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The orbital relaxation attendant on ionization is particularly important for the core electron ionization
potential (core IP) of molecules. The Unitary Group Adapted State Universal Coupled Cluster (UGA-
SUMRCC) theory, recently formulated and implemented by Sen et al. [J. Chem. Phys. 137, 074104
(2012)], is very effective in capturing orbital relaxation accompanying ionization or excitation of both
the core and the valence electrons [S. Sen et al., Mol. Phys. 111, 2625 (2013); A. Shee et al., J. Chem.
Theory Comput. 9, 2573 (2013)] while preserving the spin-symmetry of the target states and using
the neutral closed-shell spatial orbitals of the ground state. Our Ansatz invokes a normal-ordered
exponential representation of spin-free cluster-operators. The orbital relaxation induced by a specific
set of cluster operators in our Ansatz is good enough to eliminate the need for different sets of orbitals
for the ground and the core-ionized states. We call the single configuration state function (CSF)
limit of this theory the Unitary Group Adapted Open-Shell Coupled Cluster (UGA-OSCC) theory.
The aim of this paper is to comprehensively explore the efficacy of our Ansatz to describe orbital
relaxation, using both theoretical analysis and numerical performance. Whenever warranted, we also
make appropriate comparisons with other coupled-cluster theories. A physically motivated truncation
of the chains of spin-free T-operators is also made possible by the normal-ordering, and the operational
resemblance to single reference coupled-cluster theory allows easy implementation. Our test case is
the prediction of the 1s core IP of molecules containing a single light- to medium-heavy nucleus
and thus, in addition to demonstrating the orbital relaxation, we have addressed the scalar relativistic
effects on the accuracy of the IPs by using a hierarchy of spin-free Hamiltonians in conjunction with
our theory. Additionally, the contribution of the spin-free component of the two-electron Gaunt term,
not usually taken into consideration, has been estimated at the Self-Consistent Field (∆SCF) level and
is found to become increasingly important and eventually quite prominent for molecules with third
period atoms and below. The accuracies of the IPs computed using UGA-OSCC are found to be of
the same order as the Coupled Cluster Singles Doubles (∆CCSD) values while being free from spin
contamination. Since the UGA-OSCC uses a common set of orbitals for the ground state and the ion,
it obviates the need of two N5 AO to MO transformation in contrast to the ∆CCSD method. Published
by AIP Publishing. https://doi.org/10.1063/1.5018086

I. INTRODUCTION

Theoretical prediction of the core ionization potential (IP)
poses a special challenge to any high level correlated the-
ory. The magnitude of the core IP is shaped not only by the
magnitude of differential correlation accompanying the core
ionization process relative to the ground state correlation but
also by the attendant large orbital relaxation. Thus a precise
description of the core ionization phenomenon requires proper
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quantitative modeling of not only differential correlation but
also of the orbital relaxation.

Often the Self-Consistent Field (∆SCF) method is con-
sidered good enough for core IP as the orbital relaxation
for the ionized state is taken care of at the mean field level,
and the difference in the correlation energies for the two
states, each with their corresponding optimized orbitals, is
easily swamped by the large orbital relaxation for core pro-
cesses.1 This is, however, the outcome of partial error can-
cellation and cannot be relied on for high accuracy com-
putations. Moreover, its scope is limited for other types
of core processes such as electron excitation and shake up
phenomena,2 notwithstanding the obvious limitation of its
inability to handle processes sensitive to static and dynamic
electron correlation.3–5 Recently, advances in electron
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correlation theories have made the accurate prediction of X-
ray ionization and excitation spectra viable.6–9 A high level
correlation theory should, in principle, take care of correlation
and orbital relaxation in a generic situation involving energy
differences of the ground and ionized, electron attached, or
excited states. However, for core IP in particular, a proper
correlation theory must also accurately capture not only a par-
tial cancellation of dynamic correlation between the states but
also take account of the large orbital relaxation in an explicit
manner. We will study in this paper a fairly general non-
perturbative method applicable for core processes which, as we
shall show, adequately demonstrates these two requirements
when applied to the computation of core IPs.

One can broadly classify correlated theories for energy
differences such as IP into two categories: (A) separate com-
putations for the ground states (GSs) and the ionized state each
with their corresponding optimized orbitals and (B) the same
set of orbitals for computation of the energies of the ground
and the ionized states.

The possible advantage of the methods belonging to cat-
egory A in offering a more complete account of orbital relax-
ation is however quite offset by the disadvantage stemming
from the necessity for separate transformation of two-electron
integrals from AO to MO basis for the two states, i.e., two N5

scaling computations, and the difficulty of computing tran-
sition properties due to non-orthogonal orbitals. The Static
Exchange (STEX)10 approach, Open-shell Reference Symme-
try Adapted Cluster (OR-SAC),11 and Coupled Cluster Singles
Doubles (∆CCSD) methods12 belong to this category of cor-
relation methods. The calculation of core excited states using
orbitals of the core ionized state has also been attempted.13

However, the UHF- or ROHF-based CC computations for the
doublet state would lead to a spin contaminated wave function.

The methods belonging to category B are clearly advan-
tageous on two counts: they provide a natural way of can-
cellation of common terms in the energy differences and
only one N5 transformation. These theories include Equa-
tion Of Motion Coupled Cluster (EOMCC),13–22 Coupled
Cluster Linear Response Theory (CC-LRT),8,23–32 Similarity-
Transformed EOMCC (STEOMCC),33–36 Symmetry Adapted
Cluster Configuration Interaction (SAC-CI),37–39 propagator
methods with orbital relaxation,40 Algebraic Diagrammatic
Construction (ADC),41,42 and other response-based theories.
In almost all these methods, the orbitals used are those for
the closed shell ground state. Then, the linear Ansatz in
response approaches results in poor orbital relaxation unless
three and higher rank excitations are included.43 This dif-
ficulty may be largely resolved by formulating a theory
for describing the core-ionized state with GS orbitals but
adopting a suitable cluster expansion Ansatz for describing
correlation and orbital relaxations—the latter in the spirit
of the Thouless theorem.44 For core IP, a spin-free open
shell coupled cluster theory with spin-free cluster operators
using only ground state orbitals seems clearly to be such
a viable theory which would simultaneously prevent spin
contamination.

We have recently formulated Unitary Group Adapted
(UGA) Multi-Reference Coupled Cluster (MRCC) theories of
the state-specific (UGA-SSMRCC)45 and the state-universal

(UGA-SUMRCC)46 variants for studying a specific state or
a set of states which are capable of handling multi-reference
effects. By their very construction, they are spin adapted in
nature and may be looked upon as the spin adapted ver-
sions of spinorbital-based SSMRCC47–50 and SUMRCC,51

respectively. For an overview of these developments, we quote
Ref. 52. The literature covering the diverse MRCC theo-
ries is vast, and we mention only certain representative ones
of relevance to us.47–51,53–64 We also refer the readers to a
set of comprehensive review articles on the latest general
developments.65,66

The Ansatz for the wave operator of the UGA-MRCC
theories, suggested by us, is strongly reminiscent of the one
suggested by Jeziorski and Monkhorst51 except that in our
spin-free formulation, the spin-free cluster operators are non-
commuting in general but whose structural complexity we
avoid by positing a normal ordered exponential representa-
tion of each component of the wave operator, Ωµ = {eTµ },
acting on a model function φµ. φµ is a spin-adapted Gel’fand
state.67,68 Unlike in the UGA formulations suggested by Li
and Paldus,56 where they used an ordinary exponential repre-
sentation of the wave operator which leads to rather unwieldy
expressions for a class of terms in their working equations, our
formulation using normal ordered exponential leads to much
more compact expressions. The UGA-SSMRCC was found to
be very successful in the study of potential energy surfaces
of molecules in various electronic states, all leading to proper
fragmentation, while the UGA-SUMRCC was used for study-
ing ionized or excited states. The deepest lying core-orbital of
molecules which contain only one heavy nucleus is generally
well separated from the others. The molecules investigated in
this paper all belong to this category. There is thus only one
core-ionized model function for the deepest core-ionized state
and it is clear that they can be studied with the single open-shell
CSF limit of both the UGA-SUMRCC and UGA-SSMRCC
(since they are equivalent) and we want to call this the Unitary
Group Adapted Open-Shell Coupled Cluster (UGA-OSCC)
theory.

It is well-known that the ordinary Thouless parameteriza-
tion involves an ordinary exponential44 of a one-body excita-
tion operator inducing orbital relaxation. Due to the presence
of the normal ordering in our Ansatz, we will refer to our
analog as a generalized Thouless parametrization. The orbital
relaxing spin-free cluster operators in the generalized Thou-
less parametrization are not, however, necessarily one-body.
In our paper, we will analyze in some detail the relaxation
mechanism in UGA-OSCC in order to have a comparison of
the orbital relaxation brought out by the generalized Thouless
parametrization, vis-à-vis, the standard Thouless parametriza-
tion. In our earlier publications,46,69,70 we had used a suffi-
ciency condition to arrive at our working equations. However,
recent developments by us indicate that the theory can be rigor-
ously derived and the sufficiency condition used by us46,69,70

amounts to a first approximation. In this paper, we will use
the final rigorous equation to help us explain the relaxation
mechanism. We will also adduce theoretical reasons to ratio-
nalize why the sufficiency condition was physically motivated.
Thus, while we use our earlier equations to compute num-
bers, we invoke the rigorous equation to analyze the relaxation
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mechanism. Our pilot applications published earlier70 bear
out the merit of this approximation clearly. In this paper, we
shall present a more systematic study with more challenging
test cases. This analysis will not only help us in discern-
ing certain key aspects of the relaxation mechanism in the
UGA-OSCC theory but also shed light on that of the parent
UGA-SUMRCC/UGA-SSMRCC theories where the coupling
term poses certain non-trivial issues.

Formalisms related to ours include the Open-Shell
Coupled Cluster (OSCC) of Paldus et al.55,58,59,71,72 and
the Combinatoric Open-Shell Coupled Cluster of Datta and
Mukherjee.73,74 Both these theories also incorporate a high
degree of orbital relaxation, but there are important struc-
tural differences with our formalism. The OSCC theory of
Paldus55,58,59,71,72 uses an ordinary exponential parameteri-
zation for their spin-free wave operator and, because of the
non-commutativity in the cluster operators in their Ansatz, the
formalism is both algebraically and implementationally more
complicated than ours. The COS-CC of Datta and Mukher-
jee involves selective contractions of the active orbitals in
the orbital-relaxing terms—as one obtains in a Fock-space
formulation of the MRCC methods.53,54 In COS-CC, all the
cluster operators of the ionized state involve spectator exci-
tations labeled by the active orbitals (which are ionized) and
they are contracted with each other in the various terms. Our
formulation bypasses most of the active orbital contractions.

For an accurate description of the core IP of molecules
containing one medium-heavy atom, the scalar relativistic
effect tends to become important and in the series of exam-
ple molecules of the general formula [XHn] with X as the
non hydrogen atom, we will present results using both non-
relativistic (NR) and spin-free Dirac-Coulomb Hamiltonians.
Since for the core IP, the orbital from which the electron is ion-
ized is almost entirely of s-character, the spin-orbit effects are
negligible. The spin-free DC Hamiltonian has been studied
in both a four-component75–79 and a two-component frame-
work.80,81 The most widely accepted approach for the two-
component theories is the eXact two-component one-electron
(X2C-1e) Hamiltonian,82–86 and the spin-free version of the
X2C-1e Hamiltonian, the so-called SF-X2C-1e Hamiltonian,
has also been extensively studied.80,81 The “picture change
error”87 arising from not transforming the two-electron part
of the Hamiltonian when going from a four-component to a
two-component representation has also been studied in this
paper in the context of core IPs. The spin-free 4-component
Hamiltonian and the SF-X2C-1e Hamiltonian will, respec-
tively, be called the SF-4C and the SF-2C Hamiltonian in
the rest of this paper. In our work, the use of explicitly
spin-free coupled cluster theories enables us to have a uni-
fied treatment for both NR and the SF-4C/2C Hamiltoni-
ans. The effects of correlation and relativity are not addi-
tive, and non-perturbative theories are ideally suited for han-
dling them together. We should also mention that this is not
only true for core IP processes but also for more complex
processes9,88–93 leading all the way to multi-reference theo-
ries with relativistic Hamiltonians which are being actively
investigated.94–101

We have also assessed the lowest order Quantum Elec-
trodynamic (QED) correction to the core IP. It has been

shown previously by Indelicato et al.102 and others,103 in the
context of atomic core ionizations and also valence ioniza-
tions,104 that QED effects could be vitally important. We have
estimated the importance of the spin-free part of the Gaunt
term at the mean field level, i.e., the ∆SCF level, which con-
tains the current-current interaction. We have also assessed the
contribution of the spin-dependent part of the Gaunt term at the
∆SCF level and found it to be much smaller than the spin-free
part.

This paper is organized as follows. Section II gives a
brief derivation of the UGA-OSCC theory and puts our earlier
derivations46,69 involving a sufficiency condition in the con-
text of an exact derivation. Section III discusses the nature
of orbital relaxation as induced by a generalized Thouless
parameterization. Section III A clarifies that the generalized
Thouless parametrization does not lose any physical compo-
nent inducing orbital relaxation despite the use of a normal
ordered exponential. There are several subtle issues which are
outlined in this section. Section III B motivates towards the
actual truncation scheme used in this paper which is the same as
the single configuration state function (CSF) limit of the UGA-
SUMRCC presented earlier46 as well. In Sec. IV, we discuss
the spin-free relativistic Hamiltonians which we have used in
our study. Section V contains molecular applications in which
Sec. V A discusses the computational details, and Sec. V B
presents our findings. Finally, in Sec. VI we summarize our
work and comment on future prospects.

II. THE UGA-OSCC FORMALISM

As emphasized in Sec. I, the UGA-OSCC theory is the sin-
gle CSF limit of the UGA-SUMRCC46 or UGA-SSMRCC.45

In the UGA-OSCC, which we will use to describe the core
ionized state, we choose one φµ which represents the core
ionized model function and write the correlated ionized state
as

|Ψ〉 = Ωµ |φµ〉 . (1)

The index “µ” is superfluous but we carry it to indicate that
the amplitudes of the cluster operators will be determined for
the open-shell state itself and not for some underlying vacuum
function (or ground state) with subsequent corrections (as in
the Fock-space coupled cluster formalism, for instance). In the
spin-free formulation, one represents Ωµ in terms of spin free
cluster operators Tµ whose various components are written in
terms of spin-free excitation operators which are generators of
the unitary group.

The spin-free Hamiltonian we will be using can be
expressed entirely in terms of matrix elements involving
orbitals. We will use the labels i, j,. . . , etc., for the doubly
occupied inactive orbitals or holes; a, b, c,. . . , etc., for the
inactive virtual orbitals or particles; and the labels (I, J,. . . )
and (A, B,. . . ) for the active holes and the active particles,
respectively. In the extant case, the function φµ is a 1-hole
(1h) state, where the core orbital, I, is singly occupied. In this
situation, it is possible for various components of Tµ to excite
both from and into I, which results in the non-commutativity
of the Tµs. This is generally the case that the spin-free genera-
tors in Tµ involving singly occupied orbitals will introduce the
problem of non-commutativity of certain components of these
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operators. With an exponential Ansatz for Ωµ, i.e., eTµ , the
Baker-Campbell-Hausdorff (BCH) expansion would not have
terminated at the quartic power. This problem is overcome by
an additional normal ordering over the full Ansatz denoted by
{} in the following equation:

Ωµ = {e
Tµ }. (2)

Here the normal ordering is taken with respect to a suitable
closed shell determinant, chosen as the vacuum. In our present
formulation, we choose as our vacuum, the Hartree-Fock
function, φ0, of the neutral ground state.

Since the operators of Tµ are spin-free, they cannot change
the spin of the function they act upon. The action of products of
the operators also, thus, does not affect the spin state leading
to the spin-free nature of the full exponential Ansatz or any
approximation thereof. In general, our choice for the spin-
adapted Configuration State Function (CSF), φµ, is a Gel’fand
state.67,68,72 However, for the doublets we deal with in this
paper, the functions are unique and no specific choice for the
spin and the spatial part is necessary. We treat the doublet
ionized states as described by the 1-hole (1h) sector model and
virtual functions, with the ground-state Hartree-Fock function
taken as the vacuum.

The excited functions in our formulation are generated by
the action of linearly independent spin-free generators of the
unitary group ({ε l

µ}), acting on φµ,

| χl
µ〉 = {ε

l
µ}|φµ〉 , (3)

where {ε l
µ}s are in normal order with respect to |φ0 〉. The

functions χl
µ are CSFs but they are neither Gel’fand states

nor the SU2 adapted CSFs of Li and Paldus.57 {ε l
µ}s are

linearly independent specific combinations of spatial orbital
replacement operators, {El

µ}, which are generators of the uni-
tary group. For further details of the operators chosen, we
refer the readers to our earlier publication.69 The final work-
ing equations involve matrix elements between φµs wherein
reduced density matrices (RDMs) labeled by active orbitals
(I in the present case of core-ionized states) appear which
incorporate the spin information of the model function φµ
and hence how we choose the excited CSFs does not play
an important role.

Using this Ansatz in the Schrödinger equation, we have

{H }{eTµ }|φµ〉 = Eµ{e
Tµ }|φµ〉 (4)

Introducing an operator, Wµµ, defined by

Wµµ |φµ〉 = |φµ〉Eµ (5)

and using Wick’s theorem on both sides of Eq. (4), we have

(6)

where Hµ is a compact notation of an operator in normal order
defined by the series,

(7)
and the operator Yµµ has a similar structure of the form

(8)

Let us note that in Eqs. (7) and (8), the contribution of the
unit operator coming from {eTµ } is also included.

In our earlier publications,46,69,70 we had used a suffi-
ciency condition at this point in Eq. (6) to suggest the following
equation:

{Hµ}|φµ〉 = {Yµµ}|φµ〉 . (9)

As already indicated in Sec. I, we have recently found that it is
possible to arrive rigorously at a connected working equation,
which on a first approximation yields our earlier equations. In
this paper, we will present the rigorous equation as Eq. (10)
and indicate, in Sec. III B, the approximations necessary to
arrive at Eq. (9), for establishment of the sufficiency con-
dition. We will present the full derivation and analysis in a
forthcoming publication. The detailed derivation and analysis
open the way for a systematic hierarchy of approximations
and warrants a detailed study. In this paper, we have used the
older version of the working equation, and the current level of
numerical accuracy already appears to be quite good. The theo-
retical basis for the success of this approximation is analyzed in
Sec. III B.

The rigorous equation most recently derived by us for the
UGA-OSCC takes the form

(10)

where

(11)

and ẽ(θµ) is ({eθµ } − 1).
Thus,

. (12)

The first term in {Gµ} [Eq. (12)] is called the “direct term” and
the second is the so-called “coupling term” (or rather, “folded
term” for our single CSF case).

We note that any many-body operator can be decomposed
into an excitation part, Aex, and a closed part, Acl, depending
on their action on the model function, φµ. Aex acting on φµ
produces virtual functions only, while Acl leads only to φµ.
We make this separation as and when required.
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To get the final working equations for determining the
cluster amplitudes of Tµ, Eq. (10) is simply projected by the
excited functions to yield Eq. (13) which are called projection
equations,

Rl
µ,ex = 〈χ

l
µ |{Gµ}ex |φµ〉 = 0. (13)

Equation (13) is to be solved iteratively till the residual goes
below a pre-assigned convergence threshold. In Eq. (13), only
the excitation part of {Gµ} contributes, which is why we have
used the sub-script “ex.”

Analogous to Eq. (13), we get the expression for the
energy of the correlated φµ as

Eµ = 〈φµ |{Gµ}cl |φµ〉 . (14)

Using the expression of {Gµ}cl from Eq. (12), we find that

Wµµ = {Hµ}cl. (15)

III. TREATMENT OF ORBITAL RELAXATION
THROUGH A GENERALIZED THOULESS
PARAMETRIZATION

We arrive now to one of the major theoretical ramifica-
tions of the formalism expounded in Sec. II: the mechanism of
orbital relaxation in our UGA-OSCC. As mentioned before, in
our UGA-OSCC theory, the Tµ operators are defined in spa-
tial orbitals and the resulting problem of non-commutativity
of the components of Tµs involving singly occupied active
orbitals is alleviated by an additional normal-ordering of the
Ansatz with respect to a common closed shell vacuum. A
problem with such an approach is that the orbitals to be used
could very well be optimized for the function φ0. Thus the
orbitals may not be optimal for the model functions, mak-
ing it essential to have a mechanism for correction of orbitals
to be induced by the wave operator Ansatz. The normal
ordered exponential Ansatz in the UGA-OSCC theory takes
care of the orbital relaxation both due to ionization and due
to correlation. These two effects are, however, intermingled
and cannot be separated out numerically. One may, how-
ever, separately analyze the mechanism by which they are
introduced.

Before we embark on this analysis, we may point out
that in conventional coupled-cluster theory, the wave opera-
tor with the Thouless parameterization, eT1 , acts only on the
ket function—the bra function remains unrelaxed. A fuller
parametrization for relaxation of both the bra and the ket func-
tions would have been a unitary transformation of the orbitals
via eσ where σ is an anti-Hermitian operator. However, σ
is a combination of excitation and de-excitation operators,
σ = T1 − T†1 , making them non-commuting. This makes such
a theory unwieldy due to the occurrence of a non-terminating
series of operators. This is useful only when orbital relax-
ations to a given order under some external perturbation need
to be evaluated, such as during the solution of the Coupled
Perturbed Hartree-Fock (CPHF) equations for computation of
molecular properties. In what follows, we compare the orbital
relaxation achieved in the UGA-OSCC theory, which uses
the ground-state spatial orbitals, with ordinary open-shell CC
which uses the spinorbitals of the ground-state. Our results
will indicate the fruitfulness of the UGA-OSCC theory. For

FIG. 1. Spin-free TI
j when I is a singly occupied active hole orbital with a

closed-shell core as vacuum.

a clearer perspective of the results, we will present numbers
from the ∆CCSD approach as well, where the explicit use
of the optimized orbitals for the ground and ionized states is
made.

A. Extent of clustering in our UGA-OSCC Ansatz

Since in our UGA-OSCC, Ωµ is in normal order, the
one-body inactive excitations will have exactly the same form
for the orbital relaxation as in an ordinary exponential wave
operator, eTµ , that is, T a

µi . On the other hand, the one-body
excitations involving the singly occupied active orbitals (I, in
our case) can have I appearing in both the destruction and
the creation component of Tµ. In addition to the single exci-
tation from I, T a

µI , we will also have excitations into I, like

T I
µj. Moreover, we have a rank 2 excitation of the type T Ia

µjI
(involving the spectator excitation of I in the exchange mode)
which excites j to a and we therefore call it a pseudo-two-
body excitation. Unlike in the spinorbital-based description,
both the one-body and the pseudo-two-body cluster opera-
tors induce orbital relaxation. Without going into the details
here, we can show that the pseudo-two-body excitation leads
to spin-flipping of the orbital I. This introduces the major non-
trivial difference between the spin-free Thouless parametriza-
tion and the conventional spinorbital-based ordinary Thouless
parametrization. On the other hand, the normal ordering in our
Ωµ will prevent possible contractions between different com-
ponents of Tµ in which the active hole I is created in one and
destroyed in the other. Then, for the one active hole problem,
the quadratic and higher powers of the cluster operators which
destroy I (TI

j , shown in Fig. 1, for example), will annihilate φµ.
Thus, it may appear that there would be incomplete clustering
of these Tµs.

Some reflection shows that higher powers of T I
j appear

to contribute to the CC equations for an ordinary exponen-
tial Ansatz only because the function φµ is itself taken as the
vacuum for normal-ordering the cluster operators (denoted by
{. . .}µ) and Tµ is written in the spinorbital basis (as opposed
to writing it in spin-free form). These diagrams will be of
the Exclusion Principle Violating (EPV) type with the same
spinorbital I↑ appearing twice in a quadratic term as in Fig. 2.

FIG. 2. H-T2
1 term in spinorbital OSCC with φµ as vacuum.
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Here, the vacuum is φµ itself with a hole I↑ obtained by destroy-
ing an electron in the spinorbital I↑ in φ0: φµ ≡ φI↑ ≡ aI↑φ0.
Thus, I↑ is a particle and I↓ is a hole spinorbital. We note
that this EPV diagram appears because one has used the BCH
expansion of e−Tµ HeTµ first and then let it act on φµ as shown
in Fig. 2. Clearly, in the exponential parameterization of Ωµ

with commuting Tµs in the spinorbital basis, there are no clus-
ter operators on the left of H indicating that the correlation and
relaxation processes are all happening on the ket, |〉.

From the terms in {Gµ}ex containing θµ and W in Eq. (13),
with only the linear power of Tµ retained on the left of Hµ and
Wµµ, we get the expression

(16)

(17)

. (18)

Remember that Wµµ ≡ Hµcl. The entity analogous to the one
in Fig. 2 comes from the fourth term of Eq. (18). The spin-free
analog of Fig. 2 is shown in Fig. 3, when it acts on aI↑φ0. Note
that the negative sign from the series expansion of θµ [Eq. (11)]
takes care of the fact that this operator contracts from the left
as opposed to from the right in spinorbital-based OSCC. The
composite, to be eventually contracted with the destruction
operator aI ↑ acting on φ0, is spin-free, but the action on φ0

filters out the up-spin part only. Interestingly, Fig. 3 does not
look like an EPV diagram at all, as TI

i and TI
j appear on either

side of the Hamiltonian vertex.
In the examples chosen by us above, only one-body oper-

ators with the active label I occur but the same arguments
hold for analogous quadratic terms containing orbital-relaxing
pseudo-two-body operators with active destruction labels, TIa

iI ,
for example. The rest of the operators involving I are respon-
sible for correlation. The observation that Tµs appear both on
the left and the right of the Hamiltonian is a diagrammatic
possibility for our Ansatz with no analog in the spinorbital
formulation.

We conclude this subsection with another interesting fea-
ture of our Ansatz. Let us consider two T-operators, tIj{EI

j }
and tbI {Eb

I }. The quadratic term from {eTµ } will be tIj t
b
I {EI

j Eb
I }

where the Ts are never contracted among themselves. This
is analogous to the spinorbital-based quadratic term, tIj {e

I
j }µ

×tbI {e
b
I }µ. On the other hand, had we used an ordinary exponen-

tial with spin-free Tµs, we would have obtained an additional
contracted composite like the one shown in Fig. 4, which lacks
a clear physical interpretation.

We must emphasize, however, that the normal-ordered,
spin-free, exponential Ansatz is by no means equivalent to
the spinorbital exponential Ansatz and one must not expect a
one-to-one correspondence of all the terms because there will

FIG. 3. H-T2
1 term in UGA-OSCC with φ0 as vacuum. Analog of Fig. 2.

be counter-terms in the spin-free Ansatz which would pre-
vent the occurrence of spin-contamination inherent to the
spinorbital formulation.

Summarizing the novel features of the normal-ordered,
spin-free, exponential Ansatz, we may comment that (a) it does
not miss any clustering warranted by the exponential Ansatz
in a spinorbital basis, (b) the normal-ordering avoids some
unwarranted Tµ-Tµ contractions, and (c) spin-contaminating
terms are eliminated without the loss of relaxation and
correlation.

B. Approximations used in our applications
and their implications on orbital relaxation

We have approximated by Hµex only; Hµex is

an order of magnitude smaller than Hµcl, and removing all

powers of θµ in is a good approximation. On the
other hand, our approximation for eθµ is 1 � Tµ for terms
involving Hµcl. From Eq. (18), we can see that a linear approx-
imation for eθµ results in mutual cancellation of the contribu-
tions from the direct and the folded terms which involve Hµcl.
Hence, {Gµ}ex in our implementation is

(19)

which indicates that, operationally speaking, we have simply
neglected all the terms containing θµ.

With these approximations on eθµ , we recover the sin-
gle CSF limit of the UGA-SUMRCC presented earlier.46

Equation (19) is identical to that used in our earlier pub-
lications46,69,70 where the derivation involved the use of a
sufficiency condition rather than an exact derivation with eθµ

followed by an approximation, as presented here.

FIG. 4. Tµ -Tµ contraction occurring in an OSCC with a spin-free eTµ Ansatz
but absent in the UGA-OSCC which uses a {eTµ } Ansatz.
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FIG. 5. Wµµ for the 1-hole sector.

FIG. 6. Possible structures of the folded terms.

We note that the direct term in {Gµ}ex in Eq. (19) will now
necessarily truncate at quartic power in all situations. However,
the termination of the folded term will depend on the rank of
the valence sector under consideration. In the extant case, this
will be at the quadratic term.

Since Ea
i and EaI

iI are proportional when they act on
φµ, contributions from the composites Ga

i and GaI
iI are added

together and the sum contributes to the equation for Ta
i . No

cluster amplitudes of the type taI
iI are considered. Non-linear

terms involving operators like T I
i , T Ia

iI , and T Ib
ij are missing

from the direct term but the folded terms of Eq. (19) reintro-
duce higher powers of these operators when the terms contain
the operator Wµµ ≡ Hµcl. Thus, some measure of Tµ-Tµ

contraction is also introduced in our equations. In the follow-
ing paragraphs, we enumerate the powers of the T I

i , T Ia
iI , and

T Ib
ij operators that we can retain in UGA-OSCC under our

approximation.
For the 1h sector, Wµµ has the structure in Fig. 5. Terms

where Tµs are contracted via the active hole destruction, aI ,
can only arise from the folded term. As shown in Fig. 6, the
quadratic powers of T I

i , T Ia
iI , and T Ib

ij are recovered in the folded
term as Wµµ can contain up to one of these active destructing
operators. The class of terms absent in our approximated UGA-
OSCC are like those in Figs. 7 and 8. The missed terms in
(G1b)ex and (G2b)ex are responsible for the relaxation of the
virtual functions responsible for correlation and are thus less
important than those contributing to the RI

i and RIa
iI residues

which are responsible for the orbital relaxation of φµ and spin-
polarization, respectively.

In our implementation, we have confined ourselves to
cluster operators up to rank two and Gµ up to rank three. The

FIG. 7. Example of a missing 1-body term when eθµ is approximated in the
UGA-OSCC formalism. The boxed structure is a component of Hµ ex .

three-body Gµs are all pseudo-triples which have 2 inactive
hole and 2 inactive particle labels with I appearing in direct
and exchange spectator modes. They are as follows:

GabI
ijI , GbaI

ijI , GaIb
ijI , GbIa

ijI , GIab
ijI , GIba

ijI → pseudo − triples.

We would like to point out that the terms in our theory in its cur-
rent form do not simply form a subset of the spinorbital OSCC.
Due to the use of projection equations, certain three-body
structures of the spin-flip type (e.g., GaIb

ijI ) are present which
are absent from the singles-doubles truncated spinorbital
OSCC. Moreover, as mentioned before, spin-contaminating
contributions are absent.

We conclude by summarizing the major features of
the UGA-OSCC as implemented by us from the leading
approximation of the exact formulation.

1. The closed term is unaffected by approximations in eθµ .
2. Among the terms contributing to (G1b)ex and (G2b)ex,

terms like Figs. 7 and 8 which cannot be represented by a
T contracting with a closed one-body Wµµ from the left
are missing.

3. (G3b)ex misses all terms containing more than one active
destruction containing operator (i.e., EPV terms) since
no folded three-body term is possible.

IV. THE SCALAR RELATIVISTIC HAMILTONIAN

As mentioned in Sec. I, the parent relativistic Hamilto-
nian used in our investigation consists of the one-electron
Dirac Hamiltonian, HD, in the Born-Oppenheimer approx-
imation and a two-electron operator H2�el containing one
term of order c0 and some selected terms of order c�2

as derived from QED. In the Coulomb gauge, the leading
two-electron term is the Coulomb interaction, VC , of order c0,

FIG. 8. Example of a missing 2-body term when eθµ is approximated in
UGA-OSCC. The boxed structure is a component of Hµ ex .
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with the Breit term, VB, of order c�2—being the first order QED
correction

HD =
∑

i

c (α.p(i)) + βc2 + v(i), (20)

where v(i) = �φ(i), φ(i) being the potential due to frozen
nuclei, and α and β are (4 × 4) Dirac matrices, which
give a 4-component structure to the equation. VC is given
by

VC =
1
2

∑
i,j

I4.I4

rij
. (21)

The Breit interaction, VB, consists of two terms—the first term
is called the Gaunt term, VG, which can be interpreted as a
current-current interaction, and the second one is the gauge-
dependent entity Vgauge,

VB = VG + Vgauge, (22)

with

VG = −
1
2

∑
i,j

1

c2

(cαi).(cαj)

rij
(23)

and

Vgauge = −
1
2

∑
i,j

1

c2

(cαirij).(cαjrij)

r3
ij

. (24)

In our applications, we will entirely neglect the gauge-
dependent term in the Breit interaction and will consider the
Gaunt term only. Our parent Dirac-Coulomb-Gaunt (DCG)
Hamiltonian will thus have the form

H = HD + VC + VG. (25)

As emphasized in Sec. I, since our goal is to describe
molecules with up to only medium-heavy elements, a consid-
eration of the spin-free part of H above should suffice. This
separation is not unique105 and can be attained in various
ways.

Dyall proposed75 a separation of the spin-dependent terms
by expressing the small-component of the wave-function, ΨS ,
in terms of a pseudo-large component φL: 2cΨS = (σ.p)φL,
where φL has the same symmetry properties asΨL. This change
of representation yields the so-called modified-Dirac Hamilto-
nian (HMD), and the subsequent spin separation is carried out
by using the Dirac identity. In an another approach by Visscher
and Saue,76 one writes a more compact representation of HMD

using quaternions and sets to zero all the quaternion-imaginary
terms. The two-body part of the Hamiltonian, H2�el, is also
subjected to a similar treatment. The difference between the
approach by Dyall and that by Visscher and Saue is that in
the former, the spin-separation is done at the operator level,
which is effectively for each ΨS basis, while in the latter, the

real part of the full Hamiltonian integrals in their quaternionic
form is separated out after applying the metric transformation
of Dyall to the wave function. In numerical terms, the dif-
ferences in the energies computed are very small although it
increases as the nuclei get heavier. In our applications, we have
used the DIRAC program package and hence have adopted the
second approach. The approach by Dyall is implemented in
CFOUR,78,97,98,106,107 for example, and results can be slightly
different from DIRAC as far as the spin-free Hamiltonian is
concerned.

Under the “no pair” approximation,108 the second-
quantized representation of our spin-free relativistic Hamil-
tonian may be written as

H =
∑
pq

〈p|HD |q〉SF Ep
q +

1
2

∑
pqrs

〈pq|(VC+VG)|rs〉SF Epq
rs , (26)

where p, q, r, and s are general orbital indices belonging to
the positive energy solution and Ep

q and Epq
rs are the genera-

tors of the unitary group introduced in Sec. II. 〈p|Ô|q〉SF is a
generic notation to denote the real part of the integral in quater-
nionic form. We note that the relativistic Hamiltonians under
the “no pair” approximation resemble non-relativistic Hamil-
tonians in structure—only the Hamiltonian operators involved
are relativistic.

The spin-free DC Hamiltonian has been very well studied
in several contexts,75,78,80,97,98 but similar studies including
the spin-free Gaunt term are scarce although some studies of
the full Gaunt term on atoms have been carried out.94,109,110

When the spin-separation is carried out on the Gaunt term
following Dyall, we get a scalar part, a spin-orbit part, and
a spin-spin part, among which only the scalar part is kept
giving us the SF-DCG Hamiltonian. The scalar part has a
Darwin-like term and a part of the orbit-orbit contribution.
In practice, we generate the spin-free matrix elements of
〈pq|VG |rs〉 by setting to zero all the quaternionic imaginary
components of the integrals following Visscher and Saue.76 In
our applications, in this paper, only the SF-4C Hamiltonian is
used at the correlated level. The effect of the spin-free Gaunt
term is estimated at the ∆SCF level and added to the corre-
lated IP values computed using UGA-OSCC with the SF-4C
Dirac-Coulomb Hamiltonian. We refer to this approach as the
SF-4C+G.

We now provide a succinct qualitative discussion of the
reduction of a four-component relativistic theory to a two-
component theory. This was always considered useful in view
of the fact that in most of the chemical applications, the neg-
ative energy part is not so important. To generate the SF-2C
working equations, a unitary transformation is applied to the
SF-4C equations to block-diagonalize HMD and decouple the
equations for the large and the pseudo-large components of
the wave-function. VC

SF and VG
SF , the two-electronic parts of

the Hamiltonian, are not transformed, rather the large-large
components are simply retained. This is called the SF-X2C-1e
approach in the literature.78,80,81 As a result of this approxima-
tion, the Hamiltonian is no longer equivalent to the SF-4C and a
so-called “picture change error”87 is introduced. In this paper,
we investigate how significant the “picture change error” is,
when we are probing the core electrons.
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V. MOLECULAR APPLICATIONS
A. Computational details

We have chosen the hydrides of elements from groups
14-17 and periods 2-4 for our study. The vertical IP of the
1s electron of the heavy atom is computed in each case. For
the non-relativistic calculations, we have used the cc-pCVTZ
basis sets for the molecules from periods 2 and 3 and the
uncontracted dyall.cv3z basis set for those from period 4. For
the relativistic calculations, the uncontracted dyall.cv3z basis
set was used in all cases. The ground-state molecular geome-
tries were taken from the NIST database111 and are listed in
the supplementary material. The experimental values are used
as benchmarks for assessing the accuracy of the computed
IPs with different Hamiltonians and wave-function Ansätze
although no special effort is made to mimic experimental
conditions such as inclusion of vibrational effects, geome-
try relaxations, etc. Our conclusions are only with regard to
trends, the role of different terms in the Hamiltonian and the
level of accuracy of the wave-function Ansatz in approaching
the experimental IP. We shall see that the magnitude of the
changes is sufficient for us to be conclusive without further
polishing our computations, although this is eminently possi-
ble, if required. For some of the molecules containing atoms of
periods 3 and 4, the experimental values available are atomic,
but for the core IP of hydrides these are known to be very close
to the corresponding molecular values.112 When more than one
experimental value is reported, we have used the average of
these values to compute differences with our results.

The DIRAC quantum chemistry package113 is interfaced
to our in-house UGA-OSCC code where DIRAC has been
used for generating the Hamiltonian integrals in the molecular
orbital basis. The ∆SCF and ∆CCSD computations have been
computed entirely within DIRAC. We have used the Gaussian
nucleus model for the relativistic Hamiltonians and a point
nucleus model for the non-relativistic one. For the post-SCF
coupled-cluster computations, energy cutoffs were used for the
virtual orbitals in order to discard very high energy unphysical
orbitals which are often generated when using uncontracted
basis sets. A rough estimate of the energy of physically rele-
vant virtual orbitals was made from the binding energy of the
innermost electron. The same cutoff was used for the GS and
the ionized state CCSD and UGA-OSCC computations. These
cutoffs are provided in Table I of the supplementary material.
Default convergence thresholds in DIRAC were used in all
cases, while for the UGA-OSCC, the convergence threshold
of the CCSD residual was 10�8 for all molecules except H2O
(10�5).

B. Results and discussions

In this paper, we have studied a series of spin-free rel-
ativistic Hamiltonians with and without the incorporation of
electron correlation and have addressed five main issues:

(a) Whether the orbital relaxation captured by our UGA-
OSCC theory is adequate to describe the core ionization
process.

(b) The role of electron correlation, both with and without
inclusion of relativity, in the accuracy of the core IP.

(c) The role of the spin-free Dirac-Coulomb (SF-DC) terms
in the Hamiltonian in determining the accuracy of the
core IP for light to medium heavy elements.

(d) The accuracy of the SF-2C Hamiltonian vis-a-vis the
SF-4C.

(e) The contribution of the spin-free Gaunt (SF-4C+G)
terms to the core IP.

In this paper, we have explored two pathways for com-
puting the core IP when including both orbital relaxation
and correlation effects. The correlated GS, in all cases, is
treated with the ordinary closed shell CCSD. For the ion, the
first, more straightforward path is to compute the Hartree-
Fock state via an average of configuration114 calculations
followed by a spinor/spinorbital-based open-shell coupled-
cluster computation. The open-shell is kept at the core region
via a maximum overlap technique at every iterative step of
the orbital optimization. The first step thus incorporates the
full orbital relaxation on ionization of the core-electron. The
coupled-cluster computation then includes the electron cor-
relation, albeit with some accompanying spin-contamination.
This is called the ∆CCSD method for IPs. In this procedure
we can, thus, easily identify the effect of orbital relaxation
and correlation on the state energies and IPs. We call this
approach A.

The second path for computation of the IP is by calcu-
lating the difference of the closed-shell coupled-cluster GS
energy and the energy of the ionized state with coupled-cluster
but using the GS orbitals. Thus, the CC Ansatz is responsible
for both the orbital relaxation and the electron correlation.
The CC computation may be done with the spinor/spinorbital
OSCC which we call CCSD (GS orb) or with our UGA-
OSCC. The degree of correlation in the CCSD (GS orb) and
the UGA-OSCC ionized state is not exactly the same and not
transparent enough to establish theoretically (as explained in
Sec. II). Thus, we wish to establish the degree of incorporation
of orbital relaxation and correlation in the UGA-OSCC the-
ory through a numerical comparison of CCSD (GS orb) and
UGA-OSCC with ∆CCSD as the reference value. We call this
approach B.

When approach A is adopted, the relaxation contribution
comes from SCF optimization of the ion and this is tabulated
in Table I. The orbital relaxation shown in Table I is very high
and roughly similar for NR and SF-4C/SF-2C computations.
The quantity is very sensitive to the central heavy atom and
increases rapidly across a period and even faster down a group.
For the lightest molecule in group 14, CH4, orbital relaxation
is roughly 0.517/0.519/0.519H (NR/SF-2C/SF-4C) and for the
heaviest, GeH4, it is 1.863/1.913/1.908H. Comparing with
GeH4, the leftmost molecule in period 4, the rightmost, i.e.,
HBr, shows orbital relaxation of 1.931/1.996/1.989H. We also
note that SF-2C gives the same orbital relaxation contribution
to energy for the lighter molecules and slightly overestimates
it for the heavier ones.

The correlation energies for the ground states are tabu-
lated in Table II and the correlation contribution from ∆CCSD
and CCSD (GS orb) to the core IPs of elements of period
4 is presented in Table III. From Tables II and III, one can
notice that the correlation energy with relativistic and non-
relativistic Hamiltonians is different. This establishes the fact

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-003806
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-003806
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TABLE I. Orbital Relaxation contribution to the core IP in Hartrees. This is
the difference between the ∆SCF and Koopmans’ IPs.

XH4 XH3 XH2 XH

Theory X IPorb�relax X IPorb�relax X IPorb�relax X IPorb�relax

C �0.517 N �0.637 O �0.742 F �0.812
NR SCF Si �1.015 P �1.069 S �1.116 Cl �1.152

Ge �1.863 As �1.889 Se �1.914 Br �1.931

C �0.519 N �0.646 O �0.755 F �0.826
SF-2C SCF Si �1.026 P �1.083 S �1.134 Cl �1.172

Ge �1.913 As �1.944 Se �1.974 Br �1.996

C �0.519 N �0.646 O �0.755 F �0.826
SF-4C SCF Si �1.026 P �1.082 S �1.133 Cl �1.171

Ge �1.908 As �1.939 Se �1.968 Br �1.989

that correlation and relativity are not additive. Moreover, the
difference is not the same for the ground and the ionized
states.

The correlation energy in approach B for UGA-OSCC
and CCSD (GS orb) is roughly estimated by taking a differ-
ence with the SCF energy of the ion. A simple difference of
the correlated energy of the ion and the ground state CCSD
energy would give both relaxation and correlation. The corre-
lation energies of the ionic states of the full set of molecules,
computed using UGA-OSCC, are presented in Table IV. For
our test set of molecules, the number of electrons is the same
for each period. The differences in the correlation energies
are thus related to the difference in the chemical environment.
While the absolute value of the correlation energy for both the
GS (Table II) and the ion (Table IV) is very large, ranging from
a few hundred millihartrees (mH) for period 2 to more than a
Hartree for period 4, the difference between them (i.e., the
effect on the IP) is quite small (10-20 mH for period 4). This
is expected as the GS and the ion only differ by one electron.
We can thus anticipate that to describe IPs accurately with a
correlated theory, the level of correlation of the ground and
ionized states must be at par. We can conclude that it is prob-
ably better to not have correlation at all than in an unbalanced
fashion. CC linear response methods are not suitable on this
ground.

TABLE II. Correlation energies in Hartrees of the ground state using various
Hamiltonians.

XH4 XH3 XH2 XH

Theory X EGS
corr X EGS

corr X EGS
corr X EGS

corr

C �0.269 N �0.301 O �0.325 F �0.282
NR CCSD Si �0.445 P �0.509 S �0.531 Cl �0.546

Ge �1.294 As �1.355 Se �1.360 Br �1.383

C �0.256 N �0.304 O �0.289 F �0.339
SF-2C CCSD Si �0.489 P �0.523 S �0.539 Cl �0.555

Ge �1.310 As �1.364 Se �1.381 Br �1.401

C �0.256 N �0.304 O �0.296 F �0.339
SF-4C CCSD Si �0.489 P �0.523 S �0.539 Cl �0.554

Ge �1.309 As �1.362 Se �1.379 Br �1.398

TABLE III. Comparison of correlation energies of the ion in Hartrees com-
puted using CCSD, CCSD (GS orb), and UGA-CCSD for the molecules of
period 4.

GeH4

NR SF-2C SF-4C

CCSD �1.297 �1.306 �1.303
CCSD (GS orb) �1.227 �1.292 �1.226
UGA-CCSD �1.287 �1.282 �1.282

AsH3

NR SF-2C SF-4C

CCSD �1.395 �1.357 �1.354
CCSD (GS orb) �1.391 �1.357 �1.322
UGA-CCSD �1.408 �1.409 �1.408

H2Se

NR SF-2C SF-4C

CCSD �1.363 �1.370 �1.368
CCSD (GS orb) �1.336 �1.337 �1.336
UGA-CCSD �1.332 �1.333 �1.332

HBr

NR SF-2C SF-4C

CCSD �1.370 �1.388 �1.385
CCSD (GS orb) �1.342 �1.375 �1.373
UGA-CCSD �1.339 �1.372 �1.370

The correlation energies for the ionized state using CCSD
(GS orb) and UGA-OSCC differ at most by a few milli-
Hartrees (mH) from each other and by tens of mH from
∆CCSD (see Table III). Two notable exceptions were GeH4

and AsH3 which we investigated further. In the case of GeH4,
UGA-OSCC is 22mH away from ∆CCSD, while CCSD (GS
orb) is 77mH away leading to a large difference of 55mH
between them. On increasing the cutoff energy of the virtual
orbitals, this difference reduces to 49mH. In the case of AsH3,
UGA-OSCC places the ion 54mH below the∆CCSD value and
CCSD (GS orb) places it 33mH above, leading to a massive dif-
ference of 86mH. On increasing the virtual space by 1 orbital,

TABLE IV. Correlation energies in Hartrees of the ion computed with UGA-
OSCC using various Hamiltonians.

XH4 XH3 XH2 XH

Theory X EIon
corr X EIon

corr X EIon
corr X EIon

corr

C �0.279 N �0.306 O �0.319 F �0.238
NR UGA-OSCC Si �0.361 P �0.488 S �0.505 Cl �0.518

Ge �1.287 As �1.408 Se �1.332 Br �1.339

C �0.277 N �0.304 O �0.299 F �0.313
SF-2C UGA-OSCC Si �0.481 P �0.516 S �0.509 Cl �0.522

Ge �1.282 As �1.409 Se �1.333 Br �1.372

C �0.276 N �0.304 O �0.299 F �0.313
SF-4C UGA-OSCC Si �0.481 P �0.516 S �0.509 Cl �0.522

Ge �1.282 As �1.408 Se �1.332 Br �1.370
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TABLE V. IP of 1s electron (core IP) of the central atom in eV.

Molecule State Basis Hamiltonian UGA-OSCC Experiment

CH4 C 1s-1 cc-pCVTZ NR 290.56 290.86115

dyall.cv3z SF-2C 290.33
dyall.cv3z SF-4C 290.36

SiH4 Si 1s-1 cc-pCVTZ NR 1 846.12 1 847.1116

dyall.cv3z SF-2C 1 848.18
dyall.cv3z SF-4C 1 848.64

GeH4 Ge 1s-1 dyall.cv3z NR 10 976.06 11 103.1a 117

dyall.cv3z SF-2C 11 127.60
dyall.cv3z SF-4C 11 134.07

NH3 N 1s-1 cc-pCVTZ NR 405.22 405.6115

dyall.cv3z SF-2C 405.53
dyall.cv3z SF-4C 405.57

PH3 P 1s-1 cc-pCVTZ NR 2 146.90 2 150.88118

dyall.cv3z SF-2C 2 152.14
dyall.cv3z SF-4C 2 152.72

AsH3 As 1s-1 dyall.cv3z NR 11 718.05 11 866.7a 117

dyall.cv3z SF-2C 11 890.19
dyall.cv3z SF-4C 11 897.34

H2O O 1s-1 cc-pCVTZ NR 539.38 539.78115

dyall.cv3z SF-2C 539.26
dyall.cv3z SF-4C 539.52

H2S S 1s-1 cc-pCVTZ NR 2 472.76 2 478.91119

dyall.cv3z SF-2C 2 480.35
dyall.cv3z SF-4C 2 481.06

H2Se Se 1s-1 dyall.cv3z NR 12 488.83 12 657.8a 117

dyall.cv3z SF-2C 12 684.43
dyall.cv3z SF-4C 12 692.29

HF F 1s-1 cc-pCVTZ NR 694.38 694.01115

dyall.cv3z SF-2C 694.40
dyall.cv3z SF-4C 694.51

HCl Cl 1s-1 cc-pCVTZ NR 2 822.44 2 822.4a 117

dyall.cv3z SF-2C 2 832.31
dyall.cv3z SF-4C 2 833.17

HBr Br 1s-1 dyall.cv3z NR 13 283.24 13 473.7a 117

dyall.cv3z SF-2C 13 503.35
dyall.cv3z SF-4C 13 512.00

aAtomic core IP.

CCSD (GS orb) gains a correlation energy of 20mH and the
energy of the ion comes to lie 13mH above the ∆CCSD value.
This orbital is found to have a large Rydberg-like s-character
which results in a high contribution to the energy of the 1s
ionized state. Unfortunately, we were unable to converge our
UGA-OSCC computation in this increased space but we may
surmise that a large change in correlation energy would result
from the inclusion of this virtual orbital which may act to bring
the ion energies from CCSD (GS orb) and UGA-OSCC closer.
The virtual orbital cutoff, although essential, must thus be cho-
sen carefully. Overall, our results indicate that UGA-OSCC is
very effective at not only balancing out the correlation of the
GS and ion but also achieving a correlation energy compara-
ble to the ∆CCSD and CCSD (GS orb). For example, the 1s

TABLE VI. SF-4C and SF-2C relativistic contributions to the core IP in eV
computed using UGA-OSCC.

XH4 XH3 XH2 XH

Hamiltonian X IPRel–IPNR X IPRel�NR X IPRel�NR X IPRel�NR

C �0.200 N 0.354 O 0.141 F 0.129
SF-4C Si 2.524 P 5.826 S 8.303 Cl 10.728

Ge 158.012 As 179.286 Se 202.062 Br 228.765

C �0.231 N 0.306 O �0.118 F 0.018
SF-2C Si 2.055 P 5.242 S 7.590 Cl 9.863

Ge 151.539 As 172.139 Se 194.202 Br 220.113

C �0.031 N �0.048 O �0.259 F �0.111
SF-4C–SF-2C Si �0.469 P �0.584 S �0.713 Cl �0.865

Ge �6.473 As �7.147 Se �7.860 Br �8.652

IP of HBr with an SF-4C Hamiltonian computed with UGA-
OSCC and ∆CCSD differs by only 0.4 eV, while UGA-OSCC
and CCSD (GS orb) differ by only 0.09 eV. The difference in
the correlation energy of the ion captured by UGA-OSCC and
∆CCSD is about 15 mH (∼1% of the correlation energy). With
CCSD (GS orb), the difference is only 3 mH. This indicates
that the loss of clustering arising from our approximations on
eθµ in the working equation is not significant enough to affect
the accuracy of the computed IPs. The primary motivation for
the UGA-OSCC method continues to be the avoidance of spin-
contamination which is inherent in the∆CCSD and CCSD (GS
orb) methods. Moreover, ∆CCSD incurs the cost of two inte-
gral transformations—one with the GS orbitals and one with
the ionic orbitals.

A comparison of the core IPs computed by us, using the
UGA-OSCC theory and various Hamiltonians, with the exper-
imental values is presented in Table V. We first focus our

TABLE VII. Errors in the core IP in eV relative to the experimental value
with various Hamiltonians.

GeH4

Diff. with expt. in eV NR SF-2C SF-4C SF-4C+G DCG

Koopmans’ IP �76.55 75.80 82.17 66.60 66.28
∆SCF �127.37 23.74 30.24 14.10 13.76

AsH3

Diff. with expt. in eV NR SF-2C SF-4C SF-4C+G DCG

Koopmans’ IP �95.93 77.61 84.63 67.42 67.04
∆SCF �147.38 24.70 31.88 14.04 13.65

H2Se

Diff. with expt. in eV NR SF-2C SF-4C SF-4C+G DCG

Koopmans’ IP �114.34 82.34 90.08 71.09 70.65
∆SCF �166.62 28.63 36.52 16.87 16.40

HBr

Diff. with expt. in eV NR SF-2C SF-4C SF-4C+G DCG

Koopmans’ IP �139.12 83.17 91.66 70.78 70.25
∆SCF �191.67 28.86 37.52 15.92 15.38
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TABLE VIII: Best estimates for the computed core IPs of the elements of
period 4. The IP computed with an SF-4C Hamiltonian at the correlated level
is corrected with an estimate of the Gaunt contribution to the IP calculated at
the SCF level (i.e., the difference in the ∆SCF IP values with and without the
spin-free Gaunt term in the Hamiltonian).

GeH4

IP in eV Diff. with expt. in eV

UGA-CCSD(SF-4C)+SCF Gaunt 11 117.93 14.83
∆CCSD(SF-4C)+SCF Gaunt 11 117.34 14.24
Experimental IP 11 103.1

AsH3

IP in eV Diff. with expt. in eV

UGA-CCSD(SF-4C)+SCF Gaunt 11 879.50 12.80
∆CCSD(SF-4C)+SCF Gaunt 11 880.96 14.26
Experimental IP 11 866.7

H2Se

IP in eV Diff. with expt. in eV

UGA-CCSD(SF-4C)+SCF Gaunt 12 672.63 18.13
∆CCSD(SF-4C)+SCF Gaunt 12 671.68 17.18
Experimental IP 12 654.5

HBr

IP in eV Diff. with expt. in eV

UGA-CCSD(SF-4C)+SCF Gaunt 13 490.40 16.70
∆CCSD(SF-4C)+SCF Gaunt 13 489.99 16.29
Experimental IP 13 473.7 ± 0.4

attention on the effect of relativistic corrections, at the SF-4C
level against the spin-free NR Hamiltonian, with the UGA-
OSCC theory as the correlation model. Our observations bear
out the expectation that the relativistic contributions increase
with the weight of the nucleus. As evident from Table VI, for
the elements of period 2, the relativistic contribution to the IP
is a few tenths of an eV which is of the order of experimental
accuracy but the sign of the correction as well as the varia-
tion from the left to right of the periodic table is not smooth.
Periods 3 and 4 are well-behaved. In period 3, for example,
the core IP of Si in SiH4 is shifted by 2.5 eV from the NR
value by the SF-4C relativistic contribution. Period 4 shows
the same trends as period 3 albeit with the magnitudes of the
relativistic contributions increased by an order of magnitude.
For example, the relativistic contribution to the core IP of Ge
in GeH4 is 158 eV.

The loss in going from SF-4C to SF-2C is about
0.03–0.12 eV for period 2 (well below experimental accu-
racy), 0.4–0.9 eV for period 3, and 6–9 eV for period 4 making
the 2C theories more and more unreliable for heavier ele-
ments. This is certainly a fallout of the ‘picture change’ error
resulting from not transforming the two-electron part of the
Hamiltonian.87

Within the limits of the spin-free approximation, the most
accurate Hamiltonian we have used is the SF-DCG. The spin-
free Gaunt correction to the SF-4C IP is calculated at the∆SCF

level and added to the SF-4C IP computed at the UGA-OSCC
level (SF-4C+G). Compared to the SF-4C+G, the SF-4C over-
estimates the relativistic contribution, as does the SF-2C (viz.
Table VII) by about 16–22 eV for the elements of period
4 indicating that the Gaunt term is absolutely essential. For
example, the relativistic contribution to the core IP of Ge
in GeH4 is 142 eV at the SF-4C+G, 158 eV at the SF-4C,
and 152 eV at the SF-2C level. The relativistic contributions
increase as we move to the right of the period, as expected,
and for the heaviest atom in our test set, Br, the SF-4C+G
contribution is 207 eV. The computed core IP for HBr is still
away from the experimental value by 16 eV at both the corre-
lated and the uncorrelated levels. We have investigated further
by including the spin-dependent terms in the Hamiltonian,
that is, with the full DCG Hamiltonian at the ∆SCF level.
In the particular case of the 1s ionization, we have observed
that the role of the spin-dependent terms is negligible. For
instance, we have observed an improvement of only ∼0.5 eV
for HBr with the full DCG Hamiltonian over the correspond-
ing spin-free approximation. Therefore, even the inclusion
of Gaunt terms into the Hamiltonian is not good enough to
approach experimental accuracy. Even higher order QED cor-
rections must thus be important in these cases. The best esti-
mates of the IPs for the period 4 molecules are presented in
Table VIII.

VI. SUMMARY AND FUTURE PERSPECTIVE

With regard to the efficacy of our UGA-OSCC theory, we
have concluded the following: (a) The accuracy of the com-
puted IPs is of the same order as the CCSD (GS orb) and the
∆CCSD theory without the problem of spin-contamination or
different non-orthogonal orbitals. Therefore the UGA-OSCC
method is perfectly suited for the calculation of transition
properties. (b) The orbital relaxation mechanism of the wave-
function Ansatz in UGA-OSCC is sufficiently good to take
care of very high energy processes such as the ionization of the
1s electron from medium-heavy atoms without unmanageable
convergence difficulties. This particular aspect is important in
the multi-reference version of this theory since in a multi-
reference calculation, we typically utilize the same set of
orbitals for all the states, and the present approach is capa-
ble of incorporating adequate orbital relaxation for each of
them separately. (c) The correlation energy for the ground and
ionized states are treated in a balanced way in spite of the lack
of full exponentiation in the approximated equation for the
ionized state.

Through this study, we have made three primary obser-
vations with regard to the relativistic effects on the core IP:
(a) The relativistic contribution of the spin-free terms to the
core IP is of the order of experimental error margins (usually
tenths of an eV) even for elements of period 2 and increases
by a factor of 10 when going down the group in the periodic
table. (b) To approach experimental accuracy, the Gaunt terms
in the Hamiltonian are necessary from period 3 onwards. This
is evident even at the ∆SCF level. (c) The difference between
the spin-free two-component theories and the spin-free four-
component theories is about one order of magnitude less than
that between the non-relativistic and spin-free four-component
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theories but is still more than experimental accuracy from
period 3 onwards.

An obvious future line of exploration would be to study
satellite peaks and near-edge X-ray peaks by expanding our
formalism to the UGA-SUMRCC, which has the capability of
handling multi-reference ionized states. Another avenue worth
exploring is to study core-ionization processes for molecules
which have just one non-singlet CSF as their ground-states.
Core-excitations are currently being investigated and will form
the subject matter of a future publication.

SUPPLEMENTARY MATERIAL

See supplementary material for the geometries of all
the molecules studied and the energy cutoffs for the virtual
orbitals.
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