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Abstract 

Joint statistical models for long-term wave climate are a key aspect of offshore wind 

engineering design. However, to find a joint model for sea-state characteristics is often 

difficult due to the complex nature of the wave climate and the physical constraints of sea-

state phenomena. The available records of wave heights and periods are often very 

asymmetric in their nature. This paper presents a copula-based approach to obtain the joint 

cumulative distribution function of significant wave heights and the mean up-crossing 

periods. This study is based on 124 months hindcast data concerning Horns Rev 3 offshore 

wind farm. The extra-parametrization technique of symmetric copulas is implemented to 

account for the asymmetry present in the data. The analysis of the total sea, the wind-sea 

and primary swell components is performed separately. The results show that the extra-

parametrization technique with pairwise copulas consistently provided a better goodness-

of-fit when compared to symmetric copulas. Moreover, it is demonstrated that the 

separation of the total sea into its components does not always improve the extra-

parametrized copula’s performance. Furthermore, this paper also discusses copula 

application to offshore wind engineering. 
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Introduction 

The design of offshore wind structures is a complex task, which requires a detailed 

knowledge on the environmental conditions during their construction and lifetime. 

Moreover, the reliability and safety assessment of these structures is very much dependent 
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on the ability to account for the uncertainties related to the environmental loads. When 

dealing with meta-ocean data, the wave climate, i.e. wave height and wave period, is a 

crucial component for a safe design. Therefore, several standards for the offshore wind and 

marine industry require a proper modelling of these random variables and the inherent 

uncertainties, e.g. [1]-[5]. 

Also when attempting to estimate extreme events associated with a specific return period, 

e.g. 100-year significant wave height, one often has to deal with the statistical modelling 

and inference techniques applied to the long-term sea-state characteristics. However, the 

complex nature of the met-ocean environment, the physical constraints of wave 

propagation and steepness and other uncontrolled climate effects, make it practically 

impossible to perfectly model the wave climate at the desired location. Nevertheless, the 

statistical description of relevant ocean parameters is a requirement for risk and reliability 

analysis [6]. 

Despite the extensive use of numerical models to describe the wave climate and the 

deployment of monitoring buoys, cost-related problems have contributed to the 

development of statistical models. Often the time series provided by buoy systems have 

considerable missing data created by a damage or vagrant buoy or because the observations 

at a temporary site are not enough to build an accurate model for extreme events. 

Sometimes, during extreme events, which are very energetic, buoys present malfunctions 

due to the harsh oceanic environment [7],thus leading to the lack of information during 

these occurrences. This missing information also affects the input for hindcast numerical 

models, such as the WAve Modelling (WAM) or the Simulating WAves Nearshore 

(SWAN). On the other hand, the deployment of buoys and the use of numerical models 

such as WAM or SWAN are considerably expensive, both in man and simulation hours 

and computational requirements [7]. In fact the common project of an offshore foundation 

or a marine structure often implies a balanced mix between buoy observations, numerical 

and statistical models, whichare further used for design, construction and maintenance 

operations. 

In the majority of structures placed at sea the significant wave height is the parameter 

adopted to express the severity of sea state [8]. However, the joint modelling of the 

significant wave height and the mean up-crossing period, or eventually the peak period, 

enables a more precise description of the sea-state and it is fundamental for several aspects 

of design, e.g. in the fatigue limit state assessment [9], the scour phenomena at the 

foundation [10] or the reliability of structural elements as the mooring lines [11]. 

Joint modelling of long-term sea state has been attempted by means of several statistical 

approaches, for example: the earlier Peak Over Threshold method and the Annual Block 

Maxima (e.g. see [12]), the conditional modelling approach, Conditional Extremes models, 

the bi-variate Maximum Entropy Method, the bi-variate lognormal model and the 

normality transformation-based models (e.g. see  [13]-[16]), among others. The number of 

statistical approaches to model wave characteristics has increased considerably, not only 

in quantity but also in complexity. Comprehensive reviews on these and other models are 

given in [17] and also in [18]. 

An alternative that has been used recently for this purpose is the Copula approach. The use 

of copula-based models to build the joint distribution function of the significant wave 
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height and mean up-crossing period, or the spectral peak period, has been newly applied, 

e.g. [6], [7]. The use of copulas is mainly due to their simplicity of calculation and due to 

their ability to describe the dependence structure between random variables, regardless of 

the assumptions made for the marginal distributions [19].Moreover, copula-based models 

present a straightforward and computationally fast method to simulate the random variables 

[20]. 

There are numerous families of copulas (see [21]). Furthermore, if one attends to the 

techniques used to combine different copulas, this number is practically infinite [6]. The 

most used families are the elliptical copulas, which are radially symmetric, the 

Archimedean copulas, which are only able to capture either lower or upper tail 

dependences, and the extreme value copulas, which according to [6] arise in the limit of 

component-wise maxima, but are also used to model general dependence structures. 

However, one of the major problems with these families is the fact that they are not able to 

account for asymmetry in the data. Asymmetry is often due to physical limitations related 

to e.g. wave breaking and maximum wave steepness. 

Still the above mentioned copula families have been applied with a reasonable degree of 

success in other studies, namely, when modelling single storms with multivariate 

Archimedean copulas [22]. Also, [7] successfully used the Gaussian and t-copula, from the 

elliptical family, to estimate the wave height records through spatial correlation at the south 

coast of England. Still using the same Elliptical and Archimedean copulas (Clayton, Frank 

and Gumbel), [23] found that the Gaussian and the Gumbel copulas could accurately fit 

the empirical densities of the individual wave steepness and height. However, as stated by 

[6] and re-confirmed in the present study, it is far from straightforward to find a good 

copula-based model for non-symmetric met-ocean data, such as the significant wave height 

and the up-crossing mean wave period. 

A possible way to solve the asymmetry problem is to use more complex copula-based 

models. For instance, one can use non-symmetric copulas as the Marshal-Olkin family 

[21], the dependence trees association [24] or the C- and D-vine copulas [25], which are 

usually applicable for higher dimensional problems. In the bi-variate cases, a simpler way 

of combining different copulas is to use the extra-parametrization technique, originally 

proposed by [26] and later on extended by [27]. This technique was then applied by [28] 

to develop multivariate extreme models. More recently, by using the same copula 

construction, [6] concluded that extra-parametrization with an independent or a pairwise 

copula could be used to model significant wave heights and mean up-crossing periods. 

Using the root-mean-square error (RMSE), the author concluded that this technique 

provided a better fit than the bivariate lognormal model, widely used in practice and 

introduced by [29]. Moreover, this work concluded that extra-parametrization of copulas 

provided a similar goodness-of-fit when compared with the conditional modelling used in 

current practice [5], [13]. However, in these works no extra-parametrization was performed 

with different copulas, e.g. Frank-Clayton or Gumbel-Clayton. 

Finally, another important aspect is the fact that the literature does not present many works 

comparing the copulas’ performance and their possible parametrizations to the separated 

components of wind-sea and swell. The majority of the works performed so far are 

dedicated to modelling the total sea-state, e.g. [6], [7], [16] or [30]. The separated 

performance of copula-based models for the total sea and the wind-sea and swell 
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components has not been addressed yet. This aspect is of great importance, since sea 

components may present less asymmetry than the one showed by the combined sea. This 

may lead to an improvement of certain copulas’ performance, i.e. the ones that are 

constructed to deal with symmetric cases only, as the Archimedean copulas. Furthermore, 

the study of wind-sea and swell components may be of importance when dealing with bi-

modal sea states or in certain fields of application, e.g. the dynamic analysis of FPSO units 

or the floating foundations for offshore wind structures [31]. 

This paper provides inputs to these literature gaps, i.e. the use of copulas to deal with data 

asymmetry and the wind-sea and swell components. Extra-parametrization of copulas will 

be applied with an independent copula and pairwise copulas to the total sea (also referred 

here as the combined sea) and the wind-sea (referred to as the wind component) and the 

swell. Going one step further, an attempt is made to combine copulas from different 

families and with different tail dependences, to understand if any improvements are 

obtained when fitting the hindcast data. The case study corresponds to a record of 124 

months of significant wave heights and mean up-crossing periods at the Horns Rev 3 

offshore wind farm, located in the North Sea. 

This paper is structured in the following manner: in this introduction one has explained the 

importance of this study and the problem to be solved (i.e. joint modelling of asymmetric 

combined, wind and swell met-ocean data), the section “Case study and wave data” 

presents the case study and the data to be modelled after short-term and seasonal 

dependence are removed. The section “Marginal distributions” the study of the marginal 

distributions of the significant wave height and the up-crossing mean wave period is 

performed. The section entitled “Copula models applied to the significant wave height and 

the mean up-crossing period” introduces the symmetric copula models and the asymmetric 

extra-parametrized models based on the Independent copula and the respective Pairwise 

copula. Then, the section called “Copula based models with different copulas” extends the 

extra-parametrization technique for different copulas and new models are proposed based 

on the Gumbel copula. Section “Tail dependence analysis” discusses these models’ ability 

to deal with the tail behaviour, while section “Weighted-root-mean-square-error” provides 

an alternative tail analysis. The section “Discussion and Applications to Wind 

Engineering” addresses some of the most important aspects outlined by the results 

previously obtained and the application of copulas to several fields of wind engineering, 

with particular focus on offshore wind. Finally, one presents the “Conclusions” regarding 

the tested models for the separated sea components and their ability to deal with 

asymmetric wave datasets. 

 

Case Study and Wave Data 

The case study concerns Horns Rev 3 offshore wind farm [32]. This offshore wind farm is 

located in the Danish sector of the North Sea, 20-35 km north-west of Blåvands Huk and 

45-60 km from the city of Esbjerg [32]. This area is relatively shallow and the water depth 

ranges closely from 10 m to 20 m. The statistical model of the wave heights and the mean 

up-crossing periods is based on the hindcast series presented in [32]. The present dataset 

includes the wind-sea and the primary swell values of significant wave height (Hs) and the 

mean up-crossing period (Tz), as well as the total sea values. 
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Detailed information concerning the location of the data sampling and hindcast validation 

is reported in [32] and corresponds to the following coordinates: Latitude of 55.725ºN and 

Longitude of 7.750ºE. The available dataset resulted in a total of 90553 pairs of significant 

wave height and mean up-crossing period, for both the combined sea and its components. 

The data are obtained from DMI-WAM (wave model) and correspond to an hourly output 

resolution between 01-01-2003 and 01-05-2013, i.e. 124 months. Table 1 provides the 

descriptive statistics for both components and the combined seastate. The data are not 

treated for the incident direction. 

Table 1 shows that the wind significant wave height tends to be higher than the swell one, 

while the swell component tends to present larger mean periods. Positive kurtosis and 

skewness values indicate, respectively, that fat and long upper tails are expected for the 

present data. This is important, as the upper tail is the region of interest when dealing with 

the failure of marine systems and structures, because it is related with the largest wave 

heights. 

Legend table 1: Descriptive statistics for the combined sea state, the wind-sea and swell components 

(hindcast data of 124 months). 

Descriptive 
Combined Wind Swell 

Hs (m) Tz (s) Hs (m) Tz (s) Hs (m) Tz (s) 

Mean 1.458 5.9 1.033 3.9 0.883 7.2 

Median 1.220 5.6 0.790 3.6 0.760 6.9 

Std.deviation 0.932 1.7 0.938 1.9 0.517 2.0 

Max 6.110 14.0 6.040 13.8 5.120 17.8 

Min 0.140 2.2 0.000 1.0 0.110 2.6 

Skewness 1.581 0.8 1.644 0.9 1.555 0.7 

Kurtosis 6.161 3.6 6.426 4.0 6.590 3.6 

Percentile 25% 0.800 4.6 0.360 2.5 0.510 5.8 

Percentile 50% 1.220 5.6 0.790 3.6 0.760 6.9 

Percentile 75% 1.850 6.9 1.420 4.9 1.120 8.4 

Percentile 90% 2.690 8.2 2.270 6.4 1.560 9.8 

Percentile 95% 3.350 9.0 2.940 7.5 1.900 10.8 

Percentile 99% 4.780 10.7 4.400 9.5 2.640 12.7 

Percentile 99.5% 5.320 11.3 4.950 10.2 2.957 13.4 

Percentile 99.9% 5.890 12.7 5.700 11.7 3.640 15.3 

N 90553 

When dealing with the combined results from wind and swell components the asymmetry 

between Hs and Tz is considerable. This may lead to difficulties when attempting to fit a 

statistical model to the overall data. [6] points out that fitting a model to the separate 

components may contribute to better fittings and to reduce the asymmetries in the data. The 

present research presents several copula-based models and analyses their comparative 

performance to understand if treating wind and swell components separately leads to a 

better goodness-of-fit compared to the overall model. 
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1. Data Pre-processing 

Copula-based models are typically built on measures of dependence which are rank-based, 

e.g. the Kendall’s tau (τK) or the Spearman’s rho (ρS) [21]. Therefore, the data had to be 

treated for the existence of ties. Moreover, serial dependence needs to be removed in order 

to fulfil the underlying assumptions for the joint models application ([33], [6]). 

The R package RANKS was used to randomly break ties present in the data, when 

constructing the pseudo-observations used to fit the copulas. Similarly to the data presented 

by [6], it was found that this did not affect the marginal distributions of the significant wave 

height and mean period, nor their parameters, which are estimated based on the Maximum 

Likelihood Estimation method (MLE). 

The short-term dependence was removed by subsampling the data. The underlying 

question is “which time interval should be used to subsample the data?” The auto-

correlation function (ACF) was computed for several intervals, namely 1 hour, 3 hours, 1 

day, 2 days, 3 days and 1 week. For each interval the maximum value of the significant 

wave height and the respective mean up-crossing period was selected as the subsample 

object. In the present study, the maxima are selected instead of the means in order to 

conserve the extremes information. It was concluded that, for both the significant wave 

height and mean up-crossing period no substantial reductions of short-term dependence 

were obtained from considering intervals larger than 2 days, e.g. 3 days or 1 week, as shown 

in figure 1. 

Moreover, this interval complies with the value used in [32] to define a storm event for the 

Peak over Threshold application. One should note that the definition of storm duration and 

storm threshold of Hs is always questionable. [34] provides further details on storm 

characterization for different climate conditions, which is not the main focus of this work. 

However, according to the auto-correlation analysis (figure 1), subsampling the maximum 

significant wave height and the associated mean up-crossing period for a 2-day interval 

still shows a bit of short dependence. This can be due to the fact that the maximum 

significant wave height of a block of 2 days can be chronologically close to the maximum 

of the next block of 2 days. Nevertheless, in the present case, it was considered that the bi-

daily maxima was a suitable subsampling. 

This subsampling led to samples of 1887 pairs of Hs and Tz for the combined sea-state, the 

wind and the swell components. Figure 2 provides the subsampling before seasonality is 

removed from the data. 

According to [6], Seasonal effects can be removed by calculating the seasonal mean and 

the standard deviation for each annual cycle. The weekly data is then normalized by 

subtracting the seasonal mean and then dividing by the standard deviation for each week 

of the annual cycle. Then the overall mean is added. 

This procedure may lead to pre-processed data that has negative values. This may pose a 

problem when dealing with the domain of certain distributions, e.g. the lognormal or the 

Weibull distributions. A possible way to deal with negative values is to work with the log 

of the data. If the data are indeed lognormal, their log should lead to new variables that 

follow a Gaussian (Normal) marginal distribution. 
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Legend figure 1: Autocorrelation function for the maximum value selected for different time intervals. 

 

Legend figure 2: Subsamples obtained from choosing the maximum Hs for intervals of 2 days. 

However, for the present case, the Shapiro-Wilk test for normality showed that neither the 

logarithmic transformation of the significant wave height or the mean period followed a 

Gaussian distribution, as shown in table 2. One should also note that for such large samples 

as these ones (n=1887 pairs), the Shapiro-Wilk test tends to be very sensitive to any 

departures from normality. An ad hoc solution was adopted by adding to the sum of the 

overall mean (as explained before) with the minimum integer number of standard 

deviations necessary to turn negative values into positive ones. This does not affect the 

dependence structure of the pre-processed data, since it corresponds to a location shift 

solely. 
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Moreover, after the copula-based models are fitted to the data the seasonality is added back 

again. Therefore, adding the overall mean alone or adding this value plus the necessary 

standard deviations, does not lead to differences in the models’ outcome. 

Legend table 2: Shapiro-Wilk test for normality of the log(Hs) and log(Tz) applied to each subsample. 

Confidence interval of 90%. Rejection of null hypothesis H0 for p<0.1. 

H0: X follows normal distribution; X is either log(Hs) or log(Tz) 

Subsample Combined Wind Swell 

CI=90% Hs Tz Hs Tz Hs Tz 

Shapiro-Wilk 0.9933 0.9931 0.9911 0.9948 0.9962 0.9988 

p value 1.36E-7 9.66E-8 2.55E-9 3.64E-6 1.1E-4 2.44E-1 

Evaluation Reject Reject Reject Reject Reject Reject 

The seasonality is removed according to Eq. (1), where Yi is the pre-processed data, Xi is 

the subsampled value of Hs or Tz, and the µj and σj are respectively the mean and standard 

deviation of the significant wave height and the mean period of the week j, with j=[1;52]. 

M stands for the overall mean of the subsampled data and w represents the minimum 

integer number of overall standard deviations of the subsampled data (Sd) necessary to 

make all Yi positive. 

 𝑌𝑖 =
𝑋𝑖−𝜇𝑗

𝜎𝑗
+ 𝑀 + 𝑤 ∙ 𝑆𝑑 (1) 

For the present dataset all values of Tz in the pre-processed data were already positive. 

However, for the significant wave height, it was found that the required w was equal to 0 

for the combined sea and 1 for the wind and swell components. Note that the Sd of the 

subsampled wind and swell components is different, respectively, equal to 1.221 m and 

0.78 m. Note that with such transformation, the pre-processed data of the combined sea 

does not necessarily have the highest Hs when compared with the wind and swell 

components. The same is valid for the percentiles of Hs (also see table 6), as mentioned 

when the seasonality effects are added back to the pre-processed data and this somehow 

counter-intuitive aspect gets dissipated. 

Figure 3 shows that the subsampling and seasonality treatment led to a considerable 

reduction in the autocorrelation functions for the significant wave heights in the wind-sea, 

the swell and the combined sea-state. 

The same was concluded for the mean up-crossing period, thus leading to pre-processed 

data that can be used to obtain the pseudo-observations for copula fitting. The left-most 

images of figure 3 concern the original hindcast data, while the right-most ones concern 

the pre-processed data, i.e. 2-day maximum Hs and respective Tz with weekly seasonal 

effects removed according to Eq. 1. Figure 3 also shows that the seasonality effect is more 

evident in the swell component than in the wind-sea component. 
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Legend figure 3: Autocorrelation functions for the original hindcast data (left) and the pre-processed data 

(right). Values presented for Hs. Tz has similar plots. 

Figure 4 presents the scatterplots for the original data, the subsampled and the pre-

processed data. When performing the subsampling procedure, one is able to see that the 

dependence between Hs and Tz changes considerably. This occurs because only the 

maximum data for the wave heights is being selected along with the associated up-crossing 

periods. Once again, since the season effect will be added back again, one expects that this 

change is dissipated after the final generation process. In the present case, the generated 

data will of course correspond to a model that expresses the 2 days maxima for the 

significant wave heights and the associated values of the mean wave up-crossing periods. 

The straight comparison between the original hindcast data and the pre-processed data 

becomes less relevant, because the first concerns to an hourly output, while the latter 

concerns the bi-daily maxima. Therefore, further comparisons are to be performed between 

the subsample and the pre-processed data. The model’s output will correspond to maximum 

values per each two days, which are useful for offshore wind engineering design, namely 

in loads calculation. However, for reliability assessment purposes, the fact that the models 

refer to local maxima of Hs and Tz may lead to an overestimation of a system’s probability 

of failure. Although this may result in a conservative assessment of an offshore system’s 

safety, this option should be the aim of further detailed research. 
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One should note that the dependence measures have changed. In this work the measure of 

dependence, τK, was corrected for ties existence and obtained for all datasets. These values 

are summarized in table 3. 

From table 3 it is also possible to understand that for the wind-sea component the positive 

dependence between the Hs and Tz is more evident than the one showed by the swell 

component. This is maintained after the subsampling and the removal of seasonality. 

 

Legend figure 4: Comparison of Hs and Tz before and after the subsampling and the pre-processing. 
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Legend table 3: Kendall's tau (τK) for the original data, the subsamples and the pre-processed data. 

τK Original 
Sub 

sampleSubsampleSubsample 

Pre-

processed 

Combined 0.534 0.719 0.688 

Wind 0.893 0.875 0.864 

Swell 0.539 0.648 0.621 

At a first glance one should expect that the best fit is not provided by the same copula for 

the wind-sea, swell and the combined data, not only because the asymmetry shown by the 

data varies (figure 2 and figure 3), but also because the measure of dependence τK is 

different (table 3). Also note that for the same copula, the estimation of the copula 

parameter depends on τK. The values obtained in table 3 are similar to the ones presented 

in the literature for other locations; e.g. [6], [7], [11],  [15] and [22] reported values of τK 

for several locations, ranging from 0.21 to 0.8. 

An important aspect to be noted is that τK may not be a suitable analysis parameter when 

the behaviour of the tails is being analysed. For this matter the asymptotic dependence 

should be looked into in further detail. The dependence in the tails region considerably 

affects the choices on the possible models to be tested, because different copulas display 

different dependences at the lower or upper tails. Next section discusses the tail 

dependences with further detail. For now one should bear in mind that the values obtained 

for the overall dependence measure τK seem to be reasonable, in the sense that due to the 

wave steepness it is physically impossible to have very large wave heights with very short 

periods. In general, as the significant wave height increases the mean up-crossing period is 

also expected to increase. 

Marginal Distributions 

Before applying the copula-based models to the pre-processed data, an assessment of the 

goodness-of-fit of several marginal distributions was performed (see table 4). The 

Kolmogorov-Smirnov distance (KS) and the Wasserstein (W) distance were calculated 

between each tested marginal and the empirical cumulative distribution function of the pre-

processed data. Table 4 provides the distances. One is able to conclude that for both 

measures the lognormal distribution function (table 4 in italics) was the one that provided 

a closer fit to the significant wave heights and the mean up-crossing periods. In fact, this 

distribution was also the best candidate for the original and the subsampled data. 

The MLE method was then used to estimate the lognormal distribution parameters 

associated with the pre-processed data. In table 5 these parameters and the 95% confidence 

interval are shown. Table 6 gives the descriptive statistics of the pre-processed data. 
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Legend table 4: Kolmogorov-Smirnov (KS) and Wasserstein (WS) distances between theoretical marginal 

distribution and the empirical cumulative distribution function of the Pre-processed data. 

Distribution 
Combined Wind Swell 

KS Hs KS Tz KS Hs KS Tz KS Hs KS Tz 

Normal 0.0972 0.0633 0.1004 0.0767 0.0684 0.0612 

Exponential 0.3129 0.5125 0.4163 0.4956 0.2863 0.5273 

Rayleigh 0.1068 0.4091 0.2461 0.3816 0.0789 0.4338 

GEV 0.1523 0.1167 0.1554 0.1196 0.1507 0.1102 

GP 0.2542 0.4451 0.3538 0.4202 0.2257 0.4535 

Lognormal 0.0242 0.0419 0.0507 0.0457 0.0353 0.0353 

Weibull 0.0711 0.0795 0.0916 0.0846 0.0406 0.0877 

Weibull 3p 0.0711 0.0474 0.0916 0.0756 0.0406 0.0462 

Distribution 
Combined Wind Swell 

WS Hs WS Tz WS Hs WS Tz WS Hs WS Tz 

Normal 0.1856 0.1151 0.1912 0.1338 0.1420 0.1141 

Exponential 0.7098 1.5276 1.0961 1.4760 0.7150 1.6213 

Rayleigh 0.1244 1.0733 0.4553 1.0025 0.1128 1.2460 

GEV 0.3411 0.2517 0.3577 0.2983 0.3168 0.2913 

GP 0.4414 1.0856 0.7421 1.0467 0.4446 1.1824 

Lognormal 0.0592 0.0756 0.0810 0.0751 0.0688 0.0612 

Weibull 0.1254 0.1731 0.1955 0.1951 0.0807 0.2113 

Weib 3p 0.1620 0.0997 0.1755 0.1472 0.1178 0.0976 
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Legend table 5: Parameters and 95% Confidence interval of the lognormal distribution fitted to the pre-

processed data. Log-mean and log-st.dev are the parameters of the distribution and CI is the respective 95% 

confidence interval. 

 Combined Wind Swell 

 Hs Tz Hs Tz Hs Tz 

Log-mean 0.691 1.840 1.119 1.693 0.679 2.0186 

CImean 

95% 

[0.669; 

0.711] 

[1.833; 

1.847] 

[1.106; 

1.133] 

[1.685; 

1.701] 

[0.657; 

0.700] 

[2.013; 

2.024] 

Log-

st.dev. 
0.454 0.152 0.296 0.175 0.467 0.128 

CI 95% 
[0.440; 

0.469] 

[0.147; 

0.157] 

[0.286; 

0.305] 

[0.170; 

0.181] 

[0.454; 

0.484] 

[0.123; 

0.132] 

 

Legend table 6: Descriptive statistics of the pre-processed data. 

Descriptive stats 
Combined Wind Swell 

Hs (m) Tz (s) Hs (m) Tz (s) Hs (m) Tz (s) 

Mean 2.203 6.4 3.202 5.5 2.188 7.6 

Median 1.976 6.2 2.961 5.4 2.027 7.5 

Std. Deviation 0.986 1.0 0.986 1.0 0.986 1.0 

Max 6.261 10.3 7.294 8.8 6.138 11.1 

Min 0.136 4.2 1.035 3.0 0.107 5.2 

Percentile 25% 1.460 5.6 2.477 4.8 1.426 6.9 

Percentile 50% 1.976 6.2 2.961 5.4 2.027 7.5 

Percentile 75% 2.771 7.1 3.750 6.2 2.795 8.2 

Percentile 90% 3.685 7.7 4.653 6.9 3.541 9.0 

Percentile 99% 4.985 8.8 5.971 8.1 5.040 10.3 

Percentile 99.5% 5.303 9.0 6.286 8.4 5.577 10.5 

Percentile 99.9% 5.872 9.7 6.983 8.7 5.964 10.9 

 

Copula Models Applied to the Significant Wave Height and the 

Mean Up-Crossing Period 

In this section several copula-based models will be fitted to the pre-processed data. The 

goodness-of-fit is assessed by means of the Crámer-von Mises distance (s) [35], which 

according to [33] corresponds to a more formal goodness-of-fit test. Other metrics used for 

model selection, as the well- known AIC and BIC criteria, can be seen in [36]-[39], 
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Moreover, an interesting and broad review on this matter is provided by [40]. The present 

analysis is mainly focused on the Crámer-von Mises distance, as it enables a 

straightforward comparison of each model with the empirical copula of the pre-processed 

data. In this section, an attempt to fit the data is made with a set of symmetric copulas. This 

trial will be followed by the application of the extra-parametrization procedure with an 

independent copula and pairwise copulas. Going one step further and based on the best 

scores of the Crámer-von Mises distance, pairs of different copulas will be tested. 

1. Introduction to copula based models 

In this section only the fundamentals of copula theory are introduced. Comprehensive 

insights on copula’s theory and a large spectrum of copula’s families is provided by [21] 

and [41]. 

A copula is a function that couples multivariate distribution functions to their marginal 

distributions [11]. These functions have uniform one-dimensional margins on the interval 

[0; 1] and are invariant under monotone increasing transformations of the marginal 

distributions [21]. The main advantage of copulas is that they enable one to separate the 

marginal behaviour and the dependence structure of the variables from their joint 

distribution function [19]. Copulas present a simple way to build the joint distribution 

function in multivariate problems, taking into consideration the dependence structure 

between the considered random variables. The representation of the dependence structure 

is vital when dealing with reliability problems that somehow imply a random variables 

generation process. For instance, in maritime and offshore engineering problems one often 

needs to simulate pairs of wave heights and periods, which must be in agreement with the 

location’s characteristics. 

 If one considers X as a vector of random variables (xi) with the marginal distribution 

functions defined by F(xi), with i=1…d. The transformation Ui=F(xi) is a dependent 

uniformly distributed vector of random variables, with U=(U1,…,Ud) on the space [0,1]d. 

If F(xi) are continuous, the joint distribution function of X can be expressed as in Eq. 2.  

 𝐹(𝑥) = 𝐶(𝐹1(𝑥1), … , 𝐹𝑑(𝑥𝑑) = 𝐶(𝑢1, … , 𝑢𝑑) (2) 

 

Where C(u) is the copula of the distribution,  C:[0,1]d → [0,1] and u=(u1,…,ud). The Eq. 2 

was originally introduced as the Sklar’s theorem [21]. The copula C(u) and the 

correspondent copula density c(u) can also be defined as in Eqs. 3 and 4, thus leading to 

the joint density of X given by Eq. 5: 

 

 𝐶(𝑢) = 𝐹(𝐹1
−1(𝑢1), … , 𝐹𝑑

−1(𝑢𝑑)) (3) 

 𝑐(𝑢) =
𝜕𝑑(𝐶(𝑢1,…,𝑢𝑑))

𝜕𝑢1,…,𝜕𝑢𝑑
 (4) 

 𝑓(𝑥1, … , 𝑥𝑑) = 𝑐{𝐹1(𝑥1), … , 𝐹𝑑(𝑥𝑑)} ∏ 𝑓𝑖
𝑑
𝑖=1 (𝑥𝑖) (5) 
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Note that fi(xi) is the marginal of xi. Therefore, the joint distribution function of X 

corresponds to the combination of each marginal in X and the information on the 

dependence structure, which is retained by the copula function [6]. 

2. Empirical copula 

As reference to the models one can use the empirical copula, which is built on the empirical 

distribution function Fn(Xi) of each random variable (Xi). The empirical copula can be 

defined as in Eq. 6 [42]: 

 𝐶𝑛(𝑢) = 𝐹𝑛(𝐹𝑛1
−1(𝑢1), … , 𝐹𝑛𝑑

−1(𝑢𝑑)) (6) 

where Fnp and Fnp
-1 denote the p-th marginal empirical cdf and its generalized inverse, for 

p=1,…,d and u is in the interval [0;1]d. 

Figure 5 provides the empirical copula for the pre-processed data in the (u,v)-space, i.e. (F-

1(Hs); F
-1(Tp)). From the left to the right one has the combined sea, the wind-sea and swell 

components. One can confirm that the data has an asymmetric behaviour in the (u,v)-space, 

i.e. generated pseudo-observations, thus C(u,v) ≠ C(v,u). As in other works and datasets, 

e.g. [6], [7] and [24], the asymmetry in the data was already expected. This can be 

explained by the physical limitations of the wave steepness, i.e. due to wave breaking after 

a certain limit, it is not possible to have very high waves with very short periods. The 

evident asymmetry indicates that symmetric copulas will struggle when fitting with quality 

the present data. One expects that a straightforward application of such copulas does not 

perform well under the Crámer-von Mises evaluation. A solution for this is proposed 

further on with the extra-parametrization technique based on the Khoudraji algorithm. As 

it will be demonstrated, the goodness-of-fit will be improved in the copula constructions 

with extra parameters. Figure 4 also indicates that the wind-sea component is the dataset 

with the least degree of asymmetry, while the combined sea seems to be the most 

asymmetric one. With the available dataset from [32] it was not possible to assess why the 

wind component was less asymmetric than the swell. Due to Horns Rev 3 location, it is 

possible that this fact might be related to shallow water depth effects. The improvements 

obtained in the Crámer-von Mises distance are expected to be more pronounced in the swell 

component and the combined sea, because symmetric models may fit the wind component 

better. 

 

Legend figure 5: Empirical copulas of the pre-processed data in the (u,v)-space. 
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3. Symmetric copula-based models 

To confirm the suspicions based on the asymmetry shown by the empirical copulas, a first 

attempt was performed with the following list of copulas: the Gumbel, the Frank, the 

Clayton, the Galambos, the Hüssler-Reiss (HR), the Joe, the Normal (Gaussian), the Tawn; 

the Plackett,; the Ali-Mikhail-Haq (AMH) and the Farlie-Gumbel-Morgenstern (FGM). 

As expected the tested copulas failed at capturing the data’s asymmetry. In table 7 the 

estimated parameter and the Crámer-von Mises distance (see [33]) of the tested copulas are 

presented. The mentioned distance is quite large when compared with the extra-

parametrized copulas. The copulas with the lowest score in the Crámer-von Mises distances 

were the Gumbel copula for the combined dataset, the Hüssler-Reiss for the wind- sea 

component and the Normal copula for the swell component. These values are presented in 

italics format in table 7. When comparing figure 6 with figure 5 (empirical copulas) it 

becomes obvious that the best option among the proposed copulas is not able to accurately 

reproduce the asymmetry shown by the empirical copulas. However, as referred before, the 

wind-sea component, which was the less asymmetric one seems to be the case where the 

proposed copulas are able to provide the lowest value of the Crámer-von Mises distance. 

In the combined dataset, the distances are evidently larger (table 7) when compared with 

the components’ distances (wind-sea and swell). The asymmetry of the swell component 

is not as evident as in the combined dataset but it is still present (see figure 4). Still, the 

copulas shown in figure 5 reproduced symmetric data which, do not comply with the 

knowledge obtained by the empirical copulas in figure 4. This is the case where extra-

parametrization could be applied to improve the goodness-of-fit. 

 

Legend figure 6: Symmetric copulas without extra-parametrization with the lowest Crámer-von Mises 

distances, (u,v)-space per dataset. 

An aspect worth mention in the present analysis is the fact that separating the total seainto 

its swell and wind-sea components does not necessarily lead to an improvement of a certain 

copula’s performance. For example, in Joe copula one obtains s=0.5857, a lower Crámer-

von Mises distance than the same copula applied to the swell component, which yields 

s=0.9948. On the other hand, in the wind-sea component, the Joe copula presents an 

s=0.1250, which reflects the fact that the copula’s goodness-of fit is very much dependent 

on the symmetry/asymmetry present in the data. 
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As a result, when fitting copula models the separation of the combined sea into its 

components only results in a better goodness-of-fit if the actual components yield a degree 

of symmetry in the (u,v)-space, which symmetric copulas are able to retain. 

According to Table 7, the AMH, the FGM and the Tawn copula (with one parameter, i.e. 

symmetric version) provided the worst (i.e. highest) values of the Crámer-von Mises 

distance. The parameter estimation leading to the minimization of s yields θ=1, which is in 

the limit of the parameters’ interval for the three cases ([21], [43]). This enables one to 

conclude that these families of copulas are not suitable for the present case study. The 

extra-parametrization of these copulas is not expected to present any benefit for the present 

analysis, as it will be confirmed further ahead. This is related with the specific nature of 

these copulas, for example, FGM copula is designed to hold a quadratic section in the (u,v)-

space. The quadratic section, say in u, implies that C(u,v)=a(v)2+b(v)u+c(v)2.  The pre-

processed data do not hold a quadratic section within FGM’s θ limit and therefore this 

copula is not suitable for these data. The Tawn copula tested in this case only has one 

parameter. Other versions, as the Tawn with three parameters, could lead to better results. 

This asymmetric version of Tawn copula was not tested in this case, but details on its 

application are provided in the R package VineCopula [44]. 

In the other copulas presented in table 7, only the wind-sea component presents Crámer-

von Mises distances that are in the order of 10-2. Since these copulas imply different tail 

dependences, this is also a reason that contributes to the disparity in the goodness-of-fit of 

the tested copula-based models. As an overall remark, it should be noted that the 

asymmetry in the data is a key factor when using copulas to model the significant wave 

heights and the mean up-crossing periods. Therefore, the statistical modelling of the sea 

components per se may not contribute to a better goodness-of-fit of given copulas. 

Nevertheless, it should be recognised that if the components have a noticeable symmetry, 

simple copulas could indeed be used to model the data. This can be perceived by the low 

values of s obtained for some copulas applied to the wind-sea component, e.g. the 

Galambos, the Gumbel or the HR copulas. 

Some of the copulas tested without extra-parametrization seem to compare well, in terms 

of the order of magnitude obtained for the Crámer-von Mises distances, with the values 

obtained with extra-parametrization for the combined sea analysed by [6]. This could be 

due to the characteristics of the present dataset and also due to the accuracy of the 

estimation of the parameters and the Crámer-von Mises distances. Although not specified 

in [6], in this is study, the estimation of the copulas’ parameters and the values of s was 

performed with an iterative procedure, until the Crámer-von Mises distance is stabilized at 

the fourth decimal place. Table 7 also shows that for well-known simple copulas, as the 

Frank, Clayton, Gumbel and Gaussian ones, the Crámer-von Mises distance is not worse 

than the ones presented, for example, by the Plackett or the Joe copulas which are not so 

common in the literature. However, these distances can be improved with the extra-

parametrization technique. Thus several spectral parameters modelling and reliability 

problems studied under the use of simple Archimedean or elliptical copulas, e.g. [11], [23], 

[45] or [46], can improve their accuracy with the use of the same copula with extra-

parameters. In the next section, the extra-parametrization of copulas is introduced and 

compared with the results obtained in the symmetric models (table 7). 
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Legend table 7: Estimated symmetric copulas, without extra-parametrization and their Crámer-von Mises 

distances (lowest in italics). 

Copula 
Combined Wind Swell 

θ s θ s θ s 

AMH 1 19.733 1 32.7288 1 14.4045 

Clayton 5.105 2.2590 17.655 0.2697 3.517 1.7917 

FGM 1 30.9645 1 48.5962 1 24.7091 

Frank 9.779 0.6682 24.909 0.0944 7.910 0.3478 

Galambos 2.451 0.3913 6.438 0.0171 1.965 0.2364 

Gumbel 3.161 0.3840 7.151 0.0172 2.675 0.2347 

HR 3.149 0.4159 7.661 0.0169 2.592 0.2451 

Joe 5.252 0.5857 14.682 0.1250 4.267 0.9948 

Normal 0.879 0.6536 0.976 0.0376 0.829 0.2258 

Plackett 36.288 0.5463 259.693 0.0615 23.181 0.2845 

Tawn 1 9.8314 1 20.8852 1 6.4406 

 

4. Copula-based models with extra-parametrization 

In order to build asymmetric copula-based models the extra-parametrization technique [26] 

can be applied to combine different copulas. This algorithm results in a new copula, with 

extra-parameters α and β, which retain the information regarding the asymmetry present in 

the (u,v)-space. If one considers the symmetric copulas C1(u,v) and C2(u,v), the new 

asymmetric copula C(u,v) is obtained as in Eq. 7 [6]: 

 𝐶(𝑢, 𝑣) = 𝐶1(𝑢𝛼, 𝑣𝛽) ∙ 𝐶2(𝑢1−𝛼, 𝑣1−𝛽) (7) 

Note that if C1 and C2 have the parameters θ1 and θ2, the new copula C will have four 

parameters, the ones that come from each parametric copula plus the pair (α;β). The 

parameters α and β may vary between 0 and 1. If α is different from β, C(u,v) corresponds 

to an asymmetric copula [28]. Note that the resulting new copula can be combined with 

another one, say A(u,v), which leads to a new set of parameters. Thus the number of copula 

combinations is almost infinite [6]. However, there is no guaranty that the goodness-of-fit 

is improved with the number of copulas combined. Hence, using the Crámer-von Mises 

distance, the AIC and BIC or other goodness-of-fit criteria should always be performed to 

understand if the complexity of the combinations is actually leading to better copula-based 

models. 

In the present study, the estimation of α, β and θ is performed as in [6], which seeks for the 

minimum value of the Crámer-von Mises distance (s), which is defined as the sum of the 
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distances between the empirical copula and the parametric copula distribution function, 

over a grid of [0;1]×[0;1] as in Eq. 8: 

 𝑠 = ∑ [𝐶𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙(𝑢𝑖
∗, 𝑣𝑖

∗) − 𝐶𝛼;𝛽;𝜃(𝑢𝑖
∗, 𝑣𝑖

∗)]
2𝑁

𝑖=1  (8) 

In this case, and for the sake of comparison with Vanem (2016) the calculation of s is 

performed for the referred grid with 100×100=10 000 points, where the empirical and the 

tested copulas are evaluated. 

 

5. Extra-parametrization with an Independent copula 

Assume that C1 is one of the copulas proposed in symmetric set of copulas introduced 

beforeand that C2 is an independent copula, referred to as I(u1-α,v1-β). The independent 

copula yields I(u1-α,v1-β)= u1-αv1-β, which leads from Eq. 7 to Eq. 9: 

 𝐶(𝑢, 𝑣) = 𝐶1(𝑢𝛼, 𝑣𝛽) ∙ 𝐼(𝑢1−𝛼, 𝑣1−𝛽) = 𝐶1(𝑢𝛼, 𝑣𝛽) ∙ 𝑢1−𝛼 ∙ 𝑣1−𝛽 (9) 

This procedure corresponds to the definition of a new asymmetric copula, which is extra-

parametrized with an independent copula. For the tested copula-based models, one obtains 

a set of 3 parameters and the associated Crámer-von Mises distance. These values are 

summarized in Table 8. One is able to see that the AMH, the FGM and the Tawn copulas, 

were not able to catch the asymmetry of the data. Note that these copulas yield α=β=1. This 

was already expected, since in the application without extra-parametrization, the copula’s 

parameter θ had reach its limit and still the values of s were very high when compared with 

the other models. 

Without reaching its θ limit, the Plackett model also led to α=β=1 for the wind-sea 

component. Hence, this model did not catch the asymmetry of this dataset, which was the 

one closest to symmetry. One is also able to note that the estimation of θ and the Crámer-

von Mises distance obtained in table 8 is the same as in table 7 (s= 0.0615). However, note 

that the symmetric Plackett copula applied to the wind-sea component still provided a 

lower distance than the asymmetric models obtained with the Frank, the Joe and the 

Clayton copulas. This interesting result is justified by the fact that the present data do not 

have a much remarked asymmetry for this sea component, as it is presented for the 

combined sea and the swell component. This emphasizes the fact that copula’s performance 

is very much dependent on the asymmetry of the data. Also, the tested models account for 

different tail dependences which may also contribute for the disparity of the Crámer-von 

Mises distance between models. 

From table 8 one can also conclude that the pre-processed data for the combined sea was 

best fitted by extra-parametrizing with an independent copula with the Gumbel copula, 

which was closely followed by extra-parametrizing with the Galambos and the HR copulas. 

The swell component was best fitted by extra-parametrizing an independent copula with 

the Normal copula, which was followed by extra-parametrizing with the Gumbel and the 

HR ones. The HR copula provided the lowest Crámer-von Mises distance for the wind-sea 

component, which also presented very similar values of s, when modelled with the 

Galambos and the Gumbel copulas. The lowest Crámer-von Mises distances appear in 

italics in table 8. 
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In general, the Gumbel and the HR copulas, with extra-parametrization with an 

independent copula, were the models that tended to provide the lowest Crámer-von Mises 

distances. If one compares the distances obtained between the models with the same 

copula, with and without extra-parametrization with an independent copula, i.e. (table 7 

and table 8), it is possible to conclude that the construction proposed by Eq. 9 leads to 

reductions in the s values, thus, approximating the proposed models to the empirical 

copulas of the pre-processed data. The exception occurs for the AMH, the FGM and the 

Tawn copulas, which remain the same as the symmetric versions explained before. For the 

other models, the improvements obtained with the extra-parametrization are more 

noticeable for the combined and the swell pre-processed datasets. This occurs because the 

asymmetry in these datasets contributed to worse estimations with the symmetric set of 

copulas. This emphasizes the notion that the added complexity of the extra-parametrization 

procedure is more valuable if the asymmetry in the data is more evident. The improvement 

of the Crámer-von Mises distances agrees with the results reported in [6] and [28]. 

Figure 7 provides the extra-parametrized copulas that led to the lowest Crámer-von Mises 

distances. One can visually confirm that these copulas provide asymmetric results, which 

are closer to the empirical copulas shown in figure 5 than the results provided by the set of 

symmetric copulas from figure 6. 

One may also want to look at the original (Hs; Tz)-space. A series of 1887 points generated 

in this original space are presented in figure 8. These values result from the inverse of the 

marginal distributions proposed in section 3 (table 5) applied to the series of generated 

values in (u,v)-space presented in figure 7. In order to obtain the values in the original (Hs; 

Tz)-space the seasonality is added back to the pre-processed data, by inverting Eq. 1. Once 

the seasonality is added, the autocorrelation function becomes similar to the subsampled 

data. The autocorrelation function for Hs in the generated series of 1887 pairs of (Hs [m]; 

Tz [s]) is shown in figure 9. The analysis also showed that the autocorrelation of the mean 

up-crossing period agreed with the subsampled data. 

In figure 8 one is able to note that the generated series include values that can exceed the 

maximum of the hindcast significant wave heights. Sometimes the exceedances may be up 

to 2 m, which is quite striking. Despite the reasonable agreement between the generated 

pairs of (Hs; Tz), the models tended to provide a worse fit when dealing with the upper tail 

of the distributions. At a first look, it seems that the marginal distributions previously 

defined are too heavy tailed for the present data. It should be noted that this might be a 

problem of the marginal modelling and not necessarily due to the employed copula models. 

This also occurred with the extra-parametrization with pairwise and the Gumbel copulas. 

This emphasizes the importance of a good marginal definition, regardless of the copula 

model employed for the joint distribution of Hs and Tz. There are also large uncertainties 

in the fitting of the marginal models and this would particularly affect the tails of the 

distributions. The authors recognize that this aspect should be investigated in further 

research. However, the same marginal distributions applied to the pre-processed data are 

used when converting the data to the original (Hs;Tz)-space. Therefore, relative 

comparisons between models are still valid. The overestimation of significant wave heights 

may lead to a conservative safety and reliability assessment of offshore wind or marine 

structures, because the large significant wave heights are the most energetic phenomena 

and the most likely to lead to the failure of a structure. However, when dealing with the 
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probabilities of failure of a certain maritime system, one should note that such models may 

provide an overestimation of these probabilities, which does not contribute to the 

optimization of the structures’ design. 

Legend table 8: Estimated asymmetric copulas, with extra-parametrization with an independent copula and 

their Crámer-von Mises distances (lowest in italics). 

Extra-parametrization with an Independent copula 

Copula 

Combined Wind Swell 

α; β; θ s α; β; θ s α; β; θ s 

AMH 1; 1; 1 19.7326 1; 1; 1 32.7288 1; 1; 1 14.4045 

Clayton 

0.936; 

0.812; 

26.776 

0.4084 

0.971; 

0.978; 

28.699 

0.1707 
0.912; 0.804; 

10.759 
0.5466 

FGM 1; 1; 1 30.9645 1; 1; 1 48.5963 1; 1; 1 24.7091 

Frank 

0.977; 

0.846; 

18.203 

0.2207 

0.986; 

0.992; 

28.867 

0.0836 
0.985; 0.869; 

10.838 
0.1923 

Galambos 
1; 0.868; 

3.729 
0.0667 

0.997; 1; 

6.572 
0.0165 

0.965; 0.845; 

3.048 
0.1649 

Gumbel 
1; 0.868; 

4.445 
0.0665 

0.997; 1; 

7.293 
0.0166 

1; 0.911; 

3.067 
0.1171 

HR 

0.992; 

0.864; 

4.785 

0.0696 
0.995; 1; 

7.887 
0.0159 

0.985; 0.865; 

3.462 
0.12 

Joe 

0.985; 

0.856; 

8.147 

0.0869 

0.982; 

0.989; 

17.809 

0.1022 
0.943; 0.827; 

6.983 
0.4705 

Normal 

0.983; 

0.849; 

0.956 

0.1674 

0.992; 

0.997; 

0.979 

0.0348 
1; 0.888; 

0.882 
0.0728 

Plackett 
1; 0.868; 

93.048 
0.2055 

1; 1; 

261.051 
0.0615 

1; 0.905; 

35.11 
0.1799 

Tawn 1; 1; 1 9.8314 1; 1; 1 20.8852 1; 1; 1 6.4406 
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Legend figure 7: Asymmetric copulas, with extra-parametrization with an independent copula, with the 

lowest Crámer-von Mises distance, (u,v)-space per dataset. 

 

Legend figure 8: Generated series (+) of 1887 pairs of (Hs;Tz) over the subsampled data (o) based on the 

best copulas extra-parametrized with and independent copula. 

 

Legend figure 9: Autocorrelation function for Hs in the generated series of 1887 pairs of (Hs;Tz) based on 

the best copulas extra-parametrized with an independent copula. 
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6. Extra-parametrization with a Pairwise copula 

If one recalls Eq. 7 and assumes that C1(u,v) is coupled with a copula C2(u,v) of the same 

family, the Khoudraji algorithm can be applied to perform an extra-parametrization with 

pairwise copulas, e.g. Gumbel-Gumbel, Clayton-Clayton or Plackett-Plackett. In this case, 

the procedure is similar, but one needs to estimate the parameters of the first and the second 

copulas, respectively θ1 and θ2. This leads to Eq. 10. 

 𝐶(𝑢, 𝑣) = 𝐶1,𝜃1(𝑢𝛼, 𝑣𝛽) ∙ 𝐶1,𝜃2(𝑢1−𝛼, 𝑣1−𝛽) (10) 

In this section, only a set of the copulas with the lowest Crámer-von Mises distances 

obtained in the previous section will be tested. Therefore, the models based on the Tawn 

copula, the FGM and the AMH copulas are excluded from the analysis. The estimated 

parameters for the pairwise copulas and the Crámer-von Mises distances are provided in 

table 9. Comparing table 9 with tables 7 and 8, one concludes that the extra-parametrization 

with a pairwise copula leads to improvements in the Crámer-von Mises distances. The 

improvements are more noticeable in some copulas than in others. Generally, the models 

that had already presented low values of s are the ones where the improvement is less noted, 

e.g. the Gumbel-Gumbel or the HR-HR copulas in the wind component. However, the 

improvements are quite remarkable in some other models, for example in the swell 

component, the Plackett model extra-parametrized with an independent copula (table 8) 

has s=0.1799, while the Plackett-Plackett model is improved to s=0.0238. 

Table 9 shows that the pairwise models with lowest Crámer-von Mises distances were the 

Joe-Joe copula for the combined sea, the Gumbel-Gumbel copula for the wind-sea 

component and the Plackett-Plackett copula for the swell component. One should also note 

that for the three datasets, the Galambos-Galambos and the HR-HR copulas still present 

low Crámer-von Mises distances. Although their distances are not the lowest ones, the 

differences for the best models are not so large. Due to the existence of several models with 

similar Crámer-von Mises distances, it is important to understand if these models are 

actually very different when dealing with generated series. Note that the Crámer-von Mises 

distance provides a measure on the overall goodness-of-fit. Therefore, two copulas with 

the same Crámer-von Mises distance, may fit the extreme events, i.e. upper tail, with 

different localized goodness-of-fit. Hence the tail behaviour of the models should be 

analysed depending on the final objective or intended use of the proposed model. For 

instance. if one wants to predict the extreme significant wave height and the mean up-

crossing period for a specific return period, one may chose the model that fits the upper tail 

the best, although not being the best model in terms of the Crámer-von Mises distance. On 

the other hand, if one wishes to deal with probabilities of failure of a marine structure, it is 

important to reach a balance between the overall goodness-of-fit and the upper-tail fit, 

mainly, because the probability of failure depends on the proportion between the extreme 

events that can cause failure and the common events that are not expected to lead to the 

collapse of the system. 

Before diving into the tail dependence analysis, figure 10 provides the data for the pairwise 

copulas that provided the lowest Crámer-von Mises distances. It is possible to see that the 

asymmetry present in the data is also captured with the pairwise copulas. The generated 

series of 1887 points in the original (Hs; Tz)-space is provided in figure 11, which compares 

with figure 8. One is able to see that the extra-parametrization with a pairwise copula 
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enables one to generate the values which are within the range of the subsampled data. Once 

again the effect of subsampling the maximum values in each block of 2 days from the 

original hindcast data should be the aim of further research, as well as the effect of the 

selected marginal distributions. In figure 12 it is presented the autocorrelation function of 

the significant wave heights for the generated series with the pairwise copulas. The 

autocorrelation compares well with the one presented by the subsampled data. Also in this 

case, the analysis showed that the autocorrelation of the mean up-crossing period also 

agreed with the subsampled data. The analysis also showed that the autocorrelation is also 

preserved for the correspondent generation of Tz. 

Legend table 9: Estimated asymmetric copulas, with pairwise extra-parametrization, and their Crámer-von 

Mises distances (lowest s in italics). 

Copula 

 

Combined Wind Swell 

α; β; θ1; θ2 s α; β; θ1; θ2 s α; β; θ1; θ2 s 

Clayton-

Clayton 

0.124; 0.373; 

31.824; 31.824 
0.2937 

0.491; 0.605; 

82.324; 100 
0.0380 

0.252; 0.558; 

24.872; 14.832 
0.1586 

Frank-

Frank 

0.047; 0.248; 

20.992; 64.998 
0.1984 

0.481; 0.370; 

84.998; 99.978 
0.0344 

0.147; 0.422; 

17.492; 28.602 
0.0984 

Galambos

-

Galambos 

0.029; 0.181; 

4.077; 0.934 
0.0622 

0.581; 0.515; 

9.592; 6.579 
0.0152 

0.243; 0.455; 

3.568; 1.564 
0.0901 

Gumbel-

Gumbel 

0.041; 0.195; 

4.926; 1.651 
0.0624 

0.382; 0.447; 

7.317; 10.770 
0.0151 

0.241; 0.475; 

4.467; 2.452 
0.0926 

HR-HR 
0.119; 0.275; 

6.065; 1.503 
0.0653 

0.435; 0.476; 

6.849; 10.710 
0.0152 

0.181; 0.377; 

4.030; 1.923 
0.0883 

Joe-Joe 
0.105; 0.260; 

9.056; 1.806 
0.0529 

0.472; 0.369; 

18.906; 15.475 
0.0233 

0.212; 0.502; 

7.795; 3.944 
0.2059 

Normal-

Normal 

0.922; 0.745; 

0.852; 0.951 
0.1583 

0.115; 0.173; 

0.984; 1 
0.0280 

0.115; 0.346; 

0.934; 0.934 
0.0492 

Plackett-

Plackett 

0.064; 0.255; 

162.688; 

209.984 

0.1634 

0.463; 0.563; 

998.976; 

2474.976 

0.0238 
0.289; 0.543; 

185.984; 46.413 
0.0455 

 

Legend figure 10: Asymmetric copulas, with extra-parametrization with a pairwise copula, with the lowest 

Crámer-von Mises distance, (u,v)-space per dataset 
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Legend figure 11: Generated series (+) of 1887 pairs of (Hs;Tz) over the original hindcast data (o) based on 

the best copulas extra-parametrized with a pairwise copula. 

 

Legend figure 12: Autocorrelation function for Hs in the generated series of 1887 pairs of (Hs;Tz) based on 

the best copulas extra-parametrized with a pairwise copula. 

Copula Based Models with Different Copulas 

7. Extra-parametrization with a Gumbel copula 

From the extra-parametrized models one is able to understand that the introduction of new 

parameters leads to more flexible models. However, the non-parametric estimations of the 

tail dependence and the WRMSE show that the tails’ behaviour is not automatically 

improved. This aspect is discussed in the next section. Moreover, a model that performs 

well in the asymmetric combined dataset, may perform worse under the asymmetry showed 

by the wind-sea and the swell components. In this sense, one may want to try an extra-

parametrization performed with different copulas. As the number of possible combinations 

is almost infinite, as explained before, in this section, an extra-parametrization with a 

Gumbel copula will be tested for the symmetric models initially presented (table 7). Note 

that other combinations could be tested but this was not performed for the present case. 
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Further research should extend the combinations hereby presented for a deeper assessment 

on the quality of possible fittings. 

The parameters obtained and the optimised Crámer-von Mises distance for each model are 

provided in table 10. The Gumbel copula as C1(u,v) is not tested because it corresponds to 

the pairwise model obtained from the Gumbel-Gumbel model. 

Table 10 shows that extra-parametrization enabled one to build copula-based models based 

on the AHM, the FGM and the Tawn copulas. One is also able to note that the Crámer-von 

Mises distances did not improve for all models. 

Comparing table 10 with table 9, one can see that, for the combined dataset the Joe-Joe 

model provides a slightly lower Crámer-von Mises distance than the Joe-Gumbel model.  

All the Crámer-von Mises distances obtained in table 10 are improved when compared 

with the symmetric models from table 7. These improvements also occur in the wind-sea 

and swell components. 

The wind-sea component, which was the most symmetric dataset, provided low values of 

the Crámer-von Mises distance for models , which only had an upper -tail dependence in 

the symmetric version. Note that the Hüssler-Reiss and the Galambos copulas extra-

parametrized with a Gumbel copula, give similar distances when compared with their 

extra-parametrization with a pairwise copula. In the swell component the Plackett copula 

(extra-parametrized with a Gumbel copula) remained as the model with the lowest Crámer-

von Mises distance. In this case, the distance is slightly above the one obtained with the 

pairwise extra-parametrized Plackett copula. 

For some copulas, e.g. the Frank or the Clayton copulas in the combined dataset, the extra-

parametrization with a Gumbel copula gave lower Crámer-von Mises distances when 

compared with the extra-parametrization made with an independent copula. However, in 

other models this did not occurr, e.g. the Galambos-Gumbel copula did not provide a lower 

distance than the Galambos-Independent copula. From the tested extra-parametrizations, 

the pairwise copulas were the ones that provided the best goodness-of-fit in terms of the 

Crámer-von Mises distances. Nevertheless, it is concluded that testing the Khoudraji 

algorithm with different copulas may lead to some improvements. The Crámer-von Mises 

distances obtained in the present study seem to compare well with the ones presented for a 

different dataset by [6]. 

The results from table 10 also show that the separation between wind-sea and primary swell 

components does not necessarily lead to a better goodness-of-fit when compared with the 

combined dataset. For instance, the Hüssler-Reiss copula extra-parametrized with a 

Gumbel copula presents a lower Crámer-von Mises for the combined sea than for the wind-

sea and swell components. 

In figure 13, simulated data from the copulas extra-parametrized with a Gumbel copula 

also show an asymmetry, which is in agreement with the one obtained for the pre-processed 

data. In figure 14, the generated values show a visually good agreement with the 

subsampled data, as it occurred for the copulas extra-parametrized with independent or 

pairwise copula. 
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Legend table 10: Estimated asymmetric copulas, with extra-parametrization with a Gumbel copula and 

their Crámer-von Mises distances. 

Extra-parametrization with a Gumbel copula 

 Combined Wind Swell 

  α; β; θ1; θ2 
s 

α; β; θ1; θ2 
s 

α; β; θ1; θ2 
s 

AMH 
0.046; 0.156; 

6.049; -0.933 
0.1387 

0.018; 0.013; 

8.694;-0.704 
0.0350 

0.117; 0.226; 

5.112; 1.000 
0.3141 

Clayton 0.115; 0.343; 

6.483; 27.833 

0.1381 

0.456 ;0.351; 

12.843; 

79.998 

0.0242 0.264; 0.548; 

5.365; 11.573 

0.0731 

FGM 
0.046; 0.143; 

6.055; -0.90 
0.1386 

0.018; 0.011; 

8.654; -0.704 
0.0356 

0.112; 0.217; 

4.985; 1.000 
0.2976 

Frank 0.887; 0.691; 

2.010; 25.004 

0.1660 

0.433; 0.535;  

10.016; 

109.648 

0.0243 0.804; 0.532; 

3.030; 17.960 

0.0883 

Galambos 
0.902; 0.696; 

2.464; 5.306 
0.0859 

0.547; 0.465; 

10.937; 7.445 
0.0154 

0.199; 0.480; 

4.926; 2.469 
0.1143 

HR 
0.861; 0.657; 

2.315; 6.803 
0.0849 

0.448; 0.529; 

8.002; 12.145 
0.0153 

0.792; 0.509; 

3.128; 5.268 
0.1129 

Joe 
0.155; 0.360; 

6.704; 2.578 
0.0799 

0.473; 0.564; 

8.771; 16.468 
0.0175 

0.234; 0.520; 

5.203; 3.841 
0.1563 

Normal 
0.967; 0.770; 

50.333; 0.967 
0.1561 

0.679; 0.609 

;33.889; 0.984 
0.0263 

0.712; 0.835; 

33.889; 0.835 
0.0744 

Plackett 0.898; 0.693; 

2.260; 333.342 

0.1619 

0.517; 0.610; 

10.459;995.73

0 

0.0222 0.900; 0.685; 

3.576; 60.302 

0.0698 

Tawn 
0.189; 0.327; 

7.310; 1.000 
0.0814 

0.042; 0.035; 

8.840; 1.000 
0.0280 

0.334; 0.452; 

6.206; 1.000 
0.1558 

  

Legend figure 13: Asymmetric copulas, with extra-parametrization with a Gumbel copula, with the lowest 

Crámer-von Mises distance, (u,v)-space per dataset. 
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Legend figure 14: Generated series (+) of 1887 pairs of (Hs;Tz) over the original hindcast data (o) based on 

the best copulas extra-parametrized with a Gumbel copula. 

Tail Dependence Analysis 

As in other statistical models, the behaviour of the tails is important to understand how 

well the proposed model is able to account for extreme events. 

A possible way to measure the tail dependence (lower or upper tails) is to compute the tail 

dependence coefficients. Further details on these dependence measures can be seen in [21] 

and [47]. Regarding other tail dependence functions, [48] also provides an extensive review 

with an application case study. Assume that X and Y are continuous random variables with 

marginal distributions F(X) and G(Y). The upper (or lower) tail dependence is the limit (if 

it exists) of the conditional probability that Y is greater (or lower) than the u-th percentile 

of G given that X is greater (or lower) than the same u-th percentile of F, as u approaches 

1 (or 0 for the lower tail). The upper (λU) and lower tail dependence (λL) coefficients can 

be defined, respectively, by Eq. 11 and Eq. 12: 

 λ𝑈 = lim
𝑢→1−

[𝑃(𝑌 > 𝐺−1(𝑢)|𝑋 > 𝐹−1(𝑢))] (11) 

 

 λ𝐿 = lim
𝑢→0+

[𝑃(𝑌 ≤ 𝐺−1(𝑢)|𝑋 ≤ 𝐹−1(𝑢))] (12) 

These limits can be expressed in terms of the copula function by Eq. 13 and Eq. 14, as 

follows [21]: 

 λ𝑈 = lim
𝑢→1−

[
1−𝐶(𝑢,)

1−𝑢
] (13) 

 λ𝑈 = lim
𝑢→0+

[
𝐶(𝑢,)

𝑢
] (14) 

X and Y are considered to be upper (or lower) asymptotically dependent if λU (or λL) 

belongs to the interval ]0;1]. If λU (or λL)=0 the variables are considered to be upper (or 
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lower) asymptotically independent [21]. Note that if the tails are asymptotically 

independent that does not mean that the variables are actually independent. It solely means 

that as one moves to the upper or lower tails of the data, the probability that Y exceeds a 

certain quantile is independent of the probability that X exceeds the same quantile. For 

instance, X may represent the significant wave height (Hs) in the pre-processed data and Y 

may represent the mean up-crossing period (Tz), also in the pre-processed data. 

In the present study the non-parametric estimation originally introduced by [49] is 

implemented. Some of the symmetric copulas do not have tail dependence, e.g. the Clayton 

copula does not have upper tail dependence, the Gumbel copula does not have lower one 

and the Frank copula has both upper and lower zero tail dependency. As it turns out, the 

non-parametric estimation method proposed in [49] converges very slowly to these 

dependences. Therefore, in limited samples, the obtained values of the tail coefficients may 

not correspond to the most realistic evaluation. For the purpose of illustration, assume a 

Clayton copula with the copula parameter θ=2. One expects that, theoretically, the λU=0, 

while λL=2-1/θ=0.7071 [50]. Table 11 provides the Schmid & Schmidt estimations for both 

coefficients, in the percentile u=0.01, for different sample sizes (n). 

Legend table 11: Example of [49] non-parametric estimation of the upper and lower -tail dependence 

coefficients for a Clayton copula with a copula parameter θ=2. 

n 1000 10 000 50 000 100000 500000 1E6 

λU 0.0198 0.0168 0.0112 0.0212 0.0180 0.0141 

λL 0.6611 0.7690 0.8468 0.8397 0.8325 0.8264 

Table 11 shows that the lower tail dependence is clearly higher than the upper tail 

dependency. However, the values obtained for several sample sizes are not that close to the 

theoretical values. Still, this non-parametric estimation of finite tail dependence is widely 

referred to and used in the copula’s literature, e.g. [50] or [51]. Moreover, it is a 

straightforward method that can easily be implemented for the more complex copulas built 

with the Khoudraji algorithm, as the ones implemented in this paper. Since the same 

method is used for all the copula-based models presented in this work, the use of [49] 

estimator introduces a systematic bias, which is not relevant for the relative comparison of 

the tested copulas. However, one should keep in mind that the estimator is useful for 

relative comparison but it might not lead to the most accurate assessment of the tail 

dependence coefficients, as was illustrated by table 11. 

In order to have a better perception of the differences in the tail dependences, the lower 

and upper tail coefficients were computed, respectively at the 5% and the 95% quantiles, 

i.e. λL(u=5%) and λU(u=95%). Note that these values correspond to the finite dependence 

estimation provided by [49]. Therefore, they do not represent the actual asymptotic 

dependence of the pre-processed data, although they still provide a notion on the possible 

dependence or independence. These values are summarized in table 12 and they were 

computed for 10 random samples of 10 000 pairs (u,v), which lead to the mean values 

presented. 

One is able to note that the models that provided the best Crámer-von Mises distance may 

not be the ones that provided the closest non-parametric estimation of λL(u=5%) and 
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λU(u=95%). For example, in the extra-parametrization with a pairwise copula, the 

combined sea fitted with a Joe-Joe copula had provided the best Crámer-von Mises distance 

(see table 9). However, the values of λL(u=5%) and λU(u=95%) in this case are better 

approximated by the Frank and the Gumbel copula respectively. Despite this occurrences, 

it is fair to note that the best models in terms of the Crámer-von Mises distance were not 

the worse models in terms of the non-parametric estimation of λL(u=5%) and λU(u=95%). 

This could somehow be expected because, as mentioned before, the Crámer-von Mises 

distance provides a measure of the overall goodness-of-fit thus not ensuring the best fit on 

the tails, but still including them in the estimation process of α, β and θ. 

An interesting aspect from table 12 is that the pairwise models Gumbel-Gumbel, the HR-

HR, Joe-Joe and Galambos-Galambos, assume a perfect asymptotic dependence at the 95% 

quantile in the wind-sea component. The same occurs for the Gumbel model extra-

parametrized with an Independent copula. Although for the pre-processed data this does 

not occur, it seems reasonable to admit that the data has a strong upper-tail dependence for 

the wind-sea component. This occurs more frequently in the extra-parametrization with the 

Gumbel copula, which is expected since the Gumbel copula introduces a strong upper-tail 

dependence. 

Regarding the swell data, the pairwise Plackett-Placket and the Gumbel-Gumbel copulas 

provided the best estimation for the upper and lower–tail, respectevely. The Plackett extra-

parametrized with an Independent copula yield good estimations for both the 5% and the 

95% percentiles. In the combined sea, the Gumbel-Independent and the Frank-Frank 

models yield the best estimations for the lower tail dependence, while the Normal-

Independent and the Gumbel-Gumbel copulas provide the best non-parametric estimation 

of the upper-tail dependence at the 95% percentile. Regarding the copulas extra-

parametrized with a Gumbel copula close estimations are obtained for some models. The 

estimations for the 5% quantile in the combined, wind and swell datasets are obtained by 

the Clayton-Gumbel, the Plackett-Gumbel and again the Clayton-Gumbel copulas, 

respectively. For the 95% quantile, the Galambos-Gumbel, Normal-Gumbel and Plackett-

Gumbel, respectively yield the best estimations for the combined, wind-sea and swell 

datasets. 

The flexibility introduced with the extra-parametrization enables one to obtain the 

optimized model parameters. Nevertheless, the results from table 12 emphasize the need 

for specific models when dealing with the tails’ region. It is also interesting to note that, in 

general, the lower deviations for λL(u=5%) and λU(u=95%) seem to occur in the models 

extra-parametrized with a Gumbel copula. From the analysis of table 12 it is not clear which 

model might be the best to fit the asymmetric data. Nevertheless, one can conclude that the 

choice of the extra-parametrization with a Gumbel copula is a valid attempt to deal with 

the present data. However, it is important to note that often the reliability and risk analysis 

imply the simulation of the overall population of random variables. In this sense, the 

present technique seems to achieve an interesting balance for the overall goodness-of-fit. 

Therefore, a corollary from this observation is that when using copula models applied to 

the significant wave height and a characteristic wave period, the extra-parametrization is a 

reasonable way to try to improve the results obtained from symmetric copulas, which are 

still the main copulas applied in the ocean modelling literature, e.g. [7], [45] or [46]. 
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Legend table 12: Non-parametric estimation of the tail dependence at the 5% and the 95% quantiles for 

extra-parametrized copulas (closest values to empirical estimation in italics- bold). 

Empirical copula of the pre-processed data 

 Combined Wind Swell 

 λ(u=5%) λ(u=95%) λ(u=5%) λ(u=95%) λ(u=5%) λ(u=95%) 

Pre-
processed 

0.450 0.775 0.887 0.890 0.393 0.509 

Extra-parametrization with an independent copula 

Copula 
Combined Wind Swell 

λL(u=5%) λU(u=95%) λL(u=5%) λU(u=95%) λL(u=5%) λU(u=95%) 

Clayton 0.740 0.420 0.886 0.568 0.553 0.226 

Frank 0.349 0.373 0.620 0.484 0.289 0.218 

Galambos 0.525 0.954 0.800 0.989 0.375 0.854 

Gumbel 0.451 0.961 0.880 1.000 0.387 0.879 

HR 0.561 0.744 0.680 0.947 0.430 0.888 

Joe 0.198 0.846 0.432 0.959 0.206 0.830 

Normal 0.647 0.758 0.939 0.946 0.561 0.578 

Plackett 0.565 0.658 0.856 0.890 0.390 0.463 

Extra-parametrization with a Pairwise copula 

 Combined Wind Swell 

 λL(u=5%) λU(u=95%) λL(u=5%) λU(u=95%) λL(u=5%) λU(u=95%) 

Clayton 0.512 0.417 0.798 0.729 0.376 0.242 

Frank 0.446 0.373 0.762 0.674 0.363 0.269 

Galambos 0.421 0.920 0.757 1.000 0.433 0.912 

Gumbel 0.532 0.784 0.897 1.000 0.386 0.888 

HR 0.538 0.866 0.707 1.000 0.382 0.818 

Joe 0.232 0.860 0.802 1.000 0.240 0.809 

Normal 0.594 0.734 0.863 0.873 0.448 0.675 

Plackett 0.509 0.644 0.865 0.940 0.441 0.590 

Extra-parametrization with a Gumbel copula 

 Combined Wind Swell Combined Wind Swell 

 λL(u=5%) λU(u=95%) λL(u=5%) λU(u=95%) λL(u=5%) λU(u=95%) 

Clayton 0.444 0.746 0.812 0.766 0.390 0.613 

Frank 0.413 0.423 0.842 0.812 0.341 0.383 

Galambos 0.479 0.781 0.823 1.000 0.437 0.751 

HR 0.504 1.000 0.696 1.000 0.353 0.799 

Joe 0.500 0.840 0.826 1.000 0.324 0.787 

Normal 0.588 0.709 0.842 0.911 0.510 0.704 

Plackett 0.579 0.727 0.887 0.755 0.368 0.521 

Tawn 0.467 0.865 0.750 1.000 0.364 0.800 

FGM 0.474 0.840 0.799 1.000 0.501 0.759 

AMH 0.494 0.897 0.844 0.997 0.464 0.794 
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Of course, when simulating random sea-state parameters for reliability analysis, one may 

adopt optimised sampling techniques based solely on the tail behaviour. These are not 

approached in the present research. An extensive review on several optimised simulation 

techniques is provided in [52]. However, optimised sampling implies a correction on the 

systems’ probabilities of failure, at least in the Monte-Carlo based methods, because one 

is solely sampling values in the near-failure region. In the present case, extra-parametrized 

copulas are a simple alternative to optimised sampling, as the simulation-efforts with 

copulas are reasonably low. The authors also recognise that the present technique should 

also be compared with other copula constructions, e.g. for a better assessment of the results 

hereby presented. 

As noted in [6] and confirmed in the present study, it is often difficult to visually assess 

which copula-based model provides the best fit, particularly in (u,v)-space but also in the 

original (Hs;Tz)-space. Moreover, the results obtained from the Crámer-von Mises distance 

and the non-parametric estimations of tail dependence are sometimes very close between 

models. Nevertheless, some of the copula models can be disregarded based on the Crámer-

von Mises distance and the tail dependences criteria, which is the case of several symmetric 

copulas and some of the extra-parametrized ones, for example the ones that use the Clayton 

copula. In the next section, one introduces the weighted version of the Root-Mean-Square 

Error (RMSE), adapted to account for the departures at the upper tail of the significant 

wave heights and their joint mean up-crossing wave periods. 

Weighted-Root-Mean-Squared Error (WRMSE) 

8. WRMSE applied to the extra-parametrization with Independent or 

Pairwise copulas 

As a straightforward way to analyse these models’ performance in the original (Hs;Tz)-

space, one may compute the Weighted-Root-Mean-Square Error [6]. A discussion on the 

advantages and pitfalls of the evaluation of significant wave height models based on the 

root-mean-square error can be seen in [53]. If one assumes that the significant wave height 

is the dominant variable, in terms of reliability interest one can also assume that the errors 

performed on the upper tail of Hs should have a stronger penalty when compared with the 

errors related to the central part of the joint distribution of Hs and Tz. 

In this research, a similar procedure to the one adopted in [6] is implemented. First, a set 

of N= 100 000 pairs (Hs; Tz) is obtained from each copula model, with the seasonality 

effects added back in. Then the original space is divided into bins of size 0.1 m × 0.1 s and 

the points falling in each bin are computed for both the empirical subsampled data and the 

simulated ones. The sum of the squared difference between fractions is calculated, thus 

providing a measure on the goodness-of-fit of the models. 

Consider Bij as the i-th bin in the Hs direction and the j-th in the Tz direction. Also consider 

that Xij is the fraction of points from the empirical dataset that fall into Bij and that Yij is 

the fraction of simulated points that fall into the same bin (Bij). Then Xij and Yij are obtained 

as in Eq. 15 and 16, while the WRSME is obtained from Eq. 17, where wij are the weights 

attributed to the errors . Note that wij varies between 0 and 1. 

 𝑋𝑖𝑗 =
1

𝑁𝑋
∑ 𝐼((𝐻𝑠; 𝑇𝑧) ∈ 𝐵𝑖𝑗)

𝑁𝑋
𝑘=1  (15) 
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 𝑌𝑖𝑗 =
1

𝑁𝑌
∑ 𝐼((𝐻𝑠; 𝑇𝑧) ∈ 𝐵𝑖𝑗)

𝑁𝑌
𝑘=1  (16) 

 𝑊𝑅𝑀𝑆𝐸 = √∑ 𝑤𝑖𝑗 ∙ (𝑋𝑖𝑗 − 𝑌𝑖𝑗)
2

𝑖𝑗  (17) 

There is no criteria on how to define the weights applied to the WRMSE. As mentioned in 

this case one is interested in penalizing the errors made on the upper tail of the joint 

distribution. The present dataset comes from a location for which the water depth ranges 

from 10 m to 20 m, at the Horns Rev 3 offshore wind farm [32]. In fact, the coordinates 

given for the case study correspond to a water depth of 18 m. Therefore, one expects that 

the wave heights are depth limited. In [32] it is assumed that the maximum wave height at 

the location is two times the significant one. According to the Coastal Engineering Manual 

[54] the breaker index, i.e. H/d, which defines the maximum non-breaking wave height (H) 

in water depth (d) limited situations, a theoretical value of 0.78 is used. However, a value 

of 0.6 is applied for irregular sea states. Therefore the maximum expected non-breaking 

wave height for d=18 m should roughly be H=0.6×18=10.8 m. In the present case, one is 

concerned with the significant wave height, which means that wave heights over Hs=10.8 

m will be breaking. However, assuming that the maximum Hs is equal to 10.8 m, it is indeed 

a conservative limit when modelling the significant wave height for reliability assessment 

purposes at the case study location. Note that for Hs=10.8 m, the maximum wave height 

proposed in [32] would be around 21.6 m, which is an absurd value, given the water depth 

of 18 m. The limits proposed for the breaker index can be seen as reference levels and for 

practical situations one could definitely use a lower value than the one proposed for the 

maximum significant wave height. Note that several works have been performed on the 

discussion of the breaker index variations. Here, the limit of H/d=0.6 is assumed as a 

simplistic approach. For further details on this matter one can see [55]. 

A possible way to account for these physical limitations, which are not perceived in the 

above mentioned probabilistic models, is to truncate the marginal distribution used to 

obtain the random values of Hs. This was performed in the present case, i.e. maximum 

wave height is limited by H/d=0.6. However, one should again note that marginal 

modelling is an important and inherent part of the joint modelling. In this case, the 

lognormal distribution was applied as mentioned in section “Marginal Distributions”, but 

a more extensive analysis of other distributions can contribute to build similar copula-based 

models that are able to account for the data’s characteristics in a more efficient way. The 

present paper was focused on the joint asymmetric copula models. However, a 

comprehensive discussion on the uncertainties related to the marginal distributions is 

provided in [56]. Taking into consideration the maximum values of the subsamples, which 

are slightly above 6 m, the scale of weights applied to the WRMSE is defined as in Eq.18. 

Table 13 provides the WRMSE values for the extra-parametrized copulas. The AMH, the 

Tawn and the FGM copulas are not presented, because they were already excluded based 

on the parameter’s values and the respective Crámer-von Mises distance obtained for the 

extra-parametrized models with independent or  pairwise copulas. 

 𝑤𝑖𝑗 = {

0
0.33
0.67

1

  

0 𝑚 < 𝐻𝑠 ≤ 2 𝑚
2 𝑚 < 𝐻𝑠 ≤ 4 𝑚
4 𝑚 < 𝐻𝑠 ≤ 6 𝑚

6 𝑚 > 𝐻𝑠

 (18) 
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Legend table 13: WRMSE for the extra-parametrization with Independent and Pairwise copulas. Lowest 

WRMSE in bold italics. 

Copula 
Extra-parametrization with an Independent copula 

Combined Wind Swell 

Clayton 
0.000253 0.000327 0.000246 

Frank 
0.000233 0.000275 0.000226 

Galambos 
0.000236 0.000276 0.000221 

Gumbel 
0.000226 0.000272 0.000228 

HR 
0.000239 0.000273 0.000228 

Joe 
0.000238 0.000306 0.000235 

Normal 
0.000227 0.000283 0.000227 

Plackett 
0.000228 0.000288 0.000235 

Copula 
Extra-parametrization with Pairwise copula 

Combined Wind Swell 

Clayton 
0.000241 0.000273 0.000219 

Frank 
0.000225 0.000262 0.000218 

Galambos 
0.000228 0.000272 0.000224 

Gumbel 
0.000227 0.000266 0.000224 

HR 
0.000231 0.000274 0.000223 

Joe 
0.000231 0.000268 0.000221 

Normal 
0.000231 0.000275 0.000229 

Plackett 
0.000228 0.000271 0.000216 

Since table 13 refers to the original (Hs;Tz)-space, one is able to see, which models hold 

the highest and the lowest weighted errors, with higher penalties directly given to 

departures on the upper tail. The models that provided the lowest errors in the extra-

parametrization with an independent copula, are not the same as the ones that gave the 

lowest Crámer-von Mises distance. In this case the combined sea is best approximated by 

the Gumbel-Independent copula, while the wind-sea and swell components are 

approximated the best by the Gumbel-Independent and the Galambos-Independent 

copulas, respectively. Regarding the models extra-parametrized with pairwise copulas, one 

is able to see that the models that provide the lowest errors are the Frank-Frank copula for 

the combined sea and for the wind-sea and the Plackett-Plackett copula for the primary 

swell component. 

The different results in terms of the Crámer-von Mises and the WRSME were already 

expected, mainly because the first measure concerns the overall fit and the second one deals 
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with the upper -tail fit considering increased penalties with the increasing wave height. The 

differences between criteria were already noted for a different dataset in [6]. This 

emphasizes the need of analysing several goodness-of-fit criteria when dealing with 

copula-based models. 

Table 13 also shows that, unlike in the Crámer-von Mises distance, the extra-

parametrization with a pairwise copula did not lead to a generalized reduction of the 

WRMSE, when compared with the extra-parametrization with an Independent copula. In 

some models, e.g. inthe Joe copula-based ones the error is reduced, in the combined sea, 

while for others, e.g. the Normal-Normal model for the combined sea, the error increases 

when compared with the Normal-Independent model. Such observations confirm that the 

minimization process of the Crámer-von Mises distance does not necessarily lead to a 

minimization of the weighted root-mean-square error, for the same copula-based model.  

Also the separation in the wind-sea and the primary swell components did not hold an 

improvement of the WRMSE when compared with the combined sea. This can be noted 

for example in the Plackett model extra-parametrized with an Independent copula and a 

pairwise copula. This occurs due to the fact that a model that presents a certain tail 

dependence may not be suitable for a specific dataset that does not yield a similar tail 

dependence. 

The dependence structures of the combined sea and its components are different, therefore 

the performance of a specific copula-based model does not remain the same. 

 

9. WRMSE applied to the extra-parametrization with a Gumbel copula 

Table 14 provides the WRSME values for the copulas extra-parametrized with a Gumbel 

copula. One can see that the Galambos-Gumbel copula provided the lowest errors for the 

combined sea, while the HR-Gumbel copula provided the lowest ones for both the wind-

sea and the swell components. 

No systematic improvements are registered in these models’ WRMSE when compared with 

the extra-parametrization technique with an Independent or a pairwise copula (table 13). 

However, one cannot guarantee that models based on other copulas could not result in 

lower values of WRMSE than the ones presented in table 14. 

The WRMSE presented in both tables 13 and 14 are considerably low when compared with 

the ones obtained by [6]. This could be due to the dataset used, which is different, but also 

due to the number of simulations performed to obtain the model’s parameters. 

Further research should be carried out to clarify this aspect. When dealing with new 

datasets and based on the lack of improvements in both the Crámer-von Mises distance and 

the WRMSE, it seems reasonable to implement the extra-parametrized copulas with an 

Independent or a pairwise copula, before moving on to models with different copulas, 

which automatically increase the number of possible combinations to be tested. 
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Legend table 14: WRMSE for the extra-parametrization with a Gumbel copula (lowest WRMSE in 

italics). 

Extra-parametrization with a Gumbel copula 

  Combined Wind Swell 

AMH 0.000231 0.000275 0.000238 

Clayton 0.000231 0.000269 0.000223 

FGM 0.000231 0.000288 0.000240 

Frank 0.000236 0.000277 0.000217 

Galambos 0.000230 0.000272 0.000225 

HR 0.000228 0.00026 0.000210 

Joe 0.000233 0.000263 0.000220 

Normal 0.000228 0.000276 0.000221 

Plackett 0.000235 0.000281 0.000226 

Tawn 0.000240 0.000282 0.000227 

Discussion and Applications to Wind Engineering  

The present section outlines and discusses the results obtained and the pitfalls encountered 

in the asymmetric copula based models proposed. Furthermore, some insights on possible 

applications to offshore wind engineering are provided. 

This research was mainly focused on the joint modelling of the significant wave height and 

the mean up-crossing period. However, the results showed that further research should be 

performed to improve the univariate modelling of the marginal distributions. The main 

reason for this is the fact that using the log-normal distribution revealed itself as a very 

heavy tail distribution, which contributed for a worse fit in the upper tail region of the 

datasets. However, this distribution provided the lowest Kolmogorov-Smirnov and 

Wasserstein distances, thus being the best choice among the tested marginal distributions 

(table 4). Nevertheless, this work covered a wide range of   distributions, often used in the 

offshore wind engineering, e.g. [4], [5] or [13]. 

Other aspects, such as the choices made on the breaker-index, the truncation of the marginal 

distributions, the selection of subsampled data based on the 2day maximum significant 

wave height and the associated mean up-crossing period or the weights defined for the 

WRMSE, affect the model’s choice and model’s output. Although further research should 

be carried out to quantify the influence of these choices, at the end of the day, it is 

reccommended that the designer tests several possibilities, before making a decision. Since 

each dataset may present its own particularities, the experience of the designer is also a key 

aspect to assess the quality of the joint model proposed to deal with met-ocean data. 

Other procedures can be used to remove the data’s seazonality, e.g. see [57] and [58] . The 

method used, based on [6], proved to be suitable. Although these copula models are built 

to add back in the seasonality effects to the generated values of (Hs;Tz), some practical 

issues may appear when dealing with the pre-processed data, namely the occurrence of 

negative pre-processed values. Negative values of pre-processed data may pose some 

difficulties when trying to fit marginal distributions that only have a positive domain, e.g. 
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lognormal or Weibul distributions. Although this problem can be solved by performing a 

shift location, either on Hs or Tz direction, this contributes to obtain a set of pre-processed 

data that is not directly comparable with the original or the subsampled data. The 

application of the proposed models remains valid, but the designer should pay attention to 

the possibility of having some conter-inuitive information, as it occurred in table 6, which 

presented a maximum pre-processed Hs that was higher than the maximum presented for 

the total sea. 

Also, another aspect that can be further improved is the non-parametric estimation of tail 

dependence. In this study the estimation based on [49] was applied. However, this 

estimation does not really enable one to understand the actual assymptotic behaviour of the 

data, as showed in table 11 for the Clayton copula. A somehow ad hoc solution consisted 

in the application of the non-parametric estimation of the finite quantile dependence at the 

5% and the 95% quantiles. Tail dependence analysis can be crucial to rule out some of the 

inittially proposed models. Therefore, other tail and assymptotic dependence analysis, e.g. 

[33] or  [59], should be further implemented to improve the present research. 

Moreover, in order to obtain a better assessment of these copula-based models, one can 

complement the analysis made with the tail dependence, the Crámer-von Mises distance or 

the WRMSE, with a response-based analysis, as mentioned in [59] . Several models can be 

employed to model the met-ocean data and then used e.g. for load estimations at an offshore 

wind turbine or for dragging forces acting on the soil-structure interaction, and then the 

behaviour of the response, say the loads in the first case, is further analysed. For example, 

when dealing with scour protections for offshore wind turbines, [60] compute the bed 

shear-stress response for several distributions of the environmental variables. By 

performing this analysis one is able to compare the responses obtained from different 

modelling assumptions. One is also able to statistically study the response variables along 

with the environmental ones. In this matter, obtaining an non-parametric estimation of the 

response is also useful to validate the statistical models.  

This paper also showed that opting for a joint modelling (based on copulas) of the total sea, 

might be a good option, because the asymmetry of combined data is not necessarily reduced 

for the separate wind-sea and primary swell components. Additionally, in current practice, 

the separation of the components might be problematic, namely, if one is dealing with real 

observations instead of the hindcast data. However, being able to statistically describe the 

sea components might be of great importance when dealing with specific matters of wind 

engineering design. For example, in offshore wind turbines, the failure caused by waves 

from the wind-sea component, which is related with the wind speed, can also be related to 

the operation mode of the turbine, which depends on the cut off and cut in wind speed, e.g. 

[61]. On the other hand, the swell component can also be important, for example, when 

dealing with the dynamic behaviour of offshore wind floating foundations, e.g. [62], [63]. 

The results obtained from the extra-parametrization technique led to lower values than the 

ones presented in [6] for both the Crámer-von Mises distances and the WRMSE. Also the 

estimated copula parameters are not only within the theoretical copula’s range (see [21]) 

but seem to compare reasonably well with the ones used in copulas application to met-

ocean data, e.g. [11], [45] or [46].  However, these works only include symmetric models, 

which leaves space for the present technique to be tested, possibly leading to fitting 

improvements in the datasets related to the mentioned works. 
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In this case the significant wave height and the mean up-crossing period are analyzed. 

Nevertheless, these asymmetric copula-based distribution models can also be extended to 

the analysis of peak periods and extreme wave heights [15], hydrodynamic loads [15], wind 

speed analysis [64] among other environmental variables needed for design. Note that wind 

speed is often very asymmetric in terms of directional distribution and spatial correlation. 

Copula applications as the ones presented here, and for instance in [7], can be used to model 

this variable. This type of modelling is not only useful for design purposes but it also yields 

potential applicability to broader aspects of wind engineering, e.g. to weather prediction 

for offshore maintenance operations [65], to the estimation of seasonal energy production 

[66], to the lifetime extension of wind turbines [3] or to scour protections design [60]. 

The majority of the works performed with copulas for met-ocean data is typically applied 

to a bi-variate case. However, it should be recognized that the proposed models can be 

applied to problems with several dimensions. This means that one is able to create joint 

models, for example, for wave heights, peak periods and incident directions, wind speed 

and ocean current velocity, among several other variables of interest. In this sense, the the 

extra-parametrization technique poses a straightforward alternative to nested copulas and 

C,D-Vine copulas, applied for example in wind resource estimation by [24] by [67] or [24] 

to model spectral sea-state parameters and [68] to perform spatiotemporal modeling of 

wind generation power for storage sizing. 

A final remark should be made to the fact that the popularity of asymmetric copula models 

is increasing. This occurs not only due the models flexibility but also due to their ability to 

tackle the complexity and computational burden of modeling high-dimensional data. This 

advantage coupled with its simple application and the promising results, which often 

confirm that these models compare reasonably well with current practice methods, e.g. see 

[69] and [6], make them an interesting alternative for several wind engineering 

applications, with a special emphasis on the ones related to the offshore wind industry. 

Conclusions 

The present research proposed several extra-parametrized copula-based models which 

were applied to a dataset of hindcast significant wave height and up-crossing mean wave 

period, which refer to the location of the Horns Rev 3 offshore wind farm.  An extensive 

application was performed for the total (combined) sea and its respective components of 

wind-sea and primary swell. With this research it was possible to conclude that the separate 

modelling of the wind-sea and primary swell components does not always lead to a better 

goodness-of-fit of the copula models. Therefore, it seems a reasonable choice to model the 

total sea, without separation of its components. Moreover, using the extra-parametrization 

technique it becomes easier to catch the asymmetry of the total sea.  

It was noted that the copula’s performance is very much dependent on the asymmetry of 

the data itself. Therefore, if the transformed significant wave heights and the mean up-

crossing periods, from primary swell and wind-sea, are asymmetric in the (u,v)-space, it is 

recommended to use asymmetric copulas to improve the goodness-of-fit. It is concluded 

that problems caused by asymmetries in the data, can be reduced by the flexibility 

introduced with the extra-parametrization of copulas. 
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The extra-parametrization led to significant improvements of the Crámer-von Mises 

distance, between the models and the empirical data. The improvements were noticed for 

the extra-parametrization with both an independent copula and with the pairwise copulas. 

The flexibility introduced enables one to easily build joint models for the significant wave 

height and up-cross mean period, based on simple symmetric copulas, such as the 

Archimedean or the Elliptical ones. 

Using this technique to combine different copulas is also possible. In this paper, an example 

was shown for the extra-parametrization with a Gumbel copula. These copula constructions 

also improved the goodness-of-fit when compared with the symmetric copulas. However, 

they still presented higher Crámer-von Mises distances when compared with the pairwise 

construction and some of the independent copula based models. 

It was also confirmed that a model that gives the lowest Crámer-von Mises distance, may 

not always provide the lowest WRMSE adapted to penalize more the departures on the 

upper tail of the significant wave heights. Therefore, the Crámer-von Mises distance must 

be seen as an overall goodness-of-fit measure, while the proposed loss function based on 

WRMSE is more suitable to deal with errors on the tails of the distributions. 
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