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Sammendrag på norsk 

Mer enn seks millioner mennesker lever med Parkinsons sykdom i verden i dag og de 

fleste som rammes er i høyere aldersgrupper. Parkinsons sykdom er en nevrologisk 

lidelse som diagnostiseres basert på tilstedeværelse av motoriske symptomer med 

skjelvinger, langsomme bevegelser og stivhet. Pasienter med Parkinsons sykdom har ofte 

i tillegg en rekke ikke-motoriske symptomer som demens, søvnforstyrrelse, og plager 

relatert til dysfunksjon av det autonome nervesystemet. Ved Parkinsons sykdom 

degenererer og dør nerveceller, men man har en manglende forståelse av de 

underliggende patologiske prosessene. Det finnes medikamenter som kan lindre 

symptomer, men ingen behandling som er kurativ eller som kan hindre at sykdommen 

progredierer.  

De siste tiårene har forskning vist at genetikken spiller en betydelig rolle i utviklingen av 

Parkinsons sykdom. Familiebaserte studier har identifisert sjeldne sykdomsforårsakende 

mutasjoner, mens storskala populasjonsbaserte genetiske studier har oppdaget en rekke 

genområder som påvirker risiko for sporadisk Parkinsons sykdom der det ikke er noen 

familiehistorie for denne tilstanden. Kartlegging av genetiske risikofaktorer er viktig fordi 

det kan bidra til en bedre forståelse av sykdomsforårsakende molekylære mekanismer og 

identifisering av mulige angrepspunkter for utvikling av ny effektiv terapi. Det kan i 

tillegg bidra til verdifull prognostisk informasjon, samt identifisere individer som vil ha 

nytte av fremtidige behandlingsmuligheter. 

I denne avhandlingen presenteres og diskuteres tre studier av genetiske risikofaktorer for 

Parkinsons sykdom. I den første studien analyserte vi genetiske varianter i GBA genet i 

skandinaviske pasienter med Parkinsons sykdom og friske kontrollpersoner. GBA har blitt 

identifisert som et av de viktigste risikogenene for Parkinsons sykdom og medikamenter 

rettet mot nettopp dette genet testes nå i kliniske studier av sykdommen. Vi fant at den 

kodende varianten E326K er assosiert med Parkinsons sykdom. Våre resultater viser også 

at E326K i høy grad forekommer sammen med et nærliggende assosiasjonssignal fra 

helgenomstudier og derfor virker å være den underliggende kausale varianten bak dette 

signalet. I tillegg til å påvirke risikoen for å få sykdom, så bidrar genetiske varianter også 

til den betydelige variasjonen i utvikling av symptomer ved Parkinsons sykdom. I den 

andre studien analyserte vi om genetisk variabilitet i genet DNM3 påvirker alderen for 

debut av symptomer ved Parkinsons sykdom. DNM3 har tidligere blitt rapportert å 
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påvirke alder for symptomdebut i en liten gruppe av Parkinson pasienter med mutasjon i 

LRRK2 genet, men vi fant ingen evidens for at denne effekten var overførbar til den store 

gruppen av pasienter med sporadisk Parkinsons sykdom.  

En økende mengde tilgjengelig epigenomiske data i relevante celletyper har åpnet opp for 

nye mulige strategier for å utforske biologien bak de genetiske signalene. I den tredje 

studien kombinerte vi assosiasjonssignaler fra helgenomstudier med epigenomiske data 

for å identifisere nettverk av transkripsjonsfaktorer involvert i risikomekanismer. Vi fant 

at risikovarianter for Parkinsons sykdom var overrepresentert i åpent kromatin med 

bindingsseter for transkripsjonsfaktorer tilhørende bHLH-familien. Dette indikerer at 

bHLH-transkripsjonsfaktorer kan være involvert i patogene mekanismer ved sykdommen. 

De tre studiene som presenteres i denne avhandlingen benytter ulike metoder for å 

utforske forskjellige aspekter av genetikkens rolle ved Parkinsons sykdom. Videre 

kartlegging og forståelse av genetiske risikofaktorer forventes å ha en sentral rolle i 

utviklingen av nye former for terapi som kan bedre livene til individer med Parkinsons 

sykdom.  
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1. Introduction 

 

Parkinson’s disease (PD) is a neurodegenerative movement disorder that affects more 

than 6 million people worldwide (GBD 2016 Parkinson's Disease Collaborators, 2018). 

This progressive condition is characterized by the loss of dopaminergic neurons in a 

nucleus of the midbrain called the substantia nigra and manifests clinically as slowing of 

movement, tremor at rest and muscle rigidity. In addition to symptoms from the 

movement apparatus, PD patients also suffer from a range of non-motor symptoms such 

as cognitive impairment, mood- and sleep disorders, and symptoms related to dysfunction 

of the autonomic nervous system. Symptomatic treatment may alleviate some symptoms, 

but there is no preventive- or disease-modifying therapy that can affect the progressive 

nature of the disease. The presentation of symptoms and rate of progression vary between 

patients, but it will eventually lead to a debilitating stage where the patient requires 

extensive help with activities of daily living. 

 

Who are likely to develop PD? And what are the pathological processes causing neuronal 

death in PD patients? These are crucial questions that need to be addressed for improved 

therapy to become available. In recent decades, our understanding of how genetics 

contribute to the development of PD has been substantially enhanced. This opens up new 

routes to uncover molecular targets for neuroprotective treatment and may aid in the 

identification of individuals that would benefit from such therapy.  

 

In this thesis, I will present and discuss three studies that all explore the contribution of 

genetics in PD, however from different angles. In the first study, we analyzed genetic 

variability within the glucocerebrosidase gene (GBA). GBA has emerged as a candidate 

gene for targeted therapies in PD. We analyzed GBA variants in PD patients and controls 

to explore how these variants relate to a nascent genome-wide association signal. In the 

next study, we analyzed how genetic variability may affect the age at onset (AAO) of PD. 

We tested whether a genetic variant reported to affect the AAO in a genetic subgroup of 

PD, also affects the disease onset in the majority of PD patients having idiopathic PD. In 

the third study, our aim was to contribute to the challenging task of translating the 

growing number of genetic association signals into biological meaningful information. 
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We combined genome-wide association signals with epigenomic data to identify 

transcriptional networks potentially involved in PD risk mechanisms.  

 

1.1 Parkinson’s disease 

1.1.1 Neuropathology 

In 1817, James Parkinson published “An essay on the shaking palsy”, where he described 

six individuals sharing a number of characteristic symptoms (Parkinson, 1817). This 

clinical syndrome would later be defined in greater detail by another famous neurologist, 

Jean-Martin Charcot, who named it after Parkinson. In his essay, James Parkinson 

captured many of the clinical features of PD and also noted the degenerative nature of the 

disease. Almost a century later, in 1912, Fritz Heinrich Lewy identified characteristic 

inclusions in neurons of certain brain nuclei in PD (Lewy, 1912). Shortly after, 

Konstantin Nikolaevich Tretiakoff described similar inclusions in the substantia nigra of 

PD patients that he named after Lewy (Tretiakoff, 1919). He also showed degeneration of 

the substantia nigra and suggested that there was a link between the cell loss and 

parkinsonian symptoms, an observation that was confirmed by Rolf Hassler in 1938 

(Hassler, 1938, Goedert et al., 2013). The biochemical composition of Lewy bodies 

would however remain unknown until the late 1990s when immunohistochemical staining 

identified the protein alpha-synuclein as the main component (Spillantini et al., 1997).  

 

These groundbreaking discoveries have been vital in defining what we still regard as the 

pathological hallmark of PD: abnormal aggregation of alpha-synuclein into Lewy bodies 

and the loss of dopaminergic neurons in the substantia nigra. At the time of clinical 

presentation of PD, about 50 % of the nigral dopaminergic cell bodies and their axon 

terminals in the putamen are lost. Five years after diagnosis, the loss is almost complete 

(Kordower et al., 2013). PD is however not a disease limited to dopaminergic neurons of 

the substantia nigra, but is instead a multisystem disorder affecting many different regions 

of the nervous system. Lewy body pathology has been reported in multiple regions of the 

brain, and also in the peripheral- and enteric nervous system, often accompanied by 

neuronal cell loss (Giguere et al., 2018).  

 

In 2003, Braak and colleagues introduced a neuropathological staging model for PD. 

According to this model, Lewy pathology first occur in the dorsal motor nucleus of the 
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vagal nerve and anterior olfactory nucleus, advances from there to subcortical nuclei, and 

at later stages reach the cerebral cortex (Braak et al., 2003). Consistent with this staging 

model the dual-hit hypothesis proposes that an unidentified neurotropic pathogen comes 

into contact with enteric- and olfactory neurons, initiating Lewy pathology and the 

following spread to the central nervous system (Hawkes et al., 2007). Misfolding and 

aggregation of alpha-synuclein into amyloid fibrils within Lewy bodies is considered a 

major pathogenic event in PD. However, the exact mechanisms through which alpha-

synuclein aggregate and how this process relates to neuronal impairment are far from 

fully understood. Interestingly, experimental evidence suggests that alpha-synuclein 

pathology may spread from cell to cell through prion-like mechanisms, which could 

explain Braak’s pathological findings (Steiner et al., 2018). 

 

1.1.2 Clinical features and diagnostics of Parkinson’s disease 

The diagnosis of PD is based on clinical features and confirmation of the diagnosis can 

only be obtained postmortem based on neuropathological findings. The diagnostic 

accuracy of PD has been estimated at about 80% after the initial assessment when 

compared to autopsy, with some improvement after follow-up (Rizzo et al., 2016). 

Several diagnostic criteria or guidelines have been introduced the last decades to improve 

and facilitate the diagnostic process in PD, with the most recent being the Movement 

Disorder Society (MDS) Clinical Diagnostic Criteria for Parkinson’s disease (MDS-PD 

criteria) published in 2015 (Postuma et al., 2015). The MDS-PD criteria encompass the 

two previous main sets of diagnostic criteria (United Kingdom PD Society Brain Bank 

and Gelb’s criteria), retaining motor parkinsonism as a core feature of the disease. At the 

same time, the MDS-PD criteria also introduce new aspects, such as an increasing 

recognition given to non-motor manifestations (Postuma et al., 2015, Marsili et al., 2018).  

 

A diagnosis of PD requires that the patient has parkinsonism. Parkinsonism is defined by 

bradykinesia, in combination with resting tremor, rigidity, or both. Bradykinesia 

describes slowing of movement, while rigidity is resistance to passive movement in a 

relaxed limb or neck. Resting tremor occurs when a part of the body is completely at rest 

and is typically suppressed during movement initiation. In later stages of the disease, PD 

patients may develop postural instability leading to troubles with balance and falls. After 

parkinsonism has been established, absolute exclusion criteria, red flags and supportive 
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features are used to determine whether PD is the cause of parkinsonism. Examples of 

supportive features are a clear beneficial response to dopaminergic therapy and the 

presence of levodopa-induced dyskinesia. Exclusion criteria and red flags include clinical 

findings and signs clearly pointing to other causes of parkinsonism such as 

frontotemporal dementia, multisystem atrophy, corticobasal degeneration and drug-

induced parkinsonism (Postuma et al., 2015).  

 

For many patients, non-motor symptoms dominate the clinical picture and have a 

significant negative impact on quality of life (Chaudhuri et al., 2011). PD patients may 

suffer from a variety of non-motor symptoms including cognitive impairment, rapid eye 

movement sleep behavior disorder (RBD), bladder dysfunction, constipation, depression, 

anxiety, olfactory dysfunction and orthostatic hypotension. Non-motor features may 

precede motor symptoms and a clinical diagnosis of PD by several years. Prodromal 

disease may be defined as the stage when early symptoms and signs of PD 

neurodegeneration are present, but insufficient to set a classic clinical diagnosis of PD 

(Berg et al., 2015). Prodromal non-motor symptoms are not specific to PD, but 

individuals that present with a combination of these symptoms are at a greater risk of 

developing PD. RBD in particular has a high predictive value of a subsequent diagnosis 

of PD (Galbiati et al., 2019, Mahlknecht et al., 2015).  

 

Imaging of the brain is not a decisive part of the diagnostic assessment, but may aid in 

differential diagnosis of PD. Magnetic resonance imaging is used to identify or rule out 

other causes or forms of parkinsonism (Armstrong and Okun, 2020). Functional imaging 

with single-photon emission computed tomography (SPECT) or positron emission 

tomography (PET) can reveal nigrostriatal cell loss, displayed by reduced or asymmetric 

uptake of striatal dopaminergic biomarkers (Balestrino and Schapira, 2020). 

Dopaminergic functional imaging may aid in the differential diagnosis between 

degenerative and nondegenerative parkinsonism.  

 

1.1.3 Treatment 

Treatment in PD is symptomatic, focused on alleviating motor and non-motor symptoms. 

There are currently no available disease-modifying therapies that halt or slow the rate of 

neurodegeneration. Dopamine replacement therapy is the standard treatment of motor 
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symptoms of PD. Dopaminergic agents such as levodopa, dopamine agonists and 

monoamine oxidase-B inhibitors aim at reconstituting the dopaminergic signaling in 

striatum. Non-motor symptoms are generally refractory to dopaminergic medication and 

require therapeutic approaches targeting neurotransmitter systems other than dopamine, 

such as serotonin and acetylcholine (Armstrong and Okun, 2020).  

 

Dopamine-based therapies typically provide good control of the initial motor symptoms. 

However, as the disease progresses, individuals tend to lose the long-duration response to 

dopamine, and also develop a diminished short-duration response (Armstrong and Okun, 

2020). This leads to worsening of symptoms and an increase in disability when the 

medication wears off. Patients may also experience motor complications in the form of 

dyskinesia, dystonia or fluctuations. When motor complications are poorly managed by 

classical pharmacological therapies, patients may benefit from advanced treatments such 

as direct administration of levodopa-carbidopa gel into the duodenum by a pump through 

a gastrostomy catheter or deep brain stimulation (Balestrino and Schapira, 2020). 

Pharmacological treatment of PD should be complemented by non-pharmacological 

approaches. Rehabilitative therapy and physical activity may favorably affect speech, 

swallowing, gait and other aspects of PD (Armstrong and Okun, 2020, Gronek et al., 

2021).  

 

1.1.4 Etiology 

The etiology of PD is still largely unknown. Most PD cases are idiopathic, meaning that 

no known cause of the disease has been identified. The major known risk factor in PD is 

aging. PD is uncommon in individuals younger than 50 years of age, but both the 

incidence and prevalence rise sharply after the age of 60 years. The prevalence is 

generally estimated at 1 % in individuals over 60 years of age (de Lau and Breteler, 

2006). The prevalence peaks between 85 years and 89 years where it is estimated at 1.7% 

in men and 1.2 % in women (GBD 2016 Parkinson's Disease Collaborators, 2018). As 

these figures show, PD is more common in men and the male-to-female ratio is reported 

at 1.4:1.0 (GBD 2016 Parkinson's Disease Collaborators, 2018). Aging populations 

increase the global burden of PD and other neurodegenerative disorders. In 2016, 6.1 

million individuals were estimated to have PD globally, which was more than a doubling 

compared to 1990. The increase in prevalence is however not solely explained by more 
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people in higher age groups, but has probably additional contributing factors such as 

longer disease duration, greater awareness of diagnosis and possibly increased exposure 

to environmental factors related to the growing industrialization of the world (GBD 2016 

Parkinson's Disease Collaborators, 2018).  

 

A large number of environmental exposures have been investigated in epidemiological 

studies of PD and some do have substantial evidence of an association (Bellou et al., 

2016). The interpretation of these findings is however complicated by study biases and 

causal inference has proven difficult. Among the identified risk factors are traumatic 

brain injury and exposure to pesticides, while smoking, coffee consumption, ibuprofen 

use and vigorous exercise show an inverse association with PD (Chen and Ritz, 2018). 

The relationship between pesticides and PD was discovered in the 1980s when it was 

reported that a group of drug users that had been exposed to 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP), a substance structurally similar to the herbicide paraquat, 

developed parkinsonism indistinguishable from PD (Langston et al., 1983). MPTP and 

other exogenous toxic agents that damage the nigrostriatal dopaminergic pathway have 

been used to develop animal models of PD (Tieu, 2011).  

 

The link between PD and environmental toxins incited the view of PD as a non-genetic 

disorder (Billingsley et al., 2018). This was supported by initial twin studies that lacked 

convincing evidence of any heritability in PD (Duvoisin et al., 1981, Ward et al., 1983). 

However, in the late 1990s a mutation in the SNCA gene was identified as causative in 

families with autosomal dominant PD (Polymeropoulos et al., 1997). This key discovery 

was followed by intensive genetic research demonstrating that genetic variants play a 

substantial role in the development of PD.  

 

1.2 The genetic landscape of Parkinson’s disease 

1.2.1 Molecular methods applied in Parkinson’s disease genetic 

research 

Genetic discoveries in PD have followed the technical advances in molecular biology. 

The first DNA-based method was linkage analysis, a family-based method that estimates 

the co-segregation of genetic markers and a defined disease in pedigrees, with the aim of 

mapping the disease to a genomic region (Henriksen et al., 2017). The genomic region 
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linked with disease is large, typically containing multiple coding genes and needs to be 

sequenced and analyzed for potential disease-causing mutations (Pihlstrom et al., 2017). 

Linkage analyses have been successful at identifying mutations that follow a classical 

Mendelian inheritance pattern and have identified several autosomal-dominant and 

autosomal-recessive genes that cause PD.  

 

The majority of PD cases do however occur sporadically, resulting from a complex 

interplay between aging, environmental- and genetic factors (Figure 1). Complex 

sporadic disorders generally involve genetic variants with smaller impact on risk which 

require large-scale case-control association studies for identification. Candidate gene 

studies test whether frequencies of genetic variants of individuals that have a specific 

disease differ significantly from the control population. The candidate gene approach has 

been applied to a large number of genes selected based on the existing genetic, biological 

or clinical knowledge. Although candidate gene studies have contributed to the discovery 

of some well-established PD risk genes, most findings have proven difficult to replicate. 

This high rate of false-positive findings may have several reasons, including bias due to 

undetected population admixture and limited knowledge of the underlying genetic 

landscape (Lill, 2016, Henriksen et al., 2017). Many of these limitations have been 

overcome by the application of genome-wide genotyping arrays used in genome-wide 

association studies (GWASs), resulting in the successful identification of multiple risk 

signals in PD and other complex disorders. 
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Figure 1. Interplay of genetic-, environmental- and age-related factors underlying the 

pathogenesis of PD.    

 

 

In GWASs, up to several millions of variants across the genome are genotyped and tested 

for association with a disease, utilizing an unbiased hypothesis-free approach. This design 

relies on and exploits linkage disequilibrium (LD), which is the correlation that exists 

between genetic variants in the genome. LD makes it possible to reduce the number of 

markers that needs to be assayed since a few hundred thousand tagging variants can 

capture a sufficient proportion of the common variation in the human genome (Spain and 

Barrett, 2015). GWASs are mainly used to study common variants in common diseases. 

Common variants are typically defined as having an allele frequency above 1 %. The 

relatively inexpensive genotyping arrays enables inclusion of very large sample-sizes, up 

to more than a million individuals, enabling the discovery of risk loci with weak effect 

sizes.  

 

1.2.2 Monogenic causes of Parkinson’s disease 

In most populations less than 5 % of PD patients have a monogenic form of the disease, 

meaning that it can be contributed to a rare and highly penetrant pathogenic variant (Reed 
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et al., 2019). The first Mendelian PD mutation was discovered in 1997 when the A53T 

mutation in the SNCA gene was identified as causative in families with autosomal 

dominant PD (Polymeropoulos et al., 1997). In addition to marking the starting point of 

PD genetics, this key discovery is a prime example of how genetic findings may lead to 

new biological insight. Shortly after the identification of a causative mutation in the 

SNCA gene, alpha-synuclein, which is the protein encoded by the SNCA gene, was 

identified as the main component in Lewy bodies and Lewy neurites (Spillantini et al., 

1997). Additional mutations in the SNCA gene, and also duplications and triplications of 

SNCA have been identified as causative in PD. (Ibáñez et al., 2004, Farrer et al., 2004). It 

appears to be a clear SNCA genomic dosage-related phenotype so that patients with 

higher number of copies of the gene have more severe symptoms (Deng et al., 2018).  

 

Since the discovery of the SNCA locus, at least 20 genes have been reported as causative 

for PD, including both autosomal dominant and autosomal recessive genes (Blauwendraat 

et al., 2020a, Deng et al., 2018). Genes reported as causative for PD are listed in Table 1 

and have notably variable degree of confidence regarding the pathogenic relevance. The 

most commonly affected autosomal recessive gene in PD is Parkin, followed by PINK1 

and DJ-1 (Kitada et al., 1998, Valente et al., 2004, Bonifati et al., 2003). Pathogenic 

mutations in recessive genes are very rare in the general PD population but occur at 

higher rates in patients with early onset PD, defined as AAO before 40 years of age 

(Kilarski et al., 2012). Mutations in LRRK2 are the most common cause of autosomal 

dominant PD. Several pathogenic mutations have been identified in LRRK2, of which the 

G2019S mutation is the most common and well studied (Kachergus et al., 2005). The 

worldwide frequency of LRRK2 G2019S is 1 % in sporadic PD and 4 % in familial PD 

but varies widely between different populations (Healy et al., 2008). LRRK2 G2019S has 

an incomplete penetrance, meaning that there are carriers of G2019S that do not develop 

PD although reaching a high age. Actually, most causative mutations in PD, and possibly 

all, have an incomplete penetrance. The term monogenic PD may thus be regarded as an 

oversimplification, since additional genetic and environmental factors are likely to affect 

presentation of disease in carriers of these pathogenic mutations (Blauwendraat et al., 

2020a).   
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Gene  Mutation Inheritance Confidence as actual 

PD gene 

SNCA Missense or multiplication Dominant Very high 

PRKN Missense or loss of function Recessive Very high 

UCHL1 Missense Dominant Low 

PARK7 (DJ-1) Missense Recessive Very high 

LRRK2 Missense Dominant Very high 

PINK1 Missense or loss of function Recessive Very high 

POLG Missense or loss of function Dominant High 

HTRA2 Missense Dominant Low 

ATP13A2 Missense or loss of function Recessive Very high 

FBXO7 Missense Recessive Very high 

GIGYF2 Missense Dominant Low 

PLA2G6 Missense or loss of function Recessive Very high 

EIF4G1 Missense Dominant Low 

VPS35 Missense Dominant Very high 

DNAJC6 Missense or loss of function Recessive High 

SYNJ1 Missense or loss of function Recessive High 

DNAJC13 Missense Dominant Low 

TMEM230 Missense Dominant Low 

VPS13C Missense or loss of function Recessive High 

LRP10 Missense or loss of function Dominant Low 

 

Table 1. Mutations reported to cause PD. This is a modified version of a table published 

by Blauwendraat et al. (Blauwendraat et al., 2020a). Confidence as actual PD gene is 

based upon the number of reported families, functional evidence and number of reports 

that could not replicate the finding that this gene is a PD gene. 

 

 

1.2.3 The genetics of sporadic Parkinson’s disease 

Investigations into the genetic basis of sporadic PD have been driven by GWASs. The 

first GWAS of PD was published in 2005, however early studies had too small sample 

sizes to convincingly identify risk loci (Maraganore et al., 2005, Fung et al., 2006). In 

2009, two collaborating studies in Caucasian and Japanese subjects were the first studies 

to report risk loci of genome-wide significance in PD (Satake et al., 2009, Simon-Sanchez 

et al., 2009). In the first study, which included 5074 PD patients and 8551 controls of 
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European ancestry, SNCA and MAPT were confirmed as PD risk loci (Simon-Sanchez et 

al., 2009). The association at SNCA was replicated by the GWAS of Japanese subjects, 

where also BST1, PARK16 and LRRK2 were reported as GWAS loci (Satake et al., 2009). 

Several GWASs of increasing sample sizes have followed, identifying additional risk loci 

such as HLA and GAK (Hamza et al., 2010, Edwards et al., 2010, Saad et al., 2011, 

Spencer et al., 2011). In 2011, the International Parkinson’s Disease Genomics 

Consortium performed the first meta-analysis of PD GWASs (Nalls et al., 2011). They 

confirmed six previously identified loci (MAPT, SNCA, HLA, BST1, GAK and LRRK2) 

and reported five novel loci (ACMSD, STK39, MCCC1/LAMP3, SYT11, and CCDC62 

/HIP1R). Subsequent meta-analyses have further expanded the list of PD risk loci 

(International Parkinson's Disease Genomics Consortium and Wellcome Trust Case 

Control Consortium, 2011, Lill et al., 2012, Pankratz et al., 2012, Nalls et al., 2014, 

Chang et al., 2017). The most recent PD GWAS meta-analysis identified 90 independent 

genome-wide risk signals (Nalls et al., 2019). This study included 37’688 cases, 18’618 

proxy cases and 1.4 million controls, which is a striking increase in participants compared 

to the few thousand individuals assessed in the first GWASs.  

 

Individually GWAS loci confer a relatively small amount of genetic risk with an odds 

ratio (OR) typically in range of 1,1–1,5. The genetic risk may thus instead be studied 

collectively as polygenetic risk scores (PRS) based on aggregation of the allelic status and 

effect size of multiple risk loci (Blauwendraat et al., 2020a). The PRS based on the 90 

association signals identified by the most recent PD GWAS meta-analysis shows that 

individuals in the top decile of genetic risk are 6-fold more likely to have PD compared to 

those in the lowest decile of genetic risk (Nalls et al., 2019). In addition to affecting the 

risk of getting the disease, common genetic variants may also influence clinical 

progression and disease features of PD (Iwaki et al., 2019). PRS based on cumulative 

genetic PD risk has been shown to be a predictor of AAO in PD and a few PD risk loci 

have also been found to be individually associated with AAO (Blauwendraat et al., 2019, 

Nalls et al., 2015a, Escott-Price et al., 2015, Pihlstrom and Toft, 2015). However, the 

genetic determinants of PD AAO remain largely unknown.  
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1.2.4 Pleomorphic risk loci 

Some of the PD risk loci identified by GWASs also harbor rare mutations known to cause 

monogenic PD, demonstrating that various genetic mechanisms contributing to PD may 

coexist at the same locus (Bandres-Ciga et al., 2020a). SNCA and LRRK2 are examples of 

pleomorphic risk loci that contain both rare variants with large effects and common 

variants with smaller effect sizes. This links monogenic PD to sporadic PD, blurring the 

line between these two entities of the disease. Furthermore, new discoveries adding to the 

growing list of genetic causes of PD have made it increasingly clear that genetic risk is 

spread across a variety of allele frequencies and effect sizes (Figure 2).  

 

 

 

Figure 2. Continuous model of genetic risk in PD. Genetic variants associated with PD 

range from rare and highly penetrant disease-causing mutations to common risk variants 

with weak effect sizes discovered by large GWASs. The symbol +++ indicates additional 

known genes or risk loci. 
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In line with such a continuous spectrum of genetic risk is the identification of risk 

variants at the GBA locus that are intermediate between the highly penetrant monogenic 

mutations and common GWAS risk variants. The GBA gene is also another example of a 

pleomorphic risk locus since some variants cause a rare Mendelian disorder in the 

homozygous state and are risk factors for PD in the heterozygous state (Sidransky, 2004, 

Blauwendraat et al., 2020a). GBA has been established as one of the most important risk 

genes in PD and events leading to this finding follow an original path differing from most 

other genetic discoveries. 

 

1.2.5 GBA mutations  

The link between PD and GBA was not identified by genetic family-based analyses or 

large-scale GWASs, but was instead first uncovered in the clinics of patients with 

Gaucher’s disease (GD) (Sidransky and Lopez, 2012). GD is a rare lysosomal storage 

disorder caused by homozygous and compound heterozygous mutations in GBA. Several 

hundred mutations and re-arrangements in GBA have been reported (Grabowski, 2008, 

Hruska et al., 2008). GBA encodes the lysosomal enzyme glucocerebrosidase (GCase), 

which catalyzes the breakdown of the sphingolipid glucosylceramide to ceramide and 

glucose. In GD, GBA mutations lead to a pronounced decrease in activity of GCase, 

resulting in lysosomal accumulation of the undigested substrate glucosylceramide in 

tissue macrophages (Stirnemann et al., 2017).  

 

GD is classified into three broad phenotypes based on the degree of neurological 

involvement. Type I non-neuronopathic GD is by far the most common form of the 

disease with clinical manifestations that include organomegaly, thrombocytopenia, 

anemia and bone pain. Type 2, acute-neuronopathic GD, is characterized by severe and 

rapid neurological decline resulting in early death. Patients with chronic-neuronopathic 

type 3 GD may have primarily visceral manifestations as described in type 1 GD in 

combination with oculomotor neurological involvement, or they can develop more severe 

neurological symptoms (Stirnemann et al., 2017). 

 

The observation that some GD patients developed parkinsonian symptoms, and also the 

presentation of parkinsonism in relatives who were carriers of GBA mutations, led to 

investigations into the role of GBA mutations in PD (Tayebi et al., 2003, Neudorfer et al., 
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1996, Goker-Alpan et al., 2004). In 2009, a large multicenter study confirmed the 

association between heterozygous GBA mutations and PD with an estimated OR of 5.4 

(Sidransky et al., 2009). This finding has been supported by further studies performed in 

different populations worldwide (Zhang et al., 2018). While initial GWASs failed to 

identify GBA as a susceptibility-gene for PD, a meta-analysis of several GWASs later 

found an association between a coding variant in GBA and PD (Pankratz et al., 2012). 

Interestingly, a strong association has also been reported between GBA mutations and 

dementia with Lewy bodies, where carriers have an 8-fold increase in the risk of 

developing the disease (Nalls et al., 2013).  

 

There is a large variation in the distribution and frequency of GBA mutations between 

different populations. In the Ashkenazi Jewish population, which has an especially high 

frequency of GBA mutations, up to 30% of PD patients have been reported as carriers 

(Aharon-Peretz et al., 2004). Reported frequencies of heterozygous GBA mutations in 

European non-Ashkenazi Jewish PD patients vary between 2-10% (Migdalska-Richards 

and Schapira, 2016). N370S and L444P are the two most common GBA mutations 

worldwide (Sidransky et al., 2009). The L444P mutation is associated with severe 

phenotypes of GD with neurological involvement (type 2 and 3) and has a higher risk of 

developing PD in the heterozygous state compared to the milder N370S mutation which 

causes type 1 GD (Grabowski, 2008, Gan-Or et al., 2015a). E326K and T369M are low-

frequency coding GBA variants that are often distinguished from other GBA mutations 

since they do not cause GD in homozygous carriers. Their effect on PD risk has been 

disputed, however emerging evidence points to a role for E326K, and possibly also 

T369M, as risk factors for PD (Duran et al., 2013, Mallett et al., 2016). 

 

GBA-associated PD may be clinically indistinguishable from idiopathic PD when 

assessed during a routine examination. However, clinical studies show that GBA 

mutations are associated with distinct clinical characteristics, especially regarding the 

distribution and severity of non-motor symptoms. GBA mutations confer a higher risk of 

dementia during the course of PD and are associated with a more rapid cognitive decline 

(Cilia et al., 2016, Davis et al., 2016, Brockmann et al., 2015). Furthermore, patients with 

GBA mutations have been reported to have a higher prevalence of hyposmia, RBD, 

neuropsychiatric symptoms and autonomic dysfunction (Gan-Or et al., 2015b, Thaler et 

al., 2018, Cilia et al., 2016, Brockmann et al., 2011, Jesus et al., 2016). GBA mutations 



 

    15 

are associated with a younger AAO in PD and a more rapid progression of motor 

symptoms (Cilia et al., 2016, Jesus et al., 2016, Winder-Rhodes et al., 2013, Brockmann 

et al., 2015).  

 

The underlying molecular mechanisms of how GBA mutations lead to PD are not fully 

understood. Interestingly, experimental evidence supports a bidirectional relationship 

between alpha-synuclein metabolism and GCase activity. Several studies in cell cultures 

and animal models show that inhibition of GCase induces alpha-synuclein accumulation 

with consequential neurotoxic effects (Mazzulli et al., 2011, Rockenstein et al., 2016, 

Schondorf et al., 2014). Alpha-synuclein, on the other hand, has been reported to disrupt 

the intracellular trafficking and lysosomal activity of GCase (Mazzulli et al., 2011). The 

link between GBA and PD has opened up for novel strategies in the pursuit of new 

therapeutic interventions in PD.  

 

1.3 From genetic association to molecular function 

GWASs have been successful at identifying thousands of statistically associated genetic 

loci with a wide variety of complex diseases and phenotypes (Buniello et al., 2019). A 

large proportion of these risk loci have been replicated, suggesting that they are true 

associations. There is however a huge gap between the number of robust risk loci and our 

understanding of the underlying molecular mechanisms.  

 

GWAS results are typically reported as a list of loci labelled by the most strongly 

associated variant which is often referred to as the lead, index or top variant. The lead 

variant has however in most instances no biological function and is instead in LD with the 

actual causal variant (Schaub et al., 2012). Identification of the causal variant is 

challenging since GWAS signals typically comprise multiple genetic variants, sometimes 

hundreds, in high LD. The list of putative causal variants may be refined by statistical 

fine-mapping efforts which employ dense genotyping arrays to perform more complete 

analyses of the identified risk regions. Such fine-scale genotyping does however require 

large sample sizes to get sufficient statistical power, which together with the cost of the 

locus specific dense genotyping arrays require substantial resources (Spain and Barrett, 

2015). Furthermore, sequence information alone is insufficient to prioritize between 

genetic variants in perfect LD.  
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Identification of the causal gene(s) at a GWAS locus is another important part of 

elucidating the underlying molecular mechanisms. GWAS loci have generally been 

named after the nearest gene(s) to the lead variant. Proximity is however not a good or 

sufficient measure of likely causality since genetic variants may affect distant genes. The 

majority of disease-associated variants identified by GWASs lie in the non-coding part of 

the genome, which complicates their functional characterization and the process of 

assigning a target gene (Maurano et al., 2012). Improved insight into the function and 

organization of the non-coding genome is crucial to the interpretation of GWAS findings.  

 

1.3.1 The non-coding genome and its role in gene regulation  

The predominant part of the genome is non-coding, with less than 2% constituting 

protein-coding sequence (ENCODE Project Consortium, 2012). The non-coding genome 

was once considered to be redundant and non-functional “junk” DNA. This view has 

however radically changed following the advancement of new technologies that have 

enabled extensive mapping of the non-coding genome, uncovering that it plays a crucial 

role in regulation of gene expression.  

 

The complex interplay between trans-acting regulatory proteins and non-coding cis-

regulatory elements, such as enhancers and promoters, control in which cells, at what 

time points and at what level genes are expressed. Promoters are located in immediate 

proximity to the transcription start site and this is where the transcriptional machinery 

binds to initiate transcription (Lenhard et al., 2012). Enhancers are located more distally 

from the transcription start site and provide additional input which is essential to ensure 

precise control of the transcriptional pattern. The classical definition of enhancers is that 

they are cis-regulatory elements that increase the transcription of genes and function 

independently of the orientation and position relative to the transcription start site 

(Banerji et al., 1981). Transcription factors are regulatory proteins that recognize and bind 

to short specific DNA sequences, referred to as motifs, at cis-regulatory elements. Over 

1600 different transcription factors have so far been identified and to a variable degree 

characterized (Lambert et al., 2018). Importantly, cis-regulatory elements are typically 

bound by a combination of transcription factors, with the timing and spatial arrangement 

of transcription factor binding defining its regulatory function.  
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Initiation of transcription is controlled by the binding of transcription factors to enhancers 

and promoters which induce, via interaction with cofactors, the assembly of the RNA 

polymerase II machinery at the promoter region. To accomplish this, enhancers are 

brought into close proximity of target promoters through looping of the intervening DNA 

(Sanyal et al., 2012). Thus, instead of employing a linear representation of the genome, 

gene regulation needs to be viewed in a three-dimensional context.  

 

1.3.2 Chromatin architecture and epigenetics  

The three-dimensional organization of the genome is achieved through chromatin folding. 

Chromatin is the complex formed between DNA and proteins that enable tight packing of 

the genetic information. This is required to fit the entire genome into the microscopic 

nucleus. The nucleosome is the basic repeating core building block of chromatin, 

composed of a section of DNA wrapped around a core unit of histone proteins. 

Nucleosomes fold into shorter and thicker fibers, which form loops and are further 

compressed and tightly coiled into the chromatid of a chromosome. The occupancy of 

nucleosomes across the genome is dynamic, creating an accessibility continuum that 

ranges from closed chromatin to accessible chromatin (Klemm et al., 2019). Such 

remodeling of chromatin is necessary to make the tightly packed DNA accessible to 

regulatory proteins. 

 

Chromatin accessibility, together with covalent modifications of histones and DNA, and 

the higher-order chromatin architecture, are important modes of epigenetic regulation. 

Epigenetics has been defined as “the study of mitotically (and potentially meiotically) 

heritable alterations in gene expression not caused by changes in DNA sequence” 

(Waterland, 2006). An even broader understanding of the term is often in use which does 

not require the epigenetic alteration to be heritable. The complete collection of epigenetic 

changes along the genome, referred to as the epigenome, varies between different cell 

types and represents a second dimension to the genomic sequence (Rivera and Ren, 

2013). This enables cell type-specific gene expression patterns that are necessary to shape 

cell identity and produce the large variety of different human cell types. 
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The dynamic transition between the different states of chromatin is enabled by covalent 

modifications of histone proteins and DNA. These transient modifications may alter the 

structure and function of chromatin, enacting a pivotal role in the regulation of 

transcription, DNA repair and replication (Tessarz and Kouzarides, 2014). Methylation at 

the carbon-five position on cytosine residues is a widely studied nucleotide modification. 

More than ten post-translational modifications of histone tails have so far been identified, 

of which methylation and acetylation are best characterized (Chiarella et al., 2020). Cell 

type-specific transcriptional regulation is further impacted by the three-dimensional 

chromosomal structure. Chromatin looping forms the necessary contacts between distal 

enhancers and their target promoters. Studies of the three-dimensional genome 

organization show a complex and flexible interaction network where cis-regulatory 

elements typically have several interaction partners (Sanyal et al., 2012).  

 

1.3.3 Mapping the epigenome 

Assaying of epigenetic marks may be used to annotate the non-coding genome through 

the identification of putative regulatory elements. Technological advances, such as high-

throughput sequencing (HTS), have enabled assaying of epigenetic features genome-

wide. This has led to a shift from the characterization of single enhancers or promoters to 

modeling of the full regulatory genome in selected cell types.  

 

DNA methylation is an epigenetic mark that has been extensively assayed. It is 

functionally linked to gene repression and is thus frequently described as a “silencing” 

epigenetic mark. Comprehensive high-throughput methods enable the construction of 

detailed whole-genome maps of DNA methylation. The ability to study complete 

methylomes shows that not only methylation near transcription start sites, but also in gene 

bodies and regulatory regions such as enhancers may be functionally important (Jones, 

2012).   

 

Profiling of chromatin accessibility can be used to identify a repertoire of putative 

regulatory regions across the genome. Genomic regions where transcription factors are 

bound lack nucleosomes and are thus preferentially digested by enzymes that modify 

DNA or are more easily fragmented by sonication (Nord and West, 2020). A principal 

method for measuring chromatin accessibility is DNase I hypersensitive sites sequencing 
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(DNase-seq) where the endonuclease DNase I is used to digest nucleosome-depleted 

DNA, followed by identification of these DNA fragments by HTS (Boyle et al., 2008). 

Assay for Transposase Accessible Chromatin followed by sequencing (ATAC-seq) is a 

more recent approach for chromatin accessibility profiling where hyperactive Tn5 

transposase is utilized to simultaneously cut and ligate adapters for HTS at regions of 

open chromatin (Buenrostro et al., 2015).  

 

Open chromatin is however non-specific when it comes to the function of the identified 

putative regulatory regions. Instead, or as a complement, analysis of histone 

modifications may be used to predict the function of regulatory elements. Patterns of 

specific post-translational histone modifications correlate with the functional state of the 

associated chromatin and constitute what is known as the “histone code” (Jenuwein and 

Allis, 2001, Strahl and Allis, 2000). For example, enhancers are marked by 

monomethylation of histone H3 at lysine 4 (H3K4me1), while promoters are marked by 

trimethylation at the same site (H3K4me3) (Heintzman et al., 2007). Another useful 

histone mark is the acetylation of histone H3 at lysine 27 (H3K27ac), which separates 

enhancers that are active from those that are inactive/poised (Creyghton et al., 2010). 

 

Chromatin immunoprecipitation sequencing (ChIP-seq) is the most common method used 

to map histone modifications and is also used to identify the direct binding of 

transcription factors and other regulatory proteins to DNA. In ChIP-seq experiments, 

DNA binding proteins are first cross-linked to DNA, and then the DNA is sheared by 

sonication or enzymatic digestion. Then, specific antibodies directed against the target 

protein are used to precipitate the co-associated DNA fragments. HTS allows for genome-

wide mapping of the assayed protein-DNA interactions (Nord and West, 2020, Johnson et 

al., 2007). ChIP-seq is considered as the gold standard for identification of transcription 

factor binding since it assays direct in vivo binding of the protein in the tested cell type. 

 

To gain further insight into the regulatory genome, it is necessary to explore contacts 

made between cis-regulatory elements. Chromosome conformation capture (3C) and its 

high-throughput derivatives such as 4C, 5C and Hi-C, are used to study chromosomal 

contacts at different scale, ranging from single enhancer-promoter contacts to genome-

wide contact maps (Sanyal et al., 2012, Dekker et al., 2002, Lieberman-Aiden et al., 
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2009). These methods are based on the concept that genomic regions that are closely 

positioned are more likely to be cross-linked and ligate to each other (Vermunt et al., 

2019). Identification of enhancer-promoter interactions may determine which genes that 

are potentially regulated by a specific enhancer, and could also identify previously 

unknown enhancers that possibly contribute to regulation of a particular gene (Snetkova 

and Skok, 2018).  

 

Epigenetic assays may be complemented by studies coupling gene expression levels with 

genetic variation. Genetic variants that are associated with altered expression level of a 

particular gene in a particular tissue are known as expression quantitative trait loci 

(eQTLs). RNA-sequencing in densely genotyped individuals allows for genome-wide 

mapping of eQTLs (Pickrell et al., 2010). Such eQTL datasets may aid in surveys of gene 

regulatory mechanisms, as well as in annotation of genetic variants.  

 

The cell type and tissue specificity of the epigenome presents a paramount challenge to 

mapping of regulatory elements. This is because the different epigenetic marks need to be 

assayed in numerous cell types, which is extremely labor-intensive. To address this 

challenge, large international efforts such as NIH Roadmap Epigenomics Project and 

Encyclopedia of DNA Elements (ENCODE) Project, have been launched to 

systematically map epigenetic marks and develop new epigenomic technologies 

(Bernstein et al., 2010, Satterlee et al., 2019, ENCODE Project Consortium, 2012). The 

Genotype-Tissue Expression (GTEx) Consortium has analyzed eQTLs in more than 40 

human tissues in hundreds of individuals (Battle et al., 2017). Such large-scale projects 

have generated human reference epigenomes and QTL maps from hundreds of cell types 

that have been made publicly available, providing a valuable resource to the scientific 

community.  

 

1.3.4 Integration of GWAS findings with regulatory annotations 

Disease-associated variants derived from GWAS studies in a range of complex disorders 

are more frequently located in regulatory annotations such as different histone marks, 

measures of chromatin accessibility and eQTLs (Trynka et al., 2013, Maurano et al., 

2012, Nicolae et al., 2010). This suggests that alterations to regulatory elements, and the 

ensuing changes to gene expression, are important mechanisms of action by which 
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genetic variants influence disease risk. Furthermore, the enrichments are typically more 

prominent in tissues or cell types of biological relevance to the disease (Kundaje et al., 

2015, Trynka et al., 2013). For example, genetic variants associated with several cardiac 

traits (PR heart repolarization interval, blood pressure and aortic root size), are enriched 

in heart tissue enhancers (Kundaje et al., 2015). Enrichment analyses may however also 

nominate less obvious cell type-disease connections with a potential pathogenic role to be 

further explored.  

 

The observation that GWAS signals tend to localize to non-coding regulatory regions 

indicates that alterations to transcription factor binding may be a mechanism of action. 

Variation in transcription factor-DNA binding is indeed believed to play an important 

role in mediating phenotypic diversity and has been linked to disease in several studies 

(Karczewski et al., 2013, Cowper-Sal lari et al., 2012). Transcription factor binding sites 

may be disrupted or created by genetic variants located in the transcription factor 

recognition motif, which may lead to changes in gene expression levels and ultimately in 

phenotype (Deplancke et al., 2016). This may be exemplified by the discovery identifying 

how a genetic variant in the FTO (fat mass and obesity) gene lead to disease by altering a 

conserved motif comprising the binding site for ARID5B (Claussnitzer et al., 2015). The 

“FTO story” is also a striking example of how GWAS signals may be integrated with 

functional genomic annotations in an effort to uncover the underlying molecular 

mechanisms. GWASs have consistently identified intronic FTO variants to be associated 

with elevated body mass index, leading to mechanistic studies exploring the role of FTO 

in obesity (Dina et al., 2007, Frayling et al., 2007). However, with the use of epigenomic- 

and gene expression data, later studies have shown that the associated variants are located 

in a regulatory element that controls the expression of the two distal genes IRX3 and IRX5 

(Claussnitzer et al., 2015, Smemo et al., 2014). One risk allele disrupts the binding site of 

ARID5B, which results in over-expression of IRX3 and IRX5. This ultimately leads to 

decreased mitochondrial energy generation and increased triglyceride accumulation in 

primary human adipocytes (Claussnitzer et al., 2015).  

 

Functional characterization of GWAS loci is however the exception rather than the rule. 

A contributing factor to this may be the complexity of how genetic variants influence 

transcription factor binding and gene expression. Only a minority of variable transcription 

factor-DNA binding events involves nucleotide changes in the respective transcription 



 

    22 

factor recognition motif (Reddy et al., 2012). Genetic variants may affect binding of the 

studied transcription factor by altering proximal motifs, and even more distally located 

variants may have an effect through alterations of chromatin state or confirmation 

(Deplancke et al., 2016). In addition to effects on gene transcription, genetic variants may 

also alter gene expression levels through post-translational processing such as mRNA 

splicing and stability (Gallagher and Chen-Plotkin, 2018).  

 

Annotation of the non-coding genome and enhanced insight into gene regulatory 

mechanisms will be essential to the process of bridging the gap between genetic 

discoveries and our understanding of underlying pathobiological processes in PD. 

Integration of GWAS results with cell type-specific functional genomic annotations may 

uncover pathogenic molecular mechanisms which in turn may lead to new therapeutic 

interventions.    
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2. Aims of the study 

 

The overall aim of this study was to expand our understanding of the genetic contribution 

to sporadic PD. Enhanced knowledge of the genetic architecture of PD might lead to 

valuable insight into pathological mechanisms that are needed to develop new therapeutic 

strategies. More specifically, the aim of the presented work was to clarify the 

involvement of selected genetic variants to the risk of developing PD and in modifying 

AAO, as well as to untangle an important GWAS signal in PD. Furthermore, we aspired 

to identify trait-relevant biological mechanisms from the existing collection of GWAS 

signals in PD.  

 

Aim of Paper 1: To study the complete GBA gene in PD patients and to investigate 

whether coding GBA variants may be driving reported GWAS signals.  

 

Aim of Paper 2: A variant in the DNM3 gene has been reported as a genetic modifier of 

AAO in LRRK2-associated PD. We sought to explore whether genetic variation in DNM3 

has an effect on AAO in idiopathic PD.  

 

Aim of Paper 3: To identify transcription factor networks contributing to PD risk by 

integrating PD GWAS signals with open chromatin sites in brain coupled with 

transcription factor motif analysis.  
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3. Summary of results 

 

Paper 1: 

The GBA variant E326K is associated with Parkinson’s disease and explains a genome-

wide association signal 

 

Coding mutations in the GBA gene have been identified as important genetic risk factors 

for PD. In addition, GWASs have identified associations with PD at the SYT11-GBA 

region on chromosome 1q22, but the relationship to coding GBA variants has been 

unclear. In Paper 1, we analyzed sequencing data covering all coding exons of the GBA 

gene in 366 Norwegian PD patients. We identified six rare mutations (1.6%) and two 

low-frequency coding variants in GBA. The two low-frequency coding variants E326K 

and T369M were genotyped in 786 patients and 713 controls from Norway and Sweden. 

We found that E326K was significantly more frequent in patients compared to controls, 

while there was no clear association between T369M and disease. To investigate whether 

E326K or T369M may be driving the reported nascent GWAS signals, two independent 

association signals within the SYT11-GBA locus were genotyped in the same patients and 

controls. We replicated the association between the primary GWAS hit and disease status, 

while the secondary GWAS hit had similar frequency in patients and controls. Evaluation 

of LD between the four genotyped variants showed that E326K and the primary GWAS 

hit are in very high LD (r2 0.95). In conclusion, our results confirm that the GBA variant 

E326K is a susceptibility allele for PD and suggest that E326K may fully account for the 

primary association signal observed at chromosome 1q22 in previous GWASs of PD.  

 

 

Paper 2: 

No evidence for DNM3 as genetic modifier of age at onset in idiopathic Parkinson’s 

disease 

 

In this study, we analyzed the effect of DNM3 variants on AAO in idiopathic PD. The 

DNM3 variant rs2421947 had been identified as a modifier of AAO of PD in LRRK2 

G2019S carriers, with GG homozygotes reported to have a median AAO 12.5 years 

younger than CC homozygotes (Trinh et al., 2016). Since genetic variation at the LRRK2 
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locus is also part of the genetic background of idiopathic PD, we wanted to test whether 

the association with DNM3 reported in LRRK2 mutation carriers was transferable to the 

much wider group of PD patients with no known highly penetrant disease causing 

mutation. We studied rs2421947 in a total of 5918 PD patients from seven different 

datasets. There was no significant association between rs2421947 and AAO in any of the 

individual studies. Meta-analysis of the seven studies was also non-significant. The 

analysis was extended to include all common variants within the DNM3 gene and the 

flanking genomic region, of which none showed a significant association with AAO of 

PD. In conclusion, we found no evidence of a modifying effect of DNM3 variants on 

AAO in idiopathic PD.  

 

 

Paper 3:  

Integrative analysis identifies bHLH transcription factors as contributors to Parkinson's 

disease risk mechanisms 

 

While PD GWASs have identified multiple genetic association signals, the translation 

into underlying biological mechanisms has lagged behind. Emerging genomic functional 

annotations may be integrated with GWAS results to identify relevant cell types and 

molecular mechanisms important to PD pathogenesis. In the third paper presented in this 

thesis, we integrated association signals from the most recent PD GWAS with publicly 

available ATAC-seq data coupled with transcription factor motif analysis in an effort to 

identify transcriptional networks contributing to PD risk. We found that PD risk variants 

significantly overlap open chromatin sites in neurons of the superior temporal cortex, 

indicating that these cell types mediate genetic risk for PD. Neurons from other cortical 

regions approached the significance threshold, suggesting that a broader range of cortical 

regions may be implicated in PD risk. In silico motif analysis performed in neurons of the 

superior temporal cortex showed that PD risk variants concentrate in sites of open 

chromatin targeted by members of the basic helix-loop-helix (bHLH) transcription factor 

family, pointing to an involvement of these transcriptional networks in PD risk 

mechanisms.  
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4. Methodological considerations 
 

4.1 Study population 

In Paper 1, genetic variants at the GBA locus were studied in Norwegian and Swedish 

participants included from Oslo University Hospital, the ParkWest study in western 

Norway and the NYPUM study at Umeå University Hospital. A total of 786 PD patients 

and 713 controls were included in the analyses. All PD patients were examined by a 

neurologist and diagnosed according to either the revised United Kingdom PD Society 

Brain Bank criteria (Oslo and Umeå) or the Gelb criteria (ParkWest). The use of 

diagnostic criteria is important to ensure a clear definition of the included phenotype by 

increasing the accuracy of the diagnosis when no objective test exists. However, even 

when standard diagnostic criteria are applied and the clinical diagnosis is performed by 

experts in neurology, the diagnostic accuracy of PD is not absolute (Rizzo et al., 2016). 

Misclassification of disease may reduce power of genetic association studies and could 

have an influence on our study. 

 

While the low-frequency GBA variants (E326K and T369M) and GWAS signals were 

genotyped in all patients and controls, sequencing was only performed in patients from 

Oslo University Hospital. The Department of Neurology at Oslo University Hospital is a 

tertiary care center for movement disorders where patients are referred for second opinion 

and advanced treatment. A large proportion of the sequenced patients have thus been 

treated with deep brain stimulation. Cognitive impairment is an exclusion criterion when 

evaluating PD patients for deep brain stimulation. We may have selected against carriers 

of GBA mutations since this group of PD patients have been reported to have an 

accelerated cognitive decline. This may be a contributing factor to the low GBA mutation 

carrier frequency of 1.6% that we find in these patients. The ParkWest study and 

NYPUM study are population-based cohort studies of incident PD patients and may thus 

be more representative of the PD population in general. 

 

Control subjects should be representative of the population from which cases are 

obtained. In our study, control subjects were selected among spouses of patients, 

outpatients in primary care and healthy volunteers. All were without neurological disease 
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and known parkinsonism among first degree relatives. In case-control studies, some of 

the controls may be expected to develop the tested disease later in life, and this could 

reduce the power of the study. This does however have larger implications in studies of 

more frequent phenotypes. PD is relatively rare, also in higher age groups, so only a 

minor fraction of the controls included in our study may be expected to develop PD. 

Inclusion of controls in higher age groups may reduce the chance of misclassification. 

Controls included in our study have a mean age at inclusion in the mid-60s from each of 

the study sites.  

 

In Paper 2, we studied individual-level genotypes from seven different datasets including 

a total of 5918 PD patients. Genetic studies of PD from Oslo University Hospital and 

Mayo Clinic Jacksonville are in-house datasets, while the five remaining datasets were 

accessed from the Database of Genotypes and Phenotypes (dbGaP) or the Parkinson's 

Progression Markers Initiative (PPMI) (Tryka et al., 2014, Nalls et al., 2016). Patients 

included from Oslo University Hospital in Paper 2 largely overlap patients included from 

Oslo in Paper 1. The included datasets were selected based on having individual genotype 

information in PD patients with a reported AAO. All datasets have genome-wide 

genotypes, except patients from Mayo Clinic Jacksonville where only genotypes for 

rs2421947 were available. The datasets consisted mainly of participants of Caucasian 

non-Hispanic ethnicity and we filtered out the few patients that had another ethnicity. 

Since this was a study of idiopathic PD, carriers of LRRK2 G2019S and other mutations 

causing monogenic forms of PD were excluded from analysis. Demographic 

characteristics of included datasets are presented in Paper 2 (Table 1).  

 

AAO was mainly defined by patient reports of the initial manifestation of parkinsonian 

symptoms, with the exception of patients included from Mayo Clinic Jacksonville where 

age at diagnosis of PD was used as onset age. Self-reported AAO is a subjective measure 

that may be prone to recall bias. However, the correlation between reported age at 

symptom onset and age at diagnosis of PD has been found to be high (Blauwendraat et 

al., 2019). In Paper 3, we analyzed genome-wide significant risk signals accessed from a 

meta-analysis of 17 datasets from European ancestry PD GWASs (Nalls et al., 2019). At 

the time of our analysis, this was the largest genetic study of PD that had been performed.  
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4.2 Sequencing 

The development and continuous evolvement of sequencing technologies have had a 

tremendous impact on biological research. The field of DNA sequencing was initiated by 

Sanger sequencing in 1977, which became the dominating sequencing technology for 

several decades to come (Sanger et al., 1977). Sanger sequencing is based on the use of 

di-deoxynucleotides (ddNTPs) in addition to the normal nucleotides found in DNA. 

ddNTPs are modified nucleotides that, when incorporated into the growing DNA strand, 

prevent the addition of further nucleotides. Dye-labeled ddNTPs are used to generate 

DNA fragments that terminate at different points. The DNA fragments may then be 

separated on the basis of size by gel electrophoresis. The DNA sequence can then be 

detected one nucleotide at a time based on the color of the dye and shown in a 

chromatogram. Multiple improvements have been made to Sanger sequencing leading to 

the development of increasingly automated DNA sequencing machines (Heather and 

Chain, 2016).  

 

In the early 2000s, a new wave of sequence-technologies emerged. These technologies 

are normally referred to as high-throughput or next generation sequencing (HTS or NGS). 

Sanger sequencing gives high-quality sequence of short stretches of DNA, but the low 

throughput makes it unsuited for large-scale sequencing projects. A major technical 

advantage in HTS over Sanger sequencing is parallelization of the reaction, which allows 

for a greatly increased sequencing throughput from multiple samples. HTS has 

revolutionized the field of genomics and to a large degree replaced Sanger sequencing, 

enabling large-scale sequencing at much reduced costs. However, Sanger sequencing is 

still widely used in smaller sequencing-projects and for validation of HTS results.  

 

In Paper 1, we used data from targeted pooled HTS of PD patients to identify coding GBA 

variants, which were then validated by Sanger sequencing. Targeted capture of all exons 

of 71 genes relevant to PD, including GBA, was combined with deep sequencing of DNA 

pools in an experiment performed in our laboratory by Lasse Pihlstrøm and colleagues. A 

subset of the genes sequenced in this experiment was analyzed in a study evaluating the 

performance of the targeted pooled HTS design (Pihlstrom et al., 2014). An advantage of 

pooling DNA are the reduced costs related to targeted enrichment and sequencing, as well 

as a reduction in the total amount of manual workload (Pihlstrom et al., 2014, Anand et 
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al., 2016). Sequencing of pooled samples thus represents a cost- and time- effective 

strategy that may open up for genetic studies in large cohorts that would otherwise have 

been too resource-demanding. The pooled sequencing design does however also present 

some challenges related to accurate variant calling and allele frequency estimation 

(Anand et al., 2016). Lasse Pihlstrøm and colleagues tested the experiment’s ability to 

detect rare variants where only one allele is present in a pool, finding a sensitivity of 97% 

(Pihlstrom et al., 2014). For the two variants that sequencing missed, the sequencing 

depth was below 80x. In our analysis of the GBA gene we therefore excluded pools with a 

sequencing depth below 80x at the relevant position. The challenge of correctly 

distinguishing true nonreference alleles present at low frequencies from the background 

of sequencing error may also lead to false positives (Anand et al., 2016). The sequenced 

pools that we analyzed were relatively small, each containing DNA from 10 individuals. 

Smaller pools favor detection of rare variants, while the accuracy of frequency 

estimations of common variants benefits from larger pools where inaccurate input of 

DNA from individuals even out. Evaluation of the targeted pooled HTS experiment does 

show that the number of nonreference alleles are called incorrectly in some cases 

(Pihlstrom et al., 2014).  

 

Due to these challenges, positive findings from pooled sequencing should in many 

instances be followed up by additional methods. In our study of the GBA gene, we 

validated variants detected by pooled sequencing with Sanger sequencing off all 

individuals in the pool of detection. GBA is a large gene containing 11 exons and 7.6 kb 

of sequence (Horowitz et al., 1989). Consequently, complete Sanger sequencing of the 

entire gene is very laborious, and many studies have limited the analysis to genotyping 

the most common mutations or sequencing of selected exons. In our study design, the use 

of pooled sequencing data advantageously restricts Sanger sequencing to specific exons 

in selected pools where variants are detected. Sequencing of GBA is complicated by the 

presence of a highly homologous pseudogene (GBAP1) in close proximity to the GBA 

gene, resulting in complex gene-pseudogene rearrangements (Horowitz et al., 1989, 

Hruska et al., 2008). To avoid amplification of the pseudogene, we performed Sanger 

sequencing with primer sequences designed to DNA regions exclusive to the GBA gene 

(Neumann et al., 2009).  
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Since variants were validated by Sanger sequencing, false positives or incorrect allele 

count is not likely. However, we cannot exclude the possibility that some existing 

variants were not detected in the pooled-sequencing experiment and thus missed in our 

study. Since the pooled-sequencing experiment has been reported to have a high 

sensitivity, the number of missed variants is not expected to be high. It should although 

be noted that the estimated sensitivity is based on a limited number of investigated 

variants and would have been more robust if more variants had been assessed. Also, HTS 

analysis of GBA is challenging due to the presence of GBA-GBAP1 complex 

rearrangements leading to possible misdetection of recombinant mutations (Zampieri et 

al., 2017). N370S and the recombinant mutation L444P had previously in our laboratory 

been genotyped in Norwegian patients largely overlapping the patients analyzed with 

pooled HTS, identifying the same N370S carrier and no L444P carriers as in our study. 

Furthermore, we did look through the Sanger sequencing reads without finding any 

additional mutations. However, this only covers a small fraction of the total sequence.  

 

4.3 Genotyping  

While sequencing reads every nucleotide in the covered genomic region, it is often the 

situation that we know exactly which variants we want to test. The variants of interest can 

then instead be genotyped with polymerase chain reaction (PCR)-based genotyping 

assays. This may be a good choice of method when the number of variants to be 

genotyped is limited. In Paper 1, genotyping of GBA variants and GWAS signals was 

performed by either KASP or TaqMan genotyping assays on a Viia7 instrument (Life 

Technologies, Foster City, CA, USA). Both assays are based on PCR-reactions where 

amplification of the region containing the genetic variant is detected by a fluorescence 

signal. Allele discrimination is achieved by allele-specific probes or primers containing 

distinct fluorescent dyes that bind to the target variant. TaqMan and KASP make use of a 

phenomenon called fluorescence resonant energy transfer (FRET) which occurs when the 

emission of a fluorescent dye is effectively captured and reduced by the presence of a 

nearby quencher dye. In KASP assays the fluorescent dye is attached directly to the tail of 

a set of allele-specific primers and is no longer quenched when amplification creates the 

complement strand that the primer tail binds to, resulting in a detectable signal. In 

TaqMan assays, the fluorescent dye is instead linked to an allele-specific probe which is 

degraded during PCR by 5’-nuclease activity of the Taq polymerase as it extends the 
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DNA from the PCR primers. This separates the fluorophore from the quencher and 

fluorescence is emitted. 

 

Results from the genotyping experiment is depicted in an allelic discrimination plot and 

genotype calls are assigned to each sample according to its position on the plot (Figure 3).  

Positive controls may aid in cluster calling for the analysis algorithms. For the two GBA 

variants E326K and T369M, positive controls were available due to previous sequencing. 

We did not have any samples with known genotype for the primary and secondary 

GWAS signals, so the initial genotyping experiments were run without positive controls 

for these two assays. However, positive controls were included when genotypes 

containing the minor allele were identified. All genotyping experiments were run with 

negative controls.  
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Figure 3. Allelic discrimination plot from KASP genotyping. X-axis and Y-axis represent 

the fluorescence signal of the dye attached to the allele-specific-primers. Samples of the 

same genotype will have similar levels of fluorescence and will therefor cluster together 

on the plot. Black squares represent negative controls. 

 

Genotype call rate is used as a quality control measure of genotyping assays. The call rate 

was above 0.98 for each individual variant in our analyses, which is considered 

satisfactory. Hardy-Weinberg equilibrium (HWE) is another quality parameter used in 

analysis of genotype data. The HWE is a principal of population genetics stating that 

genotype frequencies in a population remain constant from one generation to the next in 

the absence of disturbing factors. Significant deviations from HWE predictions may 

indicate genotyping errors. In patients, however, deviation from HWE may also be a 
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reflection of an association between a genotype and disease (Namipashaki et al., 2015). 

We tested for HWE in controls for all genotyped variants, observing no significant 

departure. 

 

When the number of variants to be genotyped is large, such as in fine-mapping of specific 

genetic loci and in genome-wide genotyping, array-based genotyping technologies is the 

method of choice. The basic principle of genotyping microarrays is hybridization of 

immobilized complementary DNA probes to fragmented nucleotide sequences containing 

the variant site and subsequent detection of the hybridization events. This is a high 

throughput method capable of detecting hundreds of thousands of variants on the surface 

of oligonucleotide chips. Genotyping microarrays have been used to detect common 

genetic variants at genome-wide scale and are the basis of GWASs. 

 

In Paper 2, we used genome-wide genotype data from in-house Oslo samples and 

additional GWAS datasets. Oslo samples were genotyped using the Illumina Infinium 

OmniExpress v.1.1 array. An overview of the genotyping arrays used by all included 

datasets is provided in Paper 2 (Table 1). In this study, imputation and pre-imputation 

quality control procedures were performed by Lasse Pihlstrøm, while Victoria Berge-

Seidl conducted the genetic analyses. Quality control procedures is an important step in 

the analysis of genome-wide genotyping data to prevent errors that may bias the outcome 

of association tests. Genotyping and genotype-calling may be subjected to technical 

errors, resulting in variants and samples with low quality. Another potential source of 

biases that needs to be addressed is cryptic structures in the studied population, meaning 

similarities between individuals that are independent of the studied phenotype (Coleman 

et al., 2016). Quality control steps performed in our study include filtering of variants 

based on genotype-rate and deviations from HWE. Individuals with high genotype 

missingness, excess heterozygosity (may indicate sample contamination or inbreeding), 

evidence of cryptic relatedness, and those identified as ancestry outliers or having 

inconsistencies in assigned and genetic sex (may indicate sample mix-up) were removed 

(Marees et al., 2018). There is a risk of recruiting related individuals unknown to the 

investigator and the same individual may have been included in different datasets. This 

may influence association statistics. We assessed cryptic relatedness across studies to 

identify duplicates and related participants, which were then removed. 
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Imputation of genotypes is the prediction of genetic variants that were not included in the 

genotyping array and thus not directly assayed. The missing genotypes are statistically 

inferred from complete haplotype information in a reference panel. Imputation is 

performed to increase the statistical power and signal resolution, and is also useful to 

combine data from GWASs using different genotyping arrays (Hoffmann and Witte, 

2015). In our study, all datasets were imputed using the Michigan Imputation Server with 

reference data from the Haplotype Reference Consortium (Das et al., 2016, McCarthy et 

al., 2016). 

 

4.4 Prediction of transcription factor binding  

In paper 3, we integrated genetic risk signals with predicted transcription factor binding 

sites in an effort to explore the involvement of transcriptional networks in PD. We made 

use of, and benefitted from, the growing amount of publicly available genomic datasets. 

When analyzing transcription factor binding, it is highly important to take cell type- and 

tissue-specificity into account. ChIP-seq allows for genome-wide detection of in vivo 

transcription factor binding and has been used to assay hundreds of transcription factors 

in multiple cell types. However, due to high experimental efforts and costs, only a 

fraction of transcription factor-cell type combinations has so far been assayed. 

Furthermore, transcription factor ChIP-seq data from neuronal cell types is particularly 

scarce.  

 

Computational models of transcription factor binding specificities, such as position 

weight matrices (PWMs), may be used to scan the genome to identify putative 

transcription factor binding sites. PWMs describe the probability of a given nucleotide’s 

occurrence at each position in the binding motif of a transcription factor derived from 

observed transcription factor-DNA interactions (Inukai et al., 2017). These interactions 

have been obtained from in vitro assays (SELEX or protein binding microarrays) or from 

ChIP-based experiments (Fornes et al., 2020). Binding motifs represented as PWMs for a 

large number of transcription factors are collected in databases such as JASPAR, 

HOCOMOCO and CisBP (Fornes et al., 2020, Kulakovskiy et al., 2018, Weirauch et al., 

2014). PWMs are limited by the assumption that positions within the motif are 

independent, which is not always true (Boeva, 2016). More complicated models have 

been developed to account for inter-dependencies between base pairs and other 
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complexities, resulting in better performance for some transcription factors. However, in 

most cases the improvements are minor or not detectable and PWMs remain the most 

widely used computational model for analysis of transcription factor binding (Lambert et 

al., 2018).  

 

Importantly, transcription factors only occupy a small proportion of the genomic 

sequences matching to their consensus binding sites. Transcription factor-DNA 

recognition is impacted by additional features such as sequence context, accessibility of 

chromatin and interactions among transcription factors (Wang et al., 2012, Inukai et al., 

2017). Integrating cell type-specific experimental data, such as DNase-seq, has been 

shown to enhance transcription factor-DNA binding predictions (Pique-Regi et al., 2011, 

Sherwood et al., 2014). When setting out to predict transcription factor binding sites we 

therefore chose to combine transcription factor motif analysis with cell type-specific 

epigenomic annotations characterizing open or active genetic regions. A flow-chart 

displaying the analytical steps of this study is shown in Paper 3 (Fig 1).  

 

4.4.1 Genomic annotations 

In our study, we analyzed maps of open chromatin in neurons and non-neurons across 14 

distinct brain regions of five individuals. The data was downloaded from the online 

database Brain Open Chromatin Atlas (BOCA) and has been described in a paper by 

Fullard and colleagues (Fullard et al., 2018). In generation of this dataset, fluorescence-

activated nuclear sorting (FANS) was combined with ATAC-seq to create cell type-

specific maps of open chromatin, distinguishing neuronal cells from non-neurons. 

 

ATAC-seq has emerged as a powerful approach for genome-wide profiling of chromatin 

accessibility. One major advantage of ATAC-seq over other methods profiling chromatin 

accessibility is that it has a rapid and simple protocol containing few experimental steps. 

Another major benefit is the high sensitivity, enabling analysis of as few as 500-5000 

cells (Buenrostro et al., 2013). This makes ATAC-seq especially suitable for situations 

where the starting number of input cells is low, such as cell populations sorted by 

fluorescence-activated cell sorting or its derivative FANS (Shashikant and Ettensohn, 

2019).  
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ATAC-seq data needs to undergo thorough and sequential analysis where a variety of 

analytical tools are used. The initial steps typically include quality control and trimming 

of raw reads, mapping reads to the reference genome, followed by post-alignment 

processing and quality control (Yan et al., 2020). Then, peak calling is performed to 

identify areas in the genome that have been enriched with aligned reads and thus signify 

open and accessible chromatin. Fullard et al. used the peak calling algorithm model-based 

Analysis of ChIP-seq (MACS, v2.1) to generate ATAC-seq peaks representing open 

chromatin regions (OCRs). We used the chromosomal coordinates of these ATAC-seq 

peaks in our analyses.  

 

PD is a neurodegenerative disorder with intra-neuronal protein inclusions reported in 

multiple regions of the brain. This guided our choice of tissue and cell type, leading us to 

focus the analysis on transcription factor binding in brain neurons. Targeted isolation of 

neurons from the non-neuronal cell population is a major strength of the dataset we 

analyzed. Another strength is the comprehensive coverage of the brain, which allowed for 

comparison of open chromatin in neurons across different cortical and subcortical 

regions. At the time of our analysis, this was to our knowledge the largest dataset of open 

chromatin in human brain with cell type-specificity. However, this dataset does not 

include substantia nigra, which naturally would have been an interesting region to study 

in the context of PD. We were not able to find other available data from ATAC-seq or 

comparable assays detecting accessible chromatin in human substantia nigra neurons.  

 

Cellular resolution of genomic annotations is important since cellular heterogeneity may 

be masking signals. The brain is a tissue of immense complexity, which contains a 

heterogeneous mixture of cell types exhibiting different regulatory features (Darmanis et 

al., 2015, Girdhar et al., 2018, Fullard et al., 2018, Rizzardi et al., 2019). In analysis of 

bulk brain tissue, cell type-specific regulatory elements in neurons or glial subtypes may 

be diluted due to measurement of an average signal across a heterogeneous population of 

cells (Reynolds et al., 2019). Although Fullard et al. increased the cellular resolution by 

separating neurons from non-neurons, these components still represent broad categories 

of cell types. The non-neuronal cell population consists of astrocytes, oligodendrocytes, 

microglia, and epithelial cells. The lack of distinction between different glial subtypes 

contributed to our choice of not including this cellular fraction in the analysis. However, 

also the neuronal cellular component displays some degree of heterogeneity. There is a 
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diverse set of neuronal cell types in the human brain with distinct patterns of connectivity, 

synaptic properties and expression profiles (Ecker et al., 2017, Lake et al., 2016).  

 

4.4.2 De novo motif discovery  

Transcription factors targeting binding motifs that are enriched in a set of regulatory 

regions in a cell may be regarded as candidate transcriptional regulators of that cell. De 

novo motif discovery methods aim at identifying over-represented motifs in a given set of 

sequences. This is however a difficult computational task and motif-finding algorithms 

have suffered from a high rate of false-positives (Lihu and Holban, 2015). Thus, to 

identify likely functional transcription factors in our cell type of interest, we employed 

two different motif discovery tools and performed the analyses in parallel. Analyses were 

performed with the softwares HOMER and MEME-ChIP that are both widely used and 

can handle large-scale datasets (Heinz et al., 2010, Ma et al., 2014). HOMER identifies 

motifs that are enriched in the target sequences relative to GC matched background 

sequences. In specifying the length of motifs to be found, we used the default setting of 8, 

10 and 12 base pairs long motifs. MEME-ChIP is an ensemble tool that incorporates two 

different algorithms for motif discovery, multiple EM for motif elicitation (MEME) and 

discriminative regular expression motif elicitation (DREME). MEME is able to find 

relatively long motifs, but is highly labor intensive and can only analyze a very small 

fraction of the sequences in our dataset. De novo motifs identified by the MEME 

algorithm were therefore regarded as less relevant in our analysis of OCRs. DREME 

discovers short motifs up to 8 base pairs, is more computationally efficient and able to 

analyze all sequences in our dataset. HOMER identified 22 enriched motifs that were all 

included in further analyses. MEME-ChIP identified a much larger number of enriched 

motifs and further analyses were limited to the 25 most significant motifs, which were all 

identified by the DREME algorithm. Both HOMER and MEME-ChIP match de novo 

motifs to databases containing known motifs to identify candidate transcription factors 

(Figure 4).   
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Figure 4. Comparison of a de novo motif identified by HOMER to the highly similar 

known motif of the transcription factor Olig2. The motifs are shown as sequence logos 

which are graphical representations of position weight matrices. 

 

Motif sites were identified to create motif-containing OCR subsets that were tested for 

enrichment of PD risk variants. As part of the MEME-ChIP tool set, Find Individual 

Motif Occurrences (FIMO) was used to scan the sequence for motif sites. However, 

FIMO found no significant matches for the shortest motifs of 6 base pairs when scanning 

the large input sequence. This is because a high number of perfect matches to short motifs 

will occur by chance in large sequence sets. Matches were found for the 7 and 8 base 

pairs long de novo motifs and OCR subsets created. Based on the assumption that the 

longer known motifs matched to the short de novo motifs have a higher information 

content resulting in more accurate motif occurrences, motif-containing OCR subsets were 

also made that contained the best matched known motifs.  

 

We consider it a strength of our study that two different motif discovery tools were 

included in the analyses. The analyses were performed in parallel and both showed an 

enrichment of PD risk variants in OCRs targeted by bHLH transcription factors, thus 

increasing the robustness of this finding. Two different methods of de novo motif 

discovery identified similar de novo motifs linked to bHLH transcription factors. Also, 

different methods were used to identify motif sites in the sequences. Enrichment analysis 
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showed a significant overlap between PD risk variants and OCRs harboring the de novo 

motif identified by HOMER matched to bHLH transcription factors. However, no 

enrichment was found in OCRs containing the de novo motif identified by MEME-ChIP 

matched to bHLH transcription factors. We believe this may be due to the difference in 

length between the de novo motif discovered by HOMER (12 base pairs) and MEME-

ChIP (8 base pairs), with likely less accurate motif occurrences identified for the shorter 

motif. Instead, a significant enrichment of PD risk variants was found in the OCRs 

harboring the known motif of the bHLH transcription factor NEUROD1 found by 

MEME-ChIP to be the best match to the de novo motif.  

 

We were not able to pinpoint one specific transcription factor, but instead identified a 

family of transcription factors targeting the enriched OCR subset. Finding the likely 

binding candidates for de novo motifs is complicated by factors such as the 

incompleteness of the transcription factor motif catalogue, complex binding patterns and 

widespread sharing of similar motifs by multiple transcription factors (Deplancke et al., 

2016, Lambert et al., 2018). A de novo motif may have no good matches, a single good 

match that is highly likely to be the targeting transcription factor, or there may be many 

transcription factors with high similarity score to the de novo motif. The latter is the case 

for the de novo motif targeted by bHLH transcription factors in our study.  

 

We analyzed PD risk variants in OCRs containing the given motif, and not only in the 

short recognition motif itself (Figure 5). This complies with the understanding that only a 

small fraction of variability in transcription factor-DNA binding events appears to be 

caused by variants within the transcription factor recognition motif. By analyzing the 

open chromatin region surrounding the transcription factor motif, we were able to include 

proximal variants that may have an effect on binding through mechanisms such as 

cooperative or collaborative transcription factor-DNA binding (Deplancke et al., 2016). 

Transcription factor-DNA binding may however also be affected by more distally located 

variants that we do not capture in our analysis.   
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Figure 5. PD risk variants were analyzed in motif-containing open chromatin regions. 

TF; transcription factor. 

 

 

4.5 Statistical methods  

4.5.1 Statistical hypothesis testing 

In statistical hypothesis testing, a p-value is used as a parameter of significance to 

determine the certainty of an observation. The p-value is the probability of rejecting the 

null hypothesis when it is true. Incorrect rejection of a true null hypothesis is termed Type 

I error. Another possible type of error is the failure to reject a null hypothesis when it is 

false, which is referred to as Type II error. A null hypothesis is a general statement of 

default position that in the context of a genetic association study could be that there is no 

association between the tested genetic marker and trait of interest. If the p-value is lower 

than the predefined significance level, then the null hypothesis is rejected. It is the 

standard in research to accept a 5% chance of obtaining a Type I error when conducting a 

statistical test, which corresponds to a significance level of 0.05. Statistical power is equal 

to one minus the probability of making a Type II error. This is the probability of rejecting 

a null hypothesis while the alternative hypothesis is true. In planning of studies, it is 

important to ensure that the power is sufficient to obtain meaningful results. A statistical 

power of 80% is a widely used threshold of adequate power to avoid false negative results 

and to determine cost-effective sample sizes (Hong and Park, 2012).  

 

In Paper 2, power calculations were performed with the function pwr.f2.test in the R 

package pwr. The estimated effect size was given as a proportion of variance explained 

that was based on findings from previous studies of genetic determinants of AAO in PD. 
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We found that we had a high power (99%) in the primary analysis of the single DNM3 

variant and a moderate power (89%) in analysis of multiple variants in the DNM3 locus. 

It may be argued that estimated effect sizes in power calculations should be lower than 

previous discoveries where the magnitude of effect is often inflated due to a phenomenon 

called “winner’s curse” (Button et al., 2013). Lowering the estimated effect size would 

consequently decrease the calculated power. We did not perform any power analyses in 

Paper 1. This would however have been beneficial, especially in interpretation of the 

negative findings.  

 

4.5.2 Association analysis  

Association analyses in Paper 1 and Paper 2 were performed with the statistical software 

PLINK 1.9 (Chang et al., 2015). In Paper 1, we performed a genetic association case-

control analysis, testing the correlation between disease status and selected genetic 

variants. We used the basic chi-square allelic test to assess allele frequency differences 

between cases and controls (Clarke et al., 2011). The strength of the association was 

measured by the OR, comparing the odds of disease with the minor allele a to the odds of 

disease with the major allele A. 

 

In Paper 2, we studied AAO as a quantitative trait and used linear regression to test for 

association with DNM3 variants. The effect measure was given as a Beta estimate, which 

is the degree of change in the outcome variable for every unit of change in the predictor 

variable. As an alternative binary analysis, AAO was dichotomized by the median onset 

calculated across all datasets and logistic regression was used as the statistical test for 

association. Regression analysis allows for inclusion of additional covariates to correct 

for potential confounding factors. Confounding is the distortion of an association between 

the tested variable (independent variable) and an outcome (dependent variable) that 

occurs when the study groups differ in regard to other factors that influence the outcome. 

In genetic association studies, population stratification should be an important 

consideration since it may confound the association between a genetic variant and the 

trait of interest (Hellwege et al., 2017). A widely used method to address population 

stratification in genetic association studies is principal component analysis (Price et al., 

2006). With this method, genome-wide level genotype data is used to estimate principal 

components representing features of genomic ancestry that capture population 
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stratification (Zhao et al., 2018). Principal components may be used as covariables in 

association analyses to account for population stratification. In Paper 2, we utilized 

genome-wide datasets that allowed for calculation of principal components that we 

included as covariables in the regression analyses.  

 

In candidate gene studies however, accounting for population stratification is more 

challenging due to the lack of genome-wide coverage of genetic factors from which 

ancestry may be inferred. Thus, to minimize the risk of population stratification, care 

should be taken in selection of the study population to prevent or limit the admixture of 

different ancestries. In Paper 1, analysis of genotyped GBA variants and GWAS signals 

was restricted to the Scandinavian population. Although the Scandinavian population is 

considered to be relatively homogenous compared to other study populations, genetic 

heterogeneity does exist between and within Scandinavian countries (Tian et al., 2008). 

While the number of cases and controls included from Oslo and western Norway was 

quite even, this was not the case for the Swedish participants. We cannot exclude the 

possibility that population stratification may have an effect on the case-control 

association analysis, however this is unlikely to affect LD calculations. LD between the 

four genotyped variants in Paper I was calculated and visualized with the Haploview 

software (Barrett et al., 2005). Measures of LD was provided both as the square of the 

correlation coefficient (r2) and the normalized coefficient of linkage disequilibrium (D’).  

r2 = 1 means that the loci are in perfect LD which happens when the loci have not been 

separated by recombination and also have the same allele frequencies.    

 

Another approach to testing statistical hypotheses is permutation. In a permutation test, 

the observed test statistic is compared to the distribution of values you get when the 

observed data is resampled a number of times, called the null distribution. In Paper 3, we 

used permutation-based approaches when testing if there was a significant enrichment of 

PD risk variants in functional annotations.  

 

4.5.3 Enrichment analysis 

Functional enrichment analysis, also called colocalization analysis, may be used to test 

whether there is a statistically significant overlap between disease-associated variants and 

sets of annotated genomic regions, pinpointing genomic features (enhancers, promoters, 
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exons, transcription factor binding sites) and cell types likely relevant to disease 

pathogenesis. The biological motivation behind enrichment analysis comes from the 

understanding that physical overlap or proximity of functional annotations implies some 

biological constraints or mechanistic relationship (Dozmorov, 2017). 

 

Available enrichment tests use different concepts and null models to test the significance 

of overlap, and importantly the choice of null model is known to affect the subsequent 

conclusion (Simovski et al., 2018, Kanduri et al., 2019). A null model should 

appropriately preserve the distributional properties and dependency structure of the tested 

data (Kanduri et al., 2019). Genomic features do not occur uniformly across the genomic 

sequence, but instead clump in certain parts of the genome (e.g. close to gene rich 

regions). Failing to account for the non-uniform distribution of genetic variants and other 

genomic or epigenomic features may result in a higher rate of false-positives (Kanduri et 

al., 2019, Trynka et al., 2015). This challenge may be addressed by assessing the 

consistency of findings by tests employing different null models and parameter choices 

(Simovski et al., 2018, De et al., 2014).  

 

We used the two methods GoShifter and GREGOR to analyze the overlap between PD 

GWAS signals and selected genomic annotations. We also tested for enrichment of 

GWAS signals from two non-brain related traits that were included as negative controls. 

GoShifter stringently controls for local genomic structure by locally shifting sites of the 

tested features within each risk locus to generate a null distribution of annotations 

overlapping associated variants by chance (Trynka et al., 2015). The second method 

applied, GREGOR, uses a snp-matching-based method to test for enrichment (Schmidt et 

al., 2015). The number of trait-associated signals where an index variant or one of its LD 

proxies overlaps a regulatory annotation is calculated, then the probability of the observed 

overlap of risk variants is estimated relative to expectation using a set of matched control 

variants. Control variants match the index variants for number of variants in LD, minor 

allele frequency and distance to nearest gene. Especially matching on the number of 

variants in LD has been found to be a critical step to avoid inflation of observed 

enrichment values (Trynka et al., 2015).  

 

In both tests, variants in high LD with the index variant are included in the analysis, 

which is important since the index variant is often not the causal variant. We used a LD 
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threshold of r2 > 0.8 which is a frequently used cutoff when attempting to capture the 

causal variants within an association signal. However, we cannot exclude the possibility 

that the index variant has a lower degree of linkage to a causal variant. 

 

In our study we tested genome-wide significant PD signals, although there is evidence 

that genetic variants below the level of genome-wide significance also contribute to the 

genetic heritability (Escott-Price et al., 2015). New methods have emerged, such as 

stratified LD score regression, which assesses whether the overall heritability of a trait is 

enriched within specified annotations (Finucane et al., 2015). Stratified LD score 

regression and similar methods use information from all common variants and thus 

require genome-wide association summary statistics. GWAS summary statistics are 

however often not made publicly available, which was the case for recent large-scale PD 

GWASs at the time of our analysis. There is a move towards increased sharing of data 

that may change this. Parts of the summary statistics from the most recent PD GWAS 

meta-analysis is currently publicly available, while it is possible to apply for access to the 

remaining data under an agreement that protects the privacy of participants (Nalls et al., 

2019).  

 

Statistically significant colocalization between two functional genomic annotations may 

be driven by colocalization with another genomic annotation that was not included in the 

analysis. This limits the inference of causality and has to be taken into account when 

interpreting results from enrichment analysis. We cannot exclude the possibility that an 

observed enrichment reported in our study may be due to unaccounted colocalization with 

other annotations. Such an effect of potential confounding features has been addressed by 

stratified LD score regression where a baseline model consisting of a range of main 

annotations that are not specific to any cell type is included in the analysis (Finucane et 

al., 2015).  

 

4.5.4 Meta-analysis 

In Paper 2, we performed a meta-analysis of the seven included studies using the 

GWAMA (Genome-Wide Association Meta-Analysis) software (Magi and Morris, 2010). 

Meta-analysis is a statistical method for combining results from different studies by 

weighting the data according to the amount of information in each study (Lee, 2015). 
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Combining results from different studies may increase the statistical power and provide a 

more precise estimate of the effect size. We employed the inverse variance method where 

the weight given to each study is the inverse of the variance of the effect estimate (one 

over the square of its standard error). Thus, larger studies are given more weight than 

smaller studies that have larger standard errors.  

 

Assessment of the inter-study heterogeneity is an important step of meta-analysis. We 

used Cochran’s Q test and Higgins’s I statistic to test for inter-study heterogeneity, 

finding that the heterogeneity was low for both the primary tested variant (rs2421947) as 

well as for the vast majority of the tested common variants in the DNM3 locus. While 

Cochran's Q test is used to determine whether significant heterogeneity in effect sizes 

between the primary studies exists, Higgins’s I statistic quantifies the effect of 

heterogeneity (Lee, 2015, Lunetta, 2013). We visualized the meta-analysis results with a 

forest plot, which graphically displays the results from each of the included studies along 

with the overall result from the meta-analysis.  

 

4.5.5 Multiple testing correction 

When performing multiple tests, the likelihood of making a Type I error increases. 

Genetic association studies usually test multiple genetic markers and controlling for 

multiple testing is important to prevent a high rate of false positive results. A widely 

applied approach to control for multiple comparisons is Bonferroni correction. This 

method generates a strict significance cutoff by dividing the original significance level by 

the number of performed tests. The Bonferroni correction assumes that the individual 

tests are independent of each other, which is often not the case. The inter-dependence 

between genetic variants needs to be taken into account when determining the 

significance level. In GWASs, based on an estimated testing burden of one million 

common independent variants genome-wide, a significance p-value threshold of 5 x 10-8 

(0.05/10-6) has become the standard (Pe'er et al., 2008).  

 

In Paper 1, we tested for association between four variants in the GBA locus and PD, 

reporting p-values < 0.05 as significant. According to principles of Bayesian statistics, the 

interpretation of test statistics is largely dependent on assumptions about the prior 

probabilities of a research hypothesis being true. Our choice of significance level was 
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based on a prior probability of true association since the two GWAS signals and two GBA 

variants that we tested have previous reports of an association with PD. In addition, the 

existence of high LD between some of the variants was also taken into consideration.  

 

In Paper 2, we analyzed all common variation within DNM3 as well as 100kb upstream 

and downstream of the gene. To estimate the degree of multiple testing, we identified the 

number of independent variants using a cutoff of LD > r2=0.5 that we adjusted for by 

Bonferroni correction. This method takes the LD structure into account, however the 

threshold of LD is arbitrary. It could be argued that the threshold should be either higher 

or lower, which would consequentially alter the number of tests to correct for. This 

underscores the importance of defining the significance level prior to data analysis. In 

Paper 3, we adjust for the number of tested annotations by Bonferroni correction. There is 

a high degree of overlap between the different annotations, making it a very stringent 

estimate of significance level that may potentially lead to false negative results. Although 

most studies apply this strict approach, methods that calculate the number of independent 

annotations may be implemented to improve multiple testing correction (Iotchkova et al., 

2019).  
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5. Ethical considerations 
 

Genetic studies of Parkinson’s disease at Oslo University Hospital was approved by the 

Regional Committees for Medical and Health Research Ethics-South East Norway (REC 

South East Norway). This approval covers the study performed in Paper 1 and Paper 2.  

Sample and data collection at other study sites were approved by local ethics committees. 

All participants gave written, informed consent. The consent form used at Oslo 

University Hospital informs participants that the genetic analyses are performed for 

research purposes only, and that they will not be individually informed regarding the 

results of these analyses. The voluntariness of participation and the right to withdraw 

from the study at any time point is clearly stated. Patient identity and personal data are 

stored on secure servers dedicated to research databases at Oslo University Hospital. 

Anonymized IDs were used in all sample handling, experiments and analyses. The study 

performed in Paper 3 does not require approval from an ethics committee since we 

analyze existing publicly available data.  

 

Analysis of shared genomic and epigenomic data is central to some of the studies 

included in this thesis. ATAC-seq data analyzed in Paper 3 was publicly available in an 

open database. The individual-level genotype data analyzed in Paper 2 was made 

available through controlled-access sharing via dbGaP and PPMI. It is widely accepted 

that data sharing promotes scientific progress, maximizing the utility of generated 

datasets and reducing the burden to participants. Accessible data makes it possible for 

researchers to pool data to increase the power of studies and link different types of data, 

potentially leading to enhanced understanding of disease biology. For genetic data, there 

is a risk of reidentification that raises ethical and legal issues related to the privacy of 

research participants. The risk varies dependent on factors such as the dimensionality of 

the data, how frequent the disease is and the appending metadata. Thus, ethical data 

sharing requires consideration of both the value of the scientific data, and the privacy 

costs of participants (Byrd et al., 2020).  
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6. General discussion 
 

Investigations into the genetic basis of PD could be essential to the development of 

effective therapeutic strategies (Blauwendraat et al., 2020a). Identification of genetic 

factors that influence disease risk, onset and progression may provide insight into 

molecular mechanisms initiating and driving PD. Paper 1 and Paper 2 join in the research 

of identifying and refining genetic risk. While in Paper 3, the aim was to use genetics to 

enhance our understanding of pathobiology. A major goal in disease-genetics is to 

translate genetic knowledge into drug targets for assessment in therapeutic trials. 

Furthermore, genetics may also play an important role in trial recruitment and later on 

clinical practice, since it is likely that future therapies will target genetic subgroups of PD 

(Figure 6).  

 

 

 

 

Figure 6. Workflow for drug discovery driven by genetics. The figure is inspired by 

(Blauwendraat et al., 2020a) and (Singleton and Hardy, 2016). 
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6.1 The GBA locus and Parkinson’s disease 

6.1.1 Low-frequency coding GBA variants in Parkinson’s disease 

In Paper 1, we studied variants in the GBA gene and how they relate to an important PD 

GWAS signal. We found that the GBA variant E326K is significantly more frequent in 

PD patients compared to controls. This association has been reported by previous studies, 

although there have been some conflicting results (Sidransky et al., 2009, Lesage et al., 

2011, Duran et al., 2013, Ran et al., 2016). In order to evaluate the effect of E326K on PD 

risk, a meta-analysis has been performed that found a significant association between 

E326K and PD risk in the Caucasians, Asians and the total population (Huang et al., 

2018). They reported an OR of 1.82 in Caucasians, which is comparable to the OR we 

found at 1.62. Another meta-analysis studying a larger number of different GBA variants, 

found that E326K increases the risk of PD in the non-Ashkenazi Jewish population with 

an OR of 1.98 (Zhang et al., 2018). While it has become increasingly clear that E326K is 

a risk factor for PD, the pathological significance of T369M is considered less certain. 

However, in later years, meta-analyses and a large-scale case-control study have reported 

a significant association between T369M and PD risk (Zhang et al., 2018, Mallett et al., 

2016, Blauwendraat et al., 2018). Studies analyzing both E326K and T369M find that the 

OR of T369M is a little lower compared to that of E326K (Blauwendraat et al., 2018, 

Zhang et al., 2018). In our analysis of T369M, we did not find a significant association 

with PD risk. This may be due to our study being underpowered to identify associations 

with weak effect sizes.  

 

The discovery that E326K, and potentially also T369M, increase the risk of PD has been 

somewhat surprising since these two low-frequency GBA variants do not cause GD in the 

homozygous state. Both E326K and T369M are however associated with reduced GCase 

activity in the heterozygous state (Alcalay et al., 2015). Although the reduction of 

enzyme activity is not large enough to cause GD, it may still contribute to PD risk in 

combination with other genetic and biochemical alterations. 
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6.1.2 Coding variation in GBA underlie a Parkinson’s disease GWAS 

signal 

In our study of the GBA gene, an objective was to assess to what degree coding GBA 

variants are linked to the GBA-SYT11 association signals reported for PD. An early PD 

GWAS reported an association signal with the top hit variant located within an intron of 

the SYT11 gene on chromosome 1q22 (Nalls et al., 2011). Later, a meta-analysis of 

several GWASs included some GBA variants on the genotyping array used in replication 

analysis and found a significant association between E326K and PD (Pankratz et al., 

2012). GBA is located about 650 kb from SYT11, within the same block of LD referred to 

as the GBA-SYT11 locus. The largest and most recent meta-analysis of PD GWASs at the 

time of our investigation, reported two independent associations within the GBA-SYT11 

locus (Nalls et al., 2014). Although these association signals were located in an intergenic 

region hundreds of kilobases away from SYT11, they still kept the gene in the naming of 

the locus (GBA-SYT11). Furthermore, the relationship between the reported signals and 

coding GBA variants was not explored. We hypothesized that coding GBA variants 

underlie one or both of the association signals at the GBA-SYT11 locus, which we refer to 

as the primary and secondary association signal. And interestingly, we did find that 

E326K is in very high LD (r2 0.95) with the primary association signal at the GBA-SYT11 

locus. This result emphasizes E326K as the causal allele and consequently GBA as the 

causal gene behind this GWAS signal. We did however not find any evidence of the 

secondary association signal being related to any of the tested GBA variants.  

 

Following our study, the relationship between GBA variants and the GBA-SYT11 GWAS 

signals has been analyzed in a larger number of PD patients and controls (Blauwendraat 

et al., 2018). In line with our findings, their results are consistent with E326K being the 

effector allele underlying the primary association signal at the GBA-SYT11 locus. They 

also explored the secondary association signal at the GBA-SYT11 locus, finding that it 

remained significant after adjusting for E326K, T369M and N370S. This means that none 

of the tested GBA variants explains the secondary association signal at this locus and that 

it has yet to be untangled.  

 

Identification of the casual genes behind GWAS signals is important to guide functional 

studies into disease related molecular mechanisms. SYT11 has been referred to as a PD-
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related gene due to the initial association with an intronic variant in this gene and the 

naming of this GWAS locus. The protein encoded by SYT11, synaptotagmin 11, is 

involved in regulation of endocytosis and vesicle recycling processes in neurons (Wang et 

al., 2016). Our results may be considered to weaken the genetic evidence linking SYT11 

to PD, but do not exclude the possibility that SYT11 plays a role in PD pathogenesis. 

Interestingly, a recent study performing targeted sequencing of PD loci genes identified 

an association between the burden of rare variants in SYT11 and PD. The association was 

mainly driven by a rare variant independent of GBA variants, suggesting that a genetic 

link between SYT11 and PD risk may exist (Rudakou et al., 2021).  

 

 

6.2 DNM3 and age at onset of Parkinson’s disease 

In Paper 2, we investigated whether genetic variability reported to modify AAO of 

LRRK2-associated PD, has an effect on AAO in idiopathic PD. We analyzed DNM3 

rs2421947 and all other common variation in the DNM3 locus in 5918 patients with 

idiopathic PD, finding no evidence of an association with AAO of disease.  

 

Our study was the first to specifically assess the effect of DNM3 variants on AAO of 

idiopathic PD based on the association reported in LRRK2 G2019S carriers by Trinh et al. 

(Trinh et al., 2016). LRRK2 is a gene with pleomorphic effects in PD. G2019S and other 

LRRK2 mutations cause an autosomal dominant form of PD, while GWASs have shown 

consistent evidence that also common variants at this locus modulate PD risk. Since 

LRRK2 is part of the genetic background for idiopathic PD, genetic modifiers of LRRK2-

associated PD could also exert an effect in this much larger group of PD patients. 

However, as our results show, a potential modifying effect of DNM3 on AAO cannot be 

generalized to idiopathic PD. The effect of DNM3 rs2421947 on AAO in idiopathic PD 

has been assessed by an additional study, and consistent with our results, they found no 

significant association (Brown et al., 2021).  

 

The largest and most recent GWAS of PD AAO to date identified two genome-wide 

significantly associated loci (SNCA and TMEM175), as well as some sub-significant loci 

(GBA, SCARB2, BAG3 and MCCC1), of which all have previously been reported to 

influence PD risk (Blauwendraat et al., 2019). While known PD risk loci have been 
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shown to be associated with AAO, the discovery of novel genetic modifiers of AAO in 

PD has proven difficult. Genetic modifiers of AAO could be restricted to sub-groups of 

patients that are carriers of specific mutations or susceptibility variants. DNM3 may be a 

specific modifier of LRRK2-parkinsonism, however this finding has not yet been 

replicated. No significant association was found between DNM3 rs2421947 and AAO of 

PD in LRRK2 G2019S carriers in the Spanish population, or in Chinese individuals 

carrying Asian LRRK2 risk alleles (Fernandez-Santiago et al., 2018, Foo et al., 2019, 

Yang et al., 2019). Furthermore, a recent analysis of DNM3 rs2421947 in a multi-ethnic 

cohort of LRRK2 G2019S carriers did not replicate the association between DNM3 and 

PD AAO (Brown et al., 2021). The effect was analyzed in a new cohort of LRRK2 

G2019S heterozygotes and these data were meta-analyzed with previously published data. 

There was considerable inter-study heterogeneity that according to the authors could 

indicate ethnic or population-specific effects of DNM3 (Brown et al., 2021). Still, the lack 

of replication warrants careful interpretation of the reported association between DNM3 

and AAO in LRRK2 G2019S carriers.  

 

6.3 Missing heritability 

While GWASs have certainly expanded our understanding of the genetic basis of PD, 

many more risk variants remain to be discovered. The heritable component of PD due to 

common genetic variability is estimated to be around 22% and identified GWAS 

association signals to date represent only a proportion (16-36%) of this heritability (Nalls 

et al., 2019). Several explanations have been presented for the “missing heritability”, of 

which one is the insufficient power of current GWASs. Increasing the sample size of 

GWASs is expected to lead to identification of new susceptibility loci that are less 

common and with smaller effect sizes. Moreover, since the majority of genetic studies 

have been done in individuals with European ancestry, performing GWASs in more 

diverse populations may lead to the discovery of additional population specific risk 

factors (Blauwendraat et al., 2020a).  

 

Another explanation to the “missing heritability” is the contribution of rare variants that 

are not well detected by current GWAS methodologies. Targeted resequencing of known 

GWAS loci may identify rare risk variants that are either independent of, or underlie the 

GWAS signal (Singleton and Hardy, 2016). Additional rare risk loci may be discovered 
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by whole exome sequencing and whole genome sequencing, of which the availability is 

increasing due to falling costs. Other potential contributors to PD heritability are epistatic 

interactions between genetic variants, meaning that they act in a non-additive fashion, as 

well as gene-environment interactions (Bandres-Ciga et al., 2020a).  

 

A common and reasonable criticism towards further large-scale genetic studies of PD is 

that resources instead should be used to shed light on pathobiological mechanisms 

underlying the already identified risk signals. An argument in support of continued 

genetic work is that expanding the list of genetic risk loci will improve our chances at 

biological insight through integration with large-scale functional data (Singleton and 

Hardy, 2016)  

 

6.4 Gaining biological insight from common risk 

variants  

PD risk loci have been tested for association with tissue, cell types and biological 

pathways (Nalls et al., 2019, Chang et al., 2017, Bandres-Ciga et al., 2020b). Efforts at 

linking PD genetic risk to specific transcription factor networks have however been 

scarce. In Paper 3, we coupled neuronal ATAC-seq data with transcription factor motif 

analysis in an effort to identify transcriptional networks contributing to PD risk 

mechanisms. 

 

6.4.1 Cell types implicated in Parkinson’s disease 

In our study, we found that PD risk signals significantly overlap with sites of open 

chromatin in neurons of the superior temporal cortex. Open chromatin sites in neurons of 

several other cortical regions approached the significance level, suggesting that a broader 

range of cortical regions are implicated in PD risk. The relevance of brain neurons in PD 

is highlighted by the most recent PD GWAS where nominated PD GWAS genes were 

integrated with expression data from 53 tissues. They found a significant enrichment for 

expression in 13 tissues, of which all were brain derived. To further explore the 

enrichment in brain tissues, PD GWAS genes were tested in a large number of brain cell 

types from mouse with results showing enrichment for expression only in neuronal cell 

types (Nalls et al., 2019). Furthermore, a recent single-nuclei transcriptomic atlas from 



 

    54 

cortex and substantia nigra revealed significant associations between PD genetic risk and 

neurons within both these brain regions (Agarwal et al., 2020). Interestingly, the same 

study also found a significant association between PD genetic risk and oligodendrocytes, 

a link that has previously been proposed based on analysis of mouse transcriptomic data 

(Bryois et al., 2020). Other non-neuronal cell types have been reported to be associated 

with PD risk, including immune cells, mesendoderm, liver- and fat cells (Coetzee et al., 

2016, Gagliano et al., 2016). Further studies are needed to confirm, as well as understand, 

the potential role of glial cells and non-brain-related cell types in PD pathogenesis.  

 

6.4.2 A potential role for bHLH transcription factors in Parkinson’s 

disease risk mechanisms 

In our analysis of putative transcription factor binding sites, we found that PD risk signals 

concentrate at sites of open chromatin targeted by members of the bHLH transcription 

factor family. bHLH transcription factors play essential developmental roles as regulators 

of neural cell fate specification and differentiation (Dennis et al., 2019). One could argue 

that transcription factors that are expressed and function in the developing nervous 

system are more likely to be involved in neurodevelopmental diseases rather that 

neurodegenerative disorders with an adult onset. However, a developmental component 

to PD pathogenesis is plausible and may be due to protection against future 

neurodegenerative effects. Genetic and epigenetic factors are suggested to affect PD risk 

by influencing the number of nigral dopaminergic neurons the individual is born with 

(von Linstow et al., 2020). Genetic risk variants with functional consequences during 

neurodevelopment may represent the first hit in a multi-hit hypothesis where a second hit, 

or potentially additional hits, are required for disease to develop (Sulzer, 2007). 

Interestingly, the bHLH transcription factor Srebf1 has been identified as a key regulator 

of midbrain dopaminergic neurogenesis (Toledo et al., 2020). There are also some bHLH 

transcription factors that function in adult neurons, such as TCF4 (Jung et al., 2018). 

Common variants at the TCF4 locus are associated with schizophrenia risk 

(Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014). 

 

6.4.3 Identification of transcription factors implicated in disease 

Cell type-specific transcription factor binding annotations have been shown to outperform 

cell type-specific chromatin marks in calculations of heritability enrichment in a range of 
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complex traits, confirming the importance of transcription factor binding in disease (van 

de Geijn et al., 2020). Computational methods are being developed in an attempt to 

improve the accuracy of transcription factor binding prediction based on chromatin 

accessibility and transcription factor binding motifs (Li et al., 2019a, Keilwagen et al., 

2019). Transcription factor binding sites may also be inferred from investigation of 

chromatin accessibility patterns by computational footprinting. Protein bound DNA is 

more resistant to cleavage by enzymes, leaving short protected stretches of DNA called 

footprints that may be detected as sudden drops of coverage within peak regions of high 

coverage. Footprinting algorithms have been widely used in DNase-seq based studies, but 

is less explored and has a reduced performance in analysis of ATAC-seq (Karabacak 

Calviello et al., 2019). New footprinting methods tailored to the ATAC-seq protocol are 

emerging (Li et al., 2019b).  

 

Importantly, transcription factor binding events may be nonfunctional interactions, 

meaning that there is no corresponding change in gene expression. Transcription factor 

activities have been predicted based on the expression of their target genes, however 

identification of such target genes has proven challenging (Garcia-Alonso et al., 2019). 

Interestingly, emerging cell type-specific HiC data may be coupled with transcription 

factor binding annotations, providing a physical basis for interactions between 

transcription factor binding sites at regulatory elements and predicted target genes. Target 

gene prioritization performed a priori of eQTL testing has been suggested as a strategy to 

increase detection sensitivity, revealing more causal associations between variants 

affecting transcription factor binding and gene expression (Mitchelmore et al., 2020).  

 

Transcriptional data from individuals with the disease of interest and non-diseased 

controls may be used to identify differentially expressed genes between cases and 

controls. In a study of psychiatric diseases and Alzheimer’s disease, post-mortem 

prefrontal cortex gene expression profiles were analyzed in cases and controls (Pearl et 

al., 2019). Transcription factors with predicted target genes that were over-represented 

among the differentially expressed genes were considered key regulators of the disease. 

The transcription factor POU3F2 was identified as a key regulator in both schizophrenia 

and bipolar disorder. Luciferase reporter assays were performed to study the regulatory 

impact of a genetic variant associated with schizophrenia risk that was predicted to have a 

functional effect on POU3F2 binding. They also sought to validate and further study the 
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trans-acting effect of POU3F2 by overexpressing it in primary human neural stem cells. 

The follow-up of predicted mechanistic hypotheses with in vitro functional assays, such 

as reporter assays or genome editing methods, is an important next step to validate 

findings and further explore pathological processes.  

 

6.5 The role of genetics in therapeutic development 

Genetic-, neuropathological- and clinical studies have shown that PD is a highly 

heterogeneous disorder. There may be subtypes of PD with distinct, or at least not fully 

overlapping, pathophysiology that possibly respond differently to therapeutic approaches 

(Singleton and Hardy, 2016). Thus, instead of treating PD as one single condition, 

precision medicine may be the approach that leads to long sought after therapeutic 

advances. Precision medicine aims at tailoring treatment to the individual characteristics 

of the patient, based on genotype or other biomarkers that ideally reflect disease-

associated biological processes. PD subtyping may be used in clinical trials to create 

more homogenous groups within which to study treatment effects. In the clinical setting, 

a future goal is the use of PD subtypes to assist in counseling regarding prognosis and 

choice of treatment (Marras et al., 2020).  

 

Building on the last decades’ genetic discoveries in PD, therapies targeting genetic forms 

of the disease are now being tested in clinical trials. There is an active therapeutic 

development directed against both GBA- and LRRK2-related PD. Clinical trials that target 

the GBA pathway benefit from the overlap between PD and GD, since therapeutic 

strategies may be applicable to both diseases. Successful therapeutic approaches in GD 

involve restoration of GCase activity by enzyme replacement therapy and substrate 

reduction therapy with inhibitors of the glucosylceramide synthase enzyme. However, 

while hematological and visceral symptoms of GD are effectively treated, there is no 

improvement of the neurological manifestations of the disease since approved drugs do 

not penetrate the blood-brain barrier. Novel glucosylceramide synthase inhibitors have 

been developed that show good brain penetrance, improved alpha-synuclein processing 

and behavioral outcomes in synucleinopathy mouse models (Sardi et al., 2017). Based on 

these results, a double-blinded, placebo controlled phase 2 trial has been initiated to 

assess the safety and efficacy of the glucosylceramide synthase inhibitor Venglustat in 

PD patients carrying a GBA mutation (Peterschmitt et al., 2019). 
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Another therapeutic approach under investigation is the use of small molecule 

chaperones, such as ambroxol, that has been shown to increase brain GCase activity in 

mouse models with GBA mutations (Migdalska-Richards et al., 2016). Ambroxol has 

been tested in a non-controlled trial including PD patients with and without GBA 

mutations, finding that the drug penetrated CSF, was safe and well tolerated (Mullin et 

al., 2020). The effects of ambroxol therapy on the progression of PD will need to be 

assessed in placebo-controlled clinical trials. Additional treatment strategies are tested in 

GBA-positive patients, including other small molecule chaperones and gene therapy 

(Schneider and Alcalay, 2020). In LRRK2-associated PD, observations show that 

pathogenic LRRK2 mutations increase the kinase activity. This proposed gain-of-function 

effect has emerged as a therapeutic target and several companies are pursuing LRRK2 

inhibitors (Sardi and Simuni, 2019). Potential peripheral side effects are however a 

concern, and the safety and tolerability of the drugs need further clarification.  

 

Although precision medicine clinical trials may represent great progress towards effective 

therapies, there are several challenges. One major challenge is the identification of 

reliable outcome measures to detect disease modifying effects (Sardi and Simuni, 2019). 

Another obstacle to overcome is how to successfully recruit large enough numbers of 

mutation carriers, since only a small fraction of PD patients so far has been genotyped 

(Schneider and Alcalay, 2020). Interestingly, genetically targeted therapies may 

potentially be tested and effective in larger PD populations since some pathogenic 

mechanisms, such as impaired GCase activity, appear to be implicated also in non-

mutation carriers with idiopathic PD (Gegg et al., 2012).  
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7.Future perspectives 
 

Genetic studies of PD have revealed a complex genetic architecture with risk variants 

across a spectrum of frequency and penetrance. Alterations in the GBA gene may be 

considered the most important risk factor for PD, however the majority of GBA mutation 

carriers will not develop PD. An important question is thus, why some GBA mutation 

carriers develop PD while others do not? More specifically, what additional genetic and 

environmental factors influence GBA-associated risk of PD? A recent GWAS found that 

PD in GBA carriers is influenced by variants at loci that are known to be associated more 

generally with PD risk (Blauwendraat et al., 2020b). Common genetic factors were found 

to only explain some of the partial penetrance of GBA variants in PD, thus other factors 

such as rare variants probably contribute. Genetic variants that regulate the expression of 

GBA or influence other genes in the same pathway should be considered likely candidates 

to have an impact on GBA penetrance. Hence, inclusion of e-QTLs, Hi-C and other 

epigenomic data in the analysis may serve as a strategy to overcome power issues met in 

association testing in GBA mutation carriers or other subgroups of PD patients where the 

sample size is likely to be limited (Schierding et al., 2020). Integration of functional 

genomic data as biologic filters at early stages of genetic association analysis is an 

interesting approach that may be used to prioritize variants for testing and potentially 

reveal some of the missing heritability, such as rare variants and epistatic interactions 

(Castel et al., 2018, Manduchi et al., 2018).  

 

Most genetic studies of PD have been performed in cross sectional patient collections 

where the clinical details are few. A better understanding of genetic factors influencing 

the progression of PD requires studies of more deeply phenotyped patient cohorts. Such 

detailed longitudinal clinical studies are extremely resource demanding, and this has 

obstructed the collection of large sample sizes. Overcoming this challenge depends upon 

ambitious long term international multi-center collaborations such as the PPMI (Marek et 

al., 2018). Large-scale collaborative efforts will also be key to enhance the collection of 

functional genomic data. Improved interpretation of disease-associated variants in PD and 

other brain disorders will probably depend on a growing amount of brain-relevant 

functional genomic annotations, a resource that until recently has been scarce. Increasing 

cellular resolution, as well as assaying of several molecular phenotypes within the same 
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cell type, will improve the quality of annotations (Reynolds et al., 2019). Collection of 

such high quality data from multiple brain regions and cell types will be an expensive and 

laborious endeavor. It may however be feasible through collaborative initiatives that are 

brain- and/or disease-focused, of which some are ongoing (Wang et al., 2018, Fromer et 

al., 2016) 

 

A major challenge to therapeutic development in PD lies in identification of individuals 

that will go on to be affected with the disease. It is likely that patients at early stages of 

the disease may be more responsive to neuroprotective treatments, compared to later 

stages when severe degradation of the nigrostriatal dopaminergic system has already 

occurred (Singleton and Hardy, 2016). Risk models based on genetics alone do not 

predict PD well enough to have clinical utility in the near future (Blauwendraat et al., 

2020a). Instead, risk models based on the combination of genetic risk scores with other 

types of data, such as selected prodromal features or family history of PD, have shown 

improved predictive power (Nalls et al., 2015b). Multimodal predictive models may aid 

in selection of patients with prodromal PD for clinical trials, and potentially for future 

therapeutic options. Overall, genetics is expected to play a key role in achieving the 

ultimate goal of treating the right person, with the right therapy at the right time.  
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A B S T R A C T

Objective: Coding variants in the GBA gene have been identified as the numerically most important genetic risk
factors for Parkinson's disease (PD). In addition, genome-wide association studies (GWAS) have identified as-
sociations with PD in the SYT11-GBA region on chromosome 1q22, but the relationship to GBA coding variants
have remained unclear. The aim of this study was to sequence the complete GBA gene in a clinical cohort and to
investigate whether coding variants within the GBA gene may be driving reported association signals.
Methods: We analyzed high-throughput sequencing data of all coding exons of GBA in 366 patients with PD. The
identified low-frequency coding variants were genotyped in three Scandinavian case-controls series (786 pa-
tients and 713 controls). Previously reported risk variants from two independent association signals within the
SYT11-GBA locus on chromosome 1 were also genotyped in the same samples. We performed association ana-
lyses and evaluated linkage disequilibrium (LD) between the variants.
Results: We identified six rare mutations (1.6%) and two low-frequency coding variants in GBA. E326K
(rs2230288) was significantly more frequent in PD patients compared to controls (OR 1.65, p = 0.03). There
was no clear association of T369M (rs75548401) with disease (OR 1.43, p = 0.24). Genotyping the two GWAS
hits rs35749011 and rs114138760 in the same sample set, we replicated the association between rs35749011
and disease status (OR 1.67, p = 0.03), while rs114138760 was found to have similar allele frequencies in
patients and controls. Analyses revealed that E326K and rs35749011 are in very high LD (r2 0.95).
Conclusions: Our results confirm that the GBA variant E326K is a susceptibility allele for PD. The results suggest
that E326K may fully account for the primary association signal observed at chromosome 1q22 in previous
GWAS of PD.

1. Introduction

Parkinson’s disease (PD) is the second most common neurodegen-
erative disorder and is generally estimated to affect 1% of people over
60 years of age, with increasing prevalence in higher age groups. PD is
mainly a sporadic disease, but family and candidate gene studies have
identified a number of genes related to PD pathogenesis [1]. There is
particular interest in the GBA gene and its relationship to risk for PD.
Homozygous GBA mutations cause the autosomal recessive lysosomal

storage disorder Gaucher disease. However, heterozygous GBA muta-
tions have been identified as the numerically most important genetic
risk factors for PD, and 5–10% of PD patients have been reported to
carry GBA mutations [2]. The two GBA coding variants E326K and
T369M do not cause Gaucher disease in the homozygous state and were
initially considered to be benign polymorphisms. There is now in-
creasing evidence in support of the variant E326K as a risk factor for
PD, while the association between T369M and PD has been less clear.

Genome wide association studies (GWAS) have linked a number of
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risk loci to PD susceptibility [3]. Association signals emerging from
GWAS typically involve dozens of gene variants in high linkage dis-
equilibrium (LD) encompassing several genes. This complicates the
identification of the functionally relevant variants within risk loci.

In PD, an early GWAS reported an intronic disease-associated
polymorphism within the SYT11 gene on chromosome 1q22 [4]. Later,
a meta-analysis of several GWAS found an association between a coding
variant in the GBA gene, E326K, and PD [5]. GBA is located about
650 kb from SYT11, within the same block of LD referred to as the GBA-
SYT11 locus. The largest and most recent meta-analysis of PD GWAS
reported two independent associations within the GBA-SYT11 locus,
but the relationship between the reported signals and GBA coding
variants was not examined in detail [3].

The aim of this study was to investigate the frequency of GBA mu-
tations in our population and if the two GBA variants E326K and
T369M are associated with PD in a Scandinavian case-control series. We
also wanted to assess to what degree coding GBA variants are linked to
the GBA-SYT11 association signals reported for PD.

2. Methods

2.1. Patients and controls

We included samples from three Scandinavian biobanks in our
study. From Oslo University Hospital 486 patients (mean age at onset
56 years; SD 11 years) and 473 controls (mean age at inclusion 62
years; SD 11 years) were included. 173 patients (mean age at onset 66
years; SD 9 years) and 187 controls (mean age at inclusion 66 years; SD
9 years) originated from the ParkWest study. 127 patients (mean age at
onset 68 years; SD 10 years) and 53 controls (mean age at inclusion 65
years; SD 7 years) were from the NYPUM study at Umeå University
Hospital. All PD patients were examined by a neurologist and diagnosed
according to the revised UKPDSBB criteria (Oslo and Umeå) or Gelb
criteria (ParkWest). The majority of patients were screened for the
LRRK2 G2019S mutation, in addition a large subset of patients was also
sequenced for genes causing Mendelian forms of PD (SNCA, PRKN,
PINK1, DJ-1, LRRK2, and VPS35). Patients with pathogenic mutations
in these genes were excluded from the study. Control subjects consist of
spouses of patients, outpatients in primary care and healthy volunteers,
all without neurological disease and known parkinsonism among first
degree relatives. The study was approved by the Regional Committee
for Medical Research Ethics (Oslo, Norway). Sample and data collection
at each study site was approved by local ethics committees. All parti-
cipants gave written, informed consent.

2.2. Identification of GBA coding variants

To identify all coding variants in the GBA gene we analyzed se-
quencing data from 366 patients from the Oslo patient series. All coding

exons of the GBA gene were part of a gene panel examined by targeted
deep sequencing of DNA pools as described previously [6]. Putative
variants were identified by bioinformatic analyses and individually
validated by Sanger sequencing. Pools with a read depth below 80 x at
the relevant position were excluded from analysis of that specific var-
iant. The GBA gene was amplified in distinct fragments. To avoid am-
plification of the pseudogene, we used primer sequences designed to
DNA regions exclusive to the GBA gene. PCR products were sequenced
with a selection of previously described sequencing primers (all primer
sequences are available upon request). The conventional nomenclature
for GBA alleles was used, excluding the 39-residue signal peptide. In
silico prediction of deleteriousness of the identified variants was per-
formed by the use of Combined Annotation Dependent Depletion (C-
ADD) v1.3, a method integrating and combining multiple genome an-
notations [7].

2.3. Genotyping and statistical analyses

Two identified GBA variants, E326K (rs2230288) and T369M
(rs75548401), were genotyped in all 786 cases and 713 controls. We
also genotyped the primary risk SNP (rs35749011) and a second in-
dependent risk SNP (rs114138760) located within the GBA-SYT11 locus
identified by a recent meta-analysis of PD GWAS [3]. Genotyping was
performed by KASP and TaqMan SNP genotyping assays on a Viia7
instrument (Life Technologies, Foster City, CA, USA). The genotype call
rate was above 98% for each individual variant. Statistical analyses
were performed in PLINK (https://www.cog-genomics.org/plink/1.9/).
We tested for Hardy-Weinberg equilibrium in controls, observing no
significant departure. We assessed the association between each single
variant and disease status with Chi-square test and calculated odds ratio
(OR). LD between GBA coding variants and GWAS risk SNPs were
analyzed by using Haploview 4.2 software (https://www.broadin-
stitute.org/haploview/haploview).

3. Results

We identified two low-frequency coding variants in GBA (E326K
and T369M) in the sequenced samples. Five additional coding variants
and one potential splicing variant were identified by sequencing, each
variant only occurring once. Only three of these variants have been
described in Gaucher disease patients (N370S, R463C, IVS3 + 1G>A).
The remaining three variants are to our knowledge novel and thus of
unknown significance (V457A, G377D, W357R). The novel variants all
have a CADD score above the suggested cutoff on deleteriousness.
Information on the GBA variants identified by sequencing is summar-
ized in Table 1.

Subsequent genotyping of the two low-frequency variants in all
samples revealed that E326K (rs2230288) was significantly more fre-
quent in PD patients compared to controls (OR 1.65, p = 0.03). There

Table 1
GBA variants identified by sequencing.

dbSNP ID Position Allele name AA change Function n MAF PD (n total alleles = 732) CADD/PHRED

rs80356771 1:155204987 R463C p.Arg502Cys missense 1 0,14% 29,6
– 1:155205004 V457A (a) p.Val496Ala missense 1 0,14% 22,8
– 1:155205613 G377D (a) p.Gly416Asp missense 1 0,14% 29,0
rs76763715 1:155205634 N370S p.Asn409Ser missense 1 0,15% (b) 22,7
rs75548401 1:155206037 T369M p.Thr408Met missense 13 1,78% 22,2
– 1:155206074 W357R (a) pTrp396Arg missense 1 0,14% 26,5
rs2230288 1:155206167 E326K p.Glu365Lys missense 20 3,03% (b) 17,3
– 1:155209676 IVS3 + 1G > A – splicing 1 0,14% 23,3

Position refers to chromosomal position of the variant in build 37 of the Genome Reference Consortium human genome. Reported allele names follow the common nomenclature and refer
to the processed protein, excluding the 39-residue signal peptide. Phred-like scaled C-scores are calculated using CADD. A Phred-value between 10 and 20 has been suggested as a possible
cutoff for deleteriousness (http://cadd.gs.washington.edu/info). (a) Previously undescribed mutation. (b) Due to exclusion of pools with a read depth< 80 x the total number of alleles
examined was 678 for rs76763715 and 660 for rs2230288. MAF: minor allele frequency. OR: odds ratio. AA: Amino acid. PD: Parkinsońs disease.
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was no clear association of T369M (rs75548401) with disease (OR 1.43,
p = 0.24). When genotyping the two meta-GWAS hits rs35749011 and
rs114138760 in the same sample set we observed a significant asso-
ciation of rs35749011 in PD patients (OR 1.67, p = 0.03), while
rs114138760 was found to have similar allele frequencies in patients
and controls (OR 0.91, p = 0.83) (Table 2).

The location of the SYT11 and GBA genes, as well as top hit SNPs
from previous GWAS are shown in Fig. 1 a. Analyses of the pairwise LD
between the four genotyped variants revealed that E326K and
rs35749011 are in very high LD with a r2 of 0.95 (D́ = 0.98) (Fig. 1 b
and c). Therefore, it is likely that E326K in GBA explains the association
observed at rs35749011 in previous studies. The LD between T369M
and rs114138760 was low, indicating that the secondary association
signal reported by Nalls et al. is independent of this coding variant.

4. Discussion

Our results confirm that the GBA variant E326K is a susceptibility
allele for PD. The frequency of E326K and T369M seem to be higher in
our Scandinavian case-control series compared to other European po-
pulations. Our study was nevertheless underpowered to identify the
previously reported association between PD and T369M. However, we
note that the odds ratio was similar to that reported by a recent meta-
analysis of T369M [8].

GBA mutations may cause a deficiency of the enzyme glucocer-
ebrosidase (GCase) leading to an accumulation of glucocerebroside
within lysosomes. Although E326K and T369M do not cause Gaucher
disease in the homozygous state, they have been shown to modify
GCase activity. Studies expressing GBA constructs with E326K suggest
that this polymorphism reduces enzyme activity [9]. An association
between T369M and reduced enzyme activity has also been reported in
carriers of this variant [10]. Such a modification of GCase activity may
contribute to PD risk in concert with other risk variants/small bio-
chemical alterations.

We found a low frequency of GBA mutations in our study, as only 6
of 366 (1.6%) carry known or novel rare mutations. The patients se-
quenced in our study are included from a tertiary care hospital, and a
large proportion of these patients have been treated with deep brain
stimulation (DBS). Cognitive impairment is an exclusion criterion when
evaluating PD patients for DBS. We may have selected against carriers
of GBA mutations since this group of PD patients have been reported to
have an accelerated cognitive decline [11,12]. The mutation frequency
in a previous Norwegian study is low, indicating that GBA mutations
may be rare in hospital-based studies from this population [13].

In this study GBA mutations were identified by analyses of data
from a pooled sequencing experiment. We have previously reported a
high sensitivity of this approach [6]. Furthermore, a high number of
exons were Sanger sequenced to validate both rare mutations and low

Table 2
Frequencies of SYT11-GBA locus genotypes in PD patients and controls.

dbSNP ID Position Alleles MAF PD (%) MAF Controls (%) MAF
Databases
(%)

OR (CI) p-value

rs114138760 1:154898185 C/G 0.6 0.6 1.2 0.91 (0.36−2.29) 0.83
rs35749011 1:155135036 A/G 3.4 2.1 2.2 1.67 (1.06−2.64) 0.03
rs75548401 1:155206037 A/G 1.8 1.3 1.0 1.43 (0.79−2.60) 0.24
rs2230288 1:155206167 T/C 3.5 2.1 1.2 1.65 (1.05−2.60) 0.03

Position refers to chromosomal position of the variant in build 37 of the Genome Reference Consortium human genome. Database frequencies are taken from the ExAC European (Non
Finnish) population for coding variants and the 1000genomes European population for non-coding variants. MAF: minor allele frequency. OR: odds ratio. CI: confidence interval. PD:
Parkinsońs disease

Fig. 1. SYT11-GBA locus and locations of genotyped variants with their
pairwise linkage disequilibrium patterns.
A) Location of the SYT11 and GBA genes, as well as top hit SNPs from
previous GWAS and low-frequency GBA variants on chromosome 1. IPDGC
refers to publication 4 in the reference list. rs114138760 is located further
upstream of the GBA gene and is not shown on the figure. B) Pairwise r2

between the four genotyped variants, and C) Pairwise D’ between the four
genotyped variants.
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frequency variants, without identifying any additional mutations. We
thus find it unlikely that the low frequency of GBA mutations should be
caused by low sensitivity of our sequencing method.

Mutations in GBA play an important role in PD, as GBA mutation
carriers have an increased disease risk, earlier age at onset, and faster
progression. In addition to cognitive decline, various other nonmotor
symptoms including REM sleep behavior disorder, hyposmia, and au-
tonomic dysfunction seem to be more frequent [14]. Interestingly, it has
recently been demonstrated that also the E326K variant predicts a more
rapid progression of cognitive dysfunction and motor symptoms in
patients with PD [15]. Thus, GBA variants influence the heterogeneity
in symptom progression observed in PD. This observation may have
important clinical implications, especially if GBA-specific treatment
will become available.

Our results suggest that the low-frequency GBA variant E326K may
fully account for the primary association signal observed at the chro-
mosome 1 SYT11-GBA locus in previous GWAS of PD. This is in ac-
cordance with a previous report by Pankratz et al. where E326K reaches
genome-wide significance [5]. Recent GWAS have not clearly reported
the relationship between identified association signals and GBA var-
iants, which could inform functional studies. SYT11 has therefore been
considered a potential PD-related gene, since a GWAS reported an in-
tronic disease-associated polymorphism within this gene [4]. Further
genetic evidence linking SYT11 to PD has however been scarce. The
largest and most recent meta-analysis of PD GWAS to date located the
association signal in an intergenic region hundreds of kilobases away
from SYT11, but still kept the gene in the naming of the locus. In an
attempt to functionally characterize this locus, several studies of sy-
naptotagmin 11 (SYT11) and its role in PD pathogenesis have recently
been performed [16]. We report very high LD between E326K and the
primary association signal, emphasizing GBA as the causal gene at the
chromosome 1 SYT11-GBA locus. On the other hand, we found no
evidence that the secondary signal at this locus was related to the
coding GBA variant T369M. In the meta-analysis by Pankratz et al. the
GBA mutation N370S is detected as a second independent signal at the
SYT11-GBA locus [5]. We are not able to study this due to the very low
frequency of N370S in our population.

Identifying the functionally relevant variants within disease risk loci
identified by GWAS is important to understand the disease mechanisms
involved in disease pathogenesis of PD. Most genetic risk variants fall
outside coding regions and do not alter the amino acid sequence of
proteins. Until recently, the functional characterization of risk-asso-
ciated loci has been hindered by the limited annotation of the human
genome outside coding sequences. However, approaches to successfully
characterize the functional nature of these loci are emerging. Future
studies will hopefully lead to the identification of specific genes and
pathways that could serve as actionable therapeutic targets.
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Parkinson’s disease (PD) is a disorder with highly variable clinical phenotype. The identification of ge-
netic variants modifying age at onset and other traits is of great interest because it may provide insight
into disease mechanisms and potential therapeutic targets. A variant in the DNM3 gene (rs2421947) has
been reported as a genetic modifier of age at onset in LRRK2-associated PD. To test the possible effect of
genetic variation in DNM3 on age at onset in idiopathic PD, we examined rs2421947 in a total of 5918
patients with PD from seven data sets. We also assessed the potential effect of all common variants in the
DNM3 locus. There was no significant association between rs2421947 and age at onset in any of the
individual studies. Meta-analysis of the seven studies was nonsignificant and the between-study het-
erogeneity was minimal. No other common variants within the DNM3 locus affected age at onset.
In conclusion, we find no evidence of an association between DNM3 variants and age at onset in idio-
pathic PD.

� 2018 Elsevier Inc. All rights reserved.
1. Introduction clinical heterogeneity of PD (Pihlstrom et al., 2016; Puschmann,

2013; Winder-Rhodes et al., 2013).
Parkinson’s disease (PD) is a common neurodegenerative dis-
order with a complex etiology. A small proportion of patients with
PD have a monogenic form of the disease with highly penetrant
mutations following an autosomal dominant or recessive inheri-
tance pattern. However, most PD cases are idiopathic, presumably
caused by the combined action of multiple genetic variants in
interplay with epigenetic, environmental, and stochastic factors
(Lill, 2016). To date, genome-wide association studies (GWASs) have
linked more than 40 risk loci to PD susceptibility (Chang et al.,
2017).

In addition to affecting the risk of disease development, genetic
variants may also affect the clinical phenotype once the disease has
manifested. The clinical heterogeneity of PD is characterized by a
marked variation in the pattern and progression of motor, cognitive,
and other nonmotor symptoms. Both rare monogenic mutations
and common genetic variants have been shown to contribute to the

* Corresponding author at: Department of Neurology, Oslo University Hospital,
P.O. Box 4950 Nydalen, N-0424 Oslo, Norway. Tel.: þ47 23079022.
. Berge-Seidl).

All rights reserved.
There is a broad range of age at onset in PD, varying between
debut in early adulthood to patients reaching the 8th and 9th
decade of life before the onset of motor symptoms. Several studies
have investigated the effect of PD risk loci on the onset age. Cu-
mulative genetic risk scores calculated across PD risk loci have been
shown to have a small, but consistent, effect on age at onset (Escott-
Price et al., 2015; Lill et al., 2015; Nalls et al., 2015; Pihlstrom and
Toft, 2015). In addition, risk loci having the greatest effect in PD
GWAS meta-analysis (GBA, SNCA, MAPT, and TMEM175) (Nalls et al.,
2014) are reported to individually be associated with age at onset
(Brockmann et al., 2013; Davis et al., 2016; Lill et al., 2015; Nalls
et al., 2015).

Linking common variation to age at onset represents an
interesting step toward a better understanding of how genetics
affects the PD phenotype. In a recent genome-wide study of
genetic modifiers of age at onset in leucine-rich repeat kinase 2
(LRRK2) p.G2019S carriers, a DNM3 haplotype tagged by
rs2421947 was identified (Trinh et al., 2016). This LRRK2 muta-
tion is the most frequent genetic cause of PD in many pop-
ulations, estimated to have a frequency of 1% in white North
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American and as high as 39% in North African Arab patients committees. The study was approved by the Regional Committee
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(Healy et al., 2008).
LRRK2mutations cause an autosomal dominant form of PD often

segregating in families, while GWASs provide consistent evidence
that common variation at this locus also modulates disease risk.
Because LRRK2 is part of the genetic background for idiopathic PD,
variants that modulate age at onset in LRRK2 parkinsonismmay also
exert an effect in a much wider group of patients. Herein we report
analyses of data from seven studies of PD from Europe and North
America to determine associations between the DNM3 rs2421947
variant and age at onset of idiopathic PD. To study the potential
effect of other DNM3 variants, we also performed a complete
assessment of common variation in the gene locus.
2. Methods
2.1. Study populations

Weanalyzed individual-level genotypes fromsevendifferentdata
sets. Samples originated from genetic studies of PD from Oslo Uni-
versityHospital andMayoClinic Jacksonville. The remainingfivedata
sets were publicly available and selected due to available individual
genotype information inPDpatientswith a reportedage atonset. The
following fourdata setswere accessed fromdbGaP: 1) CIDR:Genome
Wide Association Study in Familial Parkinson Disease (Accession
number: phs000126.v1.p1), 2) Mayo-Perlegen LEAPS (Linked Efforts
to Accelerate Parkinson’s Solutions) Collaboration (Accession num-
ber: phs000048.v1.p1), 3) National Institute of Neurological Disor-
ders and Stroke (NINDS) Genome-Wide Genotyping in Parkinson’s
Disease (Accession number: phs000089.v3.p2), 4) Genome-Wide
Association Study of Parkinson Disease: Genes and Environment
performed by the NeuroGenetics Research Consortium (NGRC)
(Accession number: phs000196.v2.p1). The last data set is made
available by the Parkinson’s Progression Markers Initiative (http://
www.ppmi-info.org).

All patients have been examined by a neurologist. The Oslo and
Mayo Clinic patients were diagnosed according to the revised
UKPDSBB criteria. Inclusion criteria for the other studies have
previously been described (Hamza et al., 2010; Maraganore et al.,
2005; Nalls et al., 2016; Pankratz et al., 2009; Simon-Sanchez
et al., 2009). Age at onset is either reported as age at symptom
onset or age at diagnosis. In the current analysis, patients with PD
reporting other than Caucasian non-Hispanic ethnicity have been
excluded along with LRRK2 p.G2019S carriers that were identified
by imputation or had previously been genotyped. A large subset of
the Oslo and Mayo Clinic patients was sequenced for genes causing
Mendelian forms of PD, and mutation carriers were excluded from
the analysis. In addition, no known carriers of Mendelian PD mu-
tations in the publicly available data sets were included in the
analysis. Demographic characteristics are summarized in Table 1. All
participants gave written informed consent. Sample and data
collection at each study site was approved by local ethics

Table 1
Demographic characteristics of study samples
Study Population Patients with PD

Oslo Norway 472
Mayo USA 987
CIDR North America, Europe and Australia 823
LEAPS USA 439
NINDS USA 912
NGRC USA 1971
PPMI USA and Europe 314

Key: CIDR, Center for Inherited Disease Research; LEAPS, Linked Efforts to Accelerate Pa
NGRC, NeuroGenetics Research Consortium; PPMI, Parkinson’s Progression Markers Init
for Medical Research Ethics (Oslo, Norway).

2.2. Genotyping and quality control

Mayo Clinic patients were genotyped for rs2421947 using a
TaqMan assay. A subset of genotypes was validated by Sanger
sequencing with complete concordance. For the other studies
genome-wide genotypes were available. Oslo samples were geno-
typed using the Illumina Infinium OmniExpress v.1.1 array. Pre-
imputation quality filtering included filtering out variants with
genotype rate <0.95 or Hardy-Weinberg equilibrium p < 10�6 and
removal of individuals with call rate <0.95, excess heterozygosity
>4 standard deviations from mean, and evidence of cryptic relat-
edness or sex-check failure. Population outliers were excluded from
analysis after inspection of principal component analysis plot (>2.5
standard deviation frommean). Details of genotyping methods and
data quality assessments for the publicly available GWASs and the
Parkinson’s Progression Markers Initiative study are described in
previous publications (Hamza et al., 2010; Maraganore et al., 2005;
Nalls et al., 2016; Pankratz et al., 2009; Simon-Sanchez et al., 2009).

Common, pruned, genotyped variants (minor allele frequency
>0.05 and r2< 0.5) were used to calculate principal components for
each of the six genome-wide data sets. For all genome-wide data
sets, imputation was performed using the Michigan imputation
server (Das et al., 2016) with reference data from the Haplotype
Reference Consortium (McCarthy et al., 2016) setting a quality
cutoff of r2 > 0.3 for variants included in the analysis. A set of
common, pruned variants from each imputed data set was merged
to assess cryptic relatedness across studies. Duplicates and related
samples were removed. The final sample sets included in analysis
after quality control comprise a total of 5918 patients with PD
(Table 1).

2.3. Statistical analyses

First we tested all seven studies individually for association
between the DNM3 rs2421947 variant and age at onset under an
additive linear regression model. In an alternative binary analysis,
age at onset was dichotomized by the median onset calculated
across all seven data sets (61 years of age) and logistic regression
was used to test for association with the DNM3 rs2421947 variant
within each data set. In both regression analyses, sex and the first
five principal components were used as covariates in the genome-
wide data sets, while sex was the single covariate in analysis of the
Mayo Clinic study. Association analyses were performed in the
PLINK 1.9 software (https://www.cog-genomics.org/plink/1.9/)
(Chang et al., 2015). Inverse-variance, fixed-effects meta-analysis of
the seven studies was conducted using the Genome-wide Associ-
ation Meta-Analysis software (Magi and Morris, 2010). Between-
study heterogeneity was assessed using Cochran’s Q test and Hig-
gins’s I2 statistic. Owing to the increased burden of recessive
% Male Age at onset �SD Genotyping method

64 55.9 � 11.2 Illumina Infinium OmniExpress v.1.1.
64 65.5 � 11.8 Taqman assay
59 62.0 � 10.7 Illumina HumanCNV370 BeadChip
62 60.9 � 11.1 Perlegen DNA chip (85k SNP markers)
60 58.4 � 13.2 Illumina HumanHap550 BeadChip
68 58.4 � 11.9 Illumina HumanOmni1_Quad
68 59.7 � 9.8 Illumina NeuroX

rkinson’s Solutions; NINDS, National Institute of Neurological Disorders and Stroke;
iative; PD, Parkinson’s disease; SD, standard deviation.
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disease-causing mutations in early-onset PD (Puschmann, 2013), onset-associated variants (Lill et al., 2015; Nalls et al., 2015).
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we repeated the linear regression analysis excluding all patients
with an age at onset <40 years of age.

Next, common variation within DNM3 as well as 100kb up-
stream and downstream of the gene was analyzed by linear
regression in the six genome-wide data sets. Variants with a minor
allele frequency below 0.01 in each data set were excluded from
analysis. Association analysis, both within the individual data sets
and meta-analysis, were performed as described for DNM3
rs2421947. To estimate the degree of multiple testing, we generated
a combined, pruned data set using a cutoff of linkage disequilibrium
> r2 ¼ 0.5, leaving 226 independent variants. Adjusting for 226
independent tests by Bonferroni correction, a p-value< 0.0002 was
considered significant. Power calculations were performedwith the
function pwr.f2.test in the R package pwr (version 1.2e1; https://
cran.r-project.org/web/packages/pwr/index.html).

3. Results

We found no significant association between rs2421947 and age
at onset in any of the individual studies, both when analyzed as a
quantitative trait and in the alternative binary analysis. The fre-
quency of the alternative allele G of rs2421947 was similar in all the
seven studies, varying between 54% and 56%. Meta-analysis of the
seven studies analyzed as a quantitative trait was nonsignificant
(p¼ 0.55), and the between-study heterogeneity was minimal (I2¼
0%, p ¼ 0.77). Results from linear regression analysis of the indi-
vidual studies and meta-analysis are shown in Fig. 1. We obtained
similar results when we excluded patients with an age at onset
<40 years from the analysis. Meta-analysis of age at onset as a bi-
nary trait was also nonsignificant (OR ¼ 1.03, 95% CI ¼ 0.96e1.11,
p ¼ 0.44) and between-study heterogeneity was minimal (I2 ¼ 0%,
p ¼ 0.85).

Next, we analyzed all common variants within the DNM3 gene
and the flanking genomic region. Variants covered in at least four of
the six analyzed genome-wide data sets were included in themeta-
analysis, constituting 1932 variants. None of the meta-analyzed
variants had a significant association with age at onset when cor-
rected for multiple testing. Results from the extended DNM3 anal-
ysis are provided in Supplementary Table 1. Tests for statistical
heterogeneity indicated that heterogeneity was low (I2 < 50%) for
the vastmajority (97%) of themeta-analyzed variants. Studies of the
combined impact of PD risk loci on age at onset report a phenotypic
variance explained by the calculated genetic risk score of 0.6% and
0.7%, with the signal mostly being driven by two individually age at

Study
Oslo

Mayo

CIDR

LEAPS

NINDS

NGRC

PPMI

Overall (I−squared = 0%, P = 0.7)

−2.5 −2 −1.5 −1 −0.5

Fig. 1. Study-specific and meta-analysis results for the DNM3 variant rs2421947. Forest plo
individual studies and meta-analysis. The effect size of the G allele is given as a beta estimate
sets. Abbreviations: CIDR, Center for Inherited Disease Research; LEAPS, Linked Efforts to Ac
Stroke; NGRC, NeuroGenetics Research Consortium; PPMI, Parkinson’s Progression Markers
Assuming a variance explained of w0.5% for the tested variant, we
have a power of over 99% for the primary analysis of rs2421947 (N¼
5918) and a power of 89.5% to achieve a p-value of 0.0002 (N ¼
4931) in the extended DNM3 analysis.

The effect of rs2421947 on age at onset was also assessed in the
LRRK2 p.G2019S carriers (N ¼ 39) that had been excluded from the
aforementioned analyses, although this test was limited by a small
sample size. Association with age at onset analyzed as a quantita-
tive trait, with sex and data set as covariables, was nonsignificant
for rs2421947, with the trend for direction of effect reversed relative
to the original report by Trinh et al., 2016 (effect allele ¼ G, beta ¼
1.79, 95% CI ¼�3.31e6.89, p¼ 0.50). Trinh et al. report a correlation
between rs2421947 genotype and DNM3 mRNA levels in striatal
brain tissue (Trinh et al., 2016). We explored the Genotype-Tissue
Expression (GTEx) Portal (version 7; https://www.gtexportal.org/
home/) and found that significant expression quantitative trait
loci (eQTLs) for DNM3 are reported in cerebellar hemisphere and
cerebellum, but not in any of the other brain regions examined by
the GTEx project. Interestingly, rs2421947 and variants in high
linkage disequilibrium (r2 � 0.6) are not reported as significant
eQTLs for DNM3 in any brain tissue.

4. Discussion

In this study, we found no evidence for a modifying effect of
rs2421947 or other common DNM3 variants on age at onset in
idiopathic PD. A DNM3 haplotype tagged by rs2421947 was iden-
tified by Trinh et al. as a modifier of age at onset in LRRK2 p.G2019S
carriers. They reported that the median age at onset of DNM3 GG
homozygotes was 12.5 years younger than that of CC homozygotes.
This is a large difference in the onset age compared with the effect
of other variants associated with age at onset in PD, and could be
meaningful in the clinical setting. As shown by the 95% confidence
interval of our primary analysis, it is highly unlikely that we did not
detect an effect altering the onset of PDmore than a fewmonths per
G allele.

We performed a meta-analysis including a total of 5918 patients
with PD, and the high number of analyzed individuals is a strength
of our study. However, by including cases from different study sites
with variations in study design, heterogeneitymay be introduced in
meta-analysis of the genetic data. We assessed this and found low
heterogeneity. We accounted for population substructure within
the individual studies by including five eigenvectors in the
regression model. The meta-analyzed studies use mostly self-

Beta (95% CI) P−value
0.01 (−1.40, 1.42)

0.29 (−0.75, 1.32)

−0.27 (−1.31, 0.77)

−0.90 (−2.39, 0.59)

0.50 (−0.71, 1.71)

0.33 (−0.42, 1.08)

0.46 (−1.12, 2.05)

0.13 (−0.29, 0.55)

0.99

0.59

0.61

0.24

0.42

0.39

0.57

0.55

0 0.5 1 1.5 2

t showing the effect of rs2421947 on age at onset in idiopathic Parkinson’s disease in
with a 95% confidence interval (CI). The size of the squares indicates the size of the data
celerate Parkinson’s Solutions; NINDS, National Institute of Neurological Disorders and
Initiative.

https://cran.r-project.org/web/packages/pwr/index.html
https://cran.r-project.org/web/packages/pwr/index.html
https://www.gtexportal.org/home/
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reported symptom onset. Age at onset is subjective and may be patient cohorts with comprehensive characterization of disease

V. Berge-Seidl et al. / Neurobiology of Aging 74 (2019) 236.e1e236.e5 236.e4
prone to recall bias. Nevertheless, the reliability of self- and family-
reported age at onset compared withmedical records is high and all
three methods have been regarded as valid (Reider et al., 2003).

A recent study of LRRK2 p.G2019S carriers in the Spanish pop-
ulation did not find any association between DNM3 rs2421947 and
age at onset of PD (Fernandez-Santiago et al., 2018). Linkage pat-
terns vary among populations, and the possibility that disease-
relevant variation could be tagged by different genetic markers in
Europeans/North Americans as compared with the Arab-Berber
population studied by Trinh et al. prompted us to extend our
analysis to all imputed common variants across the DNM3 locus.
The genomic region flanking the DNM3 gene is included in our
analysis to cover potential regulatory variants, although this in-
creases the multiple testing burden. On the other hand, regulatory
variants affecting DNM3 expression may reside in an even more
distal part of the genome not covered in our analysis. eQTL data
could be used to identify potential regulatory variants and reduce
the number of tests to adjust for. However, the currently available
databases are incomplete because eQTLs, in addition to depending
on tissue and cell type, also may vary between different physio-
logical conditions (Albert and Kruglyak, 2015).

Despite recent efforts to elucidate the genetic architecture
behind age at onset and other clinical characteristics of PD, the vast
majority of genetic variation affecting PD phenotypes remains un-
explained. Many studies have limited their analysis to known risk
loci of PD, while attempts at identifying novel genetic modifiers of
age at onset have proven challenging. Genetic modifiers of age at
onset may be limited to subgroups of patients carrying specific
mutations or susceptibility variants. Variations in the MAPT gene
have been found to be associated with age at onset in patients with
PD carrying a LRRK2 mutation (Gan-Or et al., 2012; Golub et al.,
2009). A recent GWAS of age at onset analyzed PD patients with
and without a family history of the disease separately. No signifi-
cant association was found in those without a family history of PD,
while two signals were detected in individuals reporting to have a
first- or second-degree relative with PD. Both these signals mapped
to gene regions that are not known to affect PD risk (Hill-Burns
et al., 2016).

Discovering genetic modifiers of phenotype in PD is important
because it may provide insight into diseasemechanisms and help in
identifying potential therapeutic targets. DNM3 has previously not
been identified by GWASs of disease risk or onset age (Chang et al.,
2017; Hill-Burns et al., 2016; Latourelle et al., 2009; Nalls et al.,
2014). We found no association between common DNM3 variants
and age at onset in idiopathic PD, but the possible contribution of
rare variants within this genetic locus cannot be excluded. Vari-
ability within the DNM3 locus may be a specific modifier of LRRK2
parkinsonism, although this has yet to be replicated in independent
studies. DNM3 encodes the protein dynamin-3 which is highly
expressed in neurons (Raimondi et al., 2011). The LRRK2 protein has
been shown to interact with dynamin-3 and other members of the
dynamin GTPase superfamily that regulate membrane dynamics
important for endocytosis and mitochondrial morphology (Stafa
et al., 2014). Trinh et al. report a correlation between rs2421947
genotype and DNM3 mRNA levels in striatal tissue, but such an
association is not observed in the GTEx portal. There are several
methodological differences between these analyses and additional
evidence is needed before conclusions regarding rs2421947 as an
eQTL for DNM3 in the brain can be drawn.

Further insight into disease mechanisms may be gained by
examining complex genetic interactions. A novel epistatic interac-
tion between two genetic variants was reported by a recent study
incorporating genetic, molecular, and clinical data into models to
predict motor progression in PD (Latourelle et al., 2017). Larger
phenotype will benefit future studies of how genetics affect clinical
heterogeneity.
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Parkinson’s disease (PD) is a progressive neurodegenerative disorder affecting about 1% of the population above 
60 years of  age1. The cause of neuronal death is poorly understood, and this is obstructing the path toward more 
effective treatments. The largest-to-date genome-wide association study (GWAS) for PD identified 90 independ-
ent association signals, of which a large proportion were new compared to previous  reports2. In spite of the last 
two decades’ successful identification of genetic association signals in PD and other complex diseases, transla-
tion into underlying biological mechanisms has been scarce. GWAS signals typically involve multiple variants 
in high linkage disequilibrium (LD), making it difficult to pinpoint the actual causal variants. In addition, most 
risk variants are located in the noncoding part of the genome, where the functional impact may be challenging 
to  predict3,4. There is however a growing amount of epigenomic and transcriptomic data that may be integrated 
with GWAS findings to discover disease-relevant regulatory networks.

In previous studies, PD risk variants have been integrated with gene expression data, epigenomic annota-
tions and functionally related gene sets to identify cell types and pathways implicated in PD  pathogenesis5–7. 
Studies coupling PD risk to transcription factor binding are however scarce and there is consequently limited 
knowledge concerning transcriptional networks central to PD pathogenesis. Altered transcription factor bind-
ing has been shown to play an important role in human  diseases8–10. Transcription factors bind to short and 
specific DNA sequences, referred to as motifs, to alter gene expression. Genetic variants may alter the binding of 
a transcription factor through disruption of the transcription factor recognition motif. However, the majority of 
variability in transcription factor-DNA binding events appear to be caused by variants outside the transcription 
factor recognition  motif11. A fine-mapping study of autoimmune diseases found that predicted causal variants 
tend to occur near binding sites for immune related transcription factors, but only a fraction alter recognizable 
transcription factor binding  motifs12.

Transcription factor binding patterns vary between cell types and may be directly assessed through chromatin 
immunoprecipitation sequencing (ChIP-seq)13. This requires one transcription factor to be tested at a time and 
only a fraction of transcription factor-cell type combinations has so far been assayed. Intersection of disease risk 
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variants for 213 phenotypes with an extensive catalogue of ChIP-seq derived transcription factor binding datasets 
identified more than 2000 significant transcription factor-disease  relationships14. There were however sparse 
findings in regard to transcription factors associated with PD, which may be explained by the small number of 
transcription factors assayed in neuronal cell types.

Position weight matrices, which are widely used models to describe the DNA sequence binding prefer-
ences of transcription factors, may be used to scan the genome to predict transcription factor binding sites. 
Importantly, transcription factors only occupy a small proportion of the genomic sequences matching to their 
consensus binding sites. This is because transcription factor binding is influenced by additional features such 
as sequence context, accessibility of chromatin and interactions among transcription  factors15,16. Integration of 
genome sequence information together with cell type specific experimental data has been shown to improve the 
accuracy of inference of transcription factor  binding17.

Through analysis of the overlap between Alzheimer’s disease risk variants and open chromatin sites containing 
specific transcription factor motifs, Tansey et al. provided evidence suggestive of specific transcriptional networks 
being central to Alzheimer’s disease risk  mechanisms18. We use a similar approach integrating PD risk variants 
with open chromatin sites in brain, coupled with transcription factor motif analysis, to identify transcription 
factor networks contributing to PD risk.

Assay for Transposase Accessible Chromatin followed by sequencing (ATAC-seq) 
is a fast and sensitive method used to map genome-wide accessibility of  chromatin19. We downloaded maps of 
open chromatin in neurons and non-neurons across 14 distinct brain regions of five individuals from the online 
database Brain Open Chromatin Atlas (BOCA). A detailed description of data generation and quality control of 
this dataset has been  published20. In brief, ATAC-seq was applied to neuronal and non-neuronal nuclei isolated 
from frozen brain tissue by fluorescence-activated nuclear sorting. Reads were mapped to the hg19 (GRCh37) 
reference genome using STAR aligner v2.5.0 and peaks representing open chromatin regions (OCRs) were called 
using model-based Analysis of ChIP-seq (MACS) v2.121,22.

The 14 analysed brain regions include different areas of neocortex, in addition to subcortical regions such 
as hippocampus, thalamus, amygdala, putamen and nucleus accumbens. Substantia nigra, which has a well 
established role in the pathogenesis of PD due to the loss of neurons in this region, was however not part of 
this dataset. There was to our knowledge no other data from ATAC-seq or similar assays analysing the acces-
sibility of chromatin in human dopaminergic neurons of substantia nigra available at the time of our analysis. 
Pairwise intersections between genomic annotations were computed and visualized with the command line tool 
Intervene (version 0.6.4)23. Jaccard statistic was used as measure of similarity, where 0 means no overlap and 1 
means full overlap.

Genome-wide significant PD risk signals were accessed from a recent meta-
analysis, which is the largest genetic study of PD to  date2. This study, which involved the analysis of 37.7K 
cases, 18.6K UK Biobank proxy-cases and 1.4M controls, identified 90 independent association signals that we 
included in enrichment analyses. Published top-hits were accessed from Table S2 and we included the 90 asso-
ciation signals that were marked as having passed final filtering. We performed an additional analysis excluding 
the three PD risk signals located within the extended major histocompatibility complex (MHC) region (chr6: 
26–34 Mb), due to the unusual LD and genetic architecture at this  locus24.

As negative controls, we selected GWASs from non-brain related disorders that had a number of independ-
ent association signals (p-value < 5 × 10–8) comparable to that of the included PD meta-analysis. A GWAS of 
inflammatory bowel disease (IBD) (study accession GCST004131) with 94 association signals and a GWAS of 
peak expiratory flow (PEF) (study accession GCST007430) with 91 association signals were accessed from the 
GWAS  catalogue25. As for the PD association signals, additional analyses were performed excluding one IBD 
risk signal and two PEF risk signals located within the extended MHC region.

Two methods were used to 
evaluate the statistical enrichment of PD risk variants and the two negative controls in OCRs defined by ATAC-
seq in neurons across the 14 brain regions. We chose not to further analyse the non-neuronal cell population 
due to the cellular heterogeneity in this group, which contains different glial subtypes in addition to a small 
component of vascular cells and nucleated blood  cells26. The workflow of our analysis is depicted in Fig. 1. First, 
enrichment was calculated with GoShifter, which includes genome-wide significant index variants and their 
LD proxies in the  analysis27. We identified variants in LD with the index variants with the webserver Snipa 
(v3.3, http://www.snipa .org), using the European subset of 1000 Genomes Phase 3 v5 data and a LD threshold 
of  r2 > 0.8 (Supplementary Table S1)28. GoShifter calculates the proportion of risk loci where at least one linked 
variant overlaps the tested annotation. The observed overlap is then compared to a null distribution generated 
by randomly shuffling the annotations within each locus, thus preserving the local genomic structure. After each 
shuffle, the proportion of loci overlapping annotations is calculated. We carried out 10,000 permutations to draw 
the null distribution.

The second method applied, GREGOR, uses a snp-matching-based method to test for  enrichment29. The 
number of trait-associated signals where an index variant or one of its LD proxies overlaps a regulatory annota-
tion is calculated, then the probability of the observed overlap of risk variants is estimated relative to expectation 
using a set of matched control variants. Control variants match the index variants for number of variants in LD, 
minor allele frequency and distance to nearest gene. European 1000 Genomes Phase 1 data is implemented in 
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GREGOR and was used to identify LD proxies with the threshold set to  r2 > 0.8 and a LD window at 1 Mb. The 
minimum number of control variants for each index variant was set at 500.

We adjusted for multiple testing by Bonferroni correction, adjusting for 14 tests in the analysis of OCRs in 
neurons from different brain regions and 23 tests when analysing OCRs containing specific transcription factor 
motifs identified by de novo motif discovery with HOMER. In enrichment analysis of OCRs harboring de novo 
motifs and best matched known transcription factor motifs identified with MEME-ChIP, we adjusted for 13 and 
18 tests. Brain annotations that pass the significance threshold with both GoShifter (adj. p < 0.05) and GREGOR 
(adj. p < 0.05) are reported as significantly enriched in the text.

Transcription factors tar-
geting binding motifs that are enriched in a set of regulatory regions in a cell may be regarded as candidate tran-
scriptional regulators of that cell. We performed de novo motif analysis with two different softwares, HOMER 
v 4.10.3 and MEME-ChIP v 5.1.1, to identify motifs significantly enriched in OCRs in superior temporal cortex 
 neurons30,31. HOMER identifies motifs that are enriched in the target sequences relative to GC matched back-
ground sequences. In our analysis with HOMER we used the findMotifsGenome.pl script with –size given, 
-mask and otherwise default settings. De novo motifs are compared against a library of known motifs in the 
HOMER Motif Database and all motifs in Jaspar. The identified enriched de novo motifs were assigned to OCRs 
using the annotatePeaks.pl script with default parameters.

MEME-ChIP performs comprehensive motif analysis of large nucleotide datasets through the combination of 
several motif discovery and analysis tools. Although MEME-ChIP was designed for the analysis of peak regions 
identified by ChIP-seq, it may also be used to identify motifs associated with genetic elements obtained by other 

Step 1 ATAC-seq in neurons 
across 14 brain regions

PD GWAS signals ( LD r2 >0.8 )

cell type x                                  cell type y                               cell type z

Motifs enriched in sites of open 
chromatin

Motif-containing open 
chromatin subsets

Enrichment of  PD risk variants in sites of open chromatin

Identify cell types that mediate 
genetic risk for PD

Identify motifs recognized by 
transcription factors important for 
cell function and identity

Identify transcriptional networks 
contributing to PD risk 
mechanisms

PD GWAS signals ( LD r2 >0.8 )

Enrichment analysis

De novo motif discovery

Enrichment analysis

Step 2

Step 3

Figure 1.  Workflow of the data analysis. PD, Parkinson’s disease; GWAS, Genome-wide association study; LD, 
Linkage disequilibrium.
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high-throughput assays such as ATAC-seq31. Bedtools v2.28.2 (getfasta sub-command) was used to extract supe-
rior temporal cortex ATAC-seq peak sequences in FASTA format from the hg19 reference genome obtained from 
the UCSC Genome  Browser32. The ATAC-seq peak FASTA file was used as input to analysis with the command-
line version of MEME-ChIP. MEME-ChIP executes two de novo motif discovery algorithms, multiple EM for 
motif elicitation (MEME) and discriminative regular expression motif elicitation (DREME). MEME can find 
relatively long motifs, while DREME discovers short motifs up to 8 bp and is more computationally efficient. 
In contrast to MEME, the DREME algorithm analyses all sequences. As a default, MEME-ChIP only performs 
motif discovery on the central 100 bp. In our analysis the –ccut parameter was set to 0 which indicates that the 
full length sequences should be analysed. We used the JASPAR 2018 Core vertebrates non-redundant database 
for motif comparison and otherwise default settings.

The discovered motifs are grouped by similarity to each other and compared to known motifs by the Tomtom 
algorithm. As part of the MEME-ChIP tool set FIMO uses the most significant motif in each cluster to scan the 
input sequence. We used the 25 de novo motifs (most significant motif in each cluster) with lowest E-value as a 
basis for further analysis. All of these motifs had been identified by DREME and were thus between 6 and 8 bp 
long. Due to the low information content in the short 6 bp motifs, FIMO found no matches passing the default 
p-value threshold of 1 × 10–4 when scanning the large input sequence. Bedtools v 2.28.2 was used to identify 
ATAC-seq peak subsets containing each of the de novo  motifs32.

The known motifs from the Jaspar database were generally longer than the de novo motifs they were matched 
to. Based on the assumption that the higher information content of the known motifs results in more accurate 
motif occurrences, we identified additional ATAC-seq peak subsets containing the best matched known motifs. 
Occurrences of the known motifs best matched (lowest Tomtom p-value) to the 25 most significant de novo 
motifs were identified with the command-line version of FIMO v 5.1.1. We used the default p-value threshold 
of 1 × 10–4 and the same Markov background model that was calculated from the input sequences by analysis 
with MEME-ChIP. As for the analysis of de novo motifs, Bedtools was used to identify ATAC-seq peak subsets 
containing each of the best matched known motifs.

Computations were performed on resources provided by UNINETT Sigma2—the National Infrastructure 
for High Performance Computing and Data Storage in Norway. Figures comparing multiple motifs were created 
with the R/Bioconductor package MotifStack v1.18.033. Motif matrices provided in the HOMER Motif Database, 
the Jaspar database and in the output from de novo motif discovery were used as input to MotifStack.

Pairwise inter-
sections in terms of Jaccard statistics of ATAC-seq peaks representing OCRs in the different cell types show a 
separation between neurons and non-neurons, with the inter-region similarity being higher between the non-
neurons (Supplementary Figure S1). Among the neurons, mediodorsal thalamus, putamen and nucleus accum-
bens differ the most from the other brain regions, while cortical regions cluster together. These results are in 
concordance with findings by Fullard et al., where differences were assessed between all individual samples using 
MDS clustering and pi1  estimates20.

PD risk variants are signifi-
cantly enriched in OCRs of neurons of the superior temporal cortex (GoShifter adj. p = 0.028, GREGOR adj. 
p = 6.94 × 10–05). There is a tendency that the lowest p-values, although not significant with both enrichment 
tests, are in cortical regions rather than subcortical regions (Table 1). This should be viewed in relation to the 
high inter-region similarity between OCRs in the different cortical regions (Supplementary Figure S1). There is 
no evidence of an enrichment of PEF risk variants or IBD risk variants in neurons from any of the tested brain 
regions (Supplementary Table S2). This indicates that the enrichment of risk variants in OCRs of neurons of the 
superior temporal cortex is specific to PD risk variants and not to disease-associated variants in general.

Candidate transcriptional regulators were assessed in OCRs in neu-
rons of the superior temporal cortex, since this was the ATAC-seq peak set passing the significance threshold 
with both enrichment tests. We performed de novo motif discovery with the HOMER software and found that 
22 motifs were enriched in open chromatin (Supplementary Table S3). ATAC-seq peaks were divided into 22 
subsets containing each of the enriched motifs. We also created one subset with all the enriched motifs being 
absent (noMotif), which was intended as a negative control. HOMER compares the de novo motifs to a library 
of known motifs, presenting a list of the best matched known motifs based on a similarity score. The ATAC-seq 
peak subsets are named after the best matched known transcription factor.

When analysing HOMER motif-containing OCR subsets we found that PD risk variants were significantly 
enriched in OCRs harboring the de novo motif matched to the Olig2 motif (GoShifter adj. p = 0.025, GREGOR 
adj. p = 1.39 × 10–03) (Table 2). None of the other motif-containing OCR subsets were significantly enriched 
when both GREGOR and GoShifter were subjected to Bonferroni correction. There are however some OCR 
subsets that have an adjusted p-value < 0.05 with GREGOR and a nominally significant p-value with GoShifter 
(POL010.1_DCE_S_III, NRF1 and NFIA). There is a high degree of concordance between the highest ranked 
motif-containing OCR sets resulting from analysis with GoShifter and GREGOR. Also, none of the negative 
controls are enriched in the Olig2 OCR subset or any of the other motif-containing OCR subsets (Supplemen-
tary Table S4).

16 out of the 90 PD association signals have one or more variants in high LD located in OCRs containing 
the de novo motif best matched to oligodendrocyte transcription factor 2 (Olig2). Several other transcription 
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factors are also closely matched to this de novo motif since they share very similar binding motifs (Supplementary 
Figure S2). This provides additional candidates potentially targeting the enriched subset of open chromatin. All 
candidates do however belong to the basic Helix-Loop-Helix (bHLH) transcription factor family. The noMotif 
OCR subset does not show a significant enrichment of PD risk variants. This subset may however not be that 
well suited as a negative control since it is among the smallest OCR subsets, only constituting 1,6% of the total 
number of OCRs.

Motif analysis with MEME-ChIP identified 88 de novo motifs 
(118 motifs clustered by similarity) to be enriched (E-value ≤ 0.05). Further analysis was limited to the 25 most 
significantly enriched motifs (Supplementary Table  S5). Known motifs matched to the 25 most significant 
MEME-ChIP de novo motifs overlap several of the known motifs matched to HOMER de novo motifs (Sup-
plementary Table S6). Transcription factors confidently matched to de novo motifs by both motif discovery tools 
have been described to function in neurons, such as MEF2C, SP2/SP1, NRF1 and NEUROD1/bHLH transcrip-
tion  factors34–37. We created ATAC-seq peak subsets containing each of the enriched de novo motifs. Seven de 
novo motifs that had no significant motif occurrences and six de novo motifs that had not been matched to any 
known motif (of which two had no significant motif occurrences) were excluded from further analysis. One 
additional subset was excluded since it was smaller than 1000 OCRs. This left 13 de novo motif-containing 
ATAC-seq peak subsets to be tested with enrichment analysis, of which none were significantly enriched with 
PD risk variants, nor with any of the negative controls (Supplementary Table S7).

Based on the assumption that known motifs matched to the short de novo motifs have a higher information 
content resulting in more accurate motif occurrences, ATAC-seq peaks were divided into subsets based on the 
location of the best matched known motifs. 19 out of the 25 de novo motifs with lowest E-value were matched 
to known motifs of which two were matched to the same known motif. Enrichment analysis of ATAC-seq peak 
subsets containing each of the 18 best matched known motifs show a significant enrichment of PD risk variants 
in the OCRs containing the neurogenic differentiation factor 1 (NEUROD1) motif (GoShifter adj. p = 7.20 × 10–03, 
GREGOR adj. p = 7.63 × 10–04) (Table 3). There is a high degree of concordance between the highest ranked motif-
containing OCR sets resulting from analysis with GoShifter and GREGOR. Also, none of the negative controls 
are enriched in the NEUROD1 OCR subset or any of the other motif-containing OCR subsets (Supplementary 
Table S8). 13 out of the 90 PD association signals have one or more variants in high LD located in OCRs contain-
ing a NEUROD1 motif. NEUROD1 is a bHLH transcription factor and is interestingly among the ten known 
motifs best matched to the de novo motif located in the enriched ATAC-seq peak subset based on analysis with 
HOMER (Supplementary Figure S2).

Enrichment testing performed with exclusion of risk signals in the extended MHC region shows similar 
results in all analyses to those found when including this region. OCRs in superior temporal cortex neurons, 
OCR subsets containing motifs linked to Olig2 and OCRs containing the NEUROD1 motif were all significantly 
enriched with PD risk variants also when excluding the extended MHC region. No additional OCR sets were 

Table 1.  Enrichment of PD risk variants within open chromatin regions in neurons from different brain 
regions. The cell type passing the significance threshold with both GoShifter and GREGOR is marked with 
a star and is reported in the text as significantly enriched with PD risk variants. We adjusted for multiple 
testing by Bonferroni correction, adjusting for 14 tests. Unadjusted p-values are provided in parenthesis. 
Adjusted p-val < 0.05 are written in bold. No. ATAC-seq peaks refers to the total number of peaks, representing 
open chromatin regions, in the analysed cell types. PD, Parkinson’s disease; ACC, Anterior cingulate cortex; 
AMY, Amygdala; DLPFC, Dorsolateral prefrontal cortex; HIPP, Hippocampus; INS, Insula; ITC, Inferior 
temporal cortex; MDT, Mediodorsal thalamus; NAC, Nucleus Accumbens; OFC, Orbitofrontal cortex; PMC, 
Primary motor cortex; PUT, Putamen; PVC, Primary visual cortex; STC, Superior temporal cortex; VLPFC, 
Ventrolateral prefrontal cortex.

Cell type GoShifter Adj. p-val (p-val) GREGOR Adj. p-val (p-val) No. ATAC-seq peaks
STC* 0.028 (2.00 × 10–03) 6.94 × 10–05 (4.96 × 10–06) 76145
VLPFC 0.162 (0.012) 2.67 × 10–03 (1.90 × 10–04) 86082
ITC 0.204 (0.015) 4.30 × 10–04 (3.07 × 10–05) 65346
PMC 0.206 (0.015) 3.73 × 10–03 (2.66 × 10–04) 84995
ACC 0.325 (0.023) 7.20 × 10–04 (5.14 × 10–05) 70654
OFC 0.403 (0.029) 3.19 × 10–03 (2.28 × 10–04) 81621
INS 0.468 (0.033) 3.97 × 10–03 (2.84 × 10–04) 68261
DLPFC 1 (0.075) 0.021 (1.49 × 10–03) 74825
PVC 1 (0.093) 0.014 (1.02 × 10–03) 51874
NAC 1 (0.105) 0.191 (0.014) 77290
MDT 1 (0.117) 2.97 × 10–03 (2.12 × 10–04) 69913
HIPP 1 (0.135) 0.037 (2.66 × 10–03) 80571
AMY 1 (0.151) 0.072 (5.16 × 10–03) 38564
PUT 1 (0.166) 0.145 (0.01) 100752



Vol:.(1234567890)

 |         (2021) 11:3502  | 

www.nature.com/scientificreports/

significant with both GoShifter and GREGOR, and also no significant enrichments were found for any of the 
negative controls.

Analysis 
of OCR subsets based on de novo motif discovery with HOMER and MEME-ChIP both show a significant 
enrichment of PD risk variants in the subset targeted by bHLH transcription factors. The HOMER de novo motif 
matched to Olig2 and the MEME-ChIP de novo motif matched to NEUROD1 (with bHLH transcription factor 
motifs bhlha and TAL1::TCF3 as second and third best match) are highly similar. The similarity between these 
two de novo motifs, as well as between the de novo motifs and best matched known motifs, are illustrated in 
Fig. 2. bHLH transcription factors are known to bind to E-box motifs with the consensus sequence CANNTG, 
corresponding with the identified de novo motifs. In E-box motifs, the central two nucleotides and the sur-
rounding nucleotides provide specificity of  binding34.

The PD association signals and corresponding proxy variants that overlap the NEUROD1 OCR subset and 
Olig2 OCR subset are listed in Supplementary Table S9. We find high concordance between PD risk variants 
overlapping the two enriched motif-containing OCR subsets. 12 out of the 13 association signals and 17 out of 
the 20 proxy variants that locate to the NEUROD1 OCR subset are also located in the Olig2 OCR subset (Sup-
plementary Figure S3).

Characterization of disease-related transcriptional networks is essential to improve our understanding of patho-
genic processes and possible therapeutic targets. Identification of transcriptional networks that contribute to 
genetic risk mechanisms may be explored through integration of GWAS findings with epigenomic data and 
in silico motif analysis. This has been done in a recent study by Tansey et al., where results point to SPI1 and 
MEF2A/C transcriptional networks as central to Alzheimer’s disease risk  mechanisms18. In support of these find-
ings, variants in the proximity of both SPI1 and MEF2C have earlier been identified as significant Alzheimer’s 
disease risk  loci38,39. Intriguingly, this suggests that a transcription factor may be implicated in genetic disease 
risk both by variants altering expression of the transcription factor itself, as well as through variants altering its 
binding affinity to regulatory DNA at other  loci18.

Table 2.  Enrichment of PD risk variants within motif-containing open chromatin region sets identified with 
HOMER. The motif-containing OCR set passing the significance threshold with both GoShifter and GREGOR 
is marked with a star and is reported in the text as significantly enriched with PD risk variants. We adjusted 
for multiple testing by Bonferroni correction, adjusting for 23 tests. Unadjusted p-values are provided in 
parenthesis. Adjusted p-val < 0.05 are written in bold. No. ATAC-seq peaks refers to the total number of peaks, 
representing OCRs, in the analysed motif-containing OCR sets. The total number of ATAC-seq peaks in 
superior temporal cortex neurons is 76145. PD, Parkinson’s disease; OCR, Open chromatin region.

Motif-containing OCR sets GoShifter Adj. p-val (p-val) GREGOR Adj. p-val (p-val) No. ATAC-seq peaks
Olig2* 0.025 (1.10 × 10–03) 1.39 × 10–03 (6.05 × 10–05) 21924
POL010.1_DCE 0.064 (2.80 × 10–03) 7.18 × 10–05 (3.12 × 10–06) 37574
NRF1 0.407 (0.018) 6.26 × 10–03 (2.72 × 10–04) 7729
NFIA 0.580 (0.025) 0.022 (9.51 × 10–04) 37903
Sp2 1 (0.052) 0.147 (6.39 × 10–03) 7566
Egr2 1 (0.073) 0.103 (4.46 × 10–03) 25202
NFY 1 (0.078) 0.152 (6.63 × 10–03) 5806
PB0080.1_Tbp_1 1 (0.087) 0.774 (0.034) 5118
ETV2 1 (0.171) 0.113 (4.91 × 10–03) 10961
CTCF 1 (0.189) 1 (0.091) 6257
Mef2c 1 (0.205) 1 (0.050) 17566
PB0013.1_Eomes_1 1 (0.221) 1 (0.053) 29438
Atf1 1 (0.297) 0.331 (0.014) 5809
BORIS 1 (0.333) 1 (0.138) 6018
POL002.1_INR 1 (0.336) 1 (0.136) 34917
SPDEF 1 (0.390) 0.172 (0.007) 18884
MafF 1 (0.523) 1 (0.219) 34091
GFY 1 (0.683) 1 (0.543) 1196
Rfx5 1 (0.759) 1 (0.382) 7410
Fra1 1 (0.851) 1 (0.601) 9557
NFIL3 1 (0.901) 1 (0.723) 4431
Rfx1 1 (1) 1 (1) 3337
noMotif 1 (1) 0.542 (0.024) 1196
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In our study, we integrated association signals from the most recent PD GWAS with publicly available ATAC-
seq data coupled with transcription factor motif analysis in an effort to identify transcriptional networks contrib-
uting to PD risk. Enrichment analysis shows that PD risk variants are concentrated at sites of open chromatin in 
neurons of the superior temporal cortex indicating that these cell types mediate genetic risk for PD. The finding 
that neurons from additional cortical regions approach the significance threshold by being significant upon 
multiple testing with one enrichment test and nominally significant with the other enrichment test, suggests 
that a broader range of cortical regions are implicated in PD risk.

The involvement of transcriptional networks was explored in neurons of the superior temporal cortex based 
on the location of candidate motifs identified by de novo motif discovery. Enrichment analysis shows a significant 
overlap between PD risk variants and OCRs harboring motifs matched to transcription factors within a distinct 
family, suggesting that risk variants localize to specific transcription factor targeted OCRs. We find an enrichment 
of PD risk variants in OCRs targeted by bHLH transcription factors. There is a high degree of similarity between 
recognition motifs of members of the large bHLH transcription factor family, which provides several binding 
candidates. bHLH transcription factors are key determinants of neural cell fate specification and  differentiation34. 
Many of the transcription factors that are candidates to target this subset of open chromatin are mainly expressed 
and function in the developing nervous system, and thus more likely to be involved in neurodevelopmental 
diseases. However, a developmental component to PD pathogenesis cannot be excluded, conceivably laying the 
groundworks for the brain’s future vulnerability to or resilience against adult onset  neurodegeneration34. Some 
bHLH transcription factors also function in adult neurons, such as transcription factor 4 (TCF4), which is the 
second best match to the de novo motif identified by  HOMER40. Autosomal dominant mutations and deletions 
in TCF4 cause the neurodevelopmental disorder Pitt-Hopkins syndrome, while common variants at the TCF4 
locus are associated with schizophrenia  risk41–44.

Epigenomic studies of the brain have predominantly been conducted in bulk tissue, which may perturb the 
detection of cell type specific regulatory elements due to measurement of an average signal across a heterogene-
ous population of cells. In contrast, Fullard et al. applied ATAC-seq to sorted  nuclei20. This enables the distinc-
tion between OCRs in neurons vs non-neuronal cells, which we consider to be a major strength of this dataset.

We draw our conclusions based on results from two different enrichment tests. Due to the overlap between 
OCRs in the different cell types and motif-subsets, adjustment for multiple testing by Bonferroni correction 
may be considered to be a very strict significance threshold potentially leading to false negatives. This is mostly 
relevant to GoShifter, which is reported to have very conservative  estimates45. It should however be noted that it is 
only the motif-containing OCR subset passing our set significance threshold which is also significant in analyses 
based on the alternative de novo motif discovery method. We consider it a strength of our study that we employ 
two different methods for de novo motif discovery. HOMER and MEME-ChIP are widely used tools for motif 

Table 3.  Enrichment of PD risk variants within open chromatin region sets containing known motifs 
identified with MEME-ChIP. The motif-containing OCR set passing the significance threshold with both 
GoShifter and GREGOR is marked with a star and is reported in the text as significantly enriched with PD 
risk variants. We adjusted for multiple testing by Bonferroni correction, adjusting for 18 tests. Unadjusted 
p-values are provided in parenthesis. Adjusted p-val < 0.05 are written in bold. No. ATAC-seq peaks refers to 
the total number of peaks, representing OCRs, in the analysed motif-containing open chromatin sets. The total 
number of ATAC-seq peaks in superior temporal cortex neurons is 76145. PD, Parkinson’s disease; OCR, Open 
chromatin region.

Motif-containing 
OCR sets

GoShifter Adj. p-val 
(p-val)

GREGOR Adj. p-val 
(p-val) No. ATAC-seq peaks

NEUROD1* 7.20 × 10–03 (4.00 × 10–04) 7.63 × 10–04 (4.24 × 10–05) 12197
SP1 0.058 (3.20 × 10–03) 5.79 × 10–06 (3.21 × 10–07) 19373
ZNF263 0.472 (0.026) 2.85 × 10–03 (1.59 × 10–04) 27496
NHLH1 0.770 (0.043) 0.552 (0.031) 8288
TEAD2 1 (0.133) 0.097 (5.41 × 10–03) 7000
RBPJ 1 (0.137) 0.790 (0.044) 11637
KLF9 1 (0.206) 0.188 (0.010) 12364
NRF1 1 (0.254) 0.071 (3.92 × 10–03) 7740
SPIC 1 (0.261) 1 (0.075) 8737
SPIB 1 (0.291) 0.422 (0.023) 9300
ZIC1 1 (0.335) 0.221 (0.012) 6952
Stat5a::Stat5b 1 (0.457) 1 (0.140) 9783
ZNF384 1 (0.510) 1 (0.644) 14373
MEF2C 1 (0.557) 1 (0.279) 16923
FOSL2 1 (0.854) 1 (0.519) 9141
FOXP1 1 (0.888) 1 (0.919) 6847
TBP 1 (0.911) 1 (0.816) 5011
CREB1 1 (0.911) 1 (0.363) 2994
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analysis of large DNA sequence data sets. The analyses are performed in parallel and both show an enrichment of 
PD risk variants in OCRs targeted by bHLH transcription factors, thus increasing the robustness of this finding.

We analyse two non-brain related disorders as negative controls and find no evidence of enrichment in cortical 
neurons, showing some degree of specificity of our findings to PD. In further interpretations of our results it is 
important to recognize that the detection of motifs and potential binding of bHLH transcription factors could 
be a marker of an active regulatory region also bound by other regulatory factors, of which one exerts the true 
causal effect on PD risk. We cannot exclude the possibility that an observed enrichment is due to unaccounted 
colocalization with other annotations. This limits the inference of causality and must be taken into account when 
interpreting results from enrichment analysis.

In our study, integration of GWAS signals with sites of open chromatin suggests that neurons in the superior 
temporal cortex and additional cortical regions mediate genetic risk for PD. Motif analysis performed in neurons 
of the superior temporal cortex shows that PD risk variants significantly overlap OCRs targeted by members of 
the bHLH transcription factor family, pointing to an involvement of these transcriptional networks in PD risk 
mechanisms. Additional investigations are needed to further explore the role of bHLH transcription factors in 
PD. Our study also demonstrates that ATAC-seq data coupled with motif analysis may be used in the assess-
ment of hundreds of different transcription factors in a relevant cellular context, something that is not possible 
with existing transcription factor ChIP-seq data. Future studies addressing regulatory mechanisms in PD will 
benefit from improved computational approaches to predict transcription factor binding sites as a complement 
to ChIP-seq. Novel computational methods highlight the importance of both motif-based and chromatin acces-
sibility features as pivotal to yield high performance predictions for most transcription  factors46,47. Generation of 
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Figure 2.  Comparison of de novo motifs matched to bHLH transcription factors. Denovo_HOMER is the de 
novo motif identified by HOMER, while denovo_MEME-ChIP refers to the de novo motif identified by MEME-
ChIP. Olig2(bHLH)/Neuron-Olig2-ChIP-Seq (GSE30882)/Homer is the known motif best matched to denovo_
HOMER and is part of the HOMER Motif Database. MA1109.1-NEUROD1 is the known motif best matched to 
denovo_MEME-ChIP and is part of the JASPAR 2018 Core vertebrates non-redundant database. bHLH, Basic 
Helix-Loop-Helix; RC, Reverse complement.
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epigenomic data with increased cellular resolution in brain related cell types would thus provide another valuable 
resource to study the involvement of transcription factors in neurodegenerative diseases.

The datasets analysed during the current study are available from Brain Open Chromatin Atlas (BOCA) (https 
://bendl j01.u.hpc.mssm.edu/multi reg/resou rces/boca_peaks .zip) and UCSC Genome Browser (http://hgdow 
nload .soe.ucsc.edu/golde nPath /hg19/bigZi ps/lates t/hg19.fa.maske d.gz).
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Supplementary Table S1. List of variants in high linkage disequilibrium with 

index variants representing independent genome-wide significant association 

signals in PD, IBD and PEF. For PD, all index variants passed analysis with the 

webserver Snipa with the exception of rs34637584 and rs76763715 due to not being 

in the reference set or population. The IBD index variants rs75900472 and 

rs144344067, and the PEF index variants rs9274247 and rs79412431 did not pass 

analysis for the same reason. QRSID is the query variant and defines the index 

variant, while RSID defines a proxy variant in high linkage disequilibrium (r2 > 0.8) 

with the index variant. POS1 refers to the index variant position and POS2 is the 

proxy variant position. The degree of linkage disequilibrium between QRSID and 

RSID is provided as R-squared (R2) and DPRIME. PD, Parkinson’s disease; IBD, 

Inflammatory bowel disease; PEF, Peak expiratory flow; MAF, Minor allele 

frequency. 
 
 
 



Supplementary Table S2. Results from enrichment analysis of negative controls 

within open chromatin regions in brain neurons. 
 

 PEF  IBD   

Cell 

type 

GoShifter 

adj. p-val 

(p-val) 

GREGOR 

adj. p-val  

(p-val) 

GoShifter 

adj. p-val     

(p-val) 

GREGOR 

adj. p-val 

(p-val) 

No. ATAC-

seq peaks 

STC 1 (0.314) 0.93 (0.066) 1 (0.46) 1 (0.319) 76145 

VLPFC 1 (0.424) 0.696 (0.05) 1 (0.627) 1 (0.481) 86082 

ITC 1 (0.557) 1 (0.171) 1 (0.699) 1 (0.816) 65346 

PMC 1 (0.482) 1 (0.074) 1 (0.949) 1 (0.9) 84995 

ACC 1 (0.811) 1 (0.291) 1 (0.789) 1 (0.677) 70654 

OFC 1 (0.666) 1 (0.184) 1 (0.866) 1 (0.649) 81621 

INS 1 (0.747) 1 (0.306) 1 (0.366) 1 (0.406) 68261 

DLPFC 1 (0.515) 1 (0.117) 1 (0.344) 1 (0.232) 74825 

PVC 1 (0.215) 1 (0.099) 1 (0.722) 1 (0.637) 51874 

NAC 1 (0.884) 1 (0.71) 1 (0.981) 1 (0.83) 77290 

MDT 1 (0.193) 1 (0.169) 1 (0.828) 1 (0.679) 69913 

HIPP 1 (0.616) 1 (0.282) 1 (0.797) 1 (0.705) 80571 

AMY 1 (0.718) 1 (0.529) 1 (0.681) 1 (0.449) 38564 

PUT 1 (0.874) 1 (0.419) 1 (0.959) 1 (0.577) 100752 

 
There are no adj. p-val < 0.05 in any of the tested cell types. We adjusted for multiple 

testing by Bonferroni correction, adjusting for 14 tests. Unadjusted p-values are 

provided in parenthesis. No. ATAC-seq peaks refers to the total number of peaks, 

representing open chromatin regions, in the analysed cell types. PEF, Peak expiratory 

flow; IBD, Inflammatory bowel disease; ACC, Anterior cingulate cortex; AMY, 

Amygdala; DLPFC, Dorsolateral prefrontal cortex; HIPP, Hippocampus; INS, Insula; 

ITC, Inferior temporal cortex; MDT, Mediodorsal thalamus; NAC, Nucleus 

Accumbens; OFC, Orbitofrontal cortex; PMC, Primary motor cortex; PUT, Putamen; 

PVC, Primary visual cortex; STC, Superior temporal cortex; VLPFC, Ventrolateral 

prefrontal cortex. 

 

 

Supplementary Table S3. Results from de novo motif analysis of open chromatin 

regions in superior temporal cortex neurons performed with HOMER 

 



Supplementary Table S4. Results from enrichment analysis of negative controls 

within motif-containing open chromatin region sets identified with HOMER. 

 

 PEF  IBD   

Motif-containing  

OCR sets 

GoShifter 

adj. p-val 

(p-val) 

GREGOR 

adj. p-val   

(p-val) 

GoShifter 

adj. p-val     

(p-val) 

GREGOR 

adj. p-val 

(p-val) 

No. 

ATAC-seq 

peaks 

Olig2* 1 (0.214) 1 (0.063) 1 (0.692) 1 (0.472) 21924 

POL010.1_DCE 1 (0.293) 1 (0.089) 1 (0.571) 1 (0.507) 37574 

NRF1 1 (0.436) 1 (0.663) 1 (0.820) 1 (0.563) 7729 

NFIA 1 (0.510) 1 (0.178) 1 (0.371) 1 (0.309) 37903 

Sp2 1 (0.861) 1 (0.972) 1 (0.918) 1 (0.592) 7566 

Egr2 1 (0.223) 1 (0.148) 1 (0.926) 1 (0.682) 25202 

NFY 1 (0.657) 1 (0.893) 1 (0.598) 1 (0.722) 5806 

PB0080.1_Tbp_1 1 (0.302) 1 (0.109) 1 (1) 1 (1) 5118 

ETV2 1 (0.252) 1 (0.235) 1 (0.734) 1 (0.369)  10961 

CTCF 1 (0.817) 1 (0.338) 1 (0.258) 1 (0.161) 6257 

Mef2c 1 (0.237) 0.239 (0.010) 1 (0.942) 1 (0.722) 17566 

PB0013.1_Eomes_1 1 (0.756) 1 (0.448) 1 (0.330) 1 (0.221) 29438 

Atf1 1 (0.653) 1 (0.645) 1 (0.341) 1 (0.180) 5809 

BORIS 1 (0.874) 1 (0.444) 1 (0.371) 1 (0.623) 6018 

POL002.1_INR 1 (0.408) 1 (0.161) 1 (0.884) 1 (0.959) 34917 

SPDEF 1 (0.976) 1 (0.883) 1 (0.748) 1 (0.383) 18884 

MafF 1 (0.967) 1 (0.840) 1 (0.674) 1 (0.495) 34091 

GFY 1 (0.261) 1 (0.415) 1 (1) 1 (1) 1196 

Rfx5 1 (0.300) 0.901 (0.039) 1 (0.725) 1 (0.522) 7410 

Fra1 1 (0.592) 1 (0.119) 1 (0.665) 1 (0.296) 9557 

NFIL3 1 (0.628) 1 (0.581) 1 (1) 1 (1) 4431 

Rfx1 1 (0.841) 1 (0.518) 1 (1) 1 (1) 3337 

noMotif 1 (1) 1 (1) 1 (1) 1 (1) 1196 

 



There are no adj. p-val < 0.05 in any of the motif-containing OCR sets. We adjusted 

for multiple testing by Bonferroni correction, adjusting for 23 tests. Unadjusted p-

values are provided in parenthesis. No. ATAC-seq peaks refers to the total number of 

peaks, representing OCRs, in the analysed motif-containing OCR sets. The total 

number of ATAC-seq peaks in superior temporal cortex neurons is 76145. PEF, Peak 

expiratory flow; IBD, Inflammatory bowel disease; OCR, Open chromatin region. 

 

 

 

 

 

Supplementary Table S5. The 25 most significant results from de novo motif 

analysis of open chromatin regions in superior temporal cortex neurons 

performed with MEME-ChIP. The three most similar known motifs are listed. Only 

known motifs with a TOMTOM similarity E-value of less than 1.0 to the discovered 

motif are shown. 

 

 

 

 

 

Supplementary Table S6. Known motifs matched to de novo motifs identified 

with HOMER and MEME-ChIP. Known motifs with a similarity score of 0.70 and 

higher to the 22 de novo motifs discovered with HOMER, known motifs with 

TOMTOM similarity E-value of less than 1.0 to the 25 most significant de novo 

motifs discovered with MEME-ChIP, and known motifs matched to both HOMER 

and MEME-ChIP de novo motifs are listed. Known motifs matched to de novo motifs 

identified with HOMER are either from Jaspar motif database (J), Homer motif 

database (H), or from both. All known motifs matched to de novo motifs identified 

with MEME-ChIP are from Jaspar motif database. A known motif may be matched to 

more than one de novo motif, but is only listed once. 
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Supplementary Table S8. Results from enrichment analysis of negative controls 

within open chromatin region sets containing known motifs identified with 

MEME-ChIP. 

 

 

 PEF  IBD   

Motif-

containing 

OCR sets 

GoShifter 

adj. p-val 

(p-val) 

GREGOR 

adj. p-val   

(p-val) 

GoShifter 

adj. p-val 

(p-val) 

GREGOR 

adj. p-val   

(p-val) 

No. 

ATAC-seq 

peaks 

NEUROD1 1 (0.244) 1 (0.359) 1 (0.992) 1 (0.977) 12197 

SP1 1 (0.691) 1 (0.867) 1 (0.900) 1 (0.553) 19373 

ZNF263 1 (0.059) 0.256 (0.014) 1 (0.560) 1 (0.257) 27496 

NHLH1 1 (0.925) 1 (0.904) 1 (0.862) 1 (0.671) 8288 

TEAD2 1 (0.927) 1 (0.455) 1 (0.971) 1 (0.899) 7000 

RBPJ 1 (0.846) 1 (0.578) 1 (0.351) 1 (0.296) 11637 

KLF9 1 (0.164) 1 (0.241) 1 (0.962) 1 (0.869) 12364 

NRF1 1 (0.742) 1 (0.852) 1 (0.688) 1 (0.142) 7740 

SPIC 1 (1) 1 (1) 1 (0.234) 1 (0.126) 8737 

SPIB 1 (1) 1 (1) 1 (0.603) 1 (0.433) 9300 

ZIC1 1 (0.675) 1 (0.707) 1 (0.790) 1 (0.784) 6952 

Stat5a::Stat5b 1 (0.540) 1 (0.457) 1 (0.561) 1 (0.648) 9783 

ZNF384 1 (0.500) 1 (0.172) 1 (0.478) 1 (0.549) 14373 

MEF2C 1 (0.432) 0.555 (0.031) 1 (0.974) 1 (0.901) 16923 

FOSL2 1 (0.392) 1 (0.122) 1 (0.655) 1 (0.356) 9141 

FOXP1 1 (0.907) 1 (0.801) 1 (0.681) 1 (0.485) 6847 

TBP 1 (0.433) 1 (0.103) 1 (0.562) 1 (0.410) 5011 

CREB1 1 (0.546) 1 (0.174) 1 (0.463) 1 (0.171) 2994 

 

 

There are no adj. p-val < 0.05 in any of the motif-containing OCR sets. We adjusted 

for multiple testing by Bonferroni correction, adjusting for 18 tests. Unadjusted p-

values are provided in parenthesis. No. ATAC-seq peaks refers to the total number of 

peaks, representing OCRs, in the analysed motif-containing OCR sets. The total 

number of ATAC-seq peaks in superior temporal cortex neurons is 76145. PEF, Peak 

expiratory flow; IBD, Inflammatory bowel disease; OCR, Open chromatin region. 

 



Supplementary Table S9. PD association signals and proxy variants that overlap 

open chromatin region subsets targeted by bHLH transcription factors. PD 

association signals (represented by the top-hit variant) and proxy variants that overlap 

the OCR subset containing the HOMER de novo motif best matched to Olig2 and the 

OCR subset containing the NEUROD1 motif identified by MEME-ChIP are listed. 

The overlap has been identified by analysis with GoShifter. PD association signals 

and proxy variants that overlap both the Olig2 OCR subset and the NEUROD1 OCR 

subset are written in bold. PD, Parkinson’s disease; bHLH, Basic Helix-Loop-Helix; 

OCR, Open chromatin region. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure S1. Heatmap of pairwise intersections of Jaccard statistic 

of open chromatin regions in brain. 

 

 
 
 
 
The set size refers to the number of open chromatin regions in each dataset. N, 

Neuronal; non-N, non-Neuronal; ACC, Anterior cingulate cortex; AMY, Amygdala; 

DLPFC, Dorsolateral prefrontal cortex; HIPP, Hippocampus; INS, Insula; ITC, 

Inferior temporal cortex; MDT, Mediodorsal thalamus; NAC, Nucleus Accumbens; 

OFC, Orbitofrontal cortex; PMC, Primary motor cortex; PUT, Putamen; PVC, 

Primary visual cortex; STC, Superior temporal cortex; VLPFC, Ventrolateral 

prefrontal cortex.



S
u

p
p

le
m

en
ta

ry
 F

ig
u

re
 S

2
. 
K

n
o
w

n
 m

o
ti

fs
 m

a
tc

h
ed

 t
o
 t

h
e 

H
O

M
E

R
 d

e 
n

o
vo

 m
o
ti

f 
lo

ca
te

d
 i

n
 t

h
e 

o
p

en
 c

h
ro

m
a
ti

n
 r

eg
io

n
 s

u
b

se
t 

en
ri

ch
ed

 

w
it

h
 P

a
rk

in
so

n
’s

 d
is

ea
se

 r
is

k
 v

a
ri

a
n

ts
 

  

 
 a)

 D
e 

n
o
vo

 m
o
ti

f 
co

m
p
ar

ed
 t

o
 t

h
e 

fi
v
e 

k
n
o
w

n
 m

o
ti

fs
 w

it
h
 h

ig
h
es

t 
si

m
il

ar
it

y
 s

co
re

s.
 b

) 
D

e 
n
o

vo
 m

o
ti

f 
co

m
p
ar

ed
 t

o
 k

n
o
w

n
 m

o
ti

fs
 w

it
h
 6

th
 –

 1
0

th
 

h
ig

h
es

t 
si

m
il

ar
it

y
 s

co
re

s.
 T

h
e 

si
m

il
ar

it
y
 s

co
re

 i
s 

p
ro

v
id

ed
 i

n
 p

ar
en

th
es

is
 a

ft
er

 t
h
e 

m
o
ti

f 
n
am

e.
 R

C
, 

R
ev

er
se

 c
o
m

p
le

m
en

t.
 



Supplementary Figure S3. Overlap between PD risk variants that locate to the 

two enriched motif-containing open chromatin region subsets 

 

 

 
 

 

a) Venn diagram illustrating the overlap between PD association signals that locate to 

the NEUROD1 OCR subset and the Olig2 OCR subset, showing that 12 association 

signals locate to both subsets. b) Venn diagram illustrating the overlap between proxy 

variants that locate to the NEUROD1 OCR subset and the Olig2 OCR subset, 

showing that 17 proxy variants locate to both subsets. Venn diagrams have 

been created with the software Intervene. PD, Parkinson’s disease; OCR, Open 

chromatin region.
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