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Background: Improved markers of prognosis are needed to stratify patients with early-stage 46 

colorectal cancer to refine selection of adjuvant therapy. The aim of the present study was to 47 

develop a biomarker of patient outcome after primary colorectal cancer resection by directly 48 

analysing scanned conventional haematoxylin and eosin stained sections using deep learning. 49 

Methods: More than 12,000,000 image tiles from 828 patients with distinctly good or poor 50 

disease outcome were used to train a total of 10 convolutional neural networks, purpose-built 51 

for classifying supersized heterogeneous images. A prognostic biomarker integrating the 10 52 

networks were determined using 1645 patients with non-distinct outcome. The marker was 53 

tested on 920 patients with slides prepared in UK, and finally independently validated 54 

according to a pre-defined protocol in 1122 patients treated with single-agent capecitabine 55 

using slides prepared in Norway. The primary outcome was cancer-specific survival. 56 

Findings: The biomarker provided a hazard ratio for poor vs good prognosis of 3·84 (95% 57 

confidence interval, 2·72-5·43; p<0·0001) in the primary analysis of the validation cohort, 58 

and 3·04 (95% confidence interval, 2·07-4·47; p<0·0001) after adjusting for established 59 

prognostic markers significant in univariable analyses of the same cohort; pN stage, pT stage, 60 

lymphatic invasion, and venous vascular invasion. 61 

Interpretation: It was possible to develop a clinically useful prognostic marker using deep 62 

learning allied to digital scanning of conventional haematoxylin and eosin stained tumour 63 

tissue sections. The assay has been extensively evaluated in large, independent patient 64 

populations, correlates with and outperforms established molecular and morphological 65 

prognostic markers, and gives consistent results across tumour and nodal stage. The 66 

biomarker stratified stage II and III patients into sufficiently distinct prognostic groups that 67 

these potentially could be used to guide selection of adjuvant treatment by avoiding therapy in 68 

very low risk groups and identifying patients who would benefit from more intensive regimes. 69 



Funding: The Research Council of Norway through its IKTPLUSS Lighthouse program 70 
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Research in context 73 

Evidence before this study 74 

Digital image analysis is one of the fields where the recent renaissance of deep learning has 75 

achieved the most impressive results. We searched PubMed on June 12, 2019 without 76 

language or time restrictions, using the terms “deep learning”, “prediction”, “survival”, 77 

“cancer”, and “histology” (full specification of the search criteria is provided in the appendix 78 

p 3). We systematically reviewed the 214 search results, and found 18 original research 79 

studies which applied deep learning to predict patient outcome or related attributes using 80 

histopathology images. 81 

 82 

In 16 studies, the patient outcome was indirectly predicted by identifying attributes known to 83 

correlate with patient outcome, e.g. stromal fraction, mitotic count, or Gleason pattern. Two 84 

studies reported on direct prediction of survival, but neither presented a marker for automatic 85 

prediction of patient outcome from scanned whole-slide sections; one required manual 86 

annotation to locate interesting tissue regions, and the other classified tissue microarray spots. 87 

Perhaps even more importantly, neither of these two studies evaluated their biomarker in 88 

independent cohorts; the performance was instead estimated using cross-validation in the 89 

same cohort as utilised for training, which can easily lead to overoptimistic estimates. 90 

 91 

Added value of the study 92 

We have applied deep learning to develop a biomarker for automatic prediction of cancer-93 

specific survival directly from scanned haematoxylin and eosin stained, formalin-fixed, 94 

paraffin-embedded tumour tissue sections. Independent validation demonstrated that the 95 



biomarker improved prediction of cancer-specific survival by stratifying stage II and III 96 

colorectal cancer patients into distinct prognostic groups, supplementing established 97 

prognostic markers, and outperforming most existing markers in terms of hazard ratios. The 98 

marker could potentially be used to improve selection of adjuvant treatment after resection of 99 

colorectal cancer by identifying patients at very low risk who may have been cured by surgery 100 

alone, as well as patients at high risk who are much more likely to benefit from more 101 

intensive regimes. 102 

 103 

Implications of all the available evidence 104 

It is possible to utilise deep learning to develop biomarkers for automatic prediction of patient 105 

outcome directly from conventional histopathology images. In colorectal cancer, the marker 106 

was found to be a clinically useful prognostic marker in analysis of a large series of patients 107 

who received consistent, modern cancer treatment. 108 

  109 



Introduction 110 

Biomarkers are being used increasingly to match anticancer therapy to specific tumour 111 

genotypes, protein, and RNA expression profiles, usually in patients with advanced disease.1–3 112 

One example of this is selection of KRAS-wild-type colorectal cancers (CRCs) for treatment 113 

with epidermal growth factor receptor inhibitors.4 However, in the adjuvant setting for CRC, 114 

the primary question is binary, whether to offer treatment at all, and subsequent selection of 115 

drugs, dose, and schedule is predominantly driven by stage rather than by companion 116 

diagnostics. If it were possible to further refine prognostic models, this could allow a more 117 

targeted approach by defining subgroups in which the absolute benefits of adjuvant 118 

chemotherapy are minimal, relative to surgery alone, and at the other end of the spectrum, 119 

patients who might benefit from prolonged combination chemotherapy because of their poor 120 

survival rate.5–8 121 

More than two decades of adjuvant trials in patients with early-stage CRC using 122 

fluoropyrimidines, in combination with cytotoxic agents like oxaliplatin, have yielded an 123 

improved overall survival of around 3-5% for patients with stage II or IIIA CRC. Many 124 

patients are cured by surgery alone, while around 25% will recur despite adjuvant 125 

chemotherapy. There is likely to be a chemotherapy-associated death rate of 0·5-1%, and 20% 126 

of patients will suffer significant side-effects. The risk-benefit ratio is therefore rather 127 

marginal, but could potentially be much better if it were possible to define subgroups at 128 

higher or lower risk of recurrence and cancer-specific death.9–12 129 

Although clinically validated prognostic biomarkers would facilitate adjuvant therapeutic 130 

decisions, very few have been sufficiently robustly validated for routine clinical application. 131 

A case can be made for assessment of mismatch repair (MMR) status,13,14 as patients with 132 

MMR-deficient tumours tend to have a good prognosis. We have recently reported that 133 

measurement of tumour cellular DNA content (ploidy) in combination with stromal fraction 134 



can stratify stage II patients into very good, intermediate, and poor prognostic groups.15 135 

Interestingly, analysis of driver mutations and RNA signatures has shown them to be 136 

individually weak prognostic markers and unable to guide clinical decision making.8,14 137 

Deep learning refers to the class of machine learning methods that make use of successively 138 

more abstract representations of the input data to perform a specific task. These methods use a 139 

training set to learn how these representations should be generated in a manner appropriate for 140 

the given task. In contrast, traditional machine learning utilises handcrafted features to create 141 

representations of the input data that are applied to perform the task. In many applications, 142 

deep learning has been demonstrated to provide superior performance compared to other 143 

machine learning techniques, and it is a growing expectation that deep learning will transform 144 

current medical practice. Especially convolutional neural networks have excelled in many 145 

image interpretation tasks, and could therefore be hypothesised to retrieve additional 146 

information from histopathology images. The aim of the present study was to use deep 147 

learning to analyse conventional whole-slide images (WSIs) in order to develop an automatic 148 

prognostic biomarker for patients resected for primary CRC. The marker was trained using 149 

828 patients with distinct prognosis from four cohorts, fine-tuned using 1645 other patients 150 

from the same four cohorts, and tested on slides prepared at a different laboratory from 920 151 

patients. Finally, the marker was independently validated according to the pre-defined 152 

protocol (appendix pp 52-80) on 1122 patients analysed retrospectively from a trial 153 

(QUASAR 2) of adjuvant therapy.16 154 

 155 

Methods 156 

Training and Tuning Cohorts 157 

Four different cohorts were utilised for training and tuning to achieve a broad patient 158 

representation and thereby improve the ability to generalise to new cohorts. Three cohorts 159 



were consecutive series of stage I, II or III tumours from CRC patients treated at hospitals 160 

with both rural and urban catchment areas: (i) 160 patients treated 1988-2000 at Akershus 161 

University Hospital, Norway;17 (ii) 576 patients treated 1993-2003 at Aker University 162 

Hospital, Norway;15 and (iii) 970 patients treated in Gloucester 1988-1996 and included in the 163 

Gloucester Colorectal Cancer Study, UK.18,19 The fourth cohort were 767 stage II or III CRC 164 

patients treated at 151 UK hospitals in 2002-2004 and included in the VICTOR trial (ISRCTN 165 

registry number ISRCTN98278138).20 Our cohorts included only patients with resectable 166 

tumour, and a formalin-fixed, paraffin-embedded (FFPE) tumour tissue block available for 167 

analysis. 168 

To obtain clear ground-truth, we used as training cohort the 828 patients with so-called 169 

distinct outcome, either good or poor. A patient was assigned to the good outcome group if 170 

aged less than 85 years at surgery, had more than six years follow-up after surgery, and had 171 

no record of recurrence or cancer-specific death. The poor outcome group consisted of those 172 

aged less than 85 years at surgery and suffered cancer-specific death between 100 days 173 

(inclusive) and 2·5 years (exclusive) after surgery. Patients not satisfying either of these group 174 

criteria were defined as having non-distinct outcome, and these 1645 patients were used for 175 

tuning. The protocol specifies additional cohort details, and demographics are summarised in 176 

table 1. 177 

Test Cohort 178 

The test cohort consisted of 920 patients from the Gloucester Colorectal Cancer Study, 179 

UK.18,19  WSIs were obtained from different FFPE tumour tissue blocks than those used in the 180 

training and tuning cohorts. 181 

Validation Cohort 182 

The validation cohort consisted of 1122 patients from 170 hospitals in seven countries 183 

recruited to the QUASAR 2 trial (ISRCTN registry number ISRCTN45133151).16 Inclusion 184 



criteria were age 18 years or older, CRC adenocarcinoma histologically proven to be R0 M0 185 

stage III or high-risk stage II, primary resection 4-10 weeks before randomisation, WHO 186 

performance status score 0 or 1, and life expectancy (with comorbidities, but excluding cancer 187 

risk) of at least five years. See protocol pp 22-25 for exclusion criteria and other details. All 188 

patients received adjuvant therapy, either capecitabine plus bevacizumab or capecitabine 189 

alone, with equal disease-free and overall survival in both trial arms.16 190 

Sample Preparation 191 

Slides in VICTOR cohort were prepared in Oxford, UK, while the other slides in the training 192 

and tuning cohorts were prepared at the Institute for Cancer Genetics and Informatics (ICGI), 193 

Norway. Introducing this variation in the development phase was hypothesised to increase the 194 

robustness and generalisability of the trained marker. Slides in the test cohort were prepared 195 

as a part of the routine histopathological examination in Cheltenham, UK, and the 196 

performance in this cohort should thus indicate the prognostic ability when the marker is 197 

assayed at a different laboratory using original slides. Slides in the validation cohort were 198 

prepared at ICGI. All slides were made by staining a three µm FFPE tissue block section with 199 

haematoxylin and eosin (H&E), and a pathologist (MP) ascertained that it contained tumour. 200 

WSIs were acquired at the highest resolution available (referred to as 40x magnification by 201 

the manufacturers) on two scanners, an Aperio AT2 (Leica Biosystems, Germany) and a 202 

NanoZoomer XR (Hamamatsu Photonics, Japan). 203 

Areas with high tumour content were identified using a segmentation network that was trained 204 

on a subset of the training and tuning cohorts (protocol pp 6-10). A WSI with the so-called 205 

40x resolution typically contained an order of 100,000x100,000 pixels, multiple orders of 206 

magnitude larger than images currently feasible for classification by deep learning methods. 207 

To preserve prognostic information contained at high-resolution, WSIs were partitioned into 208 

multiple non-overlapping image regions called tiles at 10x and 40x resolutions, where each 209 



pixel at 40x represents a physical size of approximately 0·24x0·24 µm2. Patients without tiles 210 

were excluded. 211 

Classification 212 

Five networks were trained on the 634,564 10x tiles and five networks on the 11,591,555 40x 213 

tiles from the 1652 Aperio AT2 and NanoZoomer XR WSIs in the training cohort with the 214 

patients’ distinct outcomes as ground-truth. All networks were DoMore v1 networks, which 215 

we designed for classifying supersized heterogeneous images. The DoMore v1 network was 216 

built around multiple instance learning and comprised of a MobileNetV221 representation 217 

network, a Noisy-AND pooling function,22 and a fully-connected classification network 218 

similar to the one used by Kraus et al22 (figure 1). Because of spatial heterogeneity, labelling a 219 

tile with the label of its WSI might be problematic. Instead, the networks were trained on 220 

labelled collections of tiles. A collection contained tiles from a single WSI, which label it 221 

inherits. Collections of tiles were processed by the representation network before the resulting 222 

tile representations were pooled and classified. The entire network was trained end-to-end, i.e. 223 

directly from image to patient outcome, and each training iteration used a batch size of 32 224 

collections with 64 tiles each. This many tiles were possible because we utilised a novel 225 

gradient approximation technique which substantially reduce memory usage during training 226 

(appendix pp 4-6). The Noisy-AND pooling function applied a trained non-linear function on 227 

tile representation averages. This enhances robustness against tiles not representing the 228 

ground-truth, and together with the large number of tiles, alleviates the issues of spatial 229 

heterogeneity. During inference, the network processed all tiles in the WSI. 230 

The networks were trained beyond apparent convergence using TensorFlow 1·10, and a 231 

model was selected from each network training using the performance in the tuning cohort 232 

with the c-index as metric, resulting in five models for each resolution (protocol pp 11-20). 233 

Each of the five models provides a score reflecting the probability of poor outcome, and the 234 



average was defined as the ensemble score. For use in categorical markers, suitable thresholds 235 

for the 10x and the 40x ensemble scores were determined by evaluations in the tuning cohort 236 

to define the ensemble classifiers (protocol pp 20-22). Furthermore, evaluations in the test 237 

cohort indicated that combining 10x and 40x markers might be desirable, and two such 238 

markers were defined, one continuous and one categorical. The continuous DoMore-v1-CRC 239 

score was defined as the average of the 10x and the 40x ensemble scores. The categorical 240 

DoMore-v1-CRC classifier assigned to good prognosis if both ensemble classifiers predicted 241 

good outcome, uncertain if the ensemble classifiers predicted differently, and poor prognosis 242 

if both predicted poor outcome. In a post-hoc analysis, the continuous DoMore-v1-CRC score 243 

was categorised into five risk groups (appendix p 6). 244 

Inception v3, a state-of-the-art convolutional neural network, was trained, tuned, and 245 

evaluated with the same study setup as the DoMore v1 network (protocol pp 11-22), and 246 

tested as a secondary analysis (protocol p 27). While the DoMore-v1-CRC marker was trained 247 

using multiple instance learning, each single tile was labelled with the label of its WSI in 248 

training the Inception v3 marker. The image distortion algorithm and network 249 

hyperparameters were determined independently of the DoMore v1 network in the discovery 250 

phase, resulting in slightly different choices for the Inception v3 network (protocol pp 15-16). 251 

Statistical Analysis 252 

This study conformed to the REMARK guideline23 and relevant aspects of the guideline 253 

proposed by Luo et al24 (appendix pp 7-8). Primary and secondary analyses were planned in 254 

advance of evaluations in the validation cohort and described in the protocol. 255 

The pre-defined primary analysis for each scanner was univariable cancer-specific survival 256 

(CSS) analysis of the DoMore-v1-CRC classifier; for simplicity, we first present results for 257 

the Aperio AT2 scanner and in a separate paragraph address scanner differences. The 258 

classifier was included as the only variable in a Cox model to compute the hazard ratio (HR) 259 



with 95% confidence interval (CI) of patients with uncertain and poor prognosis relative to 260 

patients with good prognosis. The proportional hazards assumption was found satisfactory 261 

fulfilled using log-log plots (appendix p 26). The Mantel-Cox log-rank test was used to assess 262 

whether the classifier predicted CSS. 263 

Both the classifier and the continuous score were evaluated in multivariable Cox models as 264 

secondary and post-hoc analyses, including markers available at the time of analysis (patients 265 

with at least one missing value were excluded). To calculate classification metrics for 3-year 266 

CSS, patients without event and less than 3-year follow-up were excluded and events after 3 267 

years were ignored. Category-free net reclassification improvement (NRI) was computed 268 

using the Kaplan-Meier estimates of five-year CSS. Two-sided p<0·05 was considered 269 

statistically significant. The confidence level of CIs is 95%. The bias-corrected and 270 

accelerated bootstrap CI were computed for NRIs, c-indices and areas under the curves 271 

(AUCs) using 10,000 bootstrap replicates and an acceleration constant estimated using leave-272 

one-out cross-validation. Time to CSS in the validation cohort was calculated from date of 273 

randomisation to date of cancer-specific death or loss to follow-up. Survival analyses were 274 

carried out in Stata/SE 15·1 (StataCorp, TX). 275 

Role of the funding source 276 

The funders had no role in study design, data collection, data analysis, data interpretation, 277 

writing the report, or the decision to submit the paper for publication. The corresponding 278 

author had full access to all data and the final responsibility to submit for publication. 279 

 280 

Results 281 

The DoMore-v1-CRC classifier was a strong predictor of CSS in the primary analysis of the 282 

validation cohort (HR for uncertain vs good prognosis, 1·89; CI, 1·14-3·15; HR for poor vs 283 

good prognosis, 3·84; CI, 2·72-5·43; figure 2A). The classifier remained strong in 284 



multivariable analysis (HR for uncertain vs good prognosis, 1·56; CI, 0·92-2·65; HR for poor 285 

vs good prognosis, 3·04; CI, 2·07-4·47; table 2) adjusting for established prognostic markers 286 

significant in univariable analyses; pN stage, pT stage, lymphatic invasion, and venous 287 

vascular invasion (appendix p 9). 288 

The sensitivity was 52% (CI, 41%-63%), specificity 78% (CI, 75%-81%), positive predictive 289 

value 19% (CI, 14%-25%), negative predictive value 94% (CI, 92%-96%), and correct 290 

classification rate 76% (CI, 73%-79%) when comparing 3-year CSS to good prognosis vs 291 

uncertain and poor prognosis. Compared to good and uncertain prognosis vs poor prognosis, 292 

the sensitivity was 69% (CI, 58%-78%), specificity 66% (CI, 63%-69%), positive predictive 293 

value 17% (CI, 13%-21%), negative predictive value 96% (CI, 94%-97%), and correct 294 

classification rate 67% (CI, 63%-69%). 295 

The constituents of the DoMore-v1-CRC classifier, the 10x and the 40x ensemble classifiers, 296 

were strong predictors in univariable (appendix p 27) and multivariable analyses (appendix pp 297 

10-11). The ensemble classifiers performed similarly as the best classifiers based on one of 298 

the ten individual models that constituted the ensemble models (appendix pp 12 and 28-29). 299 

The continuous ensemble scores were also strong predictors in univariable (appendix p 9) and 300 

multivariable analyses (appendix pp 13-15). The DoMore-v1-CRC score associated strongly 301 

with the patient outcome (appendix p 30), and provided a c-index of 0·674 (CI, 0·624-0·719; 302 

appendix p 16) in all validation patients and an AUC of 0·713 (CI, 0·624-0·789; appendix p 303 

31) in patients with distinct outcome. The c-index and AUC of the 10x ensemble score were 304 

similar to the ones obtained for the DoMore-v1-CRC score (appendix pp 16 and 31). 305 

The DoMore-v1-CRC classifier was a significant predictor of CSS in stage II (HR for poor vs 306 

good prognosis, 2·71; CI, 1·25-5·86; figure 2C) and stage III (HR for poor vs good prognosis, 307 

4·09; CI, 2·77-6·03; figure 2D), and this was confirmed in multivariable analysis (table 2) and 308 

for the continuous score (appendix pp 9 and 13). The categorical marker identified patient 309 



groups with substantially different CSS in stage IIIB and IIIC (appendix p 32), and was also 310 

significant in pN stages (figures 2C, E, and F) and pT stages (pT1-3 vs pT4; appendix p 33). 311 

The category-free NRI of supplementing substage with the DoMore-v1-CRC class for 312 

prediction of five-year CSS was 61·6% (CI, 43·5%-79·3%); the event-NRI was 3·2% (CI, -313 

13·2%-20·0%), and the non-event-NRI was 58·3% (CI, 52·7%-63·8%). 314 

The DoMore-v1-CRC classifier correlated with a number of factors such as age, pN stage, pT 315 

stage, histological grade, location, tumour sidedness, BRAF mutation, and microsatellite 316 

instability (table 3). Of special interest is the relation to the histopathological grading into 317 

well, moderately, and poorly differentiated tumours. This was further studied in the test 318 

cohort where all gradings were centrally reviewed by one highly experienced pathologist 319 

(NAS).18,19 Among 133 tumours characterised as well differentiated, the DoMore-v1-CRC 320 

classifier assigned 101 as good prognosis, 18 as uncertain and 14 as poor prognosis (appendix 321 

p 17). The moderately differentiated tumours were distributed fairly evenly over the DoMore-322 

v1-CRC classes, while among 292 poorly differentiated tumours, the marker assigned 223 as 323 

poor prognosis, 36 as uncertain, and 33 as good prognosis. Thus, the DoMore-v1-CRC class 324 

was clearly associated to tumour differentiation. The large proportion of tumours classified as 325 

moderately differentiated (e.g. 53% [489 of 920] in the test cohort and 75% [846 of 1122] in 326 

the validation cohort) restricts the usefulness of this grading system, but also these patients 327 

could be risk stratified by the DoMore-v1-CRC marker (appendix p 34). 328 

Median processing time per patient for the entire classification pipeline, i.e. from scan to 329 

predicted patient outcome, was 2·8 minutes (interquartile range, 1·8-3·9) in the validation 330 

cohort on a computer with an NVIDIA GeForce RTX 2080 Ti and an Intel Core i7-7700K. 331 

Inception v3 provided a marker of CSS with only slightly worse performance than the 332 

DoMore-v1-CRC classifier (appendix pp 16 and 35-36). 333 



In the test cohort with slides prepared at a different hospital, the classifier provided similar 334 

HRs (appendix p 37) as in the validation cohort (figure 2), supporting that it is robust against 335 

inter-laboratory differences in tissue preparation and staining. 336 

When evaluated using another scanner (NanoZoomer XR), the DoMore-v1-CRC score tended 337 

towards slightly higher values compared to when evaluated using the Aperio AT2 scanner, 338 

resulting in a higher DoMore-v1-CRC class for some patients near the classification 339 

thresholds (appendix p 38). However, the scores correlated strongly (Pearson’s r=0·956; CI, 340 

0·951-0·961), and the classifier provided similar prognostic information with both scanners 341 

(see appendix pp 9, 16, 18-25, and 39-51 for results with NanoZoomer XR). Thus, the 342 

classifier was also a strong predictor of CSS in the primary analysis of the validation cohort 343 

when evaluated on NanoZoomer XR slide images (HR for uncertain vs good prognosis, 2·42; 344 

CI, 1·45-4·03; HR for poor vs good prognosis, 3·39; CI, 2·36-4·87; appendix p 39). 345 

 346 

Discussion 347 

Building on recent developments in machine learning, we have developed a biomarker for 348 

automatic prediction of the outcome of a patient resected for early-stage CRC which directly 349 

analyse standard H&E stained histological sections. To assay the biomarker, one 350 

convolutional neural network first automatically outlines cancerous tissue, and then a second 351 

convolutional neural network stratifies the patients into prognostic categories. In the 352 

validation, the good and poor prognosis groups included nearly 90% of the patients and 353 

differed about 4 times in HR for CSS in univariable analysis and about 3 times in 354 

multivariable analysis. The multivariable result indicated that the new biomarker will be a 355 

useful supplement to the established markers and improve risk stratification. 356 

Deep learning has already been shown to be suitable for detection and delineation of some 357 

tumour types,25 and various cancer classifications have been reported.26 Recent studies have 358 



suggested that deep learning could be used to develop markers which potentially utilise basic 359 

morphology to predict the outcome of cancer patients, but these findings have not been 360 

validated in independent cohorts.27,28 We have not yet seen independently validated markers 361 

for directly predicting the outcome of cancer patients based on histological images. 362 

We derived two markers using the same study setup, but different deep learning techniques. 363 

In training the Inception v3 marker, each tile was labelled with the label of its WSI, while the 364 

DoMore-v1-CRC marker was developed using multiple instance learning to allow training on 365 

tile collections labelled with the label of its WSI. Both markers were strong predictors of CSS, 366 

but the DoMore-v1-CRC marker performed slightly better and was the marker pre-selected 367 

for independent validation in the QUASAR 2 cohort. 368 

Automatic prognostication procedures reduce human intervention, and has the potential to 369 

increase reproducibility of biomarkers. New procedures like the DoMore-v1-CRC markers 370 

may initially be performed as services carried out at specialised laboratories with a high 371 

degree of standardisation of procedure to avoid disparities in sample handling, including the 372 

staining and scanning. Such centralised processing will also facilitate the collection of 373 

information on new procedures and enable improvements in the decision support to 374 

pathologists and clinicians. As an increasing number of laboratories are becoming digitalised, 375 

accompanying decision support systems may include standardisation modules and facilitate a 376 

more rapid spread of the automatic procedures. Moreover, supplemented by increased 377 

robotisation of wet-lab procedures, the higher analytic throughput will allow decisions based 378 

on multiple samples from a tumour. This may reduce the challenge of tumour heterogeneity, 379 

which may be a key to improved accuracy of prognosis. 380 

The DoMore-v1-CRC biomarker correlated with several recognised prognostic factors, 381 

including the histological grading carried out by a specialised pathologist. The classifier 382 

performed better than most other markers in terms of HRs in stage-specific multivariable 383 



analyses, on a par with pN staging. As opposed to the grading system, the classifier had few 384 

patients in the intermediate “uncertain” group. 385 

The DoMore-v1-CRC classifier is technically simple to apply and can be delivered at 386 

pathology laboratories everywhere. Although training the networks was resource demanding, 387 

new patients can be assayed in a few minutes using consumer hardware. 388 

Clinically, the marker will inform discussion with patients with stage II and III CRC on the 389 

pros and cons of different adjuvant treatment options. Although the number of drugs used in 390 

the adjuvant setting is limited to fluoropyrimidines ± oxaliplatin, recent data demonstrate that 391 

three months treatment achieves approximately the same survival outcomes as six months for 392 

the majority of stage III patients, while high risk patients (pT4 and pN2) might benefit from 393 

prolonged therapy.29,30 It would be reasonable to hypothesise that stage III patients identified 394 

as poor prognosis by the DoMore-v1-CRC classifier could benefit from prolonged 395 

combination chemotherapy with oxaliplatin, or even consider experimental therapy 396 

combining fluoropyrimidine + oxaliplatin + irinotecan as their high risk of cancer-specific 397 

death should positively skew the risk-benefit ratio of more aggressive treatments (figures 2D 398 

and F). At the other end, stage III patients with DoMore-v1-CRC good prognosis, the great 399 

majority of whom are pN1, have very good survival with single-agent capecitabine (figure 400 

2E), and good prognosis stage II patients have a very high chance of surgical cure, potentially 401 

eliminating the need for adjuvant treatment. 402 

We plan to undertake prospective adjuvant trials stratifying patients into different prognostic 403 

groups using the DoMore-v1-CRC biomarker and randomising patients into observation, low 404 

intensity and high intensity regimes depending on relative risk score.  However, the currently 405 

available data may also be used by clinicians and patients to make joint and more informed 406 

decisions on adjuvant chemotherapy choices, as the proportional reduction in the HRs for 407 

recurrence and death from CRC following adjuvant treatment is remarkably consistent at 20% 408 



across most well-designed clinical trials, thus translating into quite different absolute survival 409 

improvements for low and high risk subgroups. 410 

Limitation of this study include that the DoMore-v1-CRC marker has not yet been tested 411 

prospectively in clinical settings, and although we are planning a clinical trial with 412 

randomisation, we at present only know the outcome of thorough retrospective testing. The 413 

test and validation indicate good transferability between populations, but there are still 414 

challenges related to standardisation, as illustrated by the differences between the tested 415 

scanners. Differences between laboratories may also be seen for sample handling procedures, 416 

and this is why the introduction into the clinic is suggested to be through services performed 417 

at specialised laboratories. A well-known disadvantage of deep learning is its black-box 418 

nature. The DoMore-v1-CRC marker is related to histological grading, but the marker is still 419 

using small-scale features of the histological images with unknown biological correlates. 420 

In summary, it has been possible to develop a clinically useful prognostic marker using deep 421 

learning allied to digital scanning of conventional H&E stained, FFPE tumour tissue sections. 422 

The assay has been extensively evaluated in large, independent patient populations, correlates 423 

with and outperforms established molecular and morphological prognostic markers, gives 424 

consistent results across tumour and nodal stage, and can potentially be used by clinicians to 425 

improve decision making over adjuvant treatment choices. 426 
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Figure Legends 538 

539 

Figure 1: Pipeline of DoMore-v1-CRC classification 540 

Top: A whole-slide image (WSI) is segmented, and the segmented regions tiled at 40x 541 

resolution and 10x resolution. For each resolution, the five trained models each produce one 542 

score reflecting the probability of poor outcome. The average of those scores is the ensemble 543 

score, one for 10x and one for 40x. If the ensemble score is above a certain threshold, the WSI 544 

is classified as poor prognosis. The DoMore-v1-CRC class is determined by the agreement 545 

between the two ensemble classifications. Bottom: The DoMore v1 network is comprised of a 546 

representation network (MobileNetV221), a pooling function (Noisy-AND22), and a simple 547 

fully-connected classification network. All components of the DoMore v1 network involve 548 

trainable parameters, and the entire network is trained end-to-end. All tiles from a WSI are 549 

processed by the representation network one by one, resulting in a collection of tile 550 

representations. The pooling function reduces the representations into two numbers, which are 551 

then processed by the classification network to produce the score outputted by the model. 552 

553 



Figure 2: Kaplan-Meier analysis of cancer-specific survival by DoMore-v1-CRC class 554 

evaluated on Aperio AT2 slide images in the QUASAR 2 validation cohort 555 

(A) The primary analysis; all patients evaluated with the pre-defined DoMore-v1-CRC 556 

classifier. (B) A post-hoc analysis; all patients evaluated with the DoMore-v1-CRC classifier 557 

variant with five categories. (C) A secondary analysis; stage II (equivalent to pN0) patients 558 

evaluated with the pre-defined DoMore-v1-CRC classifier. (D) A secondary analysis; stage 559 

III patients evaluated with the pre-defined DoMore-v1-CRC classifier. (E) A post-hoc 560 

analysis; pN1 patients evaluated with the pre-defined DoMore-v1-CRC classifier. (F) A post-561 

hoc analysis; pN2 patients evaluated with the pre-defined DoMore-v1-CRC classifier. 562 

563 



Table 1: Patient characteristics in the training, tuning, test and validation cohorts 

Group Training cohort Tuning cohort Test cohort Validation cohort 

(N=828) (N=1645) (N=920) (N=1122) 

Age, years 69 (61-75) 70 (61-77) 71 (64-78) 65 (59-71) 

Sex 

Female 402 (51%) 689 (42%) 421 (46%) 477 (43%) 

Male 426 (49%) 956 (58%) 499 (54%) 645 (57%) 

Stage 

I 101 (12%) 102 (6%) 70 (8%) 

II 317 (38%) 797 (48%) 354 (38%) 402 (36%) 

III 410 (50%) 746 (45%) 496 (54%) 720 (64%) 

pN stage 

pN0 415 (50%) 891 (54%) 425 (46%) 402 (36%) 

pN1 241 (29%) 492 (30%) 258 (28%) 508 (45%) 

pN2 167 (20%) 239 (15%) 237 (26%) 183 (16%) 

Missing 5 (1%) 23 (1%) 0 (0%) 29 (3%) 

pT stage 

pT1 26 (3%) 30 (2%) 6 (1%) 17 (2%) 

pT2 110 (13%) 137 (8%) 65 (7%) 71 (6%) 

pT3 464 (56%) 1034 (63%) 411 (45%) 582 (52%) 

pT4 223 (27%) 423 (26%) 437 (48%) 404 (36%) 

Missing 5 (1%) 21 (1%) 1 (0%) 48 (4%) 

Histological grade 

1 77 (9%) 196 (12%) 134 (15%) 45 (4%) 

2 568 (69%) 1151 (70%) 489 (53%) 846 (75%) 

3 178 (21%) 280 (17%) 297 (32%) 168 (15%) 

Missing 5 (1%) 18 (1%) 0 (0%) 63 (6%) 

Location 

Rectum 222 (27%) 457 (28%) 311 (34%) 165 (15%) 

Distal colon 262 (32%) 533 (32%) 280 (30%) 451 (40%) 

Proximal colon 307 (37%) 505 (31%) 329 (36%) 453 (40%) 

Missing 37 (4%) 150 (9%) 0 (0%) 53 (5%) 

Adjuvant treatment 

No 467 (56%) 826 (50%) 538 (58%) 0 (0%) 

Chemotherapy 173 (21%) 397 (24%) 51 (6%) 1122 (100%) 

Radiotherapy 11 (1%) 6 (0%) 14 (2%) 0 (0%) 
Chemo- and 
radiotherapy 3 (0%) 9 (1%) 3 (0%) 0 (0%) 

Missing 174 (21%) 407 (25%) 314 (34%) 0 (0%) 

Follow-up time, years 6·4 (1·7-8·2) 4·0 (2·2-5·2) 2·4 (1·0-4·6) 4·6 (3·3-5·1) 

Data are median (IQR) or number (%). IQR=interquartile range. 



Table 2: Multivariable cancer-specific survival analyses in the validation cohort; the multivariable model included the DoMore-v1-CRC 

class evaluated on Aperio AT2 slide images, and established prognostic markers that were significant in the corresponding stage-specific 

univariable analyses in the validation cohort 

Group Stage II and III Stage II Stage III 

HR (95% CI) p HR (95% CI) p HR (95% CI) p 

DoMore-v1-CRC <0·0001 0·028 0·0001 

Good prognosis ref. ref. ref. 

Uncertain 1·56 (0·92-2·65) 1·22 (0·35-4·24) 2·14 (1·15-3·99) 

Poor prognosis 3·04 (2·07-4·47) 2·71 (1·25-5·86) 2·95 (1·81-4·82) 

pN stage <0·0001 <0·0001 

pN0 ref. 

pN1 1·84 (1·13-2·98) ref. 

pN2 5·94 (3·71-9·52) 3·31 (2·14-5·13) 

pT stage 0·0058 0·014 

pT1 NA NA 

pT2 1·86 (0·90-3·86) 1·68 (0·64-4·45) 

pT3 ref. ref. 

pT4 1·75 (1·22-2·51) 2·07 (1·33-3·22) 

Lymphatic invasion Yes 1·66 (1·07-2·56) 0·023 1·98 (1·20-3·28) 0·0079 

Venous vascular invasion Yes 1·07 (0·76-1·51) 0·71 0·98 (0·64-1·52) 0·94 

Sidedness Right 1·09 (0·70-1·70) 0·69 

BRAF Mutated 1·39 (0·81-2·40) 0·24 

Ref.=reference; NA=not available 



Table 3: Associations between the DoMore-v1-CRC class evaluated on Aperio AT2 slide images and different patient characteristics in the 

validation cohort 

Group 

DoMore-v1-
CRC good 
prognosis 

DoMore-v1-
CRC uncertain 

DoMore-v1-
CRC poor 
prognosis Spearman's correlation 

 (N=704) (N=136) (N=270) ρ (95% CI) p 

Age (continuous), years  64 (58-71) 65 (60-71) 66 (60-72) 0·07 (0·01 to 0·13) 0·024 

Age (dichotomous), years  0·03 (-0·03 to 0·09) 0·38 

 ≤72 568 (81%) 112 (82%) 209 (77%)   

 >72 136 (19%) 24 (18%) 61 (23%)   

Sex  -0·02 (-0·08 to 0·04) 0·59 

 Female 297 (42%) 53 (39%) 122 (45%)   

 Male 407 (58%) 83 (61%) 148 (55%)   

Stage  0·04 (-0·02 to 0·10) 0·20 

 II 261 (37%) 48 (35%) 88 (33%)   

 III 443 (63%) 88 (65%) 182 (67%)   

Stage with substage  0·15 (0·09 to 0·21) <0·0001 

 IIA 143 (21%) 19 (14%) 28 (11%)   

 IIB 110 (16%) 27 (20%) 54 (21%)   

 IIIA 67 (10%) 2 (2%) 6 (2%)   

 IIIB 269 (40%) 51 (38%) 104 (41%)   

 IIIC 83 (12%) 34 (26%) 64 (25%)   

pN stage  0·10 (0·04 to 0·16) 0·0008 

 pN0 261 (38%) 48 (36%) 88 (33%)   

 pN1 339 (50%) 53 (39%) 111 (42%)   

 pN2 83 (12%) 34 (25%) 64 (24%)   

pT stage  0·26 (0·21 to 0·32) <0·0001 

 pT1 15 (2%) 0 (0%) 2 (1%)   

 pT2 61 (9%) 3 (2%) 6 (2%)   

 pT3 402 (60%) 75 (56%) 100 (39%)   

 pT4 194 (29%) 56 (42%) 148 (58%)   

Lymphatic invasion  0·04 (-0·02 to 0·10) 0·20 

 No 599 (91%) 122 (92%) 220 (87%)   

 Yes 62 (9%) 10 (8%) 33 (13%)   

Venous vascular invasion  0·05 (-0·01 to 0·11) 0·11 

 No 409 (61%) 74 (56%) 145 (56%)   

 Yes 257 (39%) 58 (44%) 112 (44%)   

Histological grade  0·14 (0·08 to 0·20) <0·0001 

 1 27 (4%) 7 (6%) 8 (3%)   

 2 565 (85%) 88 (69%) 186 (74%)   

 3 76 (11%) 32 (25%) 59 (23%)   

Location  0·15 (0·09 to 0·21) <0·0001 

Rectum 118 (18%) 21 (16%) 23 (9%)   

Distal colon 301 (45%) 46 (35%) 100 (38%)   
Proximal 
colon 246 (37%) 64 (49%) 138 (53%)   

Sidedness  0·14 (0·08 to 0·20) <0·0001 

 Left 419 (63%) 67 (51%) 123 (47%)   

 Right 246 (37%) 64 (49%) 138 (53%)   

KRAS  -0·06 (-0·12 to 0·00) 0·069 

 Wild-type 410 (65%) 86 (73%) 169 (70%)   

 Mutated 224 (35%) 32 (27%) 73 (30%)   

BRAF  0·22 (0·16 to 0·28) <0·0001 

 Wild-type 588 (93%) 89 (75%) 190 (77%)   



Mutated 47 (7%) 29 (25%) 56 (23%) 

Microsatellite instability -0·10 (-0·16 to -0·04) 0·0018 

Yes 66 (10%) 26 (21%) 40 (16%) 

No 595 (90%) 99 (79%) 213 (84%) 

Follow-up time, years 4·8 (3·7-5·1) 4·9 (3·1-5·1) 4·1 (2·8-5·1) -0·10 (-0·16 to -0·04) 0·0006 

Data are median (IQR) or number (%). IQR=interquartile range.








