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“Chronic” periodontitis and its keystone pathogen Porphyromonas gingivalis have
repeatedly been associated with Alzheimer’s disease (AD). Pathological hallmarks in
AD are brain accumulations of amyloid-beta and neurofibrillary tangles consisting
of aggregated and hyperphosphorylated tau. In addition, neuroinflammation induced
by P. gingivalis has increasingly been recognized as a factor in the pathogenesis
of AD. The present mini-review discusses possible mechanisms for the induction
of neuroinflammation by P. gingivalis in AD, involving factors such as pro-
inflammatory mediators, amyloid-beta, tau, microglia, cathepsin B, and protein kinase
R. Inflammagens of P. gingivalis such as lipopolysaccharide and gingipains are
also discussed.
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INTRODUCTION

“Chronic” periodontitis is a disease affecting the supporting tissues of the teeth. Untreated, it may
end with tooth loss. It is a widely prevalent disease in adults all over the world (Eke et al., 2016) and
has in several reports been associated with Alzheimer’s disease (AD) (for a review, see Olsen, 2021).
Porphyromonas gingivalis, which is considered a keystone bacterium in “chronic” periodontitis
(Socransky et al., 1998; Darveau et al., 2012; Hajishengallis et al., 2012), has been detected in the
brains of subjects with AD together with its toxic proteases—gingipains (Dominy et al., 2019). Also,
P. gingivalis DNA was found in AD brains and cerebrospinal fluid of clinical AD patients. In other
studies, P. gingivalis lipopolysaccharide (LPS) was detected in human AD brains and in the brains
from transgenic mice serving as AD models (Poole et al., 2013; Ishida et al., 2017).

Several animal studies have indicated that P. gingivalis can induce neuroinflammation in the
brain of AD patients (see later), and neuroinflammation has increasingly been suggested to have
a substantial role in the progression of the neuropathological changes taking place in AD (Ilievski
et al., 2018). This mini-review will deal with neuroinflammation in AD induced by P. gingivalis and
possible mechanisms for this induction.

NEUROINFLAMMATION AND Porphyromonas gingivalis

Alzheimer’s disease is our commonest neurological disease characterized by cognitive
decline and accumulation of amyloid-beta (Aβ) plaques and neurofibrillary tangles (NTFs).
Neuroinflammation has increasingly been considered as another hallmark of AD. P. gingivalis-LPS-
induced neuroinflammation was proposed to play an important role in the cognitive impairment
of C57BL/6 mice (Zhang et al., 2018). Hu et al. (2020) found that periodontitis induced by
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P. gingivalis-LPS promoted neuroinflammation by activating the
Toll-like receptor 4/nuclear factor-kappa B signaling pathway
and was associated with learning and memory impairment in
Sprague-Dawley rats. In another study, P. gingivalis periodontal
infection was proposed to cause cognitive impairment by
releasing pro-inflammatory cytokines such as tumor necrosis
factor-alpha (TNF-α), interleukin (IL)-6, and IL-1β in the brain
tissues of middle-aged mice (Ding et al., 2018). Similarly,
Memedovski et al. (2020) reported that P. gingivalis LPS induced
classical and alternative activation of rat brain microglia with
concomitant release of cytokines and chemokines.

AMYLOID-BETA AND Porphyromonas
gingivalis

Amyloid-beta is known to be an activator of microglia. On
the one hand, microglia can release inflammatory mediators
such as inflammatory cytokines, complement components,
chemokines, and free radicals that all contribute to Aβ

production and accumulation. On the other hand, microglia
can play a beneficial role in generating anti-Aβ antibodies
and stimulating the clearance of Aβ plaques (Cai et al., 2014).
According to these authors, a vicious cycle of inflammation
occurs between Aβ accumulation, activated microglia, and
microglia inflammatory mediators, which promotes Aβ

deposition and neuroinflammation. This idea diverges from the
general notion that Aβ production and neuroinflammation are
independent processes.

Nie et al. (2019) reported that chronic exposure to P. gingivalis
LPS led to the accumulation of Aβ in the brain of middle-aged
mice. Such exposure also induced peripheral Aβ accumulation
in inflammatory monocytes/macrophages. This suggested that
monocytes/macrophages can serve as a circulating pool of Aβ

in patients with periodontitis. Similarly, Leira et al. (2019)
reported that P. gingivalis-induced LPS in periodontitis produced
increased serum levels of Aβ peptides. In mice, oral P. gingivalis
infection caused brain colonization and increased production of
the amyloid plaque component Aβ1−42 (Dominy et al., 2019).
Importantly, the neuroinflammation established by P. gingivalis
in the mice could be reduced by gingipain inhibition.

TAU PROTEIN AND Porphyromonas
gingivalis

As mentioned, NFTs are created from hyperphosphorylated tau—
a protein that stabilizes microtubules (for a review, see Kinney
et al., 2018). In AD, hyperphosphorylated tau is removed from
microtubules resulting in a collapse of the microtubule structure
and thereby disrupted cellular functions for protein trafficking
and cellular morphology, formation of tau aggregates, loss of
neuronal function, and apoptosis.

There is a clear relationship between P. gingivalis and
tau. Gingipains may cleave procaspase-3 to activate caspase-
3 (Urnowey et al., 2006). The latter has been associated
with tau phosphorylation (Chu et al., 2017) and tau cleavage

(Sandhu et al., 2017). Dominy et al. (2019) found tau to
be a target of gingipain proteolysis and suggested that tau
pathology in AD brains may be caused by transneural spread
of P. gingivalis, tau damage by gingipain proteolysis, and
activation of human proteases. They also hypothesized that
gingipains might be a driver of a compensatory increase in tau
production of AD patients.

Tang et al. (2021) confirmed that peripheral P. gingivalis
infection caused tau hyperphosphorylation, preventing tau from
fulfilling its role as a microtubule-stabilizing protein, leaving
it to self-assembly. In P. gingivalis-injected rats, the severity
of phosphorylated tau at the AD-related sites Thr181 and
Thr231 and the number of activated astrocytes were greater
than in the hippocampus. Also, the levels of IL-1β, IL-6, and
TNF-α in the rat serum and hippocampus were increased.
Furthermore, the activity of protein phosphatase 2A (PP2A)
was significantly inhibited in the hippocampus of these rats.
Inhibition of PP2A and application of a PP2A promoter
efficiently decreased IL-1β-induced tau hyperphosphorylation in
HT-22 cells. Although systemic inflammation was identified as
the driver of tau phosphorylation, the specificity of P. gingivalis
producing this effect was not assessed. Laurent et al. (2018) and
Didonna (2020) emphasized tauopathies and neuroinflammatory
processes as a vicious circle that works together in the
pathogenesis of AD. A link between pro-inflammatory cytokine
signaling and hyperphosphorylation of tau has also been reported
(Domingues et al., 2017). Of note, usnic acid derivatives
were found to inhibit tau aggregation and neuroinflammation
(Shi et al., 2020).

A novel mechanism of tau-seed-affected microglia was
demonstrated by activation of the NLRP3–ASC inflammasome
(Stancu et al., 2019). This inflammasome is an important sensor
of innate immunity. Olsen and Singhrao (2016) and Olsen and
Yilmaz (2016) reviewed the plausible contribution of specific
bacteria playing a role in influencing the activity of the NLRP3
inflammasome in AD progression. P. gingivalis was found
to have several mechanisms for modulating innate immunity
by limiting the activation of the NLRP3 inflammasome.
Among them, ATP-/P2X7-signaling is associated not only with
periodontitis but also with the development of several systemic
diseases, including AD.

MICROGLIA AND Porphyromonas
gingivalis

Hu et al. (2020) observed that P. gingivalis LPS-induced
periodontitis caused learning and memory impairment in rats
through neuroinflammation induced by significant activation of
microglia and astrocytes in the brain cortex. Microglia activation
may precede tau pathology (Yoshiyama et al., 2007). Memedovski
et al. (2020) reported that 18-h in vitro stimulation with ultrapure
P. gingivalis LPS caused classical and alternative activation of rat
brain microglia with the release of cytokines and chemokines.

The gingipains Rgp and Kgp have important effects on brain-
residing microglia, being responsible for P. gingivalis-induced
cell migration of microglia and expression of pro-inflammatory
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mediators by activating the protease-activated receptor 2 (Liu
et al., 2017; Nonaka and Nakanishi, 2020). The subsequent
activation of phosphoinositide 3-kinase/Akt and mitogen-
activated protein kinase/extracellular signal-regulated kinase
(ERK) kinase/ERK pathways resulted in cell migration and
inflammatory response in microglia. Here, the gingipains of
P. gingivalis cooperatively contributed to cell migration of
microglia toward the infected site (brain) and induction of
neuroinflammation after reaching it.

The interaction between genetic factors, microglia, and
P. gingivalis was reviewed by Olsen and Singhrao (2020). It
was suggested that genes for apolipoprotein, clusterin, CD33,
triggering receptor expressed on myeloid cells-2, tyrosine kinase
binding protein (TYR-OBP), and complement receptors could
affect microglia. Most of these genes can also be affected by
P. gingivalis via its mastering of immune suppression.

CATHEPSIN B AND Porphyromonas
gingivalis

Cathepsin B (CatB), a lysosomal cysteine protease, was suggested
to have an important role in the initiation of neuroinflammation
and neural dysfunction after chronic systemic exposure to
LPS from P. gingivalis in mice. Thus, Wu et al. (2017) found
that such exposure to P. gingivalis LPS induced AD-like
phenotypes, including microglia-mediated neuroinflammation,
intracellular Aβ accumulation in neurons, and reduced learning
and memory functions in middle-aged mice in a CatB-
dependent manner. As already mentioned, chronic systemic P.
gingivalis infection induced Aβ accumulation in inflammatory
monocytes/macrophages. This occurred via activation of
CatB/nuclear factor kappa B signaling (Nie et al., 2019). CatB has
been suggested as a potential therapeutic target for preventing
the initiation and progression of periodontitis-related AD
(Nakanishi et al., 2020).

PROTEIN KINASE R AND
Porphyromonas gingivalis

Protein kinase R (PKR) is a 551 amino acid protein responsible
for a key part of the defense against bacterial and viral
infections in neurons (Dabo and Meurs, 2012; Marchal et al.,
2014). This inflammation-associated kinase protein directly
phosphorylates several abnormal and disease-modifying residues
within tau, such as Thr181, Ser199/202, Thr231, Ser396,
Ser404, and Ser409 (Reimer et al., 2021). The PKR-mediated
phosphorylations actively dislocate tau from microtubules in
cells. Also, PKR overexpression and knockdown increased
and decreased, respectively, tau protein and mRNA levels in
cells. It was noteworthy that acute encephalopathy in wild-
type mice, induced by intracranial Langat virus infection,
resulted in robust inflammation and PKR upregulation, which
was followed by abnormally phosphorylated full-length and
truncated tau. PKR can be capable of triggering pathological
modification of tau independent of other kinases after brain

inflammation. This might be the initial pathological seed in
tauopathies such as AD and in chronic encephalopathy with
severe inflammation. PKR inhibition reduced phosphorylation
of soluble tau in the brain of transgenic rTg4510 tau mice
(Reimer et al., 2021). Inhibition of PKR also prevented long-
term potentiation and memory impairment in AD mouse models
(Hwang et al., 2017). Furthermore, PKR inhibition reduced
neuronal loss, motor deficits, and memory deficits in mice
models of AD (Mouton-Liger et al., 2015; Segev et al., 2015;
Reimer et al., 2021).

A direct relationship between P. gingivalis and PKR has not
yet been demonstrated. However, PKR, a ubiquitously expressed
serine–threonine kinase, is activated by indirect binding to
bacterial LPS or pro-inflammatory cytokines such as TNF-α, IL-1,
and interferon-gamma (for a review, see Reimer et al., 2021). PKR
directly regulates tau, and activation of PKR has been associated
with different tauopathies such as AD, Parkinson’s disease, and
Huntington’ disease (Peel et al., 2001; Chang et al., 2002; Bando
et al., 2005; Paquet et al., 2012; Lourenco et al., 2013; Ma et al.,
2013). Because PKR is activated indirectly by LPS and specific
cytokines, this could contribute to the correlation of “chronic”
periodontitis and P. gingivalis brain levels with AD (Reimer et al.,
2021). Bacterial infections and inflammation could also make
neurons vulnerable to degeneration and thus initiate the onset
of neurodegenerative diseases such as AD (Deleidi and Isacson,
2012). In this situation, activated PKR could initiate abnormal tau
phosphorylation.

CONCLUDING REMARKS

Neuroinflammation seems to have a substantial role in the
pathogenesis of AD. This supports neuroinflammation as
a third disease hallmark of the disease. P. gingivalis with
its inflammagens, gingipains, and LPS, both detected in
the brains of AD subjects, could be major factors inducing
neuroinflammation. P. gingivalis particularly affects Aβ,
tau, microglia, CatB, and possibly PKR. A vicious cycle of
inflammation probably occurs between several of these players
where the interaction is complex and not yet fully understood.

Although not specifically related to P. gingivalis, PKR stands
out as an inflammation-associated kinase of particular interest
because it is ubiquitously expressed and an important part of
the defense against bacterial infections in neurons. It is activated
indirectly by LPS and specific pro-inflammatory cytokines and
has been linked to AD. PKR is co-localized with abnormally
phosphorylated tau in AD brains and directly regulates tau
expression. Thus, PKR activated by P. gingivalis-induced
brain infection/inflammation/pro-inflammatory cytokines may
precede tau phosphorylation and thus participate in the etiology
of AD. This should be studied.
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