
went on by making the constructor, not saying too much about it at
this time, just saying it was something that gave the object our desired
preset characteristics, like an order form containing some variable data.
Understanding the constructor was a bit hard, but we said we would get
back to it later. While the students worked on the activity 3-1, I talked
to a couple of students about the constructor. Here is a code example
written by me:

Listing 6.1: Code example, constructor

* Constructor example, using karel notation
*/
class Example implements Directions {
pubTlic static void main(String [] args) {
// Making a new object of a subclass
SubRobot karel = new SubRobot(l, 2, North, 0);
}
}

/:‘:
* Subclass that extends a Robot
:‘:/
class SubRobot extends Robot {
// The constructor
public SubRobot(int str, int ave, Direction dir, int beeper) {
super(street, avenue, dir, beeper);
}
// Methods follows
}

The big problem was the sending of parameters into the constructor
(line 7 and line 17), to the students it seemed like a lot of extra work.
This problem was a bit frustrating because we had to tell them that this
was how Java worked. The students seemed to understand a bit better
when I said that the constructor had to be written in this way so it could
be possible to call the same constructor many times.

Other than that, the students had no problems, meaning they were
able to solve the rest of the activity, but without understanding con-
structors, just accepting that this was the way it was. Activity 3-2 was as
follows:

Look at the map (here figure 6.4). Starting in (1, 8), get Karel
to pick up the beepers. (Hint: Try to find a pattern in karels
movement)

60

Figure 6.4 Map in Activity 3-2
1

]

B

After they started on activity 3-2 I talked to another pair of students.
They asked me if this wasn’t the same as we had done in earlier as-
signments, just counting the way up and calling properties of the robot.
I asked them if that wasn’t a bit much work. The answer was: "Well,
yeah. (pause) Oh, we can make a method for each step as they are the
same.” They agreed that would save them many lines of code. The three
groups all solved the task using different approaches: One group reused
the code from the last assignment; one group wrote the code off the
handout (karel 3); the last group wrote a new class extending ur_Robot?2
so they can use turnRight. The last group were a bit unsure whether they
could call methods from within a class or if they had to make a class for
each method. Having explained that this was possible, they solved the
assignment.

We rounded off by talking about subclasses and super classes, using
those terms. We handed out "Summary 3”. Constructors were still a
bit hard, so we planed on making an example for the repetition the next
day. Activity 3-2 was a very important activity and the one we used most
time on.

We proceeded to activity 4: Imperative programming. We handed out
"Karel 4” and ”Activity 4-1” and said that it was time to save even more
lines and make the robots a little bit smarter. Activity 4-1 looked like
the following:

61

Look at the map (here figure 6.5). Having learned about how
karel can relate to the world around him, start in (1, 8) and
let karel pick up all the beepers before he crashes in the wall
at the top of the stair. This time, assume you don’t know how
many steps there are.

Figure 6.5 Map in Activity 4-1

9

We started by talking about if-tests and while-loops, avoiding for-
loops as they require the use of variables as well. We discussed the
assignment and wrote pseudo code on the projector. People came with
their views and possible solutions. We soon came up with a solution
using a while-loop so we get people coding. This took the rest of the
day.

Concluding remarks, day 1

Here follows a short summary of thoughts I had about the project’s first
day. They will be discussed in-depth later.

e The students progressed very rapidly for many possible reasons:

1. The students work together two and two.

2. The people who signed up have a particular interest in com-
puters.

62

3. It was a very small group so it is easy to follow up and make
sure everyone understand.

4. Karel J helped the understanding.

e Karel J made it a lot easier for us as teachers to have something
tangible to relate our theory to. The students seemed to take things
easy when they can discuss problems using the robot world as a
setting.

e Karel] made the programs the students produced very small so it
was easy to have full control of the code. The graphical interface
showed results fast and encouraged compiling often, something
that is a good programming practice.

¢ Subclasses were the hardest thing we taught this day. It is also
a very important aspect of OOP. The logic of using subclasses was
easy enough to understand, but the code specifics of the construct-
ors and the reasons for their existence was a bit harder.

e The students were very active in their discussions. It is very posit-
ive that they can correct each other and discuss different ways to
solve something. One drew on paper and pointed while one typed.

e The students quickly became used to the concepts that are being
used and easily slipped into a mode of talking OO.

6.2.2 Day 2: Repetition, more imperative and Robocode

Before this day we had made another example of sub classing and called
it "Activity 5”. The day started off with some repetition of the previous
day. Two of the pairs were also filmed on video this day. After a 20
minute repetition we handed out "Activity 5” and let the students work
with this.

Use the same map as yesterday (here figure 6.5). Use the pre-
written class, and pick up the beepers and then print out on
the screen how many beepers karel has picked up.

The solving of this assignment will be discussed in more depth in the
chapters about progress of the different groups.

The students worked at different paces on this assignment so we just
added some more parts to the same assignment (found in Appendix B)
and let them work on this. Right after this we handed out "Activity 4-2”
without saying anything. This activity looked like this:

63

Look at the map (here figure 6.6). Go through the maze, start-
ing in (1, 1) and pick up the beeper. Karel does not know how
far he has to walk or where the beeper is. However, he knows
that he only has to turn to the left.

Figure 6.6 Map in Activity 4-2
1

]

B

The students had some starting problems with both assignments and
had forgotten some of the things from the previous day. This is not
so strange as we had covered many topics the previous day. But after
some hints and tips, the students were able to solve the assignments.
Activity 5 and 4-2 were the two hardest Karel J assignments we had and
used everything they had previously learned except generating multiple
objects of the robot. Generating multiple objects was something we saw
we needed to incorporate in the assignments on the last day. These
two assignments took a while (not unexpectedly) and we finished with a
small summary around lunch.

After lunch we had another small repetition before we introduced
the students to a new environment: Robocode. I was a bit unsure as to
how much they would be able to do with this system. Robocode is much
bigger and more complex, and the students had only had about 7 or 8
hours of effective programming. After a short introduction, explaining
about making a new tank and handling events, we let the students start.
This was suddenly much harder, the main problem for the students was

64

to get an overview of what the classes in the system offered. We en-
couraged them to look at other tanks to see what happened. One pair
of students borrowed and modified code from other tanks. One pair
modified tanks that had been written by someone else. Another pair of
students had trouble getting an overview and tried a little bit, but they
soon got stuck and needed hints from us. After a little help they tried to
make some methods and succeeded in making some simple event hand-
ling. One student (now alone) managed to make some very nice methods
and from discussing with him I see that he understood these events. He
for instance made a fire event where the power of his shots was based
on his own energy and the distance to target, he received a little help
with some of the coding, but he had all the ideas, he just had a little
difficulty finding all the code.

Concluding remarks, day 2

This was a day of much frustration for the students. Parts of yesterdays
lessons were forgotten, not very strange because of our pace. Robocode
became too big and complicated for them to fully get an overview.

However, the students showed that they understood the logics of
small programs and were comfortable with using OO terms. Explaining
programming on a slightly more advanced level was easier as the stu-
dents were becoming familiar with the terms. It was also really easy to
explain how Java works when the students understood the class and ob-
ject terminology. Explaining main and the class containing main also
became a matter of simply saying that this class was a special class that
Java needs to be able to start. It took us 5 minutes of talk to "demystify”
main and the main class. Algorithms were still something the students
struggled a little with, but algorithms were never the goal of this experi-
ment. We moved to algorithms because the progress of the students was
so fast. Maybe we should have spent more time on repetition? Although
these students had not programmed before, they had used computers
for some years. Still, their advance was impressive.

6.2.3 Day 3: Karel J + repetition

On day 3, two students were sitting alone, because someone had not
shown up, so we paired them up after a short while. The group, now
G2 consisted of one person from the old G2 and one other person. This
new person was however the same type of person as the one who was not
there, having the same background knowledge. I therefore choose not
to make this new G2 into a new group that I compare as the dominating
person was still the person from the old G2 and the new addition to the
group had the same type of knowledge. It would have been interesting

65

to see what sort of solutions might have come if the newest member of
G2 had dominated, but this can only be speculations.

It seemed that the things that we had done on day 1 and day 2 had
sunk a bit more in, so the students seemed a bit more comfortable. We
did a short repetition about karel J before handing out the final assign-
ment. The two groups of our focus chose different ways of approaching
the problem. This will be discussed more in depth further down. The
Activity looked like this:

Look at the map (here figure 6.7). One robot starts in (1, 2),
the other starts in (8, 6). Both robots shall pick up 7 beepers
and they can not pick up the beeper they are standing on.

Figure 6.7 Map in Activity 6

15
N
13
12
11
1is
9
3 0
7 ﬁ}—lﬂ
g BJ'
5 el
)
4 el
ol
3 el
)
2 el
ol

p r

dl |

R

4 % & 7 & 9 10 11 12 12 14 1%

The thought behind the assignment was for the students to reuse
code from earlier assignments, put each solution into a method of a
subclass and then call the methods from main. Group 1 did this, but they

66

did not reuse as much code as they could and "reinvented the wheel” in
a larger degree than was necessary.

The assignment they were given was not an easy one, but the groups
managed to solve it with a little help. They solved the assignment differ-
ently, one group using a object oriented approach and the other group
using a more procedural oriented approach, more on that later.

After the assignment was done, we evaluated of what the students
had learned. When we asked how they understood what a class was, a
student answered that it was a blueprint for a group of objects. That is
a pretty insightful observation into OOP after only three days of work.

Concluding remarks, day 3

Having a break of a few days helped so the things the students had
learned had some time to mature (there is off course also the chance
they forgot some of the things they were told!). This was the first big
assignment that really showed big differences between the groups.

The students showed that they understood basic OO concepts, by
making methods in subclasses and using pointers. They also show that
they have learned some problem solving skills such as pseudo code,
drawing, testing and debugging. Here, Karel is helpful as it gives a very
visual representation of what is going on in the code. The approaches
to problem solving differs from the two groups however, as seen in the
next chapters.

6.3 Progress of the main groups

We followed two groups with one video camera on each of the two
groups. This was done on day two and three, collecting about 5 hours
of video of each of the two groups. It is interesting to see the advances
the two different groups did. I managed to follow the two groups pretty
well on day one as well, so I have a good view of how they did on the
first day. Off course, I have a much better view of day two and three, but
I will try to make an as accurate description as I can. However, the most
interesting day by far was day 3, seeing how the two groups worked so
differently. But it is important to look at how the two groups evolved
into day 3. First, a short profile of the two groups:

e G1: Group 1. The group consisted of two boys. Both were familiar

with computers, but none of them had programmed before. They
did not know each other before this experiment started.

e G2: Group 2. The group consisted of two boys. Both were familiar

67

with the use of Linux* and computers in general. One of them had
programmed a bit in Visual Basic. They did not know each other
before this experiment started.

6.3.1 Gl.Day 1

Both activity one and two were solved by typing and testing, as we had
told them to. The members of the group talked well together and dis-
cussed. One typed while the other person drew and counted on the
maps handed out and told the other what to write, but he always added
a What do you think? at the end of his instructions to get the feedback
from his partner. The one who typed usually pointed at the screen and
the two discussed where they thought the robot would go next. This
way of working was steady through all the days. After the two first as-
signments they started using papers more, sketching a solution before
starting to program.

It was very easy for them to draw on the maps handed out and make
gestures in the air moving like the robot would. In a quasi English-
Norwegian® language they discussed how to solve the assignments. We
constantly tried to encourage them to compile more often as they often
got many compiling errors. I believe this is because they solved the as-
signment on paper first and were very confident in their solution and
that it was the right one so there was no need to check it as they went
along. They often asked for help when something was wrong. Their
main problems were the following: Either they had many compiling er-
rors due to too much writing before testing, or they had been sloppy
with their naming and mixed their files, giving the file one name and the
class another thus running the wrong files later.

They were the slowest in completing their tasks, and this is due to
the following:

1. They solved everything on paper first and discussed the problem.

2. They used a long time fixing compiling errors and naming errors.

However, their solutions were often very tidy and, as the assignments
got bigger, object oriented®. See listing 6.3 for example code.

4Linux is the operating system used here at the Department of Informatics

>It was very easy for them to use English words as "move” and ”put” since these
were the method names.

6The other groups also solved the assignments object oriented, but G1 wrote more
in classes than G2.

68

6.3.2 G2.Day 1

As one of the members of this group had some experience using Visual
Basic and the other member had experience using Linux, this group set
off very fast in starting to program. They were very keen on exploring the
program and not afraid of trying things like crashing into the walls and
placing beepers in the map. They did not have much trouble with names
and files as they were more familiar with general use of computers.

They did not ask for much help and were pretty quick with their first
assignments. I believe this is because of some experience with program-
ming so the first tasks were pretty easy.

6.3.3 Gl1. Day 2

The next day started out a bit harder for this group. When they started
with activity 4-2 they made many mistakes that made it look like they
had forgotten what we had taught them the day before. This is not very
surprising as we did cover many topics the first day. This we did because
we had that impression that all the students handled the assignments
given to them and understood the theory presented. A question raised
here will be:

Did we move forward too fast or was it simply that the group
had forgotten?

There are many factors that can have played into the cause of their er-
rors, one being that it was early morning and that the students were
tired. This is very plausible as the group perked up much after a break.

When solving the assignments, both students spent some time read-
ing the assignment and drawing on paper trying to understand the as-
signment as well as they could.

6.3.4 G2.Day 2

The group was given Activity 5 and started by looking through the file,
discussing different elements of the file and getting quite caught up in
the technical details of the code, for instance, they asked me the meaning
of ++7. They started very fast with the coding and compiled right away
to check if the map was right and if the code they had written worked.
There was a short discussion about what class to use (ur_Robot or the
new subclass). One of them quickly said that they were supposed to use
the new subclass because it was where they got their methods. After a
little problem with the file-class-name, they were able to compile. And,

74+ is an increment terminology, meaning one increment a veriable by one

69

W N U R W N =

_ =
- O ©

confident that the basic details were in place, set off coding. They first
tried just one step (calling the step method once). Seeing that the first
beeper was left unpicked, they added a pickBeeper at the beginning of
the code. A source of some problems was the leggTilTeller () method
as they thought that this was supposed to be used for controlling how
long the robot was supposed to walk.

They soon remembered however, how to use theory they had learned
from Activity 4-1, and used a while loop for controlling how far the robot
should walk. The rest of the assignment went fast.

After they had finished with the assignment, they played a bit around
with the code to try to better understand what they had done. For in-
stance, they changed the constructor and the parameters in the super
call to see if that had any effect.

After having solved the assignment, the group was asked to place out
the beepers they had collected. They did so without problems.

This done, the group was handed Activity 4-2. They decided to re-
use the subclass from the last activity, as one student said: "it has the
turnRight method”. There was actually no need to use the turnRight
This assignment focused on imperative programming. It was designed
to teach the students some imperative thinking so they would have some
more code to put into their subclasses later. There was no need for them
to use a subclass here, but they used that anyway. The students had a
very imperative way of thinking: "We need a while loop for testing the
walls, then another while loop for testing the beeper. Or maybe an if”.
The assignment adds some difficulty as it requires that the students pay
attention to two things: The beeper and the walls. This requires both an
if-test and a while loop.

The group discussed much and most of it evolved around while loops.
They were thinking about using double while loops to solve this task.
The added difficulty of two things to be mindful of was a big constraint
for the students. The main problem was to figure out a good stop con-
dition. Their final solution looked like this:

Listing 6.2: Code for group 2, activity 4.2

class Karel42 implements Directions {
pubTlic static void main(String [] args) {
TrappeRobot karel = new TrappeRobot (1, 1, East, 0, 0);
while (karel.frontIsClear()) {
if (karel.frontIsClear()) {
while (karel.frontIsClear()) {
karel.move(Q);
if (karel.nextToABeeper()) {
karel.pickBeeper(Q);
}
}

70

}
karel.turnLeft();
}
karel.turnOffQ;
}
static {
World.readWorld("eks4-2.kwld");
World.setVisible(true);

6.3.5 Gl1.Day 3

The group started off as before, showing a very structured way of solving
the problem they were presented with. Also as before, it took a long
time before they started coding, and when they first began, they headed
straight into trouble. The big problem was naming. Their file was called
"Karel5-1.java”, and their class was called "Karel42” as they borrowed
code from last session and forgot to rename the class. This obviously
led them into difficulty®, and it took some time for them to straighten
it out. They were very good at borrowing code they saw they could use.
As this last activity was a combination of the two previous assignments,
the group borrowed code from both places.

Again, they ran into compiling problems, but it was nothing major,
only syntax errors. However, due to the amount of code written, they
were a bit hard to spot right away.

The activity had four major tasks for the robots to perform: Robot
one up the stairs and through the maze; robot two through the maze and
down the stairs. and the group put all these tasks in separate methods
in a subclass. This made it very easy for them to test the code later by
commenting out the method calls they knew worked.

6.3.6 G2. Day 3

Starting off, this group also borrowed code from the earlier project. That
meant that the long imperative code in main followed them through to
this day. The stair went well after getting the code from Activity 4-1.
The rest of the assignment was very much like the day before: Trying
out things, discussing what to do and throwing in a while, if or another
statement whenever they faced a problem, so the code got pretty messy

8When a java program is compiled, one or more class files are generated. The names
of these class files is what the Java Virtual machine looks for when it runs the program.
These files are named after the names of the classes in the program, not the name of
the java file.

71

© 0 N Ul ke W N =

e e e e el
DUk W N RO

after a while. This led to trouble each time they tried to test the code.
For one, it took a very long time to test? and they also had trouble com-
menting out portions of the code, so they had to run the whole program
each time they wanted to test a new add-on.

Their approach was dominated by testing and more testing and look-
ing at old code to try to solve the problem at hand. Their main method
is presented in the next section.

6.3.7 The code from day 3 for each group

It is interesting to see how the two groups differed on the last assign-
ments. In this chapter I will bring in fragments of the code, while the
whole code will be attached at the end (Appendix C). This code will also
reflect the code from Activity 4-1 and 4-2. I only present the main meth-
ods here, because this is what shows the organization of the rest of the
code.

G1: OO-style

This group’s main method was very short and tidy:

Listing 6.3: Code of group 1

class Assignment6 implements Directions {
pubTlic static void main(String [] args) {
// Uses a class written in an earlier assignment (5)
TrappeRobot Karel = new TrappeRobot(8, 6, North, 0, 0);
TrappeRobot Jon = new TrappeRobot(1l, 2, North, 0, 0);
// Calls methods for Jon first
Jon.plukkTrinn(Q);
Jon.turnRight(Q;
Jon.finnPiper(Q);
// Then calls methods for Karel
Karel.move();
Karel.finnPipe2();
Karel.turnLeft();
Karel.plukkTrinn2();

Here we see that the group will have no problem in testing just some
code fragments.

G2: Imperative style

This group’s main method was big and messy:

9Nested while-loops with if-tests takes a long time to execute.

72

Listing 6.4: Code of group 2

class Assignment6 implements Directions {
pubTlic static void main(String [] args) {
// Writes a new subclass
ur_Robot2 karela = new ur_Robot2(8, 6, North , 0);
ur_Robot2 karel = new ur_Robot2(1, 2, East, 0);
// Use while in main as a controll statement
while ('karel.frontIsClear()) {
karel.trappQ;
}
// Go through the maze
while (karel.frontIsClear()) {
if (karel.frontIsClear()) {
while (karel.frontIsClear()) {
karel.move(Q);
if (karel.nextToABeeper()) {
karel.pickBeeper();
}
}
}
karel.turnLeft();
}
karel.turnOff(Q;
// The other robot goes through the maze
while (karela.frontIsClear()) {
if (karela.frontIsClear()) {
while (karela.frontIsClear()) {
karela.move();
if (karela.nextToABeeper()) {
karela.pickBeeper();
}
}
}
karela.turnRight(Q;
}
// Fix to get the robot on the right track
karela.turnLeft();
karela.turnLeft();
karela.move(Q);
karela.pickBeeper();
karela.turnRight(Q;
karela.move(Q);
// Down the stairs
while(karela.frontIsClear()) {
karela.trapp2Q;
}
}
}

From an OO perspective, this is not good, but I am impressed that they
have actually made this program running! It shows some heavy imperat-

73

ive programming. It is apparent that OO is not the governing path here.
Testing and experimenting and a small portion of luck played a big part
in this code.

6.4 Comparing G1 and G2

The two groups differed a bit in their approach and their way of working.
The most obvious differences were:

¢ Help from teachers:

- Group 1 asked for help whenever they faced a new problem.

- Group 2 liked to solve it on their own, but they usually sat
looking for us when they trouble.

e Problem solving approach:

- Group 1 read the text thoroughly and drew possible solution
on paper and wrote a few lines of pseudo code before even
starting to program.

- Group 2 started to code right away and solved problems as
they came up.

e Coding style:

- Group 1 coded much before they started testing because they
felt they had solved the problem satisfactory on paper first.
They were also more object oriented in their approach (put-
ting most of the code in subclasses).

- Group 2 compiled and tested often. They had a more imperat-
ive approach to the problems (using while loops and if state-
ments in main to solve problems).

e Common problems:

- Group 1 usually had problems with naming files and classes
and mixing these two. They also had compiling problems, as
they usually coded much before they compiled and tested.

- Group 2 also had some naming problems, but the main prob-
lem was hard-to-read code because of their imperative way of
programming.

But they were similar in some respects as well.

¢ Communication:

74

- Both groups communicated well together and used both pa-
per and screen to point and trace the route Karel took. The
students seemed very equal, none took specific control. How-
ever, as they were all very unsure, the approach that was first
presented by one of the members was very often followed as
the other didn’t have a better idea.

o Exploring:

- Both groups explored solutions and were not afraid of trying
something. Karel offers a good environment for exploration
and the groups used this opportunity.

6.5 The experiments, do and don’t

During the work on this thesis I have conducted two experimental stud-
ies, one small and one large.

When planning experiments in an educational setting there are some
problems one faces. One is that of when the educational year starts: I
was looking for students that were going to start their education at the
university. This was not an absolute requirement, but it would make it
easier for me to follow them up later. This means that I would have to
do this at the beginning of a semester and when I want to use students
who are just starting the university, many of these students are trying to
get settled in and might find it a bit scary to join an experiment before
they know anybody.

6.5.1 Experiment 1

In the first experiment, I had no experience with conducting in-depth
studies and this was then a test for me and a way to practice. Look-
ing back, the experiment went well except for a low attendance. This
could have been improved with better planning from my side and bet-
ter information to the students. But I am happy with the content of the
experiment itself and what the students did.

6.5.2 Experiment 2

In this experiment, we had 2 and a half day at our disposal (12 hours
effective time). We could mainly choose two paths:

1. Use the whole time to get the students to understand the OO con-
cepts very thorough at the expense of not covering all subjects.

75

2. See how far we managed to come in this time without loosing any
of the students under the way.

We chose the second path to test the effectiveness of our program and
the tool. The advantage of this approach is that we can see how much
students are able to manage on a short period of time and then see if it
is hard to teach the OO paradigm. The disadvantage is that with so little
repetition, there is a large risk that the students will forget much from
day to day and that the knowledge will not be very solid at the end.

6.6 The students after the experiment

I have spoken with the students at later occasions and I asked one of
them if the experiment had helped them any, especially when he started
with objects in the course he was attending. He said that he had enjoyed
the experience much and that he liked the approach. It was just a little
sad that it was so long ago, much of what he had learned had been for-
gotten. This is understandable, we had too short time to repeat subjects
for the students and I am not surprised that he had forgotten much of
what he had been taught. I have been so fortunate to be the instructor
for two of the students from the experiment in the introductory course
so I have been able to keep an eye on him. The assignments they have
delivered have been good and it is clear that they have a better under-
standing of OOP than many of the other students on the group and other
groups I have visited. If this is due to the experiment this summer or if
the two would have been just as good in any case, I can not say.

76

Chapter 7

Discussion

In this chapter I will summarize my findings and try to link my observa-
tions to the theory I have presented in earlier chapters. I have presented
some OO theory wherein I mentioned some concepts that are important
to understand in order to have a good grasp of OOP. In addition I men-
tioned some different concepts that are used to facilitate the learning of
OOP, as well as some general concepts with regards to the psychology
of learning.

In the experiments I observed many of the concepts above and these
will be discussed in-depth in this chapter. When I refer to "Experiment
17, T am referring to the Robocode experiment while "Experiment 2”
refers to the Karel J experiment. Sometimes I will also refer to the groups
from experiment 2 and I will use the same names as I did in the chapter
about them, G1 and G2.

7.1 The environments, revisited

In this section I will revisit the environments I presented earlier and look
at some differences in the environments that I have observed during the
course of this thesis.

7.1.1 Graphical representation

Blue], Karel] and Robocode all have in common that they are graphical
environments but they differ in many respects.

Blue] is the environment that separates itself most from the other
two. In both Karel J and Robocode, the program execution is the only
thing that is represented while in Blue], the code can be seen executed
by the objects that are generated as well as seeing the program itself.
In both Karel J and Robocode, one must keep in mind the setting of the
program, either a grid or a battlefield, while in Blue] it is possible to

77

make any sort of program without having to think of that it has to be
compatible with the BlueJ environment.

Karel J and Robocode represent the program written in different
ways. In Karel J, the execution is slowed down so that the students can
follow the code line by line and see when the program they have written
performs an unwanted action. The downside to this is that many stu-
dents might find the execution being too slow and not test often because
this takes too much time. Robocode is much faster in its execution, look-
ing more like a game with engaging action. The downside to this is that
the students have a hard time following the execution of the code they
have written.

7.1.2 What was difficult

What was difficult with the different environments? Was there some
threshold that was high for the students?

Observing the students in the experiments, I saw that they found
Robocode a little difficult. The basic idea of Robocode was not hard to
understand: Using some methods that made the tank move. It was when
the students started to work with many different events (hitting walls,
being hit by bullets and so on) that they started to loose track of what
was going on. The students easily made the tank move around and shoot
a little. It was when the students started to make more intelligent tanks
that problems arose: Robocode offers many different events that can be
handled: Scanning another tank; getting hit by a bullet; hitting a wall,
missing a shot and a few more. Getting an overview of all these events
and possible ways to handle them, requires some more experience in
programming than the students had.

7.1.3 Usage

The environments are all good to use when teaching OOP, but the areas
where they can be used for best effect vary. In the beginning, students
will have problems being able to use every aspect of Robocode due to
its size. However, as the students develop more understanding for pro-
gramming, Robocode is very good at illustrating imperative program-
ming and event handling.

My whole thesis is based on my experiments and the observations that
were made there. In Experiment 1 I used Robocode and in Experiment 2
both Karel J and Robocode were used.

78

7.2 Any OO theory learned?

I believe the best way to observe learning is to observe problem solving
instead of asking students what they feel they know. In this chapter
I will look at concepts one by one and see how they were presented
and whether they were understood and used at all by students. In my
experiments I had many conversations with students and this helped me
get a better view of their situation.

As can be seen in figure 7.1, Karel played a vital part in the students’
understanding of OOP in experiment 2. The blue part of the figure illus-
trates the observed situation during the experiment. The red part of the
figure illustrates a situation we did not observe so well, but we hope was
happening. We did see some evidence of experimenting with code, but
it was not possible for us to see if Karel J was able to be transferred to
general understanding of OOP.

Figure 7.1 Learning situation in experiment 2

Solving problem Discussing
v discussion. scluticn and
experimenting
| | with the code.
7
Ra&u’:e%en tation of
6

the P oblem dO‘mEin
- Y

c a eventuall
i anlut;nn.
4

2
2
1 & &

=
rd
wl
o
v
Ll
|
ua}
L

10

However, when we introduced Robocode to the students in experi-

79

ment 2, we did see that the students were able to transfer their know-
ledge from Karel J over to Robocode. This opens for the possibility that
the students’ knowledge from Karel J can be transferred to general OOP.

7.2.1 Abstraction, understanding the setting

As mentioned in chapter 2, abstraction is one of the main concepts
in OOP, along with encapsulation, inheritance and polymorphism (dis-
cussed further down). Making the students understand how to sort out
the important parts of the reality that is to be implemented in a pro-
gram, is important no matter what sort of programming language one
uses.

In both Karel J and Robocode, the abstraction of the world has already
been done by their creators: The functionality of the robots/tanks has
been reduced and limited to what is needed in the setting they were de-
signed for. What the students must do, is relate to this abstraction and
get a mental model of the environment. When the environment used is
graphical, making a mental model is easier. Karel J is a good example of
this: In Karel J, in addition to the graphical representation of the robot,
the status of the robot is printed to the terminal in this fashion:

RobotID 0 at (street: 6) (avenue: 2) (beepers: 0) (direction: West) on
RobotID 0 at (street: 6) (avenue: 2) (beepers: 0) (direction: South) on
RobotID 0 at (street: 6) (avenue: 2) (beepers: 0) (direction: East) on
RobotID 0 at (street: 6) (avenue: 3) (beepers: 0) (direction: East) on
RobotID 0 at (street: 6) (avenue: 3) (beepers: 1) (direction: East) on

If the terminal print-out had been the only thing the students had seen,
they would have had a much harder time making a mental model of the
environment. They would have to draw the robot on a piece of paper
and trace their way through the print-outs.

In experiment 2, we as teachers also tried to make the students visu-
alize the setting by telling them that the robots were created at a factory
and they were given certain functions they could perform.

The students were comfortable talking about Karel in this setting.
The following is a conversation between to students in Experiment 2:

"Where are we placing the robots?”

”On the corner of 2nd street and 1st avenue.”

"What way is he facing?”

“North.”

"He can pick beepers, can he place them out?”

“Try placeBeeper or putBeeper”

“He has to walk two north, then turn or he will crash into the
wall.”

80

® N U R W N =

= ke = e
B w N = O ©

We see from this conversation that the students comfortably used Karel
J specific words "street”, "avenue”, "beepers”. These are all words that
describe the Karel world in some way, but at the same time are words
that the students are fairly familiar with outside a Karel setting. In using
these words they are linking their understanding of Karels world with
their own knowledge of the real world: Walls must be walked around,
streets and avenues cross each other, beepers are things that can be
picked up. Linking this understanding is a very good example of as-
similation (mentioned in chapter 3), where the complex programming of
Karel is linked to familiar concepts that the students know.

At the same time, one can see that the conversation above resembles

pseudo code. Put in a Java-like program this would be:

Listing 7.1: Pseudo code from the conversation

/:‘:-,'
* Make a Karel robot in pseudo code
:‘:/
class RobotWalk {
main {
new ur_Robot in 1, 2 facing north;
placeBeeper();
putBeeper();
north, north, turn left;
}
}

After a little while, talking in pseudo code became very natural. In
chapter 3, I speak about accommodation and assimilation. The way the
students talked is a way of assimilation: The students talk about a more
complex world (the world of programming) in a way that they recognize
(a robot moving up and down streets).

7.2.2 Encapsulation

Encapsulation, a very important aspect of OO, was revisited many times
during experiment 2, but also in experiment 1. In experiment 1 it was a
bit more subtle, but the students saw each of the tanks on the battlefield
as an individual entity or object with some functionality packed into
it that could be reused. The students made some local methods and
variables used by the tank when it was tested.

In experiment 2, the students made their own classes! with local

I'They only made subclasses but they were treated as independent robots, see more
next sub chapter

81

methods only usable by a specific robot. In Activity 3-2, where the stu-
dents made a robot to climb stairs, they made a subclass with some
functionality (turnRight and climbStep).

In G2, one of the students had some experience from BASIC pro-
gramming, a procedural language. This knowledge of procedural pro-
gramming dominated the group as he then became the one with most
knowledge when it came to programming. Remembering listing 6.4 from
chapter 6 and the example of conversation between members of G2 be-
low, group 2 used a very imperative coding style. Much of the code was
written in the main method as this was the way the student in G2 was
most comfortable with.

"Damn, he won’t turn.”
“Maybe we need another while (loop).”
"Let’s try.”

Did the concept of encapsulation not sink in? Why not?

The reason for this can be a few. Bergin says in his article that the
shift from the procedural paradigm to the object oriented can take a long
time based on the person’s procedural knowledge [10]. The students in
G2 did make subclasses with methods and did use them to a certain de-
gree, but when the complexity became a bit higher, they slipped into a
more familiar procedural way of solving the problem. Instead of follow-
ing the object oriented way we had presented, they fitted the problem
into a domain that was more familiar to them. The conception of how a
program is supposed to be written (in a procedural way) was transferred
over into the OO world. This is a form of negative transfer that could
most likely have been avoided. Although Pea (see chapter 3) talks about
negative transfer from daily life to coding, the same principle applies
here: The student was familiar with something, saw a connection and
used it. It can also be seen as an example of Constructivism (see also
chapter 3): He builds his knowledge on something he already knows and
applies old knowledge to new problems. As far as getting the program
to work, he was right, but with respect to OOP, it was wrong and not
illustrating the point of OOP.

If we had spent a longer time on each activity so that the students felt
more comfortable with the use of OOP to solve a problem, they might
not have fallen into the procedural paradigm when the tasks became
more complicated.

To quote myself (chapter?):

The strength of encapsulation is that one has the opportunity
to complete parts of the program with methods and variables
and then put these parts away and only use the methods re-
quired later in the program.

82

G1 in experiment 2, did use methods packed in a subclass and only
called these methods when it was time to run the program (see code
bit 6.3). The pay-off was very evident when they wanted to comment
out one of the robots because it took too long to test: They only had to
comment out two lines. It is quite evident that the use of encapsulation
was positively reinforced with G1 when they saw this.

7.2.3 Inheritance

Inheritance, the use of subclasses was something that was covered in
both experiments. There are different ways students can understand
inheritance:

1. Subclasses are used to expand some class with new behvior in ad-
dition to the old behavior which is inherited by the subclass.

2. Subclasses are used to extend some general class (for instance an
abstract class) and use the superclass’ behavior modified a bit to
fit a specific program (most likely by polymorphism).

3. Many subclasses extends a superclass (figure 4.2) and the super-
class contains common data for all the subclasses (like name and
license number).

In experiment 1, the students made objects that were subclasses of
an abstract superclass. In the classes the students used methods defined
in the superclass. The students’ understanding of subclasses in Rob-
ocode would fit into number 1 in the list above.

In experiment 2, subclasses were covered the first day in Activity 3-1
(making the robot understand turnRight). We then told the students that
the new class? was a new blueprint of a robot that had inherited the func-
tions from the old robot. The students had some trouble understanding
the use of constructors, but this will be explained more in-depth with
example in a later sub chapter.

The students were able to write their own subclasses and understood
the motivation for using them. Inside the Karel world, the students
seemed very comfortable using subclasses, but a big question is whether
they would be able to transfer this knowledge to a program independent
of the Karel environment. When we tried the Robocode environment on
the students, it became apparent that they were able to use their know-
ledge in a similar environment, and this is a strong indicator that the
students would be able to remove themselves from the Karel environ-
ment entirely. Hopefully, the use of the Karel environment can work as

2We now started using the class word.

83

@ N U ke W N =

— e e e e
Ul ke W = O ©

a tool for the students when making the shift to general OOP (see my
notes on positive transfer in chapter 3).

As mentioned, in experiment 2 we also tried Robocode as a test to
see how well the students managed a more complex environment after
just about 8 hours of coding. The students understood how to make
working tanks in Robocode as well, it was the size and complexity of
Robocode that stopped them:

Listing 7.2: G1, Robocode (comments added by me)

Vo
* Some of the code from Gl: main run method
*/
pubTic void run() {
// Behavior of the tank,
// Using methods defined in superclass Robot
whiTe(true) {
ahead(100);
turnRight(90);
ahead(200);
turnLeft(90);
back (100);
turnRight(90);

As seen in the code, the students use the methods defined in the
superclass Robot without much problem. It is when faced with all the
multiple opportunities that they stop up and have a hard time sorting
out all the information.

7.2.4 Polymorphism

Polymorphism was not covered in any of the experiments, but I see ways
it could easily have been done.

Maybe we should have covered polymorphism instead of some of
the imperative programming in experiment 2? I can say I felt drawn to
introduce imperative programming so we could make the assignments
more interesting, but this might have been the wrong approach.

The concepts mentioned above are concepts that are important for
the understanding of OOP. Other concepts that come as a consequence
of these four are discussed below.

84

7.2.5 Reuse of code

Reuse of code was illustrated very clearly in experiment 2. The students
made subclasses that could be reused in later assignments. We did not
specifically tell the students to reuse the classes from earlier, although
we sometimes told them not to reinvent the wheel.

G2, the imperative group, did not reuse classes to the same extent as
G1. They did reuse subclasses from earlier to aid them some with for ex-
ample turnRight. But the overshadowing paradigm was the procedural.
In our three day experiment we did not have much time to repeat and
imprint the concept of reuse well enough. In a conversation from GI,
regarding the final activity we observed. In the conversations students
mostly referred to the karel robot as "he”:

”OK, so now he works, now what?”

"The other does the same thing, just a little reversed.”
”So now we write that...”

"No, let’s just copy, I will show you.”

The conversation over is a clear example of positive transfer men-
tioned in chapter 3: The students are faced with a task similar to some-
thing they have seen before and are able to apply earlier knowledge to
this new problem.

7.2.6 Object generation and pointers

In OOP it is important to learn to use and work with objects both by gen-
erating one or multiple objects and using pointers. In Karel this starts
right away. The first two lines the students see when starting with Karel
are:

ur_Robot karel = new ur_Robot(1, 1, North, 0) and
karel.move()

One can say that this is like the HelloWorld of Karel, but instead of just
writing a line of code on the screen, it captures much more. The students
get introduced to their first object and use a method associated with it
by using a pointer or dot-notation as it is also called. And it produces a
visual result: A robot that moves in a map. This opens up for trying out
some more lines like moving additional steps, then turning.

This was the case for our students. After they had been presented to
these two lines, they started experimenting on their own and it was not
long before all the groups had solved the first task of the course.

The students in experiment 2 did not fully understand pointers, they
saw the references to the objects as objects. However, they were able to

85

@ N U ke W N =

T
N O Ul ke W N = O ©

18
19
20
21
22
23

25
26

access methods in the objects. We never referred to the object names as
references but the students still used the names as references with the
dot notation.

7.2.7 Active objects

Robocode illustrates active objects very well. In this environment, in-
stances of different tanks are created when they are spotted (see earlier
chapter, example 4.2). This is very much like the first understanding of
active objects mentioned above.

Karel J has no communication between objects built in the environ-
ment, so this type of communication is not easy to implement. It is
possible, but it requires some coding. I think it would be a very big ad-
vantage for Karel if communication between objects had been simpler
to implement. However, Karel offers the opportunity for the robot to
adjust itself based on its surroundings:

Listing 7.3: Active Karel robot, written by me

* Karel moving based on its environments
*/
class KarelMove implements Directions {
pubTlic static void main(String [] args) {
Walker karel = new Walker(l, 1, North, 0);
karel.walk(Q;
}
}
class Walker extends Robot {
// Constructor
public Walker(int s, int a, Direction dir, int b) {
super(s, a, dir, b);
}
// Karel walks until he finds a beeper, turning every time
// he faces a wall.
void walk() {
while(!nextToABeeper()) {
if(frontIsClear())
move();
else
turnLeft(Q;
}
pickBeeper();
}
}

This type of example can easily become very procedure oriented and
steer some of the focus away from OO, but this type of procedural pro-
gramming has to come in at some point, and it is important then to put

86

the methods in the objects instead of in main.

7.2.8 Constructor

As mentioned in an earlier sub chapter, the students had some problems
understanding constructors the first time it was introduced. Because we
did not introduce methods before subclasses, finding constructors dif-
ficult was a natural reaction as the students had not seen a method yet
(with the exception of the main method, but that had not yet been dis-
cussed in depth). Looking at the code example above (7.3) the students
had some trouble understanding the need for the constructor:

Why do we have to write s, a, dir and b so many places? It
seems so redundant.

To begin with we had some trouble convincing a few of the students of
its use. The general explanation we used was that the constructor made
the object unique and the s, a, dir and b is information that make that
particular robot special and the constructor using letters and words (s,
a, dir and b) was helpfully if we made more objects of the same class.
They accepted that explanation, but most likely they did not understand
it fully, at least not how it was called.

On the second day, we introduced an assignment where the con-
structor was expanded (activity 5), the conversation in G2 developed
thus. Remember that the expanded constructor dealt with counting the
beepers Karel had in his bag:

”OK, so where do we start?”

"Ummin, 1, 6. And north. And write 6 here.”
"If it says 6 here, he starts with 6 beepers.”
”Yeah...?”

“But he has 0 beepers. So it’s 0 here.”

As we see from this conversation they have started to understand what
a constructor does and how parameters are passed to it by its call. I am
quite impressed.

Constructors was the hardest part of the course, because it com-
bines three elements: Methods, parameters (discussed below) and ob-
jects. When the students started understanding how constructors work,
they started to get a good grasp of OOP.

7.2.9 Methods and parameters

As mentioned in chapter 2, many researchers and teachers have claimed
that methods and parameters are very hard to understand.
There are different aspects to methods:

87

1. Calling methods without parameters.
2. Calling methods with parameters.
3. Making methods without parameters.
4. Making methods with parameters.

In experiment 1, the files that the students’ code are subclasses and
therefore do not need static. Most methods in Robocode, like turnLeft,
move and fire, all take parameters. However theses parameters “made
sense” to the students: A method call like move(200) looks like some-
thing one would say in a natural language, "Move 200 units”. The stu-
dents in experiment 1 were also used to using methods with parameters,
so it was not hard for them to understand what was going on. Paramet-
ers were also quite easy to understand for the students in my experi-
ments as most of the movement of the tanks are based on parameters.

In experiment 2, we waited with introducing methods until after we
had introduced the students to subclasses, so we avoided the word static
all together. We did not introduce methods with parameters because we
did not introduce variables. However, looking at the sub chapter on
constructors, it is obvious that the students had a grasp on how to use
parameters.

As mentioned, teachers and researchers have claimed that methods
were difficult for students. My experience in the experiments was that
students had no problems with using methods. In experiment 2, the
students used methods with and without parameters and made methods
without parameters. In our experiments, methods were limited to the
environments, using method names that came very natural. Method calls
like move() and turnLeft() becomes words instead of method calls
and therefore easy to apply to the program.

One might argue that outside these environments, methods might
still be hard for these students. However, looking back at code listing
6.3, we see that the students have made well written methods and call
them without problem.

7.2.10 Variables

The students of experiment 1 were used to the use of variables as they
had had one semester of programming.

We never introduced variables to the students in experiment 2. They
used variables briefly in one of the assignments (Activity 5) and it seemed
like they had no problems using it there.

88

7.3 Ways of working and learning

In chapter 3, I mentioned some different methods or ways of working
that are said to have a positive effect on learning to program. An in-
teresting aspect of the experiment was to see if any of these ways of
working were used by the students.

7.3.1 Pair programming and discussion

In experiment 1, the students all sat at individual computers and pro-
grammed, so there was no pair programming in this experiment.

In experiment 2, the most important reason for pairing up students
was to be able to observe their conversation. We were unsure how well
they would talk together, but it became apparent that we had nothing to
worry about. The students communicated very well and discussed the
assignment and Karel’s movements with much enthusiasm. It is clear
that Karel worked as a catalyst for these conversations. Having some-
thing that is visual to talk about helped the students:

"OK, so Karel walks up here.” (points at the screen)

"Then we know he is facing north.” (points up on the map)
"Yeah?”

“Then we have to turn to the right once and start the labyrinth.”
"Yeah.”

The students were also very good at working as equals, no one taking
more control of the team than the other:

”Do you have any ideas?”

"Not really.”

”Me neither really, but... (explains a possible solution)
...what do you think?”

”Sure, let’s try.”

Did we see any other benefits apart from good conversations?

We focused on two groups mainly and they were both programmed
in pairs. There was one student that sat alone one of the days, but he
had many conversations with us. I am not sure if the fast progress of the
groups can be entirely contributed to pair programming, but I am sure
that it was helpfully for the students to have someone of their own skill
level to talk with.

As mentioned in chapter 3, pair programming leads to better quality
of code, fewer bugs and faster production of code. There are numerous
examples where one of the group members corrected the other when he
typed something wrong. The students corrected each other, discussed

89

and produced good code in a relatively short time. Not all of the code
held the same quality, but all in all, I must say that it was pretty good.
We saw clear signs of pair programming in this groups, as can be
seen in the conversations above. The benefit of being able to discuss
problems with another person in the same situation as oneself is clear.
Pair programming and discussion is a good example of contructivism:
The individual learning through interaction with the environment and
other people in the same situation plus building his experience on oth-
ers’ experience. In a study on the benefits of pair programming in a
beginners course in programming the following was reported [14]:

Students reported that they benefited from being exposed to
their partner’s ideas and suggestions, and that they therefore
broadened their understanding of the assignments’ require-
ments. The students indicated that it was easier and quicker
to complete their work and there was an overwhelming belief
expressed that it helped them identify errors more readily
and consider alternative approaches to problem solving.

The results corresponds with what we saw in our experiment. On day
three, two students started out alone and spent about 20 minutes getting
nowhere. After that time we paired them up:

"Have you gotten far?”

"Yeah, well, no not really, just been fiddling around. You?”
"Not very far no.”

"I think we are supposed to...”

And from there the discussion went on with many suggestions for solu-
tion and a much quicker pace in solving the problem. It is quite clear
that sitting in pairs helped the students in Experiment 2 get more out of
the experience and learn more.

7.3.2 Playing a game

In experiment 1, the game factor was high: Robocode is based on win-
ning over other tanks in a battlefield. Was programming overshadowed?
Did Robocode illustrate what it was supposed to?

When the students in the experiment wrote their programs, two of
the students, knowing each other started a friendly bet that one was go-
ing to beat the other. This inspired them both to make the best robot
and therefore used all the help they had: The API, looking at other ro-
bots and theory learned in class. The students did not make this robots
thinking Java, but they still learned coding techniques such as reading
the API and understanding code written by other programmers. Without
actually thinking about learning any code, the students did learn to code.

90

From conversations with the students, it was apparent that the stu-
dents viewed each code as a separate objects:

Me: "What if you had to make a file for the battle, how would
you get all the tanks in the battlefield?”

S: "Make an array of the tank objects with 'new’ and then the
name of the robots?”

Robocode did illustrate the communicating objects for the students
and they were able to make some interaction between the tanks. Given
more time, the students would have made good tanks with many fea-
tures.

In experiment 2, the main focus was on Karel J. Karel J also resembles a
game, but in another way than Robocode. In Karel J each assignment is
a small game or puzzle, like climb a stair or find a beeper in a maze.

In chapter 3, I presented MOOSE Crossing, a game where children
could learn a simple scripting language in a virtual setting. The par-
ticular story I mentioned tells about one thirteen year old girl helping
twelve year old girl to learn this scripting language through cooperating
and playing around in this virtual world. We see some of the same ex-
amples in experiment 2 where two students help each other to learn by
discussing and playing around.

7.3.3 Testing and running code

Both Karel J and Robocode are visual environments that give a clear
representation of the code written. This encourages the students to test
their code often, thus seeing the result of their code.

Karel J's representation of the code runs very slow for a reason (to
give a representation of the code that is slow enough for the students to
follow). This makes Karel J slow to test if the program is big and tend
to put the students off testing too much. To take one example from G1
(experiment 2):

"This is taking so long. We know this part works.”

”OK, let’s comment out these two lines and place the robot
there.3”

"No, it's not facing that way.”

Here we see the students using a good method for testing the parts of
the code they were unsure of.

3The students commented out two method calls and moved the karel robot to the
coordinates they knew it would end up when those two methods were done.

91

In experiment 2, G1 tested more seldom than G2. This was because
they did the whole assignment on paper before starting to code, so they
had great confidence in their solution. Because of this great confidence
they saw no need to test a lot along the way.

Still, Karel J gave an output that could be understood by the stu-
dents: If the robot suddenly was facing the wrong way, the students
could easily backtrack through their code and see where things went
wrong. Removing one line and adding one line also gives clear output to
the students and help them see better the effects of one line of code. As
I said in chapter 3 about the same matter:

This is a good way of learning how programs works and gives
very good hands-on experience that is invaluable in learning
to program.

The students also read through some of their old code, trying to use
old knowledge to solve a problem:

"This problem looks like the one we did last time.”
”Find the program we did last time, what did we do there?”

This can be seen in parallel to reuse of code, discussed above.

In experiment 2, the students had a good chance at seeing what went
on in the code. When the robot crashed into a wall, the students had
little problem finding out where in the code things went wrong:

"Hmm, he isn’t facing the right when he reaches the top.”
”OK, we just put in a turn command to fix it.”
”About there then (points), that’s where he reaches the top.”

7.4 The good progress in experiment 2, all us?

The progression of the groups in experiment 2 was beyond all expecta-
tions. A good question to ask oneself is: Was this progress all thanks to
Karel J and our way of structuring the course?

Karel J and our structure might have had something to do with this.
One thing helping the progress was the structure of the assignments,
starting very simple but still complicated enough to illustrate OOP very
early on. This is a very important point: Course administrators using ob-
jects first all agree that a sufficiently complex first example is needed to
illustrate the basic concepts of OOP, a thought that has been advocated
by Kristen Nygaard and later a part of the COOL philosophy*. In Karel J,

4http://heim.ifi.uio.no/~kristen/FORSKNINGSDOK_MAPPE/F_COOL1.html

92

the first example is complex enough to show the most basic of OOP (us-
ing objects and pointers to methods) but is easy enough to understand>.
At the same time, this first example is a good start for building more
complex examples.

In addition to pair programming, discussed in depth above, there
were other factors that could have affected the progress.

7.4.1 Selection of students

One factor that played in was that these students had volunteered for
this experiment. This means that they had a special interest for pro-
gramming and were very motivated to learn. The students’ interest
for computers also helped the experiment start off faster than what we
would normally have expected. The fact that the students volunteered
may also have meant that these students were very outgoing and easy to
connect with, making it easier for them to cooperate about the assign-
ments.

In large programming courses, students attend for different reasons:
Some of them might need the course, others are curious, while others are
very interested. The biggest challenge for lecturers is the first group of
those who are not motivated at all. In Experiment 2 we did get students
that were interested in computing. It is harder to get students that are
not interested to volunteer and therefore the results of the experiment
will be skewed. The course we used in experiment 2 should be tested on
students that are not motivated or have much knowledge of computers.

7.4.2 Size of the Class

Another important factor was the size of the class. With so few students
as we had, it was much easier to follow up on each of the students and
spend time with each of them. It was impossible for them to hide their
problems when each of the students were asked questions that they had
to answer. In a larger class, the course instructor will have problems to
following the progress of each student as well as for a small class and
there is a greater possibility that some students might be left behind.

Another advantage of having a small class, is that a small class offers
a more social environment. In this environment, the students can dis-
cuss among each other and share aspects of the assignments they have
solved (problems, surprises, solutions and so on).

An investigation into the size of classes® reports on the benefits of
reducing class sizes in lower grades schools and that among other things
it leads to higher academic performance.

3] can only speak for the students in Experiment 2, of course.
6http://www.asu.edu/educ/epsl/EPRU/articles/reducing_classsize.htm

93

7.5 Structure of the coursework

One factor for the good progress can be contributed to us: The struc-
ture of the coursework and the tasks given. We took great care when
designing our tasks and the maps, not to leave the possibility for many
different problems to arise at the same time. This was an important
reason why the learning curve was so good. We always made sure that
the students would not suddenly be faced with any difficulties they had
no qualification for knowing.

There was one concept we forgot to introduce, and that was that of
negation (the use of ! in front of a logical expression). The result of this
was that the students had much more problems with one assignment
than if they had known this from the start.

All in all, we managed to keep the facing of multiple problems very
low.

We did however, encounter a small problem on day 2 as the students
seemed to have forgotten some of the material they had been taught
the day before. We should have repeated more of the previous days’
material to allow the students to recall and better remember what we
wanted them to have learned.

7.6 2 days of Karel vs. 3 months of traditional OOP

I had my expectations before the projects started, and some of them
came true, but there were some surprises as well.

The biggest surprise for me was the progress of the students in ex-
periment 2. I had not expected them to be able to manage so much in
those short days. We had set the pace for starting day 2 with subclasses.
When we started subclasses halfway through day 1, I was surprised in-
deed, and at the same time pleased. It showed that Karel J had some
potential and that our structure of the course had worked. Above, I have
discussed reasons for this, and although part of the reasons for our suc-
cess lies outside Karel J, I am of the conviction that Karel J played a big
part in our course and therefore in the good results of the course.

In experiment 1, I had expected the students to perform better with
Robocode. However, it seems that Robocode is a bit more complex than
I thought. The students (both in experiment 1 and 2) understood the
basics of Robocode but drowned in the many possibilities.

That was another surprise: The students from experiment 1 did not
do much better in Robocode than the students in experiment 2, despite
the fact that the students in experiment 1 was at the end of their first
semester. This was not expected, but I do not want to jump to conclu-

94

D Ul ok W N =

sions about it. Robocode does look a little bit like Karel J with its move-
ments commands and the threshold from making the tanks in Robocode
just move around to make them intelligent is quite high. Many questions
are raised here that I can not answer but would like to mention:

1. Were the topics covered in experiment 2 coincidentally the top-
ics needed to understand Robocode? This might explain why the
students in experiment 1 and 2 were so similar in their use of Rob-
ocode. If this is the case, it leads to the next question:

2. If both Karel J and Robocode require the same kind of know-
ledge - this being much OOP knowledge, since that is what we
covered - had the students from experiment 1 been taught too
much "un-OOP like” programming or are Karel J and Robocode
just unrealistic reflections of what sort of OOP knowledge is im-
portant? I do not feel I can comment too much on it. Maybe with
some more studies I can answer this question better.

3. Were we particularly lucky with the students we picked out for
experiment 2? This is probable, and something I discussed a little
above.

4. If I had waited another two weeks before recruiting for experi-
ment 1, would the students have come over the hardest threshold
in Robocode and been able to program very good tanks? Learn-
ing to program often goes in leaps at the time when suddenly cer-
tain "light bulbs” lights in the heads of the students. The students
in experiment 1 might have been on the verge of a better under-
standing of OOP and therefore would have clearly separated them-
selves from the students in experiment 2.

Below follows one code from each of the two experiments. They are
quite short, but that is just as much a reflection on the complexity of
Robocode and the amount of reading and understanding needed before
starting to code more serious. In both experiments the students only
spent a couple of hours on this environment.

Listing 7.4: Code from Experiment 1, just the innards of the class is
displayed. This is one student with about 3 months of programming
experience.

public void run() {
whiTe(true) {
// Replace the next 4 lines with any behavior you 1like
turnGunLeft(360);
}

95

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

@ N U R W N =

— = =
No= o ©

13

—
'S

Vs
* onScannedRobot: What to do when you see another robot
*/
public void onScannedRobot(ScannedRobotEvent e) {
double d = e.getDistance();
X = e.getBearing();
turnRight(x);
ahead(100);
//kjere mot fiende
if (d<200) {
whiTe(d<200) {
turnGunRight(e.getBearing());
}
}

}
ik
* onHitByBullet: What to do when you’re hit by a bullet
*/
public void onHitByBullet(HitByBulletEvent e) {
ahead(50);
turnGunLeft(e.getBearing());
fire(30);
back(50);
}

The student is starting off with trying to calculate the distance and
bearing to the other tank (line 11 and down). He only handles two events,
ScannedRobotEvent and HitByBulletEvent. He starts with using
if and while, but I am not quite sure where he is going with this. The
students shows that he has a grasp on the different methods for com-
municating with other robots, but there is something lacking. With a
little more time this could have been a promising tank.

Listing 7.5: Code from Experiment 2, just the innards of the class is
displayed. This is the code from group 1 in the experiment at the end of
day 2.

public void run() {

whiTe(true) {
// Replace the next 4 lines with any behavior you like
ahead(100);
turnRight(90);
ahead(200);
turnLeft(90);
back(100);
turnRight(90);

~N W

* onScannedRobot: What to do when you see another robot

-.‘:/

96

15
16
17

19
20
21
22
23
24
25
26
27
28

public void onScannedRobot(ScannedRobotEvent e) {
turnGunRight(360);
fire(10);

}

/:‘: %
* onHitByBullet: What to do when you’re hit by a bullet
*/

pubTic void onHitByBullet(HitByBulletEvent e) {
turnRight(e.getBearing());

}

pubTlic void onHitWall(HitWallEvent e) {
out.printIn("Ouch, I hit a wall bearing
turnLeft(180);
ahead(100);

}

"

+ e.getBearing() + " degrees.");

The students are trying to get the hang of the events. They are start-
ing to show promise in the last method onHitWall. It is clear they have
understood the use of movement, a parallel they have drawn from Karel
J. We see that the students have put more in the ¥un method (lines 1 -
11) and this is probably because of earlier experience with Karel J. The
students are not quite comfortable with the methods that are offered by
the RoboCode API and tries to dictate more of the movement of the tank
instead of letting the tank react to events.

97

98

Chapter 8

Conclusion

As stated in the introduction, the focus of this thesis has been to ex-
amine the use of graphical environments for supporting the teaching of
object oriented programming and with a main focus on Java. The con-
clusion here is supported by two experiments, one with Robocode and
the other mainly with Karel J.

Along the way, I have looked at other aspects of teaching OOP that
are important: Mainly pair programming and an objects first approach.
These aspects were not the main focus of my thesis, but I have seen the
importance of them as I have conducted experiments.

I will go through the most important aspects and make some con-
cluding remarks about them.

My original research question was:

In an Objects First approach to learning OOP and specific-
ally Java, will the use of graphical environments be a good
tool?

The experiments indicate that:

If students are to learn OOP using the objects first approach,
the use of graphical environments as a support will help this
approach greatly. Collaboration between students and a well
structured course work without too many problems intro-
duced at once, is vital for a successful introduction to OOP.

8.1 The Experiments

The main drawback of my experiments is the lack of participants. There
were too few subjects to observe to make any proper conclusions, but
I saw many indications that the graphical environments had a positive
influence on learning.

99

For experiment 1, I see I should have planned it better and allowed
more time for people to participate. Despite this, the experiment went
well and I could observe I wanted: How the students interacted with
Robocode and how well they understood it. And whether the students
learned anything from the experience. Robocode encouraged students
to play around with the code and it seemed to help them visualize the
movements of the tanks and how their code affected this.

Experiment 2 went very well, but there are changes I would like to
make if we were ever to conduct another experiment like this again.
First of all, it would be best to have more time or to use some of the
time available to repeat many of the concepts we introduced. The sub-
jects covered in the course can be easily forgotten as we did not spend
much time repeating and making sure everything had stuck. Polymorph-
ism was never covered. Polymorphism is an important aspect of OOP
and we should maybe have covered this subject as well. Still, we were
able to cover the most basic of OOP, as mentioned in the discussion and
the experiments and after this we introduced some imperative program-
ming instead of polymorphism. In order to make a bit more advanced
programs and assignments it was necessary to introduce imperative pro-
gramming to have something to put into the methods in the subclasses.
We could however have repeated more about objects and subclasses, but
we did the right thing in choosing imperative programming in stead of
polymorphism.

The structure of the assignments was also important. As mentioned
in chapter 7 we used the same structure on the course as Bergin sug-
gested on his website. Bergin, in his approach introduce polymorphism
before imperative programming. We chose not to focus on polymorph-
ism, due to limited time. The structure in broad terms was as follows:
Make one object, make multiple objects, make subclasses, some imper-
ative programming.

To summarize what the students learned from this experiment, I
would say they learned many new concepts. They got an understand-
ing for OOP, learning about objects and making their own objects before
learning more imperative coding.

The students learned to discuss assignments and that it helps to plan
ahead and test their programs often; all good qualities to have when
programming.

Karel J helped us as lecturers to develop a well structured course
program because we had a framework that was easy to understand and
handle to build our tasks and lectures around. However, I am sure that
other graphical environments could have done the same job, provided
they were easy to use and not too complex when it comes to func-
tions. Robocode is an example of an environment that is complex in
that the tanks have many functions for each tank, such as hitByBullet,

100

onHitWall and so on. When we tried Robocode in experiment 2, we saw
that the students had no problem transferring their knowledge of Karel
J over to Robocode, but the progress soon stopped due to the sheer size
and multiple possibilities that Robocode offered.

Pair programming, size of the class and the type of students we had
also played a part in this. With a little better time, I am certain we would
have managed the same good result with 20 students as well. I saw this
as a very good and desirable learning situation when learning OOP.

8.2 The environments

I chose to focus on Blue], Robocode and Karel J because they offer three
different views on OOP: Models of objects, active objects and simple
graphical representation of basic OOP. There are many other environ-
ments that could also have been used, but here I see a problem: Most of
the environments developed are not explored well enough in an educa-
tional setting and many of them are only tried once on a local institution
without anyone ever hearing about it. Many would benefit from a deeper
research into the effects of certain environments. On this field Blue]
is the one most explored; much literature exists on this environments.
That is one of the reasons I have not looked too closely at Blue], other
environments needed more research.

Robocode is a very engaging and fun environment that encourages
playing with code. It also visualizes objects as independent objects that
interact with each other. From the experiments conducted, it was ap-
parent that students had some problems with overcoming the size and
amount of features that Robocode offered. From this it is evident that
Robocode would not be the best place to start introducing programming.
Provided that the course structure of a beginner course has been an ob-
jects first approach, Robocode would be a good tool to introduce when
the students were moving over to imperative programming, use of if,
while and for. The students showed that they had problems following
everything that happened. This is because the tanks in Robocode has
very fast continuous movement that is hard for the students to observe.

Karel J works very well for an objects first approach to programming.
Many argue that the best way to introduce OOP to beginner students is
to circumvent the use of the main method. Karel J does introduce the
main method right away, but we found in our experiment that we had
no problems explaining the real use for the main method after only a
few hours of programming. Karel J offered a good setting for explaining
OO concepts and giving us as tutors a framework where it was easy to
explain OO concepts. We are able to right away start with OO concepts
and let these be reinforced many times over the course of the experiment

101

while teaching new topics that could be attached to the old knowledge.
This is consistent with what Bergin writes about Karel J in [9]:

One of the main advantages of the Karel philosophy, however,
is that it gives the students simple versions of a large num-
ber of tools that enable sophisticated problem solving. Thus,
Karel forms the first cycle of a Spiral teaching approach, and
students will have the ability to successively deepen their
knowledge of many topics while having the tools to build ex-
ploratory programs from the very beginning of the course.

Blue] offers an approach to OOP that focuses on modeling the world
and letting the students plan the program they are about to write in
detail. This is something that few beginner students see the value of as
their programs are too small for this sort of planning to be an obvious
benefit. Careful planning of a small program will only be viewed as a
cumbersome and time consuming task.

It is possible to combine Karel J with Blue]. This could be a union
that displays many sides of OOP 1. An objection to this union is that two
environments can be a lot to learn in one semester.

8.3 What was hard and what was easy?

Looking at the two experiments and environments, what was hard for
the students and what was easy?

¢ Understanding objects: In both Karel J and Robocode, it was easy
for the students to see the objects present and understand how
they worked. They saw that the objects had certain properties and
methods and that these objects could work independently of each
other. In Robocode the aspect of objects as active entities affecting
each other was also clear.

¢ Understanding methods: In both Karel J and Robocode, methods
were used. The students in Experiment 1 had much experience
with methods. The students in Experiment 2 had no problems mak-
ing methods without parameters and reusing methods in Karel J.
In Robocode it was a little more complicated, but they managed to
"scratch the surface” of methods there as well.

e Understanding constructors: Constructors is only covered in Karel
J. Although constructors are similar to ordinary methods, there is
the added complexity of when the method is called and usually

Thttp://www.csis.pace.edu/~bergin/KarelJava2ed/usingKarelJRobot.html, bottom
of the page.

102

with parameters. The students had some problems with construct-
ors and seeing the use of it. One of the reasons for this can be that
we used too few objects for the constructor to become apparent.

¢ Reuse of code: The students in Experiment 2 were good at reusing
code, even though they sometimes wrote things from scratch when
they had written the same thing before. They became better with
some training and more experience.

8.4 Top ten reasons, revisited

In the introduction, I mentioned a list of top ten reasons why OO should
not be taught in CS1, I would like to list these and comment on them
based on my personal experience. Some of the points mentioned in the
article [17] are outside the areas of my research but I will still mention
them, but I will not comment on them.

1. OOP is just a fad! When this article was written in 1994, OOP was
gaining popularity and many thought this popularity would fade.
Now, in 2003, it is quite clear that OOP is not just a fad.

2. OOP is too hard for my CS1 students! The experiments conducted
in this thesis clearly show that OOP can be learned in two days. A
good environment and well written tasks made OOP understand-
able for the students in the experiments. In experiment 2 we were
able to give the students an understanding for OOP and had a good
foundation to build on.

3. The dreaded paradigm shift! This point was concerned with the
trouble of making the transfer from procedural to OO. This will
not be a problem for students not familiar with any of the two
paradigms, but for students already familiar with procedural pro-
gramming. In experiment 2, one student had some experience from
using Visual Basic. We clearly saw that when solving the largest of
the assignments (appendix) the student (and his partner) used a
much more procedural oriented approach. However, some of the
methods were put in subclasses so he was not a stranger to the
idea of OOP, it was just very easy for him to fall back into a more
known procedural approach when things got harder. After only 2
days of work this must be expected, but he and his partner showed
that they were on the way of making the shift quite easily.

4. You still need algorithms! No matter what kind of language on
programs in, one must learn to make algorithms and use them
properly. The article was concerned with how the use of algorithms

103

would fit into the Object Oriented paradigm. In experiment 2, the
students put simple algorithms into subclasses and saw the robots
execute these algorithms. The students learned simple algorithms
and were able to place them in the correct classes, giving them a
clear sense of OOP and algorithms.

. The "O0P-ish” overhead! A main concern was the amount of form-
alism explaining OOP, spending many pages in a book explaining
the theory before getting to the code. In a graphical environment
such as for example Karel J, there is no need for many pages of
theory when much of the theory can be explained through show-
ing the robots moving.

. OOP languages are ugly! This point was very C++ specific and I
will not comment on this here.

. There’s already too much material in CS1! Learning OOP adds
many concepts that must be taught in addition to program state-
ments. However, in experiment 2, the students had no difficulty
getting both a taste of imperative programming and learning about
objects in a little over two days. In addition, it seems that the au-
thor perceives OOP as an "extra feature” to add to a programming
course. This is a misconception, an object oriented language is not
a procedural language with some objects flying around. A course in
OOP must therefore be a course in OOP, not procedural program-
ming with an added feature.

. It screws up the rest of our curriculum! Is this the reason why
many educators wait with introducing objects in today’s Java and
C++ courses? Because there is the fear that once the curriculum
starts down the path of objects, most of the term will be spent
explaining this instead of showing any code? In experiment 2 it
helped us much that the students got an early understanding of
0OO0. In this way we did not have to hide many of the long wrapping
names (public static...) in a veil of magic.

. It fits perfectly with CS2 and data structures! I am not entirely
inclined to disagree. OOP best shows its strengths when the stu-
dents start building larger programs. For simple CS1 programs,
OOP might not be the best. However, [10] reports that program-
mers used to the procedural approach paradigm use a long time
making the shift. This is a good argument for starting with OOP as
students in a shorter time period is expected to learn OO and there-
fore do not have a whole semester to spend on making the shift. In
addition, the main languages used in CS1 today are object oriented
and the course administrators must take the consequences of this

104

10.

8.5

choice and structure the CS1 course based on an object oriented
approach.

OOP is too hard for us! The main concern was that switching to
OOP would require much work from the lecturers as they were not
familiar with OOP. This did not apply to us.

Are graphical environments the ultimate answer?

I have looked at three environments and tested two of them. It is obvious
that the benefits of using graphical environments are many:

A graphical representation of code.
Changes in code are clearly seen.

Students can live more inside the code and act with the environ-
ment.

Educators have visual examples to hang their theory on.

The environments are often small worlds with their own stories
where it is easy to use analogies to illustrate code.

Many complex aspects of programming are hidden so that the stu-
dents can focus on using the functionality offered and then dive
deeper into the matter later.

So why not just use some graphical environment since it solves all prob-
lems? There can be some problems with graphical environments as well:

It can be hard to design an environment that illustrate the concepts
that are important for programming, and especially OOP where the
design phase is very important.

If the environment is too complex it will take very long to learn.

If the environment is too "game-like”, it might overshadow the pur-
pose of the aim: Learning to program.

If the environment is too far removed from real life, it can be hard
for students to move over to the domain of general programming.

The final point mentioned is a crucial one and something to be aware of.
The environment might work very well for teaching students to program
in that specific environment, but it might be impossible for students to
move outside this environment.

105

The benefits I listed are of course dependent on a good design of the
environment. A poorly designed environment with no thought of how
students think or how concepts should be illustrated will just confuse.

In addition I want to mention that a graphical environment can never
take completely over in the teaching process, but more work as an aid
for the teacher and students. A well constructed course with good as-
signments, texts and lectures will always be important.

In my introduction, I looked at an article concerning Blue] ([5]). In
this article, the author present Blue]J as a helpful tool to support an Ob-
jects First approach. This is an example of how a graphical environment
should be used: To be a tool that both the students and the lecturers
can use to get a better illustration of the theory presented.

Graphical environments can help reduce the areas the students have
to focus on in an educational setting (Introduction chapter). The stu-
dents in experiment 2 had few problems getting right to the core of the
problem solving and programming. One reason for this can be that the
students were very familiar with the use of computers and therefore
managed this transition quickly. Another cause of the quick transition
may be that the students were introduced to an environment where there
were fewer areas the students had to turn their attention to and there-
fore they could focus on the programs. We saw that they sometimes got
a little confused by the problem with names of files (covered in chapter
6), so there was still some "noise” that distracted the students. But all
in all, using Karel J helped the students focus on the code and it helped
us as teachers in the way that we did not have to spend a long time
removing "noise”.

8.6 Future work

It would be interesting to conduct another experiment like experiment
2 with more students and more time. There are some changes I would
like to try, and I am confident that with small changes, our course plan
could be a very good one. The ultimate would of course be to have a
whole semester at my disposal, but I think that would be hard to get the
opportunity to do.

Based on the knowledge I have acquired during the work on this
thesis, it would be interesting to make my own environment and try that
out on a group of students. I must admit that many thoughts of such
an environment have buzzed in my head and if I had the time, I would
tried to shape such an environment. A new environment, coming from
the same people that developed Blue], called Greenfoot, is under devel-
opment. It is a 3D version of Karel J with many other features, and from
what I have seen so far it resembles what I have envisioned as a good

106

environment, so I guess there is no need for me to make something of
my own now. I await the arrival of Greenfoot with excitement and hope
it is as good as I expect.

There is a need for more comprehensive research into the teaching
of OOP to find a framework consisting of one or more graphical envir-
onments that tutors can base their course structure on. I have enjoyed
doing this kind of work up to now, and it would be fun continuing this
kind of work.

At the 7th workshop for pedagogies at ECOOP 2003, everyone agreed
on the Objects First approach, and this is encouraging. I see that there
are strong roots in the way programming should be taught, but it is
my hope that the trend is now shifting more and more to wards a new
approach and maybe the use of graphical environments is a helpful tool
for using this approach. It is my hope that this thesis can shed some
light on this question.

107

108

Bibliography

[1] J. Atherton. Learning and teaching: Assimilation and accommoda-
tion (on-line). URL:
http://www.dmu.ac.uk/~jamesa/learning/assimacc.htm.

[2] D. E. Avison and M. D. Myers. An Introduction to Qualitative Re-
search in Information Systems, pages 3-12. Qualitative Research in
Information Systems, Sage Publications, 2002.

[3] D. J. Barnes and M. Kolling. Objects first with Java - A practical
introduction using BlueJ. Prentice Hall, Pearson Education, 2003.

[4] R.L.Baskerville and A. T. Wood-Harper. A Critical Perspective on Ac-
tion Research as a Method for Information Systems Research, pages
129-145. Qualitative Research in Information Systems, Sage Public-
ations, 2002.

[5] J. Bostler, T. Johansson, and M. Nordstrom. Teaching oo con-
cepts - a case study using crc-cards and bluej. Proceedings of 32nd
ASEE/IEEE Frontiers in Education Conference, 2002.

[6] B. W. Becker. Teaching cs1 with karel the robot in java. ACM SIGCSE
Bulletin, 2, 2001.

[7] 1. Benbasat, D. K. Goldstein, and M. Mead. The Case Study Research
Strategy in Studies of Information Systems, pages 79-99. Qualitative
Research in Information Systems, Sage Publications, 2002.

[8] O. Berge, R. Borge, A. Fjuk, J. Kaasbgll, and T. Samuelsen. Learning
Object Oriented Programming, pages 37-47. Norsk informatikkon-
feranse NIK’2003, Tapir Akademisk Forlag, 2003.

[9] J. Bergin. Introducing objects with karel j. robot. URL:
http://www.csis.pace.edu/~bergin/karel/ecoop2000]JBKarel.html.

[10] J. Bergin. Why procedural is the wrong first paradigm if oop is the
goal. URL:
http://csis.pace.edu/~bergin/papers/Whynotproceduralfirst.html.

109

[11] Birtwistle, O. J. Dahl, and K. Nygaard. Simula Begin, page 47. Stu-
dentlitteratur, Lund, Sweden, 1973.

[12] S. Booth. Laerning to program. A phenomenographic perspective.
Acta Universitatis Gothoburgensis, 1992.

[13] R. Borge and J. Kaasbgll. What is oo first? URL:
http://www.intermedia.uio.no/cool/docs/ECOOP-2003 _B&K.pdf.

[14] J. C. Brougham, S. F. Freeman, and B. K. Jaeger. Pair programming:
More learning and less anxiety in a first programming course. URL:
http://gemasterteachers.neu.edu/resources/pairprog03.pdf.

[15] S. A. Conger and L. Vessey. Requirements specification: Learning
object, process and data methodologies. ACM Comm., 5, 1994.

[16] O. J. Dahl and K. Nygaard. How object oriented programming
started. URL:
http://folk.uio.no/kristen/FORSKNINGSDOK _MAPPE/F_OO _start.html.

[17] R. Decker and S. Hirshfield. The top 10 reasons why object-oriented
programming can’t be taught in cs1. ACM SIGCSE Bulletin, 3, 1994.

[18] Jeremy Gibbons. Structured programming in java. ACM SIGPLAN,
4, 1998.

[19] L. J. Harvey and M. D. Myers. Scholarship and Practice: The Contri-
bution of Ethnographic Research Methods to Bridging the Gap, pages
169-179. Qualitative Research in Information Systems, Sage Public-
ations, 2002.

[20] J. Kaasbegll. Exploring didactic models for programming, pages 195-
203. Norsk informatikkonferanse NIK’'1998, Tapir Akademisk For-
lag, 1998.

[21] M. Kolling and J. Rosenberg. Blue - a language for teaching object
oriented programming. ACM SIGCSE Bulletin, 2, 1996.

[22] J. Kolling and, M. Rosenberg. Bluej - the hitch-hiker‘s guide to ob-
ject orientation. Technical Reports 2002, University of Denmark, 2,
2002.

[23] R. R. Kessler and L. A. Williams. All i really need to know about
pair programming i learned in kindergarten. Communications of
the ACM, 43, 2000.

[24] S. Papert. Mindstorms: Children Computers and Powerful Ideas. Ba-
sic Books, Inc., 1960.

110

[25] R. D. Pea. Language-independent conceptual "bugs” in novice pro-
gramming. Journal of Educational Computing Research, 2, 1986.

[26] S. Schaub. Teaching java with graphics in cs1. ACM SIGCSE Bulletin,
2, 2000.

[27] M. C. Temte. Let’s begin introducing the object-oriented paradigm.
ACM SIGCSE Bulletin, 2, 1991.

[28] P. van der Linden. Just Java. Aner ikke, 1999.

[29] A. Zeller. Making students read and review code. ACM SIGCSE, 32,
2000.

111

112

Appendix A

Robocode handout

On the following pages are the document that was handed out to the
students in experiment 1.

Intallere:
Gjor folgende:

¢ mkdir robocode

; cd robocode

¢ cp richared/robocode-setup.jar .
¢ java -jar robocode-setup.jar

¢ ./robocode.sh

Dokumentasjon

Dokumentasjon finnes pa
http : //robocode.alphaworks.ibm.com/docs/vrobocode/index.html,
men her er et sammendrag av noen enkle funksjoner:

Funksjoner som tilherer Robot

Disse funksjonene tilharer Robotklassen. Det vil si at dere kan kalle
disse rett i programmet deres, siden deres robot er en subklasse av Ro-
bot og har derfor arvet all disse metodene.

ahead(double strekning)

Tanksen din flytter seg sa langt rett frem som er spesifisert i strekning.

113

Eksempelvis: ahead(300) vil fore til at tanksen deres kjarer fremover
300 (her er strekning gitt i 'steg’ relativt til spillebrettet)

back(double strekning)

Det motsatte av ahead.

fire(double styrke)

Skyter en kule med en gitt styrke.

Eksempelvis: fire(3) skyter en kule med styrke 3.

turnLeft(double grader)

Snur tanksen deres et gitt antall grader til venstre.

turnGunLeft(double grader)

Snur kanonen pa tanksen deres et gitt antall grader til venstre.

onScannedRobot(ScannedRobotEvent ev)

Din tanks ser en annen tanks (i denne metoden blir da denne tanksen
betegnet med en e). Du far i denne metoden mulighet til a programmere
hva din tanks skal gjore med dette. ScannedRobotEvent har en del met-
oder, som kommer under.

onBulletHit(BulletHitEvent bh)

Du treffer en annen tanks (med en kule som her har fatt betegnelsen
bh). Du far na en mulighet til a programmere hva du skal gjere nar
dette skjer. BulletHitEvent har en del metoder som kommer lenger ned.

ScannedRobotEvent

Hver gang din tanks ser en annen tanks, kalles denne metoden:
onScannedRobot(ScannedRobotEventev). I dette tilfellet fikk tank-
sen du sa navnet ev. Na kan man kalle en mange metoder ved a si:

ev.metodenavn. Metodenavnene kommer her:

114

getDistance()

Returnerer avstanden til den andre tanksen i forhold til din egen. La oss
for eksempel si at du vil krasje med den andre tanksen (husk den andre
tanksen har i dette eksempelet navn ev, se over). Da kan du skrive:

ahead(ev.getDistance() + 1). Dvs. Kkjor din egen tanks sa langt som
avstanden er + 1 slik at du krasjer.

getEnergy()

Returnerer livet til tanksen du har fatt egye pa.

BulletHitEvent

Hver gang man treffer en tanks, kalles denne metoden (dersom du velger
a definere noe i den), f.eks.:

onBulletHit(BulletHitEventbh). I dette tilfellet fikk eventet (den an-
dre tanksen) navn bh. Na kan man kalle en mange metoder ved a si:

bh.metodenavn. Metodenavnene kommer her:

getName()

Returnerer navnet pa tanksen du traff. Eksempelvis:

System.out.printin(“Ihit“ + bh.getName() + “I*). Ikke bruk Sys-
tem.out.println (dette var bare et eksempel, bruk egne meldings met-
oder.)

Noen andre smating

Metodene over var bare noen eksempler, alt star pa webadressen gitt
(dette gir forresten glimrende trening I a lese en API!). Her folger noen
ting dere burde kunne, men som jeg tar med sa dere slipper a sitte a sla
opp i boka deres i tilfelle :)

if-tester

If-tester brukes for a sjekke sannhetsverdier og utfere instruksjoner
basert pa disse sannhetsverdiene. Sagt pa en mindre akademisk mate:
Vi skal gjore noe dersom det vi tester pa er sant:

115

if(test = true) {
gjor alt inne i klammene;
}
else if(denne testen == true) {
gjor dette i stedet for;
}
else {
ikke noe av det andre slo til, gjor dette;

}

En if-test trenger ikke a folges av en else. Det vil si at dersom ikke if-
testen slar til, skal vi ikke gjore noe spesiellt i det hele tatt. Eksempel pa
en Robocode if-test:

void onScannedRobot(ScannedRobotEvent ev) {

// Vi er for Tlangt unna, flytt narmere
if(ev.getDistance() > 500) {
ahead(getDistance()/2);
fire(1l);
}
// Vi er for narme, dra lenger bort
else if(ev.getDistance() < 10) {
back(50);
fire(3);
}
// Avstanden er fin, bare skyt.
else {
fire(2);
}

for-lokker

For-lakker er fine nar man skal gjore noe et bestemt antall ganger. En
for-lakke kan se ut som dette:

for(int start = 0; start < maxverdi; start++) {
Gjeor alt her inne;

}

Det vil si, sa lenge start er mindre en maxverdi, gjor alt inne i krellparantesene,
og ok start med en for hver gang.

116

while-lokker

While-lgkker passer bra nar man skal gjore noe et uvisst antall ganger.
Man har en eller annen testverdi, men denne er usikker pa nar slar til.
En while ser typisk ut som:

while(sa Tenge dette er true) {

gjer alt inne i kre@llparantesene;

}

Veer forsiktig med while. Dersom man aldri far verdien false inne i while-
testen, far man en evig lokke.

117

118

Appendix B

Karel J handouts

On the next pages follows the handouts given to the students in exper-
iment 2. They are put in chronological order. That means that they
appear as they were handed out to the students, with assignments and
summaries.

119

120

© 0 N U kW N =

—
(=}

11

Appendix C

Code listings from day 3

Below is the code from group 1 and group 2 from day three of Experi-
ment 2.
First, group 1:

Listing C.1: Code from group 1, Assignment 5

// Lager egne pakker for bedre oversikt
package kareltherobot;

/-.‘:

* Her er innpakningen til programmet. Husk a bytte ut navnet
* under fra "DinFil1" til noe annet.

-.‘:/

class Karel52 implements Directions {

/:‘:
* Under her starter programmet ditt. Nar vi starter
* programmet vil datamaskinen lete etter "main" og
* starte alt derfra, sa vare kommandoer ma komme inni
* der.

public static void main(String [] args) {

}

// Her kommer din kode:
TrappeRobot Karel = new TrappeRobot(8, 6, North, 0 , 0);
TrappeRobot Jon = new TrappeRobot(1l, 2, North, 0, 0);

Jon.plukkTrinn(Q);
Jon.turnRight(Q);
Jon.finnPiper();
Karel.move(Q);
Karel.finnPipe2(Q);
Karel.turnLeft();
Karel.plukkTrinn2();

// Gjer kartet synlig, sett inn navn pa kartet under
static {

World.readWorld("eks6-1.kwld");

121

32 World.setVisible(true);

33 }

34}

35

36 class TrappeRobot extends Robot {

37 // Holder rede pa hvor mange trinn vi har gatt
38 int antTrinn;

39 // Konstrukter

40 pubTic TrappeRobot(int gate, int aveny, Direction dir, int piper, int antallTrinn) {
41 super(gate, aveny, dir, piper);
42 antTrinn = antallTrinn;

43 }

44

45 // Ga ett trinn

46 void ettTrinn() {

47 move();

48 turnLeft(Q;

49 move();

50 pickBeeper();

51 turnRight(Q);

52 }

53

54 // Snu til hayre

55 void turnRight() {

56 turnLeft(Q;

57 turnLeft(Q;

58 turnLeft(Q;

59 }

60

61 // @kker telleren for antall trinn med 1
62 void 1eggTilTrinn() {

63 antTrinn++;

64 }

65

66 // Skriver ut antall trinn

67 void skrivUtTrinn() {

68 System.out.printin("Vi har gatt " + antTrinn + " trinn.");
69 }

70

71 //Legger ut piper sa lenge det er i sekken.
72 void leggPiper(){

73 while (anyBeepersInBeeperBag()){
74 putBeeper();

75 move();

76 }

77 }

78

79 void plukkTrinn(Q{

80 while (frontIsClear()){

81 move();

82 turnRight(Q);

83 move();

84 turnLeft(Q;

85 pickBeeper();

122

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

© 0 N DU R W N =

[
- O

}

void finnPiper(){
whiTe(!nextToABeeper()){
if (frontIsClear()){

move();
}
else {
turnLeft(Q;
}
}
pickBeeper();

}

void finnPipe2(){
whiTe(!nextToABeeper()){
if (frontIsClear()){

move();
}
else {
turnRight(Q);
}
}
pickBeeper();

}

void plukkTrinn2(){
while (frontIsClear()){
move();
turnRight(Q);
pickBeeper();
move();
turnLeft(Q;

And group 2:

Listing C.2: Code from group 2, Assignment 5

// Lager egne pakker for bedre oversikt
package kareltherobot;

* Her er innpakningen til programmet. Husk a bytte ut navnet
* under fra "DinFil1" til noe annet.

class Karel8 implements Directions {

/:‘.
* Under her starter programmet ditt. Nar vi starter
* programmet vil datamaskinen Tete etter "main" og

123

12
13
14
15

16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65

* starte alt derfra, sa vare kommandoer ma komme inni

* der.

-.‘:/

public static void main(String [] args) {

// Her kommer din kode:

ur_Robot2 karela = new ur_Robot2(8, 6, North , 0);
ur_Robot2 karel = new ur_Robot2(1, 2,
while (!'karel.frontIsClear()) {

karel.trappQ;
}

while (karel.frontIsClear()) {
if (karel.frontIsClear()) {
while (karel.frontIsClear()) {

karel.move(Q);

East, 0);

if (karel.nextToABeeper()) {

karel.pickBeeper();

}
}
}
karel.turnLeft(Q);

}
karel.turnOffQ;

while (karela.frontIsClear()) {
if (karela.frontIsClear()) {

while (karela.frontIsClear()) {

karela.move()

if (karela.nextToABeeper()) {

karela.pickBeeper();

}
}

}

karela.turnRight();
}
karela.turnLeft();
karela.turnLeft();
karela.move();
karela.pickBeeper();
karela.turnRight(Q);
karela.move();

whiTe(karela.frontIsClear()) {

karela.trapp2Q);
}
}

// Gjer kartet synlig, sett inn navn pa kartet under

static {

World.readWorld("eks6-1.kwld");

World.setVisible(true);

}

class ur_Robot2 extends Robot {

124

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

90
91
92
93
94
95
96
97
98

pubTic ur_Robot2(int gate, int aveny, Direction dir, int piper) {

super(gate, aveny, dir, piper);

}

void turnRight() {
turnLeft(Q;
turnLeft(Q;
turnLeft(Q;

}

void trapp() {
turnLeft(Q;
move();
turnRight(Q);
move();
pickBeeper();

}

void trapp2() {
turnLeft(Q;
move();
pickBeeper();
turnRight(Q);
move();

}

void walkLong() {
whiTe(frontIsClear())
trappQ;

125

