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Abstract—In this work, we study different types of uncertainty
in subjective opinions based on the internal belief mass distribu-
tion and the base rate distribution. Subjective opinions which are
used as arguments in subjective logic (SL) expand the traditional
belief functions by including base rate distributions. Fundamental
uncertainty characteristics of a given opinion depend on its
‘singularity’, ‘vagueness’, ‘vacuity’, ‘dissonance’, ‘consonance’
and ‘monosonance’. We define those concepts in the formalism
of SL and show how these characteristics can be manifested in
the three different opinion classes which are binomial, multino-
mial, and hyper-opinions. We clarify the relationships between
the uncertainty characteristics and discuss how they influence
decision making in SL.

I. INTRODUCTION

In all sorts of business processes as well as in our pri-
vate life, we are confronted with various kinds of decisions
involving multiple choices and relative uncertainty. A clear
understanding of the uncertainty is a prerequisite of sound and
effective decision making. Although the topic of reasoning
under uncertainty is well established and has been studied
since the 1960s, many belief and reasoning models are unable
to represent uncertainty in terms of its different manifestations.
The era of the Internet and Big Data brings with it a flood of
information which can be leveraged for decision making. In
this situation, the challenge for timely and accurate decision
making is no longer the lack of information, but the risk
of not being able to understand and manage its inherent
uncertainty resulting from unreliable, incomplete, deceptive,
and conflicting information.

Evidence or belief theories have been popularly used in
decision making under uncertainty since the 1960s, including
Fuzzy Logic [18], Dempster-Shafer Theory (DST) [11] and
Probabilistic Soft Logic (PSL) [6, 8]. These models all have in
common that they offer a richer expression of uncertainty and
fuzziness than the traditional propositional logic or probability
calculus can offer.

Subjective logic (SL) explicitly represents second-order
probabilistic uncertainty through a subjective opinion which
consists of a belief mass distribution, a base rate distribution,
and uncertainty mass [7]. Subjective opinions implicitly also
represent other uncertainty characteristics which is the topic
of the present study.
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In the present work, we analyze the internal belief-mass
structure of subjective opinions in order to identify various un-
certainty characteristics that can be relevant for visualization,
understanding, reasoning and decision making. To be specific,
this work has the following key contributions:

1) We define fundamental uncertainty characteristics of
subjective opinions in terms of singularity, vagueness,
vacuity, dissonance, consonance and monosonance. In
addition, we define sharpness and bluntness of vague
belief mass. Although the concepts of singularity, vacu-
ity and vagueness are well defined in SL, dissonance,
consonance, and monosonance as well as sharpness and
bluntness of vague belief mass have not been investi-
gated previously. To the best of our knowledge, this
work is the first to clarify how to consider all these
characteristics of uncertainty in subjective opinions.

2) We propose a simple visualization technique which
shows the relationships between the various uncertainty
aspects of an opinion. To this end, we examined belief
mass distributions (bx), uncertainty mass (ux), base
rate distributions (ax), projected probability distribu-
tions (Px), singularity, vagueness, dissonance, conso-
nance and monosonance for a given opinion wyx on a
given domain X, where the opinion can be a binomial
opinion, a multinomial opinion, or a hyper-opinion.

II. BACKGROUND
A. Concept and Properties of Uncertainty

The assessment and analysis of a specific situation can
be affected by different types of uncertainty. Underlying
uncertainty already starts from how to view and model a
given part of the world which we call a domain. Domains
are the abstract representations of states of the world, where
analysts or decision makers can have beliefs about the true
states of a domain. Beliefs about domains can easily be
biased by an analyst or decision maker (often called “framing
effect”) [15, 16], which can cause subjective beliefs about
the world to deviate from ground truth of the world (e.g.,
past or future events) [16]. The way a situation is formally
modeled (i.e., expression of domains with sets of possible state
values) can also affect the types and levels of uncertainty that
a decision maker can assess and use in decision making.

Some root causes of uncertainty have been discussed from
various angles in the literature [1, 15, 16]. It is natural to



classify singularity, vagueness, and vacuity under the category
called ‘basic belief uncertainty’ because these aspects are
related through the additivity equation. Similarly, it is natural
to classify consonance, dissonance, and monosonance under
the category called ‘intra-belief uncertainty’ because these
aspects are also related through a simple additivity equation.
‘Basic belief uncertainty’ relates to each belief/uncertainty
mass in itself, where these components add up to 1 which
means that they are additive. ‘Intra-belief uncertainty’ relates
to the mutual relationships between the various belief masses
as a function of how their focal state values (i.e., whether
the values are isolated or overlapping), and it can be shown
that there is additivity between the types of intra-uncertainty
types. To be specific, we can identify the following categories
of uncertainty in subjective opinions:

1) Basic Belief Uncertainty: Basic belief uncertainty results
from specific aspects of each belief mass in isolation.

e Belief singularity refers to belief mass that applies exclu-
sively to singleton state values of the domain. Singular
belief reduces uncertainty because it supports specific
state values of the domain. However, when singular
belief applies to separate state values, it reflects dissonant
belief, and thereby uncertainty as described under belief
dissonance below.

o Belief vagueness results from evidence that fails to dis-
criminate between singletons (i.e., specific state values of
a domain variable) [4]. When the received evidence can
be interpreted to support multiple values in a domain, or
there is confusion between domain values because of their
similarity, a level of vagueness can be perceived when
trying to discriminate between them. Tuggy [14] explains
vagueness in a linguistic context by defining it as “two
or more meanings associated with a given phonological
form” that can introduce ‘non-distinguished subcases of a
single, more general meaning.” A simple example is when
a color-blind person is unable to distinguish between red
and green (subcases) when picking colored balls (general
case) from an urn. The person can, for example, observe
the ball as ““red or green, but certainly not black or
white.”

e Belief vacuity (or lack of information or knowledge)
is due to insufficient or unreliable information received
from sources (e.g., vacuous belief due to unavailable
information or sensor malfunction), but also limited prior
knowledge (i.e., framing effect due to limited understand-
ing of the dynamics and causality relationships of a situ-
ation) [16]. Belief vacuity is represented by ‘uncertainty
mass’ in SL.

2) Intra-Belief Uncertainty: Intra-belief uncertainty results
from specific aspects of the relationships between belief
masses and uncertainty mass in an opinion.

o Belief dissonance reflects the situation when an analyst
holds simultaneous contradicting beliefs about a given
domain. Belief is said to be dissonant when it is based
on separate evidence about different non-overlapping

singleton or composite values, resulting in contradicting
belief. This kind of uncertainty is caused by valid but
conflicting evidence derived from the observation of spa-
tial or temporal dynamics of a situation or from intended
deception by adversarial entities (i.e., providing opposite
evidence). High dissonance often results in high unpre-
dictability [1, 15]. For example, Alice and Bob represent
sources for observing and reporting the colors of balls
picked from an urn. Suppose that the analyst receives
advice from Alice that the color is A = {red, blue} and
from Bob that the color is B = {green, black}. It can be
seen that the belief masses resulting from Alice and Bob’s
advice do not identify the exact color of the ball, hence
they are vague. It can also be seen that the (composite)
focal state values A and B do not overlap with each other
as AN B = ), which means that the belief masses on A
and B are dissonant.

e Belief consonance requires the target domain to have
three or more possible state values, so that it is possible
to form (composite) subsets of state values that contain
other subsets, and the other in turn can contain other
subsets, etc. Belief is said to be consonant when it
is based on evidence about distinct subsets contained
within each other. That is, while belief might support
different subsets (and thereby be uncertain), there is no
contradicting belief. For example, suppose Alice, Bob,
and Carl report the color of a ball picked from an urn
such as A = {red,blue, green}, B = {red,blue}, and
C = {red}, respectively. The resulting belief masses
are consonant because the respective focal (composite)
values are such that C C B C A.

e Belief monosonance exists when the opinion only con-
tains one belief mass, or only one dominant belief mass.

In the literature on probabilistic uncertainty [7, 9], two types
of uncertainty are frequently discussed and distinguished:

e Aleatory uncertainty: This type of uncertainty denotes
statistical uncertainty about the long term relative fre-
quencies of possible outcomes [7]. For example, if we
do not know whether a dice is loaded — and thereby
unfair — then we are faced with aleatory uncertainty.
This uncertainty can be reduced by throwing the dice
sufficiently many times in order to estimate the long term
relative frequency of each of the six possible outcomes.
Therefore, aleatory uncertainty is fundamentally related
to the nature of randomness [9].

o Epistemic uncertainty: This type of uncertainty is also
called systematic uncertainty which refers to the fact
that the outcome of a specific future or past event can
be known, but there is insufficient evidence to support
it. A typical example is the assassination of President
Kennedy in 1963 [7], where the uncertainty is about
whether he was killed by Lee Harvey Oswald and who
organized it. The nature of epistemic uncertainty derives
from the lack of knowledge (or data); therefore, the
epistemic uncertainty can be reduced by more evidence,



more advanced technology, and/or scientific principles to
interpret the evidence (e.g., criminal investigation based
on forensic science) [9].

Although uncertainty has been studied with regard to deci-
sion making in probability theory [4], belief theory [11, 12, 13,
18], possibility theory [3], and decision theory [10], there has
been relatively little focus on studying the internal structure
of belief and uncertainty in subjective opinions.

B. Previous Work on Uncertainty Representation in SL

Subjective Logic (SL) is a framework for reasoning under
uncertainty, where situations are modeled in terms of (random)
variables in the same way as e.g., Bayesian networks. SL
incorporates elements from both probability models and logic,
and offers a rich set of operators to infer new opinions based
on input argument opinions [7]. Although the literature on
SL considers the effect of vacuity and vagueness on decision
making, the literature has not considered how dissonance and
consonance affect decisions. Wang and Singh [17] proposed
dissonance (in their terminology called ambiguity) as a char-
acteristic of opinions for the purpose of representing belief
inconclusiveness. Very recently, Cho et al. [2] also proposed
an operator to deal with inconclusiveness over a belief and a
disbelief in a binomial opinion where the amount of opinions
supporting two extremes are about the same by lowering down
uncertainty mass in SL. However, both works above [2, 17]
are not only limited to binomial opinions, they also handle
a reduced set of aspects of uncertainty related to subjective
opinions.

Section III below explains the formal representation of
subjective opinions. Then in Section IV, we discuss how
the uncertainty characteristics (i.e., basic belief uncertainty
and intra-belief uncertainty) can be interpreted within the
formalism of SL.

III. OPINIONS IN SL

The type of opinion (or beliefs) depends on the ran-
dom variable it applies to, i.e. binomial opinions for binary
variables, multinomial opinions for random variables, and
hyper-opinions for hypervariables. In this section, to be self-
contained, we provide a brief description on how each opinion
type is represented in SL and what statistical distribution is
used to describe each opinion type based on [7].

A. Binomial Opinions

1) Binomial Opinion Representation: In SL, a binomial
opinion on a given proposition x is represented by w, =
(bg,dy, uy,a,;) where the opinion applies to the value z in
the binary domain X = {z,Z} and the additivity requirement
of w, is given as b, + d, + u, = 1. To be specific, each
parameter indicates,

e by: belief mass supporting « being TRUE;

e dg: disbelief mass supporting x being FALSE, i.e., T being

TRUE;

e Uy uncertainty mass representing vacuity of evidence

about which value in X is TRUE; and

e a,: base rate representing a prior probability of x being
TRUE.
A binomial opinion can be often used for judging true vs. false
or agree vs. disagree. The projected probability supporting x
is represented by:

2) Binomial Beta Distribution: A binomial opinion is the
same as a Beta PDF (probability density function) through
a specific bijective mapping. Given the binary domain X =
{z, Z} and the value = € X, Beta(p,) is the probability density
function Beta(p,;«, ) : [0,1] — R>o where p, + pz = 1.
The Beta PDF is given by: B

F(oz + ,3) a—1
W(Pw) (1—pa)”
where o« > 0,8 > 0, p(z) # 0 if o < 1 and p(x) # 1
if B < 1; and the additivity requirement should hold with
f Beta(p,; o, 8)dp, = 1. The a and S parameters can
simply be represented by the base rate a, and the observation
evidence (r,, s,;) where r,, is the amount of positive evidence
and s, is the amount of negative evidence:

B=ss+(1—az)W. 3)

Beta(ps; o, 8) = -t 2)

a=7rg+ aW,

W is the non-informative prior weight in the absence of
positive evidence r, or negative evidence s,. The expected
probability of the Beta PDF is given by Eq. (4):
o ry +a, W
E = = - 4
(z) a+pf  retsz+W @

The equivalence of a binomial opinion and a Beta PDF can
be achieved through the following mapping rule:
T Sa W
T et AW T s AW ratsat W
B. Multinomial Opinions

(&)

1) Multinomial Opinion Representation: In SL, a multi-
nomial opinion in a given proposition z is represented by
wx = (bx,ux,ax) where a domain is X where a random
variable X € X and k = X > 2 and the additivity requirement
of w, is given as > x () +ux = 1. To be specific, each
parameter indicates,

zGX

o bx: belief mass distribution over X
e UX: Uncertainty mass representing vacuity of evidence;
e ax: base rate distribution over X.
The projected probability distribution of multinomial opinions
is given by:

Px(z) =bx(z) + ax(z)ux, VzeX 6)

2) Multinomial Dirichlet Distribution: Multinomial proba-
bility density over a domain of cardinality & is represented by
the k-dimensional Dirichlet PDF where the special case with
k = 2 is the Beta PDF as discussed above. Denote a domain of
k mutually disjoint values by X and ax refer to the strength
vector over the values of X and px the probability distribution
over X. Dirichlet PDF with px as k-dimensional variable is
defined by:

M Soexoxte )

yex@-n (g
HIEX OZX ( )

[[px(=

zeX

Dir(px;ax) =



where ax(z) > 0 and px(z) # 0 if ax(z) < 1. The total
strength ax (x) for each belief value = € X can be given by:

ax(z) =rx(z) + ax(x)W,where rx(z) >0, Vo, € X (8)

where W is non-informative weight representing the amount
of uncertain evidence and ax () is the base rate distribution.
Given the Dirichlet PDF, the expected probability distribution
over X can be obtained by:

ax(z) rx(z) +ax(x)W
Ex(z) = = )
MO S S xS, e ()
The observed evidence in the Dirichlet PDF can be mapped
to the multinomial opinions as:

r(x) _ w

Soer@) T, @)

Note that in binomial and multinomial opinions, each opinion
over X, x, is a singleton opinion, which does not allow any
composite value in an opinion. However, in our real life, we
are often confused between multiple beliefs due to cognitive
limitations or environmental noises. This kind of opinions is
considered by hyper-opinions as below.

bx(z) = 10)

C. Hyper-opinions

1) Hyper-opinion Representation: Hyper-opinions allow us
to represent multiple choices under a specific opinion value x
where belief mass is allowed to be assigned to a composite
value z € F(X) consisting of a set of singleton values.
Belief mass assigned to composite values z € X indicates
the vagueness of an opinion. Hyperdomain, denoted by 2 (X),
is the reduced powerset of X which is the set of Z(X) that
excludes {X} and {0}. Hyperdomain can be defined by:

Hyperdomain : Z(X) = 2(X)\{{X}, {0}} (11)

Given X as a hyper variable in £(X), a hyper-opinion on
X is represented by wy = (bx,ux,ax) where each opinion
dimension is,

o bx: belief mass distribution over Z(X);

e Ux: Uncertainty mass representing vacuity of evidence;

e ax: base rate distribution over X.
where 3 c g0 bx (@) +ux = 1.

The projected probability distribution of a hyper-opinion can
be given by:

Px(z) = Z ax (z|z:)bx (z;) + ax (z)ux

z; EZ(X)

(12)

where ax(z|z;) is the relative base rate, which can be
obtained by:

ax(xNz;)

ax (@) N,z € Z(X)

ax(z|z;) = (13)
where ax(x;) # 0. Note that for the binomial and multi-
nomial opinions, the additivity requirement is met (i.e.,
> wsex Px(x) = 1). However, for a hyperdomain, X € Z(X)
which is applied for the hyper-opinion, the additivity require-
ment may not be met, but P x () follows super-additivity (i.e.,

S e Px(@) > 1),

2) Dirichlet Distributions Applied to Hyper-opinions:
Hyper-opinions can be represented by Dirichlet PDFs and
the hyper-Dirichlet distribution [5]. To do so, we can project
a hyper-opinion into a multinomial opinion. This means we
approximate the hyper-opinion with a multinomial opinion,
artificially assuming that for every pair of belief values,
z;, x; € Z(X), they do not share any belief with z; Nz; = 0,
implying that the overlapping of any composite beliefs are
ignored. Although this may generate some inaccuracy in
practice, this provides a way to convert a hyper-opinion to
a multinomial opinion. This allows the Dirichlet distribution
to be applied in the hyperdomain Z(X) that excludes any
overlapping of composite set beliefs.

Let X be a domain composed of £ mutually disjoint values
where the hyperdomain %(X) has the cardinality x = (2% —
1). ax is the strength vector over x number of z’s where
r € Z(X). Given the hyper-probability distribution p% and
ax that are both x-dimensional, the Dirichlet hyper-PDF over
p¥, called Dirichlet HPDF, denoted by Dir’{ (pi; ax (x)), is
represented by:

Dir% (p¥; ax(z)) =

F( ZJ)E@(X) ax (33))
HIE,@(X) Iax(z))

where ax(z) >0

(14)

H pg(x)(ax(z)*l)7

zE€R(X)

where pif # 0 if ax(z) < 0. ax is the prior, and the
observation evidence can be obtained by:

ax(z) =rx(z) + ax (@)W, Vz e Z(X)

> alx)

zjCx,x;€X

where rx(z) >0, ax(z) = (15)

Let the projection from a hyper-opinion to a multinomial
opinion be denoted by w% = (bly,ux,ax) where b’y is a
belief mass distribution over X € X, ux is a uncertainty mass,
and ax is the base rate distribution. b’y is approximated by:

bx(z)= ) ax(zlz)bx(a))

z' €2 (X)

(16)

Notice that z € X while 2’ € Z(X). The approximation by
projection of hyper-opinions to multinomial opinions removes
information in the representation of opinions. The advantage
is that a decision maker is able to see a particular opinion
without the veil of vagueness, which facilitates a more direct
and intuitive interpretation of the opinion.

The expected probability of any of the s values z € X can
be obtained by:

2 wieacn ax (w]Ti)bx (z:) + Wax (2)
W+ Zzigﬂ(x) ()

The above form is the generalization of a Dirichlet PDF used

in Eq. (9).

Hyper-opinions can be mapped through the Dirichlet HPDF
for Vo € Z(X) as:

Ex(z) = Ve €X (17)

r(x) w

bx(r)==— " ux == .~
Ezie@(X) () Zzie.@(x) (i)

(18)



Note that bx (z) can be used to derive b’y (z) in Eq. (16)
which can remove the vagueness of hyper-opinions with
the sacrifice of estimation accuracy in the probability of a
singleton opinion.

IV. UNCERTAINTY IN BELIEFS AND OPINIONS IN SL

In this section, we discuss how basic belief uncertainty char-
acteristics (i.e., singularity, vagueness, and vacuity) and mutual
uncertainty characteristics (i.e., dissonance, parasonance and
consonance) can be represented.

A. Singular Belief Mass

Belief mass supporting a singleton value is called singular
belief mass because the singular belief mass discriminates
between itself and other values. Singular belief mass on a
singleton x € X is simply the belief mass bx (x) assigned to
z. The total singular belief denoted bg(sm is simply the sum
of all belief masses assigned to singletons, defined as follows.

Definition 1 (Total Singular Belief Mass): Let X be a
domain with variable X, and let wy be an opinion on X. The
total singular belief mass contained in the opinion wx is the
function b3S : X — [0, 1] expressed as:

Total singular belief mass: b3>™ = be (z;)
z;, €X

19)

The total singular belief mass represents the complement of the
sum of belief vacuity and total vague belief mass, as described
below.

B. Belief Vagueness

In Section II-A, the concept of vagueness is described as
when evidence does not distinguish between singletons. In
addition, in SL, as discussed in Section III-C, vagueness only
appears in hyper-opinions. The composite set, denoted & (X),
is the set of all composite values from the hyperdomain.
Belief mass assigned to a composite value represents vague
belief mass because it expresses cognitive vagueness. It does
not discriminate between the singletons in the composite
value, and supports the truth of multiple singletons in X
simultaneously. In the case of binary domains, there can be no
vague belief mass, because there are no composite values. In
the case of hyperdomains, composite values exist, and every
singleton z € X is a member of multiple composite values.
The vague belief mass on a value € #Z(X) is defined as
the weighted sum of belief masses on the composite values of
which z is a member, where the weights are determined by the
base rate distribution. The total amount of vague belief mass
is simply the sum of belief masses on all composite values in
the hyperdomain. The formal definitions of these concepts are
given as below.

Definition 2 (Vague Belief Mass): Let X be a domain X
with composite set € (X). Following [7], the vague belief mass
on x € Z(X) is the function by*® : Z(X) — [0, 1]:

= Y ax(z|z;) bx(x;) , Vo e R(X).
z; €C(X)

z;Lx

by e (x (20)

Note that Eq. (20) not only defines vagueness of singletons
r € X, but also defines vagueness of composite values x €
€ (X), i.e., of all values z € Z(X).

The total vague belief mass in an opinion wx is defined as
the sum of belief masses on composite values x € € (X).

Definition 3 (Total Vague Belief Mass): Let X be a domain
with variable X, and let wx be an opinion on X. The total
vagueness contained in the opinion wyx is the function b;vag :
% (X) — [0,1] expressed as:

D bx(a

€€ (X)

bTVag

Total vague belief mass: 21

An opinion wyx is dogmatic and vague when by *¢ = 1, and
is partially vague when 0 < by"*® < 1. An opinion has mono-
vagueness when only a single composite value has (vague)
belief mass assigned to it. On the other hand, an opinion has
pluri-vagueness when several composite values have (vague)
belief mass assigned to them.

Note that there is the difference between belief vacuity
represented as uncertainty mass ux and belief vagueness in
SL. Uncertainty mass reflects vacuity of evidence, whereas
vagueness results from evidence that fails to discriminate
between specific singletons. A totally vacuous opinion — by
definition — does not contain any vagueness. Hyper-opinions
can contain vagueness, whereas multinomial and binomial
opinions never contain vagueness. The ability to express
vagueness is thus the main aspect that makes hyper-opinions
different from multinomial and binomial opinions.

Under the assumption that collected evidence never decays,
vacuity can only decrease over time, because accumulated
evidence is never lost. As the natural complement, singular
and vague belief mass can only increase. At the extreme,
a dogmatic opinion where by *® = 1 expresses dogmatic
vagueness. A dogmatic opinion where b¥%" = 1 expresses
dogmatic singular belief, which is equivalent to a traditional
probability distribution over a random variable.

The base rate distribution has an influence on the interpre-
tation of belief vagueness in terms of ‘sharp’ or ‘blunt’ belief
vagueness. This gives rise to the definitions of sharp and blunt
vagueness defined below.

Definition 4 (Sharp Vagueness): Let X be a domain
with variable X, and let wx be an opinion on X. The
sharp vagueness contained in the opinion wx is the function
b3V%8 1 €(X) — [0,1] expressed as:

> (1 ax(@)bx(z) .

€€ (X)

Sharp vagueness: bivag = (22)

Definition 5 (Blunt Vagueness): Let X be a domain
with variable X, and let wx be an opinion on X. The
blunt vagueness contained in the opinion wx is the function
b3V - €(X) — [0,1] expressed as:

EG,X .13

z€€ (X

BVug

Blunt vagueness: (23)

It can be verified that bTwg = bswg + bBVlg



Sharp vagueness can be interpreted as singular belief mass.
Similarly, blunt vagueness can be interpreted as vacuity. Fol-
lowing that reasoning we define sharp singular belief mass
b3S and blunt vacuity u5V2° as:

Sharp singular belief: bS50 = pTSin 4 p3Vas
(24)

BVac _ ,,Vac BVag
ux ¢ =ux + by

A relatively small base rate of a composite state value
corresponds to a relatively sharp vague belief mass which
can be interpreted as singular belief mass. In the opposite
case, a relatively large base rate of a composite state value
corresponds to a relatively blunt vague belief mass which can
be interpreted as vacuity. At the extreme, belief mass assigned
to a composite value x where a x (z) = 1 would be equivalent
to vacuity.

C. Belief Vacuity

As discussed in Section II-A, belief vacuity results from
the lack of evidence or knowledge, and is represented as
‘uncertainty mass’ in SL. This type of uncertainty means that
the analyst is uncertain with regard to the truth of any state
value in the domain, due to the lack of evidence to support any
particular state value. Vacuity also emerges when the analyst
does not understand the dynamics and causal relationships of
the situation, making it impossible to determine its actual state
or predict its future state.

In SL, belief vacuity is represented as uncertainty mass in all
three types of opinions (i.e., binomial, multinomial, and hyper-
opinions). Uncertainty mass results from the lack of evidence,
which is the same as vacuity of belief. General background
knowledge about a particular state value x is represented as
base rate (or aka prior belief), denoted by ax (x), which is
mainly used to interpret the uncertainty mass when deriving
the projected probability distribution over a set of state values.
Therefore, when the base rate ax(x) is known, the amount
of uncertainty caused by vacuity can be well interpreted for
efficient decision making [2].

Belief vacuity is simply the traditional uncertainty mass of
subjective opinions, usually denoted by ux in the case of an
opinion wx = (bx,ux,ax).

As a simple example of a binomial opinion in SL, an opin-
ion set (0,0,1,a) is totally vacuous because the uncertainty
mass u = 1 excludes belief support for any of the state values.

It can be shown that there is additivity between total singular
belief, total vague belief and vacuity of a hyper-opinion:

Blunt vacuity:

e T A (29)

We denote by ‘HBBU point’ (Hyper Basic Belief Uncer-
tainty) the point of a hyper-opinion defined by Eq. (25) in a
barycentric coordinate system, as illustrated in Fig. 1.

When the hyper-opinion is projected to a multinomial opin-
ion by removing the vagueness component, the multinomial
additivity of Eq. (26) emerges:

bSSin BVac _ 1.

T+ uy (26)

We denote by ‘MBBU point’ (Multinomial Basic Belief
Uncertainty) the point of a multinomial opinion defined by
Eq. (26) in a barycentric coordinate system, as illustrated in
Fig. 1. The MBBU point can result from the projection of
the HBBU point of a hyper-opinion when projecting it to a
multinomial opinion.

D. Belief Dissonance

As explained in Section II-A, belief dissonance occurs when
available evidence supports separate non-overlapping state
values or subsets of the domain.

1) Dissonance in Binomial or Multinomial Opinions: In
binomial or multinomial opinions, a domain consists of single-
tons. The belief dissonance of an opinion is measured based on
how much belief supports singleton state values. For example,
given a binomial opinion with (b,d,u,a) = (0.5,0.5,0,a)
based on Eq. (5), although uncertainty is zero, one cannot
make a decision due to the same amount of belief supporting
two separate state values. This kind of ‘inconclusiveness’ in
a decision making situation is considered in the concept of
belief dissonance in SL. Similarly, in a multinomial opinion
where each singleton can be supported by some belief mass,
the opinion’s belief dissonance can be measured based on
the sum of belief masses. Given a multinomial opinion, the
measure of dissonance can be represented by:

bx(zi) > bx(zj)Bal(z;, z;)

1y z;€X\z;
bDlSS — i€ , (27)
X 7% >, bx(z))
o z;eX\z;

where the relative mass balance between a pair of belief
masses bx (z;) and bx (x;) is expressed by:

|bx (z;) — bx (xi)|
bx(x;) +bx(z;)

The relative mass balance has its maximum at 1 when
bx(x;) = bx(z;). The relative mass balance has the mini-
mum at 0 when one of the belief masses equals 0.

In case of zero sum of belief masses in both the nominators
and the denominators of Egs. (27)-(31), it must be assumed
that the fraction of sums of belief masses equals 1.

2) Dissonance in Hyper-opinions: Hyper-opinions have
belief mass on composite state values © € Z(X), i.e., there
can be belief mass assigned to partially overlapping composite
values, which does not represent a dissonant belief.

Assume a domain X with a hyper-opinion wx. The amount
of belief dissonance in wx is given by:

Bal(mj,xi) =1- (28)

bx($7) Zax(IjAIi)bx(Ij)Bal(IEj,Il')

bg)(ls:a — Z i€
> ax(z;Ax;)bx () 7
z; ER(X) z; €R(X)\x;

29)
where ax(x;Ax;) denotes the base rate of the symmetric
difference between x; and x; which thereby represent the base
rate of the parts of x; and z; that are in ‘dissonance’ with each



other. As before, Bal(x;, z;) denotes the relative mass balance
between a pair of belief masses as expressed by Eq. (28).

E. Belief Consonance

Belief consonance occurs when available evidence supports
composite state values that are contained within each other,
i.e., when there is belief mass on both a larger state value and
on a smaller subset fully contained within the larger value.
Belief consonance only exists for hyper-opinions because these
apply to composite state values, and is given by:

bx(wi) > ax(z;Nz;)bx (z;)Bal(z;, z;)

. z; EZ(X)\x;
bg](ons — E i€
iNxz; )b ;
, €2(X) wje%;g)‘\li(% zi)bx (x;)

(30)

F. Monosonance

As explained in Section II-A, belief monosonance occurs
when belief mass (mainly) supports a single state value, and
is given by:

bx (z;) > bx(z;)(1 — Bal(zj, x;))
z; €R(X)\x;

> bx(z;)

z; €ER(X)\z;

bl)\(/lono —
T; GZ.%’(X)
(€29)

The interpretation of belief monosonance is that it increases
as a function of the relative weight imbalance between two
belief masses bx (x;) and bx (z;). In the case of two disjoint
state values x; and x; where bx (z;) > 0, then their relative
monosonance approaches bx (z;) when bx (z;) — 0.

In general, it can be observed that belief dissonance, belief
consonance and belief monosonance, which are the key belief
masses associated with Intra-Belief Uncertainty (IBU), in-
crease when vacuity decreases. In order to have them perfectly
fit to 1 when they are summed up with the vacuity uncertainty
mass (see Eq. (34)), they need to be normalized with the factor
v'BU defined as:

Diss | jCons __ jMono
JBU _ DX A0 + by

Vac
1—uy

(32)

Then the normalized IBU characteristics are defined as:

7 Mono

7 Diss 1, Cons
bDiss — bX bCons — bX bMono — bX (33)
X IBU’ X pIBU’ X pIBU *

Given the normalized IBU characteristics, additivity is ex-
pressed by Eq.(34).

b)D(iss + bg)(ons + bg(/lono + u}/(ac =1. (34)

We denote the point defined by Eq. (34) by ‘IBU point’ in
a barycentric coordinate system, as illustrated in Fig. 1.

V. EXAMPLE AND VISUALIZATION

The uncertainty characteristics defined in the sections above
can be visualized for any opinion. For the purpose of illustra-
tion, we assume as an example the hyper-opinion defined on a
ternary domain X = {1, 2, x3}, where the belief mass and
base rate distributions are given in Table I. Note the compact
notation, e.g., {x1,x2}, is denoted as 1 o.

TABLE I: Trinomial Opinion

Value bx () ax(-)| Value bx(:) ax(:)| Vacuity

1 0.10 0.50 z1,2  0.60 0.80 u\)/(ac =0.2
T2 0.10 0.30 z1,3 0.00 0.70

3 0.00 0.20 z2,3 0.00 0.50

From the above opinion, the uncertainty characteristics are
given in Table II.

TABLE II: Uncertainty Characteristics

Basic Sharpness and Intra-Belief
Belief Uncertainty Bluntness Uncertainty
pISin = 0200 | B3PS =020 | BRI =0203
pLVeE 0600 | BLVPE  =0480 | ¢S =0.175
uy®®  =0200 bﬁ in 20320 | biore  =0422

uBVac = 0.680

The uncertainty characteristics of Table II are visualized
in Fig. 1. At the top the HBBU (Hypernomial Basic Belief
Uncertainty) point and MBBU (Multinomial Basic Belief
Uncertainty) point are shown in a triangular barycentric co-
ordinate system. At the bottom, the IBU (Intra-Belief Uncer-
tainty) point is visualized in a triangular barycentric coordinate
system where the size of the coordinate system shrinks as a
function of the belief vacuity u%*°, which reflects the additivity
of Eq. (34).

VI. DISCUSSIONS

The general concept of uncertainty is complex due to its
multidimensional nature and causes derived from its funda-
mental complexity. In order to obtain a greater understanding
of the various dimensions of uncertainty, we define two sep-
arate categories of uncertainty called basic belief uncertainty
(consisting of singularity, vagueness and vacuity) and intra-
belief uncertainty (consisting of dissonance, consonance, and
monosonance). These categories have their own internal struc-
ture in terms of additivity. The differences between categories
can be still quite subtle because it would be quite challenging
to distinguish between vagueness and dissonance in some
contexts where it can be difficult to judge whether there
is vagueness (i.e., confusing evidence on separate singletons
together) or dissonance (i.e., separate evidence on each sin-
gleton). In general, vagueness refers to confusion because an
observer cannot clearly observe a singleton state value due to
the the evidence being non-discriminating, while dissonance
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Fig. 1: Visualization of uncertainty characteristics.

derives from conflicting observations which can be caused
by sensor malfunction or compromise (i.e., observation error
or adversarial manipulation) or dynamic states of a situation
(i.e., perfect observations but actually the situation itself shows
different observations at different times). Regardless of the
causes of the conflicting observations reported, the dissonance
can lead an opinion being polarized into dissonant belief which
makes decision making hard due to inconclusiveness based on
evidence supporting different state values.

VII. CONCLUSION & FUTURE WORK

In this work, we investigated multidimensional aspects of
uncertainty based on its root causes within the structure
of subjective opinions. In particular, we explained how the
various types of uncertainty can be derived and be interpreted.
To be specific, we dissected the traditional representation
of opinions by considering various uncertainty characteristics
that were defined in terms of the concepts of the ‘singular-
ity’, ‘vagueness’, ‘vacuity’, ‘dissonance’, ‘consonance’ and
‘monosonance’ of an opinion. We defined those concepts in
the formalism of SL and showed how these characteristics
can be manifested in the three different opinion classes which
are binomial, multinomial, and hyper-opinions. We proposed
a visualization of these uncertainty characteristics in order to
facilitate easier interpretation for effective decision making.

As the future work direction, we plan to conduct a sim-
ulation study in order to investigate how the uncertainty
characteristics in subjective opinions can affect decision mak-
ing performance in various environmental conditions such as
under varying the degree of compromised observations, base
rates of possible outcomes, and the degrees of consonance,
dissonance, and monosonance of given opinions.
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