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Abstract: Recognition of the fact that bacterial biofilm may play a role in the pathogenesis of disease
has led to an increased focus on identifying diseases that may be biofilm-related. Biofilm infections
are typically chronic in nature, as biofilm-residing bacteria can be resilient to both the immune system,
antibiotics, and other treatments. This is a comprehensive review describing biofilm diseases in
the auditory, the cardiovascular, the digestive, the integumentary, the reproductive, the respiratory,
and the urinary system. In most cases reviewed, the biofilms were identified through various
imaging technics, in addition to other study approaches. The current knowledge on how biofilm may
contribute to the pathogenesis of disease indicates a number of different mechanisms. This spans
from biofilm being a mere reservoir of pathogenic bacteria, to playing a more active role, e.g., by
contributing to inflammation. Observations also indicate that biofilm does not exclusively occur
extracellularly, but may also be formed inside living cells. Furthermore, the presence of biofilm may
contribute to development of cancer. In conclusion, this review shows that biofilm is part of many,
probably most chronic infections. This is important knowledge for development of effective treatment
strategies for such infections.
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1. Introduction

Bacteria form biofilms as part of their survival mechanisms, and biofilms are thus ubiquitous
in nature. Already in 1683, Antoni van Leeuwenhoek observed and described biofilms by using his
primitive microscope on matter from his own teeth. However, the biofilm lifestyle of microorganisms
were of no interest to medical microbiologists until the early 1970s when Nils Høiby observed a link
between the etiology of a persistent infection and aggregates of bacteria in cystic fibrosis patients [1].
Since then, biofilms have been recognized to be involved in many clinical infections [2,3], and evidence
is accumulating that biofilms contribute to the pathogenesis, especially in chronic infections [4].

Bacterial biofilms are clusters of bacteria that are attached to a surface and/or to each other
and embedded in a self-produced matrix. The biofilm matrix consists of substances like proteins
(e.g., fibrin), polysaccharide (e.g., alginate), as well as eDNA. In addition to the protection offered
by the matrix, bacteria in biofilms can employ several survival strategies to evade the host defense
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systems. By staying dormant and hidden from the immune system, they may cause local tissue
damage and later cause an acute infection. Within the biofilm, the bacteria adapt to environmental
anoxia and nutrient limitation by exhibiting an altered metabolism, gene expression, and protein
production, which can lead to a lower metabolic rate and a reduced rate of cell division [3,5]. In
addition, these adaptations make the bacteria more resistant to antimicrobial therapy by inactivating
the antimicrobial targets or reducing the requirements for the cellular function that the antimicrobials
interfere with. During a biofilm infection, simultaneous activation of both innate and acquired host
immune responses may occur; neither of which are able to eliminate the biofilm pathogen, but instead
accelerate collateral tissue damage [6]. Consequently, biofilm-related diseases are typically persistent
infections that develop slowly, are rarely resolved by the immune system, and respond inconsistently
to antimicrobial treatments.

In this paper, we have reviewed the scientific literature on a number of diseases in the various body
systems suggested to be biofilm-related (Table 1), dental- and implant-related diseases not included.
The main focus is placed on the scientific evidence for the presence of biofilm in these diseases and
a possible role of biofilm in the pathogenesis. A growing amount of research deals with ways of
combating such biofilms. However, this is not considered to be within the scope of this review.

Table 1. Biofilm-associated diseases of different body systems and their affected organs.

Body System Affected Organs Disease

Auditory Middle ear Otitis media

Cardiovascular
Cardiac valves Infective endocarditis

Arteries Atherosclerosis

Digestive
Salivary glands Sialolithiasis (salivary duct stones)

Gall bladder Recalcitrant typhoid fever and
predisposition to hepatobiliary cancers

Gastrointestinal tract, especially
the small and large intestine

Inflammatory bowel disease
and colorectal cancer

Integumentary Skin and underlying tissue Wound infections

Reproductive
Vagina Bacterial vaginosis

Uterus and fallopian tubes Chronic endometritis

Mammary glands (breasts) Mastitis

Respiratory

Nasal cavity and paranasal sinuses Chronic rhinosinusitis

Throat, i.e., pharynx with tonsils and
adenoids, and larynx with vocal cords Pharyngitis and laryngitis

Upper and lower airways Pertussis (whooping cough) and
other Bordertella infections

Upper and lower airways Cystic fibrosis

Urinary Prostate gland Chronic bacterial prostatitis

Urethra, bladder, urethers, kidneys Urinary tract infections

2. The Auditory System

Otitis Media

Otitis media (OM) is defined as an inflammation of the middle ear cavity. It is one of the most
common causes of infection in pre-school aged children [7,8] and one of the most common causes of
antibiotic prescription and surgical intervention in developed countries [9]. OM can be subdivided
into acute OM (AOM), chronic supportive OM (CSOM), and OM with effusion (OME) [10]. These
conditions can lead to temporary or permanent hearing loss [11].



Antibiotics 2020, 9, 59 3 of 29

Predisposing factors associated with the development of OM have been extensively studied. One
is the anatomy of the Eustachian tube in infants and children <1 year of age. The tube has a shorter,
wider, and more horizontal course that promotes the transmission of otopathogenic bacteria from
the nasopharynx to the middle ear cavity, which increases the risk of OM [10]. Colonization of the
nasopharynx by otopathogenic bacteria such as Streptococcus pneumoniae, and non-typeable Haemophilus
influenzae (NT-Hi), in early childhood considerably increases the risk of subsequent episodes of AOM
and OME later in life [12,13]. Although these findings pointed toward bacteria being important in the
development of chronic otitis media, it was difficult to demonstrate residual bacterial colonization
due to negative cultures in research studies in the past [14]. In spite of these negative cultures, studies
were showing increasingly more evidences that bacteria were a part of the pathogenesis. Polymerase
chain reaction (PCR) demonstrated bacterial DNA in the absence of positive cultures [15,16]. Reverse
transcriptase-polymerase chain reaction (RT-PCR) showed metabolically active bacteria in the presence
of negative culture in patients with OME. This led to the hypothesis that biofilms were a part of the
pathogenesis of chronic otitis media and OME [17]. Later research found biofilms located in the middle
ear of both humans and animal models, by a variety of different modalities like scanning electron
microscopy and confocal laser scanning microscopy. Today, biofilms are generally considered a part of
the pathogenesis of OM [18–20].

During the last decade, biofilms have been demonstrated in different subgroups of OM. In children
with OME, bacterial aggregates indicating in vivo biofilms have been found in middle ear effusion.
This confirms that biofilms can also be formed in the middle ear fluid and not only on the middle ear
mucosa [21,22].

AOM is most common in children under 5 years of age [10]. Nearly 40% of the children have six
or more episodes of AOM [9]. An association between AOM and biofilm in the nasopharynx (NP)
has been suggested. Several studies have shown biofilms on the adenoids from children undergoing
adenoidectomy for sleep apnea, recurrent and chronic OM [23,24]. It has been suggested that bacteria
from the nasopharynx can detach and travel to the middle ear causing an acute infection [25]. This was
highlighted by Kaur et al. who found the same sequence type of NT-Hi in 31 of 34 children from the
NP and middle-ear fluid samples during an AOM [26].

Cholesteatoma is a condition where keratinizing squamous epithelium is trapped in the middle
ear and/or in the mastoid process where biofilms have been demonstrated [19,27–30]. One main theory
behind cholesteatoma formation is pneumatization failure and inflammatory conditions of the middle
ear and mastoid cavity, leading to reduced middle-ear pressure. This can lead to retraction pocket
formation, epidermal migration failure, and eventually cholesteatoma formation [31,32]. Since biofilms
have been demonstrated in the middle ear and mastoid process mucosa, and the fact that biofilms have
been linked to inflammatory changes in the mucosa and ventilation changes in the middle ear [33], one
hypothesis is that a biofilm infection could cause favorable conditions for cholesteatoma pathogenesis
and that cholesteatomas are favorable to biofilm [27]. Biofilms have been found in up to 81.3% of
cholesteatomas [19,27–30] supporting the hypothesis that the keratinized matrix may be a favorable
environment for biofilm formation. When a biofilm is established in a cholesteatoma it can lead to
relapsing infections with draining ear and a recalcitrant course, which is commonly observed in aural
cholesteatoma [27,32,34,35].

CSOM is a chronic inflammation of the middle ear and mastoid mucosa with a non-intact
tympanic membrane from which discharge (otorrhea) is present [36]. It is one of the most common
chronic infectious diseases worldwide, often occurring in the first 5 years of life and more common
in developing countries [36,37]. There have been several scientific papers demonstrating biofilms in
CSOM patients. These studies showed presence of biofilm in a range from 42% (in the mastoid mucosa)
to 92% (when the middle ear is included) and being significantly more than in the controls [28,35,38].
Saunders on the other hand, found biofilm in only one out of seven patients [30]. In patients with
recurrent OM (ROM), defined as three or more episodes in 6 months, biofilm was observed in 17 out of
20 children (21 out of 25 ears examined) in biopsies taken during undergoing tympanostomy tube
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placement [19]. Biofilms could be one reason for the relapsing nature for ROM and CSOM in spite of
the appropriate antibiotic therapy. Orally administered antibiotics do not reach the concentrations in
the middle ear that is needed to eradicate biofilms [39].

Tympanostomy tube placement is the most common surgical procedure in US children
beyond the newborn period [40], and is used to treat chronic OME and RAOM with middle ear
effusion [41]. Although the tube insertion are used in RAOM, it may be a cause of biofilm infection.
Post-tympanostomy otorrhea is a common complication and in one meta-analysis occurred in 26% of
patients (17% of intubated ears) during the intubation time [42]. One survey even found otorrea in 83%
in an 18-month period [40]. There have been several studies to demonstrate biofilms on tympanostomy
tubes [43,44]. Further to demonstrate the connection between biofilm and post-tympanostomy otorrhea,
a study of persistent otorrhea 9 out of 15 patients showed positive labeling of extracellular DNA
(eDNA) and integration host factor (IHF) in otorrhea samples indicating that biofilm may have a role
in persistent otorrhea [45]. Failure of topical antibiotic therapy and persistent otorrhea may lead to the
additional use of antibiotics and the need for tympanostomy tube removal [46,47].

3. The Cardiovascular System

3.1. Infective Endocarditis (IE)

The primary infection in endocarditis is a biofilm composed of both bacterial and host components
located on the cardiac valve. This biofilm causes disease in the following ways: (1) The biofilm
physically disrupts valve function, causing leakage when the valve is closed and turbulence as well as
diminished flow when the valve is open; (2) the biofilm provides a source for near-continuous infection
of the bloodstream that are difficult to remove by antibiotic treatment; (3) pieces of biofilm can break
off and be carried to a terminal point in the circulation causing the brain, kidneys, and extremities
particularly vulnerable to emboli.

It is generally accepted that biofilms is involved in infective endocarditis (IE) and it has been so for
several years since Costerton et al. recognized native valve endocarditis as a biofilm infection caused
by viridans group streptococci [2]. Treatment with antibiotics are often difficult even if the bacteria
are sensitive to the selected antibiotic. Successful treatment with antibiotics often require prolonged
intravenous administration. In cases where antibiotic treatment is unsuccessful, surgical excision and
replacement of the infected valve might be an option. Most of what is known about the pathogenesis
of endocarditis involving biofilms is learned from animal studies using rabbits [48]. The biofilm on the
valve consists primarily of bacteria and biofilm matrix components, platelets and fibrin derived from
the circulation. First the endothelial surface of the valve gets injured, second a formation of the sterile
clot like lesion of platelets and fimbrin occurs at the site of the injury. Then bacteria starts to adhere to
the thrombus before microcolonies are formed and lastly a mature biofilm is formed and pieces of the
mature biofilm can cause embolization [48,49].

The most commonly isolated microorganisms from IE cases are staphylococci, streptococci, and
enterococci. These species are responsible for more than 80% of IE cases. Electron microscopy is used
for identification of biofilm in relation to endocarditis [49]. Already before Costerton et al. recognized
endocarditis as a biofilm infection [2], Marrie et al. published a study in 1987 where bacterial colonies
embedded in a matrix material on valves of six IE cases were shown using electron microscopy [50].

To diagnose IE, the patient is evaluated for several different criteria called Duke criteria. The criteria
are based on clinical, echocardiographic, and microbiologic (blood culture) evaluation. However,
bacteria of the biofilm rarely enter the blood stream as planktonic bacteria, and for this reason the blood
culture may be negative when testing for microorganisms [51]. Consequently, immunodiagnostic
assays (ELISA) have been developed to detect serum antibodies against biofilm matrix components. For
example, an ELISA has been developed to detect antibodies against staphylococcal slime polysaccharide
antigens. To date, the ELISA assays developed do not have the sensitivity and specificity to alone
determine biofilm-associated infections [49].
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3.2. Atherosclerosis

In atherosclerosis, fatty deposits and calcium accumulate as plaques in the arterial wall. This
leads to reduced arterial elasticity, narrowed lumen of the artery, and subsequently to cardiovascular
diseases caused by reduced blood flow. In addition, sudden rupture of a plaque may be life
threatening [52]. A number of studies, including two recent meta-analyses, show that periodontal
disease and cardiovascular disease, including atherosclerosis, are significantly related [53]. Furthermore,
oral bacteria have been identified in the atherosclerotic plaques in several studies. However, it is not
known whether the bacteria are involved in initiation of plaque formation or colonize the plaques
after they are formed. Recently, bacterial biofilms in atherosclerotic arteries have been identified by
fluorescence microscopy and fluorescence in situ hybridization (FISH) [54,55]. This may indicate
biofilms to be involved in the pathogenesis of atherosclerosis, and it is hypothesized that the presence
of biofilm may contribute to enhanced risk of plaque rupture [55].

4. The Digestive System

4.1. Sialolithiasis

Sialolithiasis is a condition where calcified masses (called sialoliths or salivary stones) form within
a salivary gland. This can cause pain and swelling in about 0.5% of the general population. Earlier
studies have suggested that bacteria may be involved in sialolithiasis [56], and new studies now link
this to biofilm production. In a descriptive case-control study, sections of submandibular glands with
chronic obstructive sialadenitis were compared with those of healthy controls, using confocal laser
scanning microscopy [57]. Morphological evidence of bacterial biofilm was observed in half of the
histological sections of the chronic obstructive sialadenitis group, whereas no sign of bacterial biofilm
formation was seen in the control group. Interestingly, two recent studies report observations of biofilm
structures in the center of the stones, thus indicating that biofilm formation may be part of the etiology
of salivary stone production [58,59]. Fusconi et al. observed structures resembling bacterial cells
embedded in amorphous material, when investigating the stones by scanning electron microscopy [59].
Furthermore, the presence of bacterial DNA was demonstrated by qPCR. In a later study, Kao et al.
reported light and scanning electron microscopy observations of biofilm together with host immune
cells, platelets, and erythrocytes, as well as calcium nanoparticles [58]. They proposed a hypothesis
where biofilm formation leads to local injury, followed by inflammation and calcium deposition.

Biofilm formation has also been observed on the surface of salivary stones. In a study on 54 patients
with sialolithiasis, biofilm was observed on 71% of the removed stones by fluorescence microscopy,
and common oral bacteria were found on half of the stones [60]. The observation that bacterial biofilms
were found in 75–100% of patients with clinical post-operative infections, recurrent sialadenitis or
pus drainage, indicates that the presence of bacterial biofilms may contribute to more severe cases
of sialadenitis.

4.2. Recalcitrant Typhoid Fever and Predisposition to Hepatobiliary Cancers

Typhoid fever is an acute food borne illness, predominantly caused by Salmonella enterica serovar
Typhi that is often characterized by high fever, weakness, headache, abdominal pain, and constipation.
Untreated, serious complications may arise, including intestinal bleeding, bowel perforation, septicemia,
meningitis, and death [61,62]. There were an estimated 21.7 million cases of typhoid fever worldwide
in 2000, resulting in approximately 217,000 deaths [63]. Three to 5% of typhoid fever patients become
chronic carriers after the acute phase of the illness [64–66]. These chronic carriers are generally
asymptomatic and constitute an important reservoir of bacteria that can shed in feces and urine and
thereby spread the disease. The chronic carrier state, in which S. Typhi is typically detected in the
gall bladder, is often associated with pre-existing hepatobiliary disease and approximately 90% of
chronic carriers have gall stones [61,64,67,68]. Complications related to chronic carriage of S. Typhi
include hepatitis, cholecystitis, cholangitis, chronic diarrhea, and pancreatitis as well as hepatobiliary
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carcinomas [62,69]. Antibiotic treatment generally resolves the acute infection, but it is often ineffective
against the chronic colonization of the gall bladder by S. Typhi [64,70].

There are indications that chronic colonization of the gall bladder by S. Typhi, involves attachment
and invasion of epithelial cells and biofilm formation on gall stones [48,71,72]. Consistent with this,
S. Typhi was observed to cover a large part of the surface of gall stones in patients presenting with
colilithiasis and asymptomatic typhoid carriage (Figure 1) [73]. This is in agreement with in vitro
studies that showed biofilm formation by S. Typhi on human gall stones, in a medium supplemented
with bile [74,75]. Recent studies indicate that both the host and the bacteria adapt to the chronic gall
bladder infection. The host immune response changes from an early pro-inflammatory response to
a later anti-inflammatory response [76] whereas S. Typhi adapts to the gall bladder environment by
increasing the biofilm forming ability and the capacity for persistence and simultaneously reducing the
ability to cause acute infections [77,78]. It has also been shown that S. Paratyphi A can persist in the
gallbladder [79] and accumulating evidence indicate a role for non-typhoidal Salmonellae in persistent
infections. Bacteria, other than salmonellae, can occasionally be detected in gallbladder tissues, but
gallstones from these patients are generally not covered by bacterial biofilms [73]. This is consistent
with the experiments showing that many bacteria causing acute gallbladder infections do not form
biofilms on gallstones in the presence of bile [73,80].
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Figure 1. Gallbladder stones from an asymptomatic typhoid carrier in Mexico City support biofilm
formation. SEM micrographs show S. Typhi embedded in biofilms on the surfaces of gallstones at
magnifications of 1500× (A), 2000× (B), 2400× (C), and 16,000× (D). R.W. Crawford et al. [73].

Studies performed in a murine gall stone model using S. Typhimurium support a role of biofilm
formation in the gall bladder in the chronic typhoid carrier state. Mice with diet-induced cholelithiasis
had a higher number of Salmonellae associated with the gallbladder epithelium and bile compared to
gallstone negative controls and this was associated with increased fecal shedding [72,73]. In addition,
biofilms covering approximately half the surface of gall stones that were isolated from mice 21 days
post infection were detected by scanning electron microscopy. Using the murine gallstones model
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Gonzales et al. showed that S. Typhimurium was more resistant to antibiotic treatment in mice fed
a cholelithiasis-inducing diet compared to mice fed a standard diet [81]. These experiments mimicking
the chronic carrier state support an important role for biofilms in recalcitrance of chronic S. Typhi
infections to antibiotic treatment and are consistent with clinical data [70,82,83].

4.3. Inflammatory Bowel Disease and Colorectal Cancer

In healthy people, a protective mucosal layer covers the colon epithelium and separates it from
the luminal microbiota. Breaches in this protective layer result in increased contact between microbes
and the epithelial cells, which can result in biofilm formation on the epithelium. These changes
constitute a pathogenic state that has been implicated in development of inflammatory bowel disease
(IBD). Studies also suggest an association between colonic biofilm formation, dysbiosis and colorectal
carcinogenesis [84–86].

IBD (ulcerative colitis and Crohn’s disease) is characterized by chronic inflammation of the
digestive tract. Common symptoms are pain, diarrhea, weight loss, and fatigue. Furthermore, patients
suffering from IBD have a 10–30% cumulative risk of developing colorectal cancer (CRC) within
30 years after the onset of IBD [87]. IBD has been linked with occurrence of biofilms adhering to the
epithelium and dysbiosis of mucosa-associated bacteria that result in stimulation of an inflammatory
response. This might be associated with failure of maintaining the integrity of the mucosal barrier
resulting in a reduced ability to clear the infection [88]. Using fluorescence in situ hybridization (FISH)
and fluorescence microscopy two log higher numbers of bacteria were detected associated with the
mucosa of patients with IBD compared to patients with irritable bowel syndrome (IBS; a disease not
generally associated with intestinal inflammation) and healthy controls [89]. In addition, the density
of bacteria associated with the mucosa has been shown to be significantly higher in patients with
intestinal inflammation [88]. Bacteria adhering to colonic epithelium were detected in IBD patients only,
and these biofilms were dominated by Bacteriodes fragilis [89] and Enterobacteriaceae [88]. In contrast,
mucosa-associated biofilms with different species composition compared to the IBD associated biofilms
were sporadically detected in healthy controls and IBS patients [89]. Several studies have detected
higher incidence of Escherichia coli in patients with IBD compared to healthy individuals [90] and
although biofilms were not demonstrated in vivo, the isolates were isolated from biopsies after removal
of the mucosal layer, indicating adherence to the colonic epithelium and the isolates displayed biofilm
forming capacity in vitro [90].

Colorectal cancer (CRC) is one of the most common cancer forms worldwide in both males and
females [91]. It is generally considered that CRC develops from normal colorectal epithelium as a result
of accumulating genetic mutations and epigenetic changes as described by the adenoma-carcinoma
sequence model [92]). Accumulating evidence from studies comparing the colonic microbiota
compositions of CRC-patients and healthy individuals indicates that CRC is associated with microbial
dysbiosis, which is associated with an aberrant inflammatory response ([93,94]).

Based on the adenoma-carcinoma model and the accumulating microbiota data, Tjalsma et al.
suggested a bacterial driver-passenger model for CRC [95]. In this model, certain bacteria that are part
of the normal microbiota can facilitate DNA damage in epithelial cells that may result in initiation of
CRC (bacterial drivers). Biological changes that occur during tumorigenesis result in changes of the
microenvironment that favor colonization by opportunistic bacteria (bacterial passengers). The new
microenvironment provided by the tumor may result in that the bacterial drivers are eventually
outcompeted by bacterial passengers [95]. Recent evidence indicates an important role of biofilms in
the colorectal carcinogenesis and Li et al. have suggested that biofilms may be regarded as a driver in the
adenoma-carcinoma sequence at an early stage of carcinogenesis [85]. It is currently not known exactly
how biofilms influences carcinogenesis, if a specific species is responsible or if it is due to sequential or
synergistic activities of different members of the microbial community. However, it has been suggested
that accumulation of pro-inflammatory species affects the normal processes of the colorectal epithelium
leading to disturbed regulation of inflammation, apoptosis, and cell proliferation. In fact, there are
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a number of species that have been shown to directly affect these processes. Toxigenic B. fragilis has
been proposed as an initiator of colorectal cancer due to its ability to disturb the epithelial homeostasis
and influence cell proliferation [96,97]. Increased levels of enteropathogenic E. coli (EPEC) have been
detected in tumors and certain strains have been shown to produce toxins that can induce double
strand breaks and cause chromosomal instability [97,98]. Simultaneous colonization of tumor prone
mice by toxin-producing B. fragilis and E. coli resulted in increased DNA damage, faster initiation of
tumorigenesis, and greater mortality compared to mice colonized with either species alone, suggesting
a potential link between a tumorigenic microbiota and early neoplasia of the colon [97]. Fusobacterium
nucleatum can influence both inflammatory processes and cell proliferation. It is often found enriched
in tumor tissues, and high numbers of F. nucleatum correlates with poor prognosis [85,99], however
F. nucleatum may not be involved in the early stages of carcinogenesis, but may be involved in cancer
progression [100,101].

Polymicrobial biofilms adhering directly to the epithelium were detected in colorectal tumors
by SEM and FISH [102]. Biofilms were detected in 89% of right-sided tumors compared to 13% of
left-sided tumors. Right-sided and left-sided tumors also differ in microbiota composition, molecular
characteristics, response to chemotherapy, and prognosis; however it is not clear how these aspects
are connected (reviewed by Kim et al. [103]). Tomkovich et al. recently reported that human colon
mucosal biofilms were carcinogenic in murine CRC-models, whether the biofilm associated microbiota
were from CRC-patients or healthy individuals [104]. Yu et al. detected biofilms associated with CRC,
adenomas, and polyps by SEM, FISH, and fluorescence microscopy and found that the prevalence
of F. nucleatum was significantly higher in biofilms from CRC than the other sample groups [105].
Although a connection between the composition of the colorectal microbiota and CRC is becoming
increasingly evident, more research is needed to determine the exact role of the microbial community
of the biofilm and its constituting species in carcinogenesis.

5. The Integumentary System

Wound Infections

Wounds are damaging to living tissue caused by e.g., a trauma like cuts, abrasions, burns, and
surgery, or as a consequence of underlying illnesses such as diabetes. Most wounds that contain
microorganisms heal successfully. However, sometimes microorganisms, and particularly bacteria,
multiply, healing is disrupted and wound tissues are damaged resulting in an infection [106,107]. Both
chronic and acute wounds are susceptible to infection as a result of the loss of the innate barrier function
of the skin and dermal appendages [108]. It is generally accepted that chronic wound infections
harbor several different microorganisms and the number of species are thought to be underestimated
because of the limitations in culturing techniques. To circumvent this problem, molecular methods
can be used to identify viable, but non-culturable bacteria. Also novel microscopy techniques, like
e.g., confocal scanning electron microscopy, fluorescence microscopy, and electron microscopy, can
be used both in the visualization and to identify bacteria in wounds [108,109]. Chronic wounds can
be colonized with several different bacterial species whereas Staphylococcus aureus is most commonly
isolated [110]. Aerobic bacteria, like S. aureus, S. epidermidis, and Pseudomonas aeruginosa, are often
found on the surface of chronic wounds while anaerobic species are predominant in deeper tissue [111].
The anaerobic bacteria that predominate chronic wounds of both humans and animals are Bacteroides
spp., Fusobacterium spp., Peptostreptococcus spp., as well as Clostridium spp. [108].

As for other bacterial infections, it has historically been assumed that wound infections are caused
by planktonic bacteria. More recently, researchers have suggested that chronic wound infections are
due to the biofilm mode of growth of the bacteria [2,48]. This idea is supported by recent studies
that have demonstrated that chronic wound infections in fact are biofilm infections and observations
indicate the presence of biofilms also in acute infections [4,111,112].
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It is claimed that bacterial biofilms are located on the surface of wounds and they have been
implicated in the failure of wound healing and contribution to chronic inflammation [108]. For instance,
it has been suggested that P. aeruginosa may significantly contribute to inflammation of the wound by
producing rhamnolipids [108]. Biofilm has been postulated to be the reason why wounds like e.g.,
venous leg ulcers and pressure ulcers often develop into chronic stages [108].

The first scientific study that showed a link between biofilm and wound infections, analyzed the
biofilm forming ability of a burn wound isolate of P. aeruginosa in vitro using light microscopy [113].
Later, most evidence that wound infections are biofilm related has been shown by different advanced
microscopy methods. The study by Bjarnsholt used confocal laser scanning microscopy and a specific
peptide nucleic acid- fluorescence in situ hybridization probe to visualize P. aeruginosa biofilm in
non-healing chronic wounds [4]. The study by Davis et al. used light microscopy, scanning electron
microscopy, and epifluorescence microscopy to look for biofilm-like structures in biopsies from wounds
on pigs infected with S. aureus [112]. A study by James et al. examined biopsies from both acute
and chronic wounds using electron microscopy. They found that as many as 60% of chronic wounds
contained biofilm, as opposed to only 6% of acute wounds [111]. Lately also an international consensus
for clinical indicators of wound infection and biofilm has been published [114]. A total of 14 experts
agreed on a list of ten clinical indicators of possible biofilm in a wound, including failure of antibiotic
treatment and delayed healing in spite of optimal wound management.

Biofilm infections in wounds are also frequently evaluated macroscopically because of the absence
of advanced microscopy equipment and knowledge in clinics. Using macroscopic examination of
slough in a wound combined with microscopy of the wound slough has been suggested as a clinical
marker of biofilm. Other markers such as a “shiny or sheen” appearance of a wound has also been
used as an indication that biofilm is present. These macroscopic observations have the limitation of
being highly subjective [108]. A rapid and easy to perform method to diagnose biofilm infections in
wounds is needed.

6. The Reproductive System

6.1. Bacterial Vaginosis

Bacterial vaginosis (BV) is the most common genital tract infection in women during their
reproductive years, and tends to have a high rate of relapse and recurrence [115]. Typical for BV
are increased numbers of anaerobic bacteria like Gardnerella vaginalis, Atopobium vagnae, and others
accompanied by decreased numbers of protective lactobacilli [116].

Interestingly, since early 1980s one of the criteria used to diagnose BV in clinical practice has been
the presence of so called “clue cells”, i.e., epithelial cells covered with bacteria [117]. However, it was
not until the studies of Swidsinski et al. thirty years later that the clue cells were finally understood
to be desquamated biofilm-coated epithelial cells [118]. In this study, they found that an epithelial,
multispesies biofilm dominated by G. vaginalis was present in as many as 90% of the BV vaginal
biopsies [119]. Currently, it is generally agreed that BV involves the presence of a dense, structured,
and polymicrobial biofilm, primarily constituted by G. vaginalis clusters strongly adhered to the vaginal
epithelium [116]. G. vaginalis is probably the first species to adhere to the vaginal epithelium creating
a scaffold for other species to adhere [120].

G. vaginalis may also be present in the vagina of “healthy” women and sexually inexperienced
women and does not necessarily cause BV. Studies by Swidsinski et al. on G. vaginalis in urine, showed
that the bacteria were attached to desquamated epithelial cells in all patients with proven BV and
their partners, and dispersed when it was present in urine of healthy controls [121]. Furthermore,
pathogenic strains displayed higher in vitro phenotypic levels of virulence traits like cytotoxicity,
adherence, and biofilm production than commensal strains [122]. This might indicate genetic differences
between pathogenic and commensal G. vaginalis strains. However, recent transcriptome studies have
suggested that G. vaginalis is able to exhibit different phenotypes through large changes in gene
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expression [123], and studies on mixed biofilms indicate that expression of G. vaginalis virulence
genes may be significantly influenced by other bacterial species in the biofilm [124]. Consequently,
the composition of the biofilm may also influence the pathogenesis. Accordingly, Verstraelen and
Swidsinski suggest that “environmental pressures or ecological disturbances of the vaginal niche might
be a more determining factor in biofilm formation and development of bacterial vaginosis in a given
woman, than Gardnerella genotype alone” [120].

6.2. Chronic Endometritis

The uterus has traditionally been assumed to be free of bacteria, but recent studies have identified
a functional microbiome of the endometrium under physiological conditions [125,126]. Lactobacillus
was found to be the most abundant followed by Gardnerella, Prevotella, Atopobium, and Sneathia. In
approximately 20% of the women investigated, the bacterial community varied greatly from that of
the vagina, suggesting that the endometrial and vaginal microbiota are not necessarily identical [127].
In chronic endometritis (CE), the endometrial mucosa may be colonized by common bacteria like
Enterococcus faecalis, E. coli, G. vaginalis, Klebsiella pneumoniae, Proteus spp., P. aeruginosa, Staphylococcus
spp., and Streptococcus. spp. [128,129]. The prevalence of CE has been estimated to be 19% in the
general population and 45% in infertile patients [125]. However, because CE is often asymptomatic, it
is seldom suspected and diagnosed.

Swidsinski et al. found that a structured polymicrobial G. vaginalis biofilm present in BV often
was accompanied by a similar biofilm in the endometrium or the fallopian tubes (Figure 2) [130].
Such biofilms were not found in any of the women without bacterial vaginosis. However, the clinical
significance of these endometrial biofilms is still not clear.
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Studies performed in horses may shed more light. Bacterial endometritis is an important cause of
subfertility in mares, contributing to a major economic loss for the equine industry [131,132]. Ferris et
al. used an in vivo model of infectious endometritis where the mares were inoculated with equine
P. aeruginosa isolates isolated from clinical cases. Bioluminescence imaging of the endometrium
displayed focal areas with bacteria surrounded by a “biofilm-like” matrix [133]. Furthermore, the
biofilm matrix component Pel and the biofilm-regulatory molecule cyclic di-GMP were detected in
such areas. [134]. These observations support the hypothesis of biofilm formation in the uterus by
clinical strains.

In addition, Ferris et al. made some interesting observations on the local immune responses
in their model. Although inflammatory cells were observed both in areas with and areas without
adherent bacteria, neutrophils were decreased and gene expression of the immune-modulatory cytokine
interleukin-10 was increased in the areas with biofilm. Whether this modulation of the host immune
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response is actively caused by the biofilm bacteria, or by the immune system’s reaction to the biofilm
structure, is not known.

6.3. Mastitis

Mastitis is an inflammatory condition of the mammary gland primarily occurring during lactation.
The WHO estimates a global prevalence of approximately 10% of breastfeeding women [135]. S. aureus
is considered to be the main etiological agent of infectious mastitis, whereas coagulase-negative
staphylococci (CNS), E. coli and streptococci may also be found. The number of studies dealing with
the microbiological aspects of human mastitis is low, especially compared with the vast amount of
studies on mastitis in dairy animals. In cattle, mastitis is one of the most frequent and costly diseases
in the dairy industry [136]. Also in dairy animals, S. aureus is the main pathogen. Other bacteria
associated with mastitis are S. agalactiae (causing contagious mastitis), CNS, E. coli, Klebsiella spp.,
Enterobacter spp., Citrobacter spp., S. dysgalactiae, S. uberis, enterococci, and Pseudomonas spp. Chronic
and recurrent infections are frequent.

The mechanism of persistence of S. aureus in its host is still not fully understood. S. aureus has
been shown to be able to adhere to and internalize into mammary gland epithelial cells in vitro [137].
Intracellular cocci have also been demonstrated in mammary epithelial cells of infected mice, cultured
mammary epithelial cells from cows, and epithelial cells isolated from mastitic milk (reviewed by [138]).
Invasion may be a way to evade host defenses in vivo. Biofilm formation might be another.

Direct evidence that biofilms are involved in the pathogenesis of mastitis is scarce. However,
an in vivo study by Hensen et al. with microscopic examination of S. aureus in mammary tissue did
indicate the presence of biofilm [139]. Both in the early and chronic stages of infection, clusters of
S. aureus was observed in the lumen of alveoli or lactiferous ducts, in association with the epithelium.
The clusters appeared approximately 24 h after exposure to the pathogen, and polymorphonuclear
neutrophils were also often present.

In vitro, both lactose and milk have been shown to increase biofilm formation by S. aureus [140,141].
For CNS, a positive correlation between biofilm formation and days in milk was observed, and CNS
isolated later in the lactation were better biofilm formers than those isolated earlier [142]. On the other
hand, Simojoki et al. found no association between CNS biofilm formation in vitro and the persistence
or severity of mastitis in vivo [143].

Bap is a surface protein involved in biofilm formation, and studies on the presence and expression
of the bap gene may contribute to elucidate a possible role of biofilm in mastitis pathogenesis. The bap
gene has been identified in up to 25% S. aureus isolates and up to 95% of CNS isolates from bovine
mastitis [144,145], and up-regulation of the bap gene with the presence of low concentrations of milk or
lactose in the growth medium has been shown in vitro [141,146]. Zuniga et al. studied the presence of
genes encoding Bap and a group of adhesins in staphylococci isolated from subclinical mastitis [147].
The median somatic cell counts, which are markers of sub-clinical mastitis, were higher in milk
samples where the bacteria had the bap gen and the adhesin genes eno, fnbA, fib, than in samples with
staphylococci without these genes. Thus, the presence of biofilm may contribute to a higher intensity
of the inflammatory process. In a study on sub-clinical S. aureus mastitis, bap-positive isolates were
observed to be more able to colonize and persist in the bovine mammary gland in vivo, and anti-Bap
antibodies in the serum confirmed that Bap was produced during infection [146] Interestingly, Bap
promoted adhesion and prevented entry of S. aureus into epithelial cells in vitro, whereas Bap deficient
bacteria displayed increased invasion into mammary gland epithelial cells in a lactating mice mastitis
model [148]. Altogether, these results may indicate that biofilm formation is correlated with persistence
of S. aureus in the bovine intramammary gland.

Another indication of the possible contribution of biofilm to the pathogenesis of mastitis is seen in
vaccination studies. When mice immunized with formalin-killed biofilm S. aureus were compared to
those immunized with formalin-killed planktonic bacteria, they showed significantly lower S. aureus
colonization, as well as less severe clinical symptoms and tissue damage in mammary glands, [149].
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Likewise, in a sheep mastitis vaccination study, crude bacterial extracts from strong biofilm formers
gave the highest production of antibodies and the best protection against infection and mastitis, when
compared with extracts from weak biofilm formers and controls [150].

7. The Respiratory System

7.1. Chronic Rhinosinusitis (CRS)

Rhinosinusitis (RS) is an inflammation of the nose and the paranasal sinuses, characterized by
nasal blockage, obstruction, congestion, or nasal discharge. Additional symptoms may include loss of
smell and facial pain and pressure. According to the duration of the disease, it can defined as acute
when lasting less than 12 weeks, or chronic when lasting more than 12 weeks [151]. Viruses account for
up to 80 to 90% of the acute RS, and the most commonly involved viruses are rhinovirus, respiratory
syncytial virus, influenza virus, coronavirus, parainfluenza virus, adenovirus, and enterovirus. The host
immune response to a viral infection consists of non-specific and specific components, which will
eventually eliminate the invading agent, but also generate dead epithelial and immune cells, creating
an environment opportune for secondary bacterial infections. During viral infection in chronic RS,
a similar inflammatory process can occur as in acute RS [152,153].

The presence of biofilms in CRS patients, as well as in animal models, has been reported in
a relatively large number of studies, mainly using scanning electron microscopy and confocal laser
microscopy on biopsies (Figure 3) [154–156]. Biofilms have also been identified in healthy controls,
although to a lesser extent than in CRS patients [157].
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Figure 3. (a) Biofilm positive samples taken from the lateral side of concha media visualized by
confocal scanning laser microscopy (Leica TCS SP2 AOBS) and (b) live/dead-staining (Invitrogen’s
LIVE/DEAD BacLight™, Invitrogen, Burlington, Canada). Epithelial cells are red, and the bacteria are
green. Biofilms were scored when clusters of bacteria with intact membranes were present in both the
x-y and x-z axes. Courtesy of Dr. Kjell Arild Danielsen.

Once established, biofilms may induce changes in the mucociliary blanket like destruction of
the epithelial layer and absence of cilia, and a local inflammatory response [158–161]. This suggests
epithelial damage being a part of the pathogenesis of biofilm-associated CRS. Interestingly, a study of
CRS patients by Tan et al. indicated a link between intracellular S. aureus and biofilm colonization [162],
indicating that biofilm also can facilitate cellular invasion by pathogens.

The clinical relevance of biofilms in the pathogenesis of CRS has been demonstrated in several
studies. The presence of biofilm has been associated with worse pre-operative radiological scores and
post-operative outcome, as well as higher risk of recurrence [163–166]. S. aureus biofilm in particular
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appears to be more pathogenic than other bacterial species, and this has been suggested to be due to
a severe local inflammatory response to S. aureus superantigens [167].

Colonization in the form of biofilm seems to have a different function in the pathogenesis
of S. pneumoniae infections. The human nasopharynx is the main reservoir for S. pneumoniae and
pneumococcal colonization always precedes infection [168]. Striking differences between biofilm
residing and dispersed pneumococci indicate that the biofilm phase serves as a non-pathological
reservoir. In mouse models, dispersed bacteria displayed inflammatory infiltration, whereas biofilm
pneumococci were quickly cleared from the blood without causing invasive disease [169,170]. These
observations correspond with gene expression studies where the dispersed cells displayed a higher
expression of virulence, stress-response, and bacteriocin production/excretion genes than their biofilm
residing counterparts [170].

7.2. Pharyngitis and Laryngitis

Pharyngitis, or sore throat, is a very common condition. Most cases are viral, but 10–25%
are caused by bacteria. The tonsils and adenoids are lymphoid structures, and recurrent bacterial
infections may result in hypertrophy of the tonsillar or adenoid tissue [171]. S. aureus, Haemophilus
spp., and Streptococcus spp. are the most common bacterial causes.

Biofilms have been identified in situ after adeno- and tonsillectomy in several studies, using scanning
electron microscopy, confocal microscopy, and light and transmission electron microscopy [23,172–176].
Whether biofilm also can contribute to development of clinical symptoms is uncertain, although a couple
of studies may indicate an association between the presence of biofilms and chronic inflammation.
Al-Mazrou and Al-Khattaf found that biofilms were present in a significantly higher proportion of
patients with chronically inflamed tonsils and adenoids than in patients with obstruction [172]. Diaz et al.
report that symptoms like harsh raucous sound, tonsillar, and adenoids hypertrophy, apnea, and cervical
adenopathies were related to the presence of biofilm in tonsils [174].

Interestingly, studies indicate that adenoid biofilms may also serve as reservoirs for infections
in other parts of the respiratory system, as well as in the middle ear. Children with recurrent
acute OM were found to have large parts of their adenoid mucosa covered with polymicrobial
biofilms containing middle ear pathogens [177]. Similar findings have been reported in children with
CRS [178]. On the other hand, in vitro experiments showed that when epithelial cells were covered
by S. oralis and S. salivarius biofilms, the cells were protected from GAS adherence, internalization,
and cytotoxic effects [179]. This may indicate protective effects by biofilms produced by such respiratory
tract streptococci.

Chronic laryngitis is believed mainly to be non-infectious, and this may be the reason for the
sparse research activity on biofilm in relation to this disease. However, when investigating true vocal
fold biopsies with confocal scanning laser microscopy and PCR, biofilm was found in 62% of the
patients with chronic laryngitis, but only in 20% of the controls, thus supporting a hypothesis that
chronic laryngitis also may be biofilm related [180].

7.3. Pertussis and other Bordertella Infections

Pertussis, also called whooping cough, is a highly contagious disease, which for decades has been
controlled by mass vaccination. Unfortunately, we now observe a resurgence. Pertussis is mostly
caused by Bordetella pertussis, but also to some extent by human associated B. parapertussis. Both are
human-specific pathogens, which most likely have evolved from B. bronchiseptica or a common ancestor.
B. bronchiseptica, on the other hand, infects a number of mammal species, including humans, mostly
leading to a chronical, subclinical infection. In addition, it causes infectious respiratory disease in dogs
and atrophic rhinitis in pigs [181].

Bordertella biofilms have been demonstrated in mouse models (reviewed by [182]). In both a nose
and a trachea model, distinct architectural features adherent to ciliated epithelium were observed; in
the form of mats, towers or pillars for B. bronchiseptica, and clusters and macrocolonies for B. pertussis.
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Furthermore, Cattelan et al. observed an association between increased biofilm formation by B. pertussis
and higher levels of bacterial colonization in the nose and trachea of mice [183]. Direct observations of
B. pertussis biofilm in humans have not been reported, but abundant extracellular Bordetellae were
observed in respiratory tissue samples from 15 infants who had died from confirmed B. pertussis
pneumonia [184].

Several other data support the notion of biofilm being present in whooping cough. During the
biofilm lifestyle, increased production of the surface-associated B. intermediate protein A (BipA) can
be observed. Expression of the bipA gene has also been shown during respiratory tract infection of
mice, and anti-BipA antibodies were present in whooping cough patients [185]. When mice were
vaccinated with BipA, colonization of the lungs was significantly reduced, and antibodies to BipA
were found to opsonize bacteria. Promising results in a murine model have also been obtained with
vaccines with other biofilm antigens like BamB and LptD [186]. Consequently, specific biofilm proteins
may be candidate antigens for improved pertussis vaccines.

7.4. Cystic Fibrosis (CF)

CF was the first infection where biofilm was recognized as part of the etiology, and is probably the
most thoroughly studied biofilm infection to date [187]. CF is a genetic disease primarily affecting the
respiratory and the digestive system, and is characterized by production of viscid mucus and chronic
infections. Lung infection is the main cause of morbidity and mortality [188]. In young patients,
primarily S. aureus and H. influenzae colonize in the airways. P. aeruginosa dominates at later stages,
although other bacterial species also have been seen to form biofilm in the lungs of CF patients [189].

H. influenzae in biofilm-like structures have been observed in lung lavage samples from children
with CF [190]. Furthermore, clinical isolates formed biofilms on the apical surface of airway epithelium
in vitro, and this stimulated epithelium to increased secretion of factors that mediate inflammation.

Colonization with P. aeruginosa often starts with biofilm in the paranasal sinuses, which serves
as reservoirs for repeated lung infections that finally become chronic. P. aeruginosa biofilm has been
observed in lung tissue, lung abscess, and sputum of CF patients [191–194]. Microscopic analyses have
shown that P. aeruginosa in sputum grows as microcolonies adherent to sputum components [195]. In
response to the presence of biofilm, large numbers of polymorphonuclear leukocytes (PMNs) infiltrate
the area, producing a chronic inflammation with subsequent tissue damage, loss of lung function, and
obstruction of the airways. The metabolic activity of bacteria and cells consume available oxygen and
produce anerobic conditions [195], which unfortunately seems to favor the biofilm mode of P. aeruginosa
even more [196].

Diagnostic criteria for P. aeruginosa biofilm infection in CF patients are recommended in the
ESCMID guideline for the diagnosis and treatment of biofilm infections of 2014 [197]. One criterion is
the detection of bacterial aggregates embedded in an alginate-including matrix in sputum or other
samples from the lower airways. Mucoid growth with hyperproduction of alginate by bacteria isolated
from lung tissue and sputum is also considered diagnostic for biofilm infection (Figure 4). The presence
of alginate in sputum is a good indication. Serum IgG antibodies to P. aeruginosa antigens, including
the major biofilm matrix component alginate, is usually present. Likewise, sIgA in saliva or in the
mucosa of the paranasal sinuses indicates biofilm in this location.
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8. The Urinary System

8.1. Chronic Bacterial Prostatitis

Bacterial prostatitis (BP) generally presents with urinary tract infection (UTI), pain in the pelvic
and genital region, and occurrence of bacteria in expressed prostatic secretions. Acute BP may
result in complications such as reduced fertility, bladder infections, prostatic abscesses, urosepsis,
and death. The disease can also progress to chronic prostatitis (CP) or chronic pelvic pain syndrome
(CPPS) [198,199]. If symptoms of bacterial prostatitis last for more than 3 months, it is considered
to be chronic bacterial prostatitis (CBP). Similar to UTI, the species most commonly associated
with BP are E. coli, Proteus mirabilis, P. aeruginosa, Klebsiella spp. and other Enterobacteriaceae as
well as E. faecalis [199–201]. Pathogenesis of CBP has been suggested to involve biofilm-forming
bacteria [202–205]. This hypothesis is based on the observations that bacteria can persist in the prostate
for long periods of time, a high percentage of cases are refractory to treatment with antibiotics [200,202],
and even when the treatment is successful, as judged by negative microbiological tests, symptoms may
remain [202]. A few studies support the involvement of biofilm forming bacteria in the pathogenesis
of CBP. Nickel et al. used an animal model of experimental BP and showed that chronic symptoms
correlated with the presence of glycocalyx-enclosed bacterial microcolonies inside the ducts and acini
of the prostate [206]. Occurrence of microcolonies seemed to be associated with a chronic inflammation
of the gland. In support of this finding; scanning electron microscopy of prostate calcifications
from patients with CBP showed structures reminiscent of bacterial microcolonies on the surface of,
and embedded in, the calcifications [205,207]. These observations were associated with isolation
of bacteria, from the surface of calcifications, with the potential to form biofilms in vitro [207]. In
addition, prostatitis appears to be correlated with occurrence in urine of E. coli with high capacity
to form biofilm in vitro [203,204]. However, biofilm formation may not be the only explanation for
persistent bacterial infections in the prostate. Uropathogenic E. coli (UPEC) strains, which are often
isolated from BP-patients, can invade prostate cells in a mouse model (NOD and C57BL/6J mice) as
well as in cultured RWPE-1 and PEC-1 cell lines [208,209]. In the mouse model, the UPEC strains were
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able to proliferate within the epithelial cells following invasion, and although the effect was strain
dependent, the infection could induce and sustain pelvic pain in the NOD mice [209]. UPEC strains can
also invade bladder epithelial cells, proliferate and form matrix-enclosed biofilm-like structures that
has been referred to as intracellular bacterial communities (IBC) [210,211]. Interestingly, the invasive
capacity of different UPEC strains into the prostate cell line RWPE-1 correlated with both the ability
to adhere to epithelial cells and the capacity to form biofilm on a plastic surface, in vitro [208] and
similar results were observed with an adherent/invasive E. coli (AIEC) strain, which is highly similar to
UPEC, isolated from an ileal lesion in a Crohn’s disease patient [212]. It is therefore possible, but to our
knowledge has not been demonstrated, that bacteria can persist in the prostate using a similar strategy.
More research is needed to understand the pathogenesis of chronic bacterial prostatitis and if bacterial
persistence involves biofilm formation.

8.2. Urinary Tract Infections (UTI)

UTIs are very common infections in humans and occur when bacteria, often from the rectum and
perineum, enter the urethra and colonize the urethra, bladder, ureters, and/or kidneys. Symptoms
depend on the anatomical location of the infection and generally include urinary frequency, urgency,
dysuria, and/or pain in the lower abdominal region. Systemic symptoms and sepsis may occur,
especially in infections involving the kidneys. A urinary tract infection often clears up on its own
within a few days or after a short course of antibiotic treatment, but the relapse rate is high. The etiology
of these chronic, or recurrent, urinary tract infections is not fully understood and has been attributed
to reintroduction of bacteria via the rectal-peritoneal route, or from a vaginal reservoir. However,
a growing body of evidence suggests involvement of a persistent infection in the bladder due to
IBC [213–219].

IBC were first described in a mouse model using an immunosuppressed mouse strain and
UPEC [210], the primary UTI-pathogen accounting for 70–95% of cases. Scanning electron microscopy,
transmission electron microscopy, and confocal laser scanning microscopy combined with fluorescently
labeled bacteria and specific staining methods for type I fimbriae and polysaccharides revealed large
protrusions on the urothelium which consisted of bacterial populations surrounded by a matrix of
polysaccharide and fimbrial proteins that were not localized to specific organelles [210]. These results
indicate bacterial biofilm formation inside the bladder epithelial cells. IBC can facilitate bacterial
immune evasion as shown by video microscopy where luminal bacteria of the bladder were consumed
by neutrophils whereas bacteria that had invaded the epithelial cells were protected from neutrophil
attack and could proliferate in the IBC [220]. In the mouse model, UPEC undergo three-stage cycles of
invasion of epithelial cells, followed by proliferation as IBC and dispersion into the bladder lumen,
which allows for a new round of infection of adjacent cells [220]. This mechanism could explain
persistent UTI with periods of quiescent and relapsing infections.

There is also evidence that IBC can contribute to chronic and recurrent UTI in humans [213,217,221–
224], and IBC has been detected in the epithelium of the urinary bladder. The majority of UPEC isolated
from urine of women with urinary tract infections were able to form IBC in a mouse model [213,221].
In addition, IBC have been observed by electron microscopy in shed epithelial cells in urine from 18%
of women presenting with acute UTI (Figure 5) [222]. In this study, IBC were not detected in the urine
samples from asymptomatic women. IBC have also been detected in 36.8% of urine samples from children
presenting with cystitis [223] as well as in 44% of renal transplant patients tested for UTI [224].
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Figure 5. Electron microscopy findings in urines from women with cystitis. TEM analysis of human
cystitis urine specimens (A) revealed large collections of bacteria associated with nuclei and other
cellular debris. These collections of bacteria from human urines (B) have similar morphology and
organization as those recovered from intact murine intracellular bacterial communities (C). Bacteria and
filaments were also observed intracellularly within exfoliated epithelial cells in a urine sample quickly
fixed and analyzed from an E. coli cystitis patient (D). SEM analysis of cystitis urines deemed positive
for IBCs and filaments captured large bacterial biofilm-like collections (E,F) composed of bacteria with
a smaller, more coccoid morphology than typical E. coli. Long filaments were also captured by SEM
(G). Scale bars, 2 µm (A,D), 1 µm (B,C), and 5 µm (E–G). Rosen et al. [222].

9. Conclusions

An increasing number of diseases have been suggested to be biofilm related. In the majority of
cases, this is based on observations of biofilm-like structures in biopsies, autopsies, and exudates of
patients and /or research animals (Figure 6). Additionally or alternatively, the presence of biofilm is
indicated by studies on bacterial phenotypes during infection, immune responses, and vaccination
experiments. However, even when biofilm is present, there is still a question whether the biofilm
is the cause of the disease or the bacteria are just taking advantage of a favorable environment for
colonization caused by the disease.

Our review of the literature shows that biofilm may potentially contribute to the pathogenesis of
a disease in several ways. Biofilm formation increases the bacteria’s resistance against the defense
mechanisms of the body, as well as antimicrobial treatments, thereby promoting chronic infections.
Biofilms may also function as an environment that accumulate different bacterial species as well
as bacterial numbers in certain locations. This can result in deleterious effects on host cells due to
concentrated, sequential, and/or synergistic activities by the present bacteria. Furthermore, the mere
presence of persistent biofilms may modulate the local immune response in several ways, e.g.,
by stimulating a local inflammatory response that can cause or aggravate tissue damage. These
biofilm-mediated mechanisms have also been suggested to be involved in initiation and/or progression
of cancers, such as CRC. In wounds, an additional effect of biofilm is that the physical presence may
obstruct wound healing. Biofilm might also facilitate cellular invasion by pathogens, as indicated
by the observed link between intracellular S. aureus and biofilm colonization in the upper airways.
Interestingly, biofilm-like intracellular bacterial communities have been identified, e.g., within the
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epithelial cells of the bladder of the urinary tract, which appears to result in bacterial immune evasion
and persistent or recurrent infections.
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Presence of biofilm can be linked to the severity and prognosis of disease, e.g., as in chronic
rhinosinusitis and cystic fibrosis. However, colonization in the form of biofilm may also serve as
a sub-clinical reservoir for pathogens preceding clinical infection with planktonic bacteria, as observed
for S. pneumoniae in the nasopharynx and UPEC in the urinary bladder. In addition, biofilms by
non-pathogenic bacteria may even offer protection against pathogen infection, as observed for biofilms
by S. oralis and S. salivarius in the upper airways.

Based on present research, it is clear that both diagnosis and treatment of a number of chronic
diseases need to take into account the importance of biofilm. Diagnostic criteria for biofilm infections
are needed, and have already been suggested for a few diseases like cystic fibrosis and chronic wounds.
Development of effective treatment against such infections is also imperative.
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