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Preface

The work behind this thesis was done as a part of the THELMA project, which
was a five year long Norwegian effort to research the thermoelectric effect, funded
by the Norwegian research council (project number 228854). The thermoelectric
effect is a generic term for effects that couple heat and charge transport in
materials, and which if sufficiently large, can be utilized to create cooling
elements, heat pumps, and even electrical generators without moving parts. My
own section of the project was concerned with the thermoelectric properties
of heterostructure materials, which have been predicted, and to some extent
demonstrated to be beneficial for thermoelectric applications.

The overarching goal of my own project in particular, was the implementation
of a general purpose numerical solver capable of simulating heat- and charge
transport in heterostructure materials, so that the thermoelectric properties of
such materials could be calculated from structural information. While this task
is in itself to involved to finish in a single PhD-project, it has served as the
overlying motivation for all of my work, which has mostly been focused on laying
the ground work for the implementation by studying various formalisms and
methods, in order to find the ones most appropriate for the particular problem.

Before starting to implement a solver, one must determine the theoretical
formalism in which to formulate the problem, and the method by which to solve
the involved equations. The appropriate choices are determined by the accuracy
of the results, and by the computational requirements of the calculations. Thus,
when selecting a method, one must consider to which extent it results in an
accurate solution, how much computation time is required for the calculation,
and also whether an unreasonable amount of memory is required. Further,
when selecting the theoretical formalism itself, one must consider whether it
is theoretically justified for the particular problem, whether it might still give
reasonable answers even if this is not the case, and finally, whether there are
actually any methods capable of solving the relevant equations within a reasonable
amount of time.

My investigation into these questions has taken two separate forms. Partially,
it has consisted of a purely theoretical study, where I have studied the literature of
the various formalisms, and put some effort into trying to understand the regimes
in which they are each justified. Partially, my investigation has also consisted of
the implementation of a series of small scale numerical tests, intended to study
the computational efficiency of the different methods, and to some extent also
to study whether there are notable differences between results of the different
formalisms. The latter point concerns in particular differences between the
semiclassical Boltzmann equation and approaches based on quantum transport.

Finally, having determined that the NEGF formalism is as an accurate
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starting point for these calculations, and that most methods for solving the
equations involved are to computationally demanding, I have spent some time
trying to develop a method to speed up the solution of these equations by
utilizing Monte Carlo calculations
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Chapter 1

Introduction

1.1 Thermoelectric effects, and thermoelectric transport
coefficients

The thermoelectric effect, is a generic term for effects that couple the two major
transport modes in materials: transport of heat, and transport of electrical
charge. To understand the meaning of this, imagine some device, or material
slab connected to two contacts, between which there is a voltage difference V ,
and a temperature difference ΔT . In the commonly presented picture, the flow
of heat and charge are independent, meaning that the electrical current I is
found from Ohm’s law

V = RI, (1.1)

R being the resistance of the device, while the heat current q is found from the
law of heat conduction as

q = kΔT, (1.2)

k being the heat conductance, or thermal conductance. However, in almost all
materials there is a small amount of coupling between these transport modes,
meaning that voltages can induce heat currents, while temperature gradients can
induce electrical currents. Thus, more generally, one must make a modification
to Ohm’s law as

V = RI − αΔT, (1.3)

where α is known as the Seebeck coefficient. Similarly, the law of heat conduction
must also be generalized, and is typically written as

q = kΔT + ΠI, (1.4)

where Π is referred to as the Peltier coefficient.
With these generalizations, we can identify two important effects. First, a

temperature difference may induce currents or voltages. This is referred to as
the Seebeck effect. In open circuit conditions, where no current is allowed to
flow, the Seebeck effect will induce a voltage V = −αΔT . Secondly, even in the
absence of a temperature difference, there may still be a heat flow q = ΠI. If
two devices with different Peltier coefficients are connected, the heat flow q will
not be conserved, and accordingly this effect can be used to create heat sources
and heat sinks. This is known as the Peltier effect.

The coefficients R, k, α and Π are referred to as transport coefficients. In this
thesis I will in particular refer to k, α and Π as thermoelectric transport coeffi-
cients, while the purely electrical case will usually be considered separately. One
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1. Introduction

can also define transport coefficients as material properties. At the macroscopic
scale, one may define coefficients ←→σ , ←→α , ←→κ and ←→π , such that the relations

j = −←→σ (∇V + ←→α ∇T ) and, (1.5)
φQ = −←→κ ∇T + ←→π j, (1.6)

apply at each point of the device. Here j and φQ are respectively the electrical
current density and the heat flux density, while ∇ denotes the gradient operation.
T and V denotes temperature and voltage as before. The coefficients ←→σ , ←→α , ←→κ
and ←→π are material properties, and are respectively referred to as the electrical
conductivity, Seebeck coefficient, thermal conductivity and Peltier coefficient of
the material. In general these quantities are not scalar, but tensors. This means
they correspond to general linear transformations, which can be represented as
matrices.

Another thermoelectric effect which is sometimes mentioned, is the Thomson
effect, which can be stated as

q̇ = j · ←→K ∇T, (1.7)

where q̇ is the local rate of heat generation, and
←→K is the Thomson coefficient.

However, the Thomson effect is a second order effect, and can be derived from
the thermoelectric relations presented above. In fact, it can be regarded as a
continuum limit of the Peltier effect, and one can show that

←→K = T
∂←→α
∂T

, (1.8)

although we will not do that here.
The thermal conductivity and conductance are typically decomposed in two

contributions as ←→κ = ←→κ e + ←→κ l and k = ke + kl, where subscripts e and l
respectively denotes contributions to the heat flux from electrons and from lattice
vibrations. The electron contribution κe is intimately related to the electronic
conductivity σ, and one defines a coefficient of proportionality L = κe/σT ,
which is known as the Lorenz coefficient. One can also define a device Lorenz
coefficient as L = Rke/T . In metals the Lorenz coefficient usually has a value
approximately equal to 2.44 · 10−8 V2/K2 [9].

1.2 Applications of the thermoelectric effect

One of the most common applications of the thermoelectric effect today, is the
use of Peltier elements, which are electrical devices that utilize the Peltier effect
to transport heat from one side of the device to the other. Peltier elements
are usually made use of for cooling purposes, but in principle they can also be
used as heat pumps. However, as of yet their low efficiency is limiting the latter
application.

While Peltier elements can not compete with compressor based technologies
in terms of efficiency, they have several other advantages. First of all, they
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have no moving parts, which means they are noiseless, and have an extremely
long durability, requiring as good as no maintenance. Secondly, they have an
extremely short response time, meaning that the cooling rate can be adjusted
almost instantaneously. The latter fact is highly advantageous in those cooling
applications where the temperature must be kept close to some specific value.
This is the main application of Peltier elements today.

The Seebeck effect is also made use of in a few technological applications.
First of all, many heat sensors and temperature measurement devices make use of
the Seebeck effect, since temperature differences can be read off as voltages. This
is probably the application of the Seebeck effect that has the biggest consequence
in our daily lives. However, an application which is perhaps more interesting, is
that the Seebeck effect can be used to construct electrical generators without
moving parts. However, just like thermoelectric heat pumps, such thermoelectric
generators are limited by their low efficiency. Because of this, their application is
restricted to niche cases. An example of such niche cases would be space probes,
where the absence of maintenance requirements trumps any efficiency concern.

The efficiency of thermoelectric heat pumps and generators are both deter-
mined by a single device parameter

ZT =
αΠ
Rk

=
α2

Rk
T, (1.9)

which is known as the figure of merit. The equivalence of the two expressions
will be shown later. The efficiency of a thermoelectric generator in particular, is
given by the formula

η =
χ − 1

χ + T1/T2
ηC , (1.10)

where χ =
√

ZT + 1, T1 and T2 are respectively the temperatures on the cold
and hot sides of the device, and ηC is the Carnot efficiency ηC = 1 − T1/T2,
which is the maximal possible efficiency of a heat engine. In the limit ZT → ∞,
we can approximate the efficiency formula as η =

(
1 − 1/

√
ZT
)

ηC . Thus, the
efficiency approaches ηC as ZT is increased, but very slowly.

In addition to the device figure of merit ZT , one defines a similar material
figure of merit

zT =
σα2

κ
T, (1.11)

where the transport coefficients and material parameters are assumed to either
be scalar, or referring to a single well defined direction in the material. The
device figure of merit ZT will often lie close to the smallest value of zT in the
materials from which the device is constructed, so accordingly the material figure
of merit zT is a crucial parameter when choosing materials for thermoelectric
applications.
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1. Introduction

1.3 Heterostructure materials, and related nomenclature

As can to some extent be discerned from the name, a heterostructure material
is defined as a material where different sections of the material have different
compositions or structure, and where this variation occurs at a mesoscopic size
scale (nm-μm range). Thus, the composition or structure of the material varies as
a function of position. An important special case is that of quasi-one-dimensional
heterostructures, which are particularly important since in an attempt to limit
the scope of the project, all of my work has been limited to such structures. The
term quasi-one-dimensional simply means that all of the mesoscale structural
variation occurs along a single dimension, while the material is homogeneous
along the two remaining dimensions. Thus, one can introduce a coordinate
system xyz such that the composition and structure of the material depends
only on the z-coordinate, and is independent of x and y.

A particularly important subclass of quasi-one-dimensional heterostructures
is made up by the superlattices. A superlattice is a quasi-one-dimensional
heterostructure which is periodic also in the direction of mesoscale variation.
Thus, in the coordinate system introduced above, there is some distance d such
that the material composition at coordinate (x, y, z) is always the same as at
coordinate (x, y, z + d). In my work, the smallest possible value of d will be
referred to as the superlattice period. In order for the material to classify as an
actual heterostructure, and not as some bulk material, the superlattice period
should be at least a few nanometers. In addition, the literature often reserves
the term superlattice to structures where the period is quite small, typically no
longer than a few tens of nm. However, as there is not really any good term for
quasi-one-dimensional heterostructures in the more general case, I will in fact
use the term superlattice also when the period is arbitrarily large.

Since a superlattice is periodic along all three dimensions, it can be con-
structed as a repeating pattern of a single small block of material. This block
will be referred to as the supercell, and sometimes as the superlattice supercell.
The term unit cell on the other hand, will in this work be reserved for the unit
cells of the underlying materials from which the heterostructure is composed.
For instance, in a superlattice consisting of repeating layers of HgTe and CdTe,
the term unit cell will always refer to the unit cell of HgTe or CdTe, and never
to the supercell of the superlattice.

In the simplest configuration, a superlattice consists simply of a repeating
pattern of two different layer types, with differing composition or structure.
Often the material in the two layers will also have differing electron band edges.
If electron transport occurs in the conduction band, the layers with higher
conduction band minima is typically referred to as barriers, while the layers
with lower band minima are referred to as wells. The difference between the
two conduction band minima is called the barrier height. If electron transport
occurs in the valence band, one will often adopt the opposite convention, where
the layers with lower valence band maxima are referred to as barriers.

A second important subclass of quasi-one-dimensional heterostructures that
should be introduced, is the thin film. A thin film consists of a mesoscopically
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dimensioned layer suspended between two macroscopic bulk regions. The thin
layer must have a composition or structure different from both bulk regions, and
may or may not also contain internal variations. In addition, one or both bulk
regions may consist of vacuum.

1.4 Advantages of heterostructuring for thermoelectric
applications

There are multiple reasons why heterostructures are interesting for thermoelectric
applications. One important effect, which has already been utilized with consid-
erable success, is the fact that including structures at a mesoscopic size scale will
typically reduce the mean free path of phonons in the material. Since phonons
carry heat but not charge, they will in most cases contribute only to κl and kl,
and not to the other transport coefficients introduced above. An exception to
this occurs in the presence of phonon drag effects, which are normally ignored in
standard materials. In the absence of such effects, it is then easy to see that the
material figure of merit

zT =
σα2

κe + κl
T (1.12)

can only be positively impacted by the reduction of phonon transport.
Another important consequence of heterostructuring a material, is an effect

known as energy filtering, where electrons are freely moving only when their
energy lies in some limited range, and where the motion of electrons outside of
this range is inhibited. For instance, by including small barriers consisting of
materials with higher conduction band minima, the motion of conduction band
electrons would be inhibited in the range below the barrier height. Earlier work
has predicted energy filtering to have a positive impact on a central trade-off in
thermoelectric materials: As a function of doping concentration, the conductivity
of the material tends to increase, much as would be expected, but the Seebeck
coefficient of the material tends to drop. Thus, since the figure of merit is
proportional both to σ and α2, there is a trade-off between these coefficients
when selecting the optimal doping concentration. Energy filtering has been
predicted to reduce this trade-off, which means the product σα2 is increased at
the optimum.

In addition, some work has indicated that energy filtering may also reduce
the Lorenz coefficient. Writing the figure of merit as

zT =
α2

L

(
1 +

κl

κe

)−1
(1.13)

shows that this would also be highly beneficial.
These were the effects that motivated our research project to spend some

resources on studyin heterostructure materials, and in particular to begin prepara-
tory work to implement a transport solver capable of calculating the thermo-
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electric transport coeeficients of such materials. The latter task has served as
motivation for all work presented in this thesis.

1.5 Outline of the thesis

This thesis is divided into two major parts. Part I provides an overview of some
of the most important formalisms of transport theory, while Part II provides a
presentation and discussion of my own work. The order in which these parts
are read is not important, as long as the reader is prepared to accept that part
II references a few topics in part I. Published works, and work submitted for
publication are included at the end of part II.

Chapter 2, the first chapter of part I, is an introduction to the Landauer-
Büttiker theory of transport. I open with this subject, since it is in a sense
the simplest transport formalism. Also, it provides a conceptually simple and
intuitive way of thinking about transport in general. However, while always
useful as a conceptual tool, the Landauer-Büttiker theory is not very useful
for making quantitative predictions, except when the transport problem can be
regarded as ballistic, i.e. free from scattering. Various scattering models can
be included in the theory, but these will always either be phenomenological or
taken from another formalism.

In order to rigorously obtain predictions where scattering is included, it is
better to make use of formalisms derived from first principles. Such formalisms
are the subject of the remaining four chapters of part I. Chapter 3 deals with the
path integral, or field integral, which is the most general of the formalisms, since
it is in fact equivalent to the many particle Schrödinger equation. While rarely
directly applicable in practice, the field integral forms an important theoretical
starting point, from which most of the remaining theory is derived.

Chapter 4 deals with transport in the linear regime, i.e. the regime where
perturbations are small enough for all responses to be simple linear functions of
the stimuli. This is an important topic in thermoelectric theory, since at least
those thermoelectric applications that are thermally driven will almost always be
in the linear regime. Some of the expressions in Chapter 4 are derived from the
field integral, but the most important ones, known as the Kubo relations, are
derived using the standard Hilbert space operator formalism. Some discussion is
also provided for how to convert these expressions into field integrals.

Chapter 5 deals with the perturbative expansion of the field integral. The
discussion is limited to the fermionic sector, and to the expansion of two-point
correlation functions. We accordingly end up with the Non-equilibrium Green’s
function, or NEGF formalism, which is the first of the rigorous formalisms that
is practically applicable to any major extent. However, application requires
additional approximations, which may or may not be severe, depending on the
particular problem. Conveniently, transport expressions in the NEGF formalism
can be formulated in a language similar to that of the Landauer-Büttiker theory.

The final chapter of part I, Chapter 6, discusses two remaining, and very
important transport formalisms. First, by introducing a Markov approximation
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to the NEGF formalism, we end up with the master equation approach. Secondly,
by introducing an additional assumption of slow spatial variations, we obtain
the semiclassical Boltzmann equation, which is probably the most commonly
applied of all transport formalisms. I also discuss the multi band version of the
Boltzmann equation, which must be justified in a somewhat different manner
than the single band version. While not particularly important in bulk systems,
the last point may be of major importance when modeling superlattices.

Part I serves three different purposes in the thesis. Firstly, it serves as a
reference for many of the theories and equations I have already applied in my
work. Thus, part II will commonly make reference to equations and discussions
in part I, but mostly to Chapters 2, 5 and 6. A second purpose served by part
I, is as a useful overview and work of reference for future work. This applies
particularly to Chapters 4 and 6, the subjects of which I have in retrospect
realized would have been a better starting point for my own work than the
NEGF formalism. This will be more thoroughly discussed later. In any case,
these subjects should be useful for future improvements of my implementations,
and Chapters 4 and 6 serve as useful references.

The third and final purpose served by part I, is as a documentation of the
more theoretical and self serving work I have done during my PhD. In the
process of determining the formalism most appropriate for my implementations,
I have spent a considerable time reviewing various literature, and on trying to
understand the various formalisms, their ranges of applicability, and how they
all relate to each other. Part I documents this work, and presents an overview
of what I have learned and understood from it.

The more practical aspects of my work are presented in Part II, which is
divided into two chapters. Chapter 7 serves as an introduction to this part of
my work. There, I discuss the motivation behind my work, our path towards
determining the formalism and method of our implementation, our overall
progress towards this implementation, and finally how the papers included at
the end fit into this picture.

Chapter 8 contains a discussion of various sub-projects that did not result in
the submission of a manuscript, as well as some additional results related to the
topic of our third paper, Paper III. Section 8.1 describes some experiments with
the Boltzmann Monte Carlo method, which was the first method of transport
calculations I pursued. Monte Carlo methods are methods where the desired
calculation is performed by averaging a set of random results. In particular, the
Boltzmann Monte Carlo method obtains a solution to the Boltzmann equation
by explicitly simulating the movement of particles, according to physical forces
acting upon them, and a sequence of random scattering events. Per today, this
is the most efficient method to solve the Boltzmann equation under general
conditions.

Sections 8.2 and 8.3 are both concerned with methods for reducing the
computational burden associated with the solution of the NEGF equations.
Section 8.2 in particular, is concerned with the calculation of the retarded Green’s
function, a demanding task which must be performed multiple times during a
transport calculation. While we eventually landed on the RGF method[6] as the
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1. Introduction

most efficient method for doing these calculations, Section 8.2 investigates an
alternative based on perturbation theory.

Section 8.3 is concerned with a NEGF Monte Carlo method. Motivated
by the success of the Boltzmann Monte Carlo method, we have attempted to
develop a Monte Carlo method which solves the NEGF equations. This method
is the subject of our third paper, Paper III, and Section 8.2 merely includes some
additional results, which were omitted from the paper.

Finally, Chapter 9 contains an overview of what I consider to be the most
important conclusions I have arrived at during my work.
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An overview of selected
topics from transport theory,
relevant to the calculation of
thermoelectric coefficients





Chapter 2

The Landauer-Büttiker theory of
transport
In this chapter, I give an introduction to transport theory, in the form of Landauer-
Büttiker theory, which is a very intuitive conceptualization of transport. It is
just as useful for conceptualizing semiclassical transport as quantum transport[7,
22, 17]. However, the theory is purely phenomenological, and it is also most
useful when scattering is assumed elastic. Thus, for predictive calculations, more
rigorous formalisms are required.

2.1 Landauer-Büttiker expressions

2.1.1 Derivation

Consider some electronic device or material sample S, and a set {p} of leads
connected to S. For each lead p we define the direction pointing away from S as
the positive z axis. We assume that p is translationally invariant along the z
axis with some period a, and we ignore many particle interactions in the leads.
Electron motion in the leads is then determined by the Schrödinger equation

Ĥψ(x) = Eψ(x), (2.1)

here in its time independent form. Here Ĥ is the Hamiltonian operator, ψ(x)
is the wave function, and E is the energy. From Bloch’s theorem[11] it follows
that the solutions can be written as

ψ(x) = ψm(k, x) = φm(k, x)eikz, with (2.2)
E = Em(k). (2.3)

Such Bloch states are discussed more thoroughly in Section 6.3.1. The index
m refers to the transversal mode of the lead, and the functions φm(k, x) are
periodic in z.

In the Landauer-Büttiker formalism, the system S is dealt with entirely in
terms of a transmission function T , which describes probabilities of transfer
between different leads and energies. As we shall see, all the physics relevant to
electronic transport calculations is captured by the transmission function. The
formalism is not concerned with exactly how T is to be calculated, so this must
be extracted from one of the formalisms to be described below. The following
derivation follows Datta[7].

In the most general version of the formalism, the transmission function takes
the form T nm

qp (E, E′), which is defined as the probability that an electron entering
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2. The Landauer-Büttiker theory of transport

S from lead p, with energy E and in transversal mode n, exits in lead q, with
energy E′ and in transversal mode m. However, in reality the Landauer-Büttiker
formalism is rarely useful unless the scattering mechanism in S is elastic, so
that the exiting energy E′ must equal the incoming energy E. In that case the
transmission function simplifies to T nm

qp (E), which is defined as before, except
that the electron now also exits with energy E.

Consider the total electron flux Φq in lead q. This can be separated in
two contribution classes: the incoming contributions from lead q itself, and
the outgoing contributions having been transmitted through S from all leads p.
Thus, the total electron flux in q can be written

Φq =
∑
nk

Φn
q (k) −

∑
pmnk

T nm
qp (Em(k))Φn

p (k), (2.4)

where the sum is only over values of k with negative flux (moving towards S).
We assume each lead to be internally close to equilibrium, and well described

by a chemical potential μp and a temperature Tp. Since electrons are fermions
their occupation is described by the Fermi function[7, 11]

fp(E) =
1

eβp(E−μp) + 1
. (2.5)

If the leads are assumed to have length L, the density of electrons in some state
ψm(k, x) will be f(Em(k))/L, and if the group velocity

vm(k) =
1
�

dE

dk
, (2.6)

of the state is negative, then the flux hitting S from that state will be |Φm
p (k)| =

f(Em(k))|vm(k)|/L.
For a continuing flux to make sense, we must take the limit L → ∞. (2.4)

then becomes

Φq =
∑

n

∫
dk

2π
fq(En(k))vn(k) −

∑
pmn

∫
dk

2π
T nm

qp (Em(k))fp(Em(k))vm(k)

=
∑

n

∫
dk

2π

1
�

dE

dk
fq(En(k)) −

∑
pmn

∫
dk

2π

1
�

dE

dk
T nm

qp (Em(k))fp(Em(k))

= − 1
h

∑
n

∫
dE fq(E) +

1
h

∑
pmn

∫
dE T nm

qp (E)fp(E). (2.7)

In the last expression, the indexes m and n no longer represents only the
transversal modes, but possibly also a discrete set of values k where the bands
intersect the energy E, and where v(k) is positive.

The total probability of moving from a mode n to any new mode in any lead
must be one, so ∑

pm

T mn
pq (E) = 1. (2.8)

12
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Inserting this in (2.7), we get

Φq =
1
h

∑
pmn

∫
dE
(
T nm

qp (E)fp(E) − T mn
pq (E)fq(E)

)
. (2.9)

At this point we rewrite the expressions in terms of i(E), the flux contribution
from energy E, meaning that

Φq =
∫

dE iq(E). (2.10)

The current in lead q is then

Iq = −eΦq = −e

∫
dE iq(E), (2.11)

where e is the elementary charge. Since the energy flux contribution from energy
E must be Ei(E), we can also calculate the total heat flux in lead q as

qq =
∫

dE (E − μq)iq(E). (2.12)

A more detailed argument for why this is the case is given in Section 3.4.3.
From (2.9) we can express iq(E) as

iq(E) =
1
h

∑
p

(
T̄qp(E)fp(E) − T̄pq(E)fq(E)

)
where, (2.13)

T̄qp(E) =
∑
mn

T nm
qp (E). (2.14)

Using more sophisticated formalisms, one can show that under certain conditions∑
p

T̄pq(E) =
∑

p

T̄qp(E), (2.15)

as is done for instance in the appendix of our third paper, Paper III. Inserting
this in (2.13), we finally find

iq(E) =
1
h

∑
p

T̄qp(E) (fp(E) − fq(E)) . (2.16)

2.1.2 Linear limit and Landauer formula

In the linear limit, the currents Iq are linear in the lead voltages Vpq = Vp − Vq.
We define the conductances Gqp through the relation Iq =

∑
p GqpVpq. Let us

expand (2.16) to the first order in the potential differences Δμp = μp − μ, where
μ is the equilibrium potential. We get

iq(E) =
1
h

∑
p

T̄qp(E)
∂f

∂μ
(E)(Δμp − Δμq) =

1
h

∑
p

T̄qp(E)Th(E)Δμpq, (2.17)

13



2. The Landauer-Büttiker theory of transport

where Δμpq = μp − μq = Δμp − Δμq, and

Th(E) = − ∂f

∂E
(E) =

β

4 cosh2 β(E − μ)/2
. (2.18)

Inserting (2.17) in (2.11), and utilizing the fact that Δμqp = −eVqp, we get

Iq =
e2

h

∑
p

∫
dE T̄qp(E)Th(E)Vpq. (2.19)

Thus, from the definition of Gqp,

Gqp =
e2

h

∫
dE T̄qp(E)Th(E). (2.20)

A particularly important special case is that of a device S with only two
leads. In that case there is only one conductance G = G12 = G21, and one
transmission function T̄ (E) = T̄12(E) = T̄21(E). The relation between G and T̄
is found by removing the indices p and q from (2.20). Clearly, by (1.1) R = 1/G.
An interesting limit is obtained for T → 0. The function Th(E) then becomes a
delta function, and we get

G =
e2

h
T̄ (μ). (2.21)

If scattering in S can be ignored, then T mn
12 ∼ δmn, and (2.21) becomes

G =
2e2

h
M, (2.22)

where the factor of 2 comes from spin degeneracy, and M is the number of
transversal modes per lead and spin. (2.22) is the well known Landauer formula
for the quantization of conductance[7, 15].

2.1.3 Thermoelectric coefficients

Following for instance Ref. [17], we can also find linear expressions for currents
due to temperature differences ΔTpq = Tp − Tq. Expanding (2.16) to the first
order in ΔTp = Tp − T , we get

iq(E) = − 1
h

∑
p

T̄qp(E)
∂f

∂β
(E)

ΔTp − ΔTq

T 2 =
1

hT

∑
p

T̄qp(E)Th(E)(E − μ)ΔTpq.

(2.23)

Thus, we find from (2.11) that we can write Iq =
∑

p AqpΔTpq, where

Aqp = − e

hT

∫
dE T̄qp(E)Th(E)(E − μ). (2.24)

14
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In a situation where there are both voltage and temperature differences between
the leads, the lead currents will be Iq =

∑
p (GqpVpq + AqpΔTpq). Similarly,

we can write the lead heat currents as qq =
∑

p (BqpVpq + CqpΔTpq). Inserting
(2.17) and (2.23) in (2.12), it is easy to see that

Bqp = − e

h

∫
dE T̄qp(E)Th(E)(E − μ), and (2.25)

Cqp =
1

hT

∫
dE T̄qp(E)Th(E)(E − μ)2. (2.26)

If we limit the situation to two leads, the relations above simplify to I =
GV + AΔT and q = BV + CΔT , which are merely reexpressions of the relations
(1.3) and (1.4). A, B and C are found by removing the indices p and q from (2.24)
to (2.26). Expressions for the thermoelectric transport coefficients α and ke are
most easily obtained by considering the special case where the current I = 0. We
then have GV + AΔT = 0, which can be solved to find the voltage V = −αΔT ,
with α = A/G. Further, the heat current becomes q = −BαΔT +CΔT = keΔT ,
with ke = C − Bα. Finally considering the heat flux in the general case, we see
that it can be written keΔT + ΠI, with Π = B/G. Comparing (2.24) to (2.25),
we also find Π = αT .

Summarizing, we have obtained the expressions

α = A/G, (2.27)
ke = C − AB/G, and (2.28)
Π = B/G = αT, (2.29)

allowing us to rewrite the expressions for I and q as

I = G(V + αΔT ), and (2.30)
q = kΔT + ΠI, (2.31)

in agreement with (1.3) and (1.4).
The Seebeck coefficient α can be rewritten in an interesting way by introducing

the probability distribution

P (E) =
e2

hG
T̄ (E)Th(E). (2.32)

This function is positive, and integrates to 1 by (2.20). From (2.24), we get

α =
A

G
= − e

hGT

∫
dE T̄ (E)Th(E)(E − μ) = − 1

eT
〈E − μ〉 = −kB

e
〈χ〉,

(2.33)

where the brackets denote the expectation value with respect to the probability
distribution P , kB is the Boltzmann constant, and the dimensionless quantity
χ = β(E − μ).
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2. The Landauer-Büttiker theory of transport

As mentioned, the electronic heat conductance ke is often expressed as
ke = GLT , where L is the Lorenz number or Lorenz coefficient. L can also be
expressed in terms of P and χ, as

L =
C − Bα

GT
=

1
hGT 2

∫
dE T̄ (E)Th(E)(E − μ)2 − Πα

T
(2.34)

=
〈
(E − μ)2〉

e2T 2 − α2 =
k2

B

e2
〈
χ2〉− k2

B

e2 〈χ〉2 =
k2

B

e2

〈
(χ − 〈χ〉)2

〉
=

k2
B

e2 Var χ,

where Var denotes variance taken with respect to P .
In a metallic system we can approximate T̄ (E) as constant over an energy

range of a few kBT . Thus, P (E) ≈ Th(E), and we can calculate L explicitly.
since Th(E) is a symmetric function, 〈χ〉 = 0. Accordingly

Var χ =
∫

dE Th(E)χ2 =
∫

dχ
χ2

4 cosh2 χ/2
=

π2

3
, (2.35)

which is found by contour integrating the function z3/4/ cosh2 z/2 around the
rectangle [−∞, ∞] × [0, 2πi]. By (2.34) we find

L =
π2k2

B

3e2 = 2.44 · 10−8 V2/K2, (2.36)

the standard value of the Lorenz number[9].

2.2 Discussion of the leads

In the previous section, drastic approximations were introduced in the physics of
the leads. They were assumed to be infinitely long and perfectly periodic, and
they were assumed to be free of scattering, so that the electrons are described
by a single particle Hamiltonian.

Traditionally, these approximations are justified by the assumption that the
leads are highly conductive compared to the device S [7]. If this is the case, then
most of the changes in μ and T will happen inside S, so that the leads are close
to equilibrium. In addition, the leads will then only give minor contributions
to the resistance, and to other measurable properties of the combined system.
This means that the physics of the leads will not significantly affect measurable
quantities, so that whether or not the leads are described realistically becomes
irrelevant.

If the assumption that most of the restiance resides in S does not hold, then
the leads of the previous section can be considered a purely theoretical tool.
That is, instead of taking the leads to be the real physical leads, we instead
include these physical leads in the description of S itself. The leads of the
previous section are then merely theoretical abstractions that we use to create
non-equilibrium conditions in the theoretical description of S, and to pick up the
resulting currents. In the same way as an experimenter will choose the physical
leads in the most convenient way in order to do his measurements, theorists may
choose these theoretical leads in as convenient a manner as possible. This is
done by keeping the lead physics maximally simple.
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2.3 Coherent and incoherent regimes

In this section we briefly discuss the behavior of the transmission functions
T (E). To do this in the general case requires a more sophisticated formalism,
but we can produce some meaningful results in two simplified regimes. These
are the coherent and incoherent regimes, which are determined by how the
transport length scale compares to the coherence or phase relaxation length Lφ

[7]. Coherent transport occurs over length scales much shorter than Lφ, and is
characterized by carriers taking on the character of classical waves. Incoherent
transport occurs over length scales much larger than Lφ, and is characterized by
carriers taking on a character more like classical particles.

2.3.1 Incoherent regime

In the incoherent regime, interference effects due to the wavelike nature of
particles can be ignored. We can then think of the particles as classical, and
describe their motion using simple probabilities. Consider a device S with two
leads, and bisect it in two parts A and B, A being closer to lead 1 and B closer
to lead 2. Assume we know the transmission coefficients of each part to be TA

and TB respectively, and that transport occurs in a single mode in each part.
Then, again following Datta[7], we can find the transmission function of S

by the following considerations: Assume lead 1 contains a flux Φ+ of particles
moving towards A, and a flux Φ− moving away from A. Assume further that
at the boundary between parts A and B, there is a flux Φ+

A entering B from
A, and a flux Φ−

A entering A from B. Clearly these fluxes are related by the
transmission function of A, so that

Φ+
A = TAΦ+ + RAΦ−

A, and (2.37)
Φ− = TAΦ−

A + RAΦ+. (2.38)

Here the reflection coefficient R is given by R = 1 − T . Solving (2.38) for Φ−
A

we get

Φ−
A =

1
TA

Φ− − RA

TA
Φ+, (2.39)

and inserting that in (2.37) we get

Φ+
A = TAΦ+ +

RA

TA
Φ− − R2

A

TA
Φ+. (2.40)

This can be conveniently written in matrix form as[
Φ+

A

Φ−
A

]
=
[
TA − R2

A/TA RA/TA

−RA/TA 1/TA

] [
Φ+

Φ−

]
. (2.41)

Consider now the fluxes in lead 2. We refer to the flux exiting B as Φ+
B , and

the flux moving toward B as Φ−
B . Clearly these fluxes are related to the fluxes
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Φ+
A and Φ−

A in a manor completely analogous to the above relations, and we thus
get [

Φ+
B

Φ−
B

]
=
[
TB − R2

B/TB RB/TB

−RB/TB 1/TB

] [
Φ+

A

Φ−
A

]
. (2.42)

Combining (2.41) and (2.42) we get[
Φ+

B

Φ−
B

]
=
[
TA − R2

A/TA RA/TA

−RA/TA 1/TA

] [
TB − R2

B/TB RB/TB

−RB/TB 1/TB

] [
Φ+

Φ−

]
, (2.43)

and since considerations similar to those above could also have been made for
the entire device S with transmission T , we must in fact have[

T − R2/T R/T
−R/T 1/T

]
=
[
TA − R2

A/TA RA/TA

−RA/TA 1/TA

] [
TB − R2

B/TB RB/TB

−RB/TB 1/TB

]
.

(2.44)

The relations above are easily generalized to a case where we divide S into a
sequence of parts S1 · · · SN . Since the fluxes on the boundaries are in each case
given by expression similar to (2.41), (2.44) generalizes to

[
T − R2/T R/T

−R/T 1/T

]
=

N∏
n=1

[
Tn − R2

n/Tn Rn/Tn

−Rn/Tn 1/Tn

]
. (2.45)

In fact, evaluating the lower right corner of the matrix product in (2.44), we get

1
T = −RARB

TATB
+

1
TATB

=
1 − (1 − TA) (1 − TB)

TATB
=

1
TA

+
1

TB
− 1, (2.46)

and by a simple argument of induction it is easy to see that this generalizes to
the case of (2.45) as

1
T − 1 =

N∑
n=1

(
1

Tn
− 1
)

. (2.47)

In particular, if S is divided into N identical pieces, all having transmission
T1 and length L1, then

1
T − 1 = N

(
1
T1

− 1
)

. (2.48)

We define the back scattering mean free path λ as

λ =
L1

1/T1 − 1
=

T1L1
1 − T1

. (2.49)

Note that by (2.48) this is the ratio of two quantities both proportional to N .
Thus, if we rather than L1 and T1, insert the transmission and length of some
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larger set of N parts, (2.49) gives the same value of λ. Accordingly, λ is to some
extent independent of the subdivision of S. However, this is only true as long as
the lengths L1 
 Lφ. Using (2.49), we can write (2.48) as

T =
λ

λ + L
, (2.50)

in agreement with the literature[7, 22, 17].

2.3.2 Coherent regime

In the coherent regime, we can not think of electrons as classical particles, but
we can think of them as classical waves. Consider the same situation as above,
where S is subdivided in two parts A and B. The fluxes Φ+, Φ−, Φ+

A, Φ−
A, Φ+

B

and Φ−
B are then associated with amplitudes φ+, φ−, φ+

A, φ−
A, φ+

B and φ−
B , where

in each case Φ = |φ|2. The flux amplitudes entering and exiting a subsystem are
linearly related, and we can thus write their relationship in a manor similar to
(2.37) and (2.38), as[7]

φ+
A = t+

Aφ+ + r+
Aφ−

A, and (2.51)
φ− = t−

Aφ−
A + r−

Aφ+, (2.52)

where |t+
A|2 = |t−

A|2 = TA and |r+
A |2 = |r−

A |2 = RA. Completely analogously to
the incoherent case, these equations can also be written in matrix form as

[
φ+

A

φ−
A

]
=
[
t+
A − r+

Ar−
A/t−

A r+
A/t−

A

−r−
A/t−

A 1/t−
A

] [
φ+

φ−

]
, (2.53)

and similarly for φ+
B and φ−

B . Thus, (2.43) also has an analogous version in the
coherent case, as

[
φ+

B

φ−
B

]
=
[
t+
A − r+

Ar−
A/t−

A r+
A/t−

A

−r−
A/t−

A 1/t−
A

] [
t+
B − r+

Br−
B/t−

B r+
B/t−

B

−r−
B/t−

B 1/t−
B

] [
φ+

φ−

]
, (2.54)

and in fact, in the general case we get an equation analogous to (2.45) as

[
t+ − r+r−/t− r+/t−

−r−/t− 1/t−

]
=

N∏
n=1

[
t+
n − r+

n r−
n /t−

n r+
n /t−

n

−r−
n /t−

n 1/t−
n

]
. (2.55)

In the special case where all the parts S1 · · · SN are identical, this simplifies to

[
t+ − r+r−/t− r+/t−

−r−/t− 1/t−

]
=
[
t+
1 − r+

1 r−
1 /t−

1 r+
1 /t−

1
−r−

1 /t−
1 1/t−

1

]N

. (2.56)

The matrices in this expression are sometimes referred to as transfer matrices.
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2.4 Macroscopic devices

Landauer formalism is usually applied to the study of transport in the microscopic
regime. However, following Ref. [17], we can also use it to form a reasonable
picture of transport in macroscopic devices. Consider a macroscopic device S
with two leads. Assume both S and the leads to be composed of a crystalline
material, thus being repetitions of some fundamental cell. In a macroscopic
system, boundary conditions have relatively small effects, and we may thus
assume periodic boundary conditions in the directions orthogonal to the leads.
Then the transversal modes m may be indexed by the transversal component of
the Bloch vector, k⊥. Thus, we may write (2.14) as

T̄ (E) = 2
∑

k⊥k′
⊥

T k⊥k′
⊥(E), (2.57)

where the additional factor of 2 comes from spin degeneracy. Let us simplify
the expression by making the unjustified assumption that T k⊥k′

⊥(E) ∼ δk⊥k′
⊥

.
Then

T̄ (E) = 2
∑
k⊥

T k⊥(E) ≈ 2A

(2π)2

∫
dk⊥ T (k⊥, E), (2.58)

where A is the cross sectional area of S and the leads, and where we have used
the macroscopic size to justify switching to an integral.

Since S is macroscopic, we are definitely in the incoherent regime, and since
S is also periodic we may thus substitute T from (2.50). However, in the
macroscopic regime we also have L 
 λ, so that in fact we may take T ≈ λ/L.
Inserting this in (2.58) we get

T̄ (E) =
2A

L

∫
dk⊥
(2π)2 λ(k⊥, E). (2.59)

Inserting (2.59) in (2.20), we get

G =
A

L

2e2

h

∫
dk⊥
(2π)2

∫
dE λ(k⊥, E)Th(E). (2.60)

Similar expressions can be obtained also for the transport coefficients A B and
C.

We also know that for macroscopic devices, the conductance should be
G = Aσ/L, where σ is the conductivity. Comparing this with (2.60), we get

σ =
2e2

h

∫
dk⊥
(2π)2

∫
dE λ(k⊥, E)Th(E), (2.61)

which is an expression that is independent of the dimensions of the device.
Intuitively, this relation should hold at least approximately also beyond the
approximation T k⊥k′

⊥(E) ∼ δk⊥k′
⊥

, but then with more complex expressions for
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the back scattering mean free path λ. In fact, it is not hard to see that (2.61) is
equivalent to the relaxation time approximation of the Boltzmann equation[17].

The Seebeck and Lorenz coefficients can still be found from (2.33) and (2.34),
but with the probability P replaced with

P (E) =
2e2

σh

∫
dk⊥
(2π)2 λ(k⊥, E)Th(E). (2.62)

These expressions are then also independent of device dimensions, and should
be regarded as approximate estimates of the material coefficients.
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Chapter 3

The Non-equilibrium field integral
This chapter contains a derivation of transport expressions within the formalism
of field-integrals or path-integrals. The theory is mostly taken from Ref. [2]. In
Section 3.1 we introduce and derive the general field integral, while in Section
3.2 we specialize to transport calculations in a device of the type described in the
previous chapter. In Section 3.3 we integrate over the lead degrees of freedom to
obtain a description in terms of the system S alone. Finally, in Section 3.4 we
derive expressions for the expectation values of electrical current and the heat
current.

3.1 General field integral

Consider any quantum system S, and any observable A. In general, the state of
S is described by a density operator ρ, and the expectation value of A is given
by the expression[21, 18] 〈A〉 = Tr Âρ. In particular, the expectation value at
time t is 〈A(t)〉 = Tr Âρ(t), where

ρ(t) = U(t, t0)ρ0U†(t, t0). (3.1)

Here ρ0 = ρ(t0) represents the state at time t0 and U(t, t0) is the propagator, or
evolution operator[21], evolving the state from t0 to t. The propagator satisfies
the Schrödinger equation

�i
d
dt

U(t, t0) = Ĥ(t)U(t, t0), (3.2)

where Ĥ is the Hamiltonian. If Ĥ is not time dependent, then U depends only on
the difference between the time arguments, and we can write U(t, t0) = U(t − t0).
The propagator U(t) satisfies[21]

U(−t) = U†(t), and (3.3)
U(t + t′) = U(t)U(t′). (3.4)

Still assuming a time independent Hamiltonian, the general expression for 〈A〉
becomes

〈A(t)〉 = Tr Â U(t − t0)ρ0U†(t − t0) (3.5)

= Tr U†(t − t0)ÂU(t − t0)ρ0

= Tr Â(t)ρ0,

where we have defined Â(t) = U†(t − t0)ÂU(t − t0). Generalizing this expression,
we define

〈Â1(t1)Â2(t2) · · · Ân(tn)〉 = Tr Â1(t1)Â2(t2) · · · Ân(tt)ρ0, (3.6)
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where Âk(t) = U†(t − t0)ÂkU(t − t0). In particular, we define the two time
correlation function 〈Â(t)B̂(t′)〉 = Tr Â(t)B̂(t′)ρ0. We adopt the convention
of writing these expectation values with hats over the observables, in order to
distinguish them from another type of expectation value to be introduced below.

3.1.1 Field integral expression for the propagator

A detailed derivation of the field integral is given in Ref. [2], where Chapters
3 and 4 deal with the field integral in imaginary time, and a generalization to
real time is briefly covered in chapter 11. Here we will only cover the gist of the
argument.

Making use of (3.4) and defining Δt = (tf − t0)/N , we can write U(tf − t0)
as

U(tf − t0) = U(Δt)N . (3.7)

For N → ∞, Δt becomes arbitrarily small, and accordingly we can obtain an
approximate solution of (3.2) as

U(Δt) ≈ I − i

�
ĤΔt. (3.8)

Inserting this in (3.7) we get

U(tf − t0) ≈
(

I − i

�
ĤΔt

)N

. (3.9)

We assume that the system S consists of a set of bosonic fields that we
denote φ̂, and a set of fermionic fields that we denote ψ̂. We introduce single
particle bases {i} and {j} for the fields φ̂, and ψ̂ respectively, and write the
corresponding field operators as φ̂i and ψ̂j . Finally, we organize these operators
in vectors φ̂ = [φ̂i] and ψ̂ = [ψ̂j ].

The identity operator of the system can then be written as[2]

I =
∫

d(φ, ψ)e−|φ|2−ψ̄ψ|φ, ψ〉〈φ, ψ̄|, (3.10)

where we have introduced coherent states

|φ, ψ〉 = eφ̂
†
φ+ψ̂

†
ψ|0〉, (3.11)

and defined the integration measure d(φ, ψ) as
∫

d(φ, ψ) =
∫∫

dφ†dφ

πd

∫∫
dψ̄dψ =

∫∫ ∏
i

dφ�
i dφi

π

∫∫ ∏
j

dψ̄jdψj (3.12)

In these expressions ψj and ψ̄j are Grassmann numbers[2].
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We insert N + 1 identity operators on the form of (3.10) in (3.9), such that
there is one identity operator on each side of each factor (I − iĤΔt/�). Further,
we assume that the Hamiltonian of the system is expressed on normal ordered
form as

Ĥ = H(φ̂
†
, φ̂, ψ̂

†
, ψ̂), (3.13)

where H is an analytic function, and the operators are ordered such that φ̂i and
ψ̂j are always to the right of the adjoint fields. The benefit of the coherent state
representation is that φ̂i|φ, ψ〉 = φi|φ, ψ〉 and ψ̂j |φ, ψ〉 = ψj |φ, ψ〉. Thus, since
the Hamiltonian is normal ordered, we have

〈φ, ψ̄|
(

I − i

�
ĤΔt

)
|φ′, ψ〉 =

(
1 − i

�
H(φ†, φ′, ψ̄, ψ)Δt

)
〈φ, ψ|φ, ψ〉 (3.14)

≈ e− i
�

H(φ†,φ′,ψ̄,ψ)Δt+φ†φ′+ψ̄ψ,

where we have also used the formula 〈φ, ψ̄|φ′, ψ〉 = eφ†φ′+ψ̄ψ for the inner
product of coherent states[2].

Making use of these steps, we can after some rearrangement write (3.9) as

U(tf − t0) =
∫

D(φ, ψ)eiS+[φ,ψ]/�|φN , ψN 〉〈φ0, ψ̄0|, (3.15)

where we have defined the field integral

∫
D(φ, ψ) =

∫∫ N∏
n=0

d(φn, ψn). (3.16)

and the action S+ as

i

�
S+[φ, ψ] = −|φ0|2 − ψ̄0ψ0+ (3.17)

i

�

N−1∑
n=0

{
�iφ†

n+1(φn+1 − φn) + �iψ̄n+1(ψn+1 − ψn) − H(φ†
n+1, φn, ψ̄n+1, ψn)Δt

}
.

Since we are interested in the limit Δt → 0, we can formally approximate the
sum as

N−1∑
n=0

Δt
{
�iφ†

n+1
φn+1−φn

Δt + �iψ̄n+1
ψn+1−ψn

Δt − H(φ†
n+1, φn, ψ̄n+1, ψn)

}

≈
∫ tf

t0

dt
(
�iφ†φ̇ + �iψ̄ψ̇ − H(φ†, φ, ψ̄, ψ)

)
, (3.18)

where φn = φ(nΔt) and ψn = ψ(nΔt). This integral must however be thought
of as a purely symbolic notation, since in reality the limit N → ∞ is not
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3. The Non-equilibrium field integral

well defined for the field integral expressions above, and since the derivative of
Grassmann numbers is in any case not meaningful.

We will also require a field integral expression for U†. Taking the adjoint of
(3.9), we get

U†(tf − t0) =
(

I +
i

�
ĤΔt

)N

. (3.19)

then simply repeating the argument above, we eventually end up with the
expression

U†(tf − t0) =
∫

D(φ, ψ)eiS−[φ,ψ]/�|φ0, ψ0〉〈φN , ψ̄N |, (3.20)

where the action S− is given by

i

�
S−[φ, ψ] = −|φN |2 − ψ̄N ψN (3.21)

− i

�

N−1∑
n=0

{
�iφ†

n(φn+1 − φn) + �iψ̄n(ψn+1 − ψn) − H(φ†
n, φn+1, ψ̄n, ψn+1)Δt

}
.

Again, the sum can formally be approximated as

N−1∑
n=0

Δt

{
�iφ†

n

φn+1 − φn

Δt
+ �iψ̄n

ψn+1 − ψn

Δt
− H(φ†

n, φn+1, ψ̄n, ψn+1)
}

≈
∫ tf

t0

dt
(
�iφ†φ̇ + �iψ̄ψ̇ − H(φ†, φ, ψ̄, ψ)

)
. (3.22)

3.1.2 Field integral expressions for expectation values

Single particle fermionic and bosonic observables respectively take the form

Â =
∑

ij

Aijψ̂†
i ψ̂j , and (3.23)

B̂ =
∑

ij

Bij φ̂†
i φ̂j , (3.24)

where Aij = 〈i|Â|j〉 and Bij = 〈i|B̂|j〉 for single particle states |i〉 and |j〉. Thus,
we have

〈A〉 =
∑

ij

Aij〈ψ̂†
i ψ̂j〉, (3.25)

and similarly for the bosonic case. Accordingly, all single particle expectation
values can be found by calculating expectation values on the form 〈ψ̂†

i ψ̂j〉 and
〈φ̂†

i φ̂j〉.

26



General field integral

By (3.6) we have

〈ψ̂†
i (t)ψ̂j(t′)〉 = Tr U†(t − t0)ψ̂†

i U(t − t0)U†(t′ − t0)ψ̂jU(t′ − t0)ρ0 (3.26)

= Tr U†(t − t0)ψ̂†
i U†(tf − t)U(tf − t′)ψ̂jU(t′ − t0)ρ0

= Tr U†(tf − t0)U(tf − t)ψ̂†
i U(t − t′)ψ̂jU(t′ − t0)ρ0

= Tr U†(t − t0)ψ̂†
i U†(t′ − t)ψ̂jU†(tf − t′)U(tf − t0)ρ0,

where we have introduced an arbitrary final time tf > t, t′, and made use of (3.3)
and (3.4). The product U(tf − t′)ψ̂jU(t′ − t0) in the second line can be written
as a field integral by the same procedure as in the previous section, where we
approximate the propagators as products of linear factors, and then insert N + 1
identity operators given by (3.10). However, we must take care to place the
appropriate identity operator to the right of ψ̂j , so that we can make use of the
relation ψ̂j |φ, ψ〉 = ψj |φ, ψ〉 to get rid of this operator.

Clearly, we end up with an expression identical to (3.15), except for an
additional factor of ψmj = ψj(t′). As long as we assume the Hamiltonian to
be even in the fermionic fields, this factor can be commuted to the left in the
expression, so that we end up with

U(tf − t′)ψ̂jU(t′ − t0) =
∫

D(φ, ψ)ψj(t′)eiS+[φ,ψ]/�|φN , ψN 〉〈φ0, ψ̄0|. (3.27)

Proceeding in a precisely analogous manor, we also find the relation

U†(t − t0)ψ̂†
i U†(tf − t) =

∫
D(φ, ψ)ψ̄i(t)eiS−[φ,ψ]/�|φ0, ψ0〉〈φN , ψ̄N |. (3.28)

Inserting (3.27) and (3.28) in the second line of (3.26), we obtain after some
rearrangement

〈ψ̂†
i (t)ψ̂j(t′)〉 =

∫
D(+, −)ψ̄−

i (t)ψ+
j (t′)eiS[φ+,ψ+,φ−,ψ−]/�, (3.29)

where we have introduced the short notation∫
D(+, −) =

∫
D(φ+, ψ+, φ−, ψ−) =

∫
D(φ+, ψ+)

∫
D(φ−, ψ−), (3.30)

as well as the total action S, defined by the expression

i

�
S[φ+, ψ+, φ−, ψ−] =

i

�

(
S+[φ+, ψ+] + S−[φ−, ψ−]

)
+ φ−†

N φ+
N + ψ̄

−
N ψ+

N

+ ln 〈φ+
0 , ψ̄

+
0 |ρ0|φ−

0 , −ψ−
0 〉, (3.31)

where S+ and S− are given respectively by (3.17) and (3.21), and where the
negative sign in front of ψ−

0 comes from the Grassmann anti-commutation
relations.
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3. The Non-equilibrium field integral

Motivated by this result, we make the general definition

〈A1(t1) · · · An(tn)〉 =
∫

D(+, −)A1(t1) · · · An(tn)eiS[φ+,ψ+,φ−,ψ−]/�, (3.32)

which allows us to write (3.29) simply as 〈ψ̂†
i (t)ψ̂j(t′)〉 = 〈ψ̄−

i (t)ψ+
j (t′)〉. (3.32)

defines the general non-equilibrium field integral, also known as the Keldysh
field integral.[2]

As long as t > t′, we can make use of the same procedure as above to write
also the product U(tf − t)ψ̂†

i U(t − t′)ψ̂jU(t′ − t0) from the third line of (3.26)
as a field integral. Combining the resulting expression with (3.20), we obtain
〈ψ̂†

i (t)ψ̂j(t′)〉 = 〈ψ̄+
i (t)ψ+

j (t′)〉. Finally, U†(t − t0)ψ̂†
i U†(t′ − t)ψ̂jU†(tf − t′) from

the fourth line of (3.26) can be written as a field integral in the same manner,
as long as we require t < t′. Combining the resulting expression with (3.15), we
obtain 〈ψ̂†

i (t)ψ̂j(t′)〉 = 〈ψ̄−
i (t)ψ−

j (t′)〉. Summarizing, we have found the following
relations between operator and field integral expectation values:

〈ψ̂†
i (t)ψ̂j(t′)〉 = 〈ψ̄−

i (t)ψ+
j (t′)〉 (3.33)

= 〈ψ̄+
i (t)ψ+

j (t′)〉 t > t′

= 〈ψ̄−
i (t)ψ−

j (t′)〉 t < t′.

The opposite product 〈ψ̂i(t)ψ̂†
j (t′)〉 can be found in a similar fashion, by

simply exchanging the operators ψ̂j and ψ̂†
i in (3.26), renaming the indices, and

then repeating the calculations above. In the end, the results are

〈ψ̂i(t)ψ̂†
j (t′)〉 = 〈ψ−

i (t)ψ̄+
j (t′)〉 (3.34)

= 〈ψ+
i (t)ψ̄+

j (t′)〉 t ≥ t′

= 〈ψ−
i (t)ψ̄−

j (t′)〉 t ≤ t′.

Clearly, the same procedure can also be applied to the bosonic expressions. This
yields the near identical expressions

〈φ†
i (t)φj(t′)〉 = 〈φ−�

i (t)φ+
j (t′)〉 (3.35)

= 〈φ+�
i (t)φ+

j (t′)〉 t > t′

= 〈φ−�
i (t)φ−

j (t′)〉 t < t′

〈φi(t)φ†
j(t′)〉 = 〈φ−

i (t)φ+�
j (t′)〉 (3.36)

= 〈φ+
i (t)φ+�

j (t′)〉 t ≥ t′

= 〈φ−
i (t)φ−�

j (t′)〉 t ≤ t′.

3.2 Transport field integral

3.2.1 Definition of the model

Let us now return to the system described in Section 2.1, where a system S is
connected to a set of leads p. We will assume that the degrees of freedom in S
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Transport field integral

are a bosonic field φ, and fermionic field ψ, and that these are controlled by
a Hamiltonian on the form of (3.13). We also assume that lead p contains a
fermionic field ψp, and a bosonic field φp. Following the discussion of Section
2.2, we take the only purpose of the leads to be to drive S out of equilibrium,
and accordingly choose the lead physics from considerations of simplicity rather
than realism. Thus, we assume the lead Hamiltonians to be quadratic in the
fields, and write the Hamiltonian of lead p as

Ĥp = ψ̂
†
pHF

p ψ̂p + φ̂
†
pHB

p φ̂p, (3.37)

where HF
p and HB

p are matrix representations of the fermionic and bosonic single
particle Hamiltonians respectively.

An other simplification we will make, is to assume the leads to be internally
in equilibrium at t = t0. This can be justified from an assumption that the leads
are not in contact with S before this time. Accordingly, this assumption is more
plausible than the one made in Chapter 2, where we assumed the leads to be
in equilibrium at all times. The density operator ρp(t0) can then be expressed
as[18]

ρp(t0) =
1

Zp
e−βp(Ĥp−μpN̂F

p ), (3.38)

where Tp = 1/kBβp is the temperature, μp the chemical potential of the fermion
field, and N̂F

p = ψ̂
†
pψ̂p is the fermion number operator.

We assume that the interactions between the leads and the system S consists
of simple single particle hopping, so that the interaction terms are also quadratic
in the fields. Thus, we can write the total Hamiltonian as

Ĥ = ĤS +
∑

p

(
Ĥp + φ̂

†
pbpφ̂ + φ̂

†
b†

pφ̂p + ψ̂
†
ptpψ̂ + ψ̂

†
t†
pψ̂p

)
, (3.39)

where ĤS is given by (3.13), Ĥp by (3.37), and bp and tp are matrices describ-
ing single particle hopping between the leads and S, for bosons and fermions
respectively.

On the other hand, the total density operator ρ0 = ρ(t0) will be assumed to
be on the product form

ρ0 = ρS(t0)
∏

p

ρp(t0), (3.40)

where all the factors are assumed to commute. This form can again be justified
from the assumption that the leads are first brought into contact with S at t = t0.
While ρp(t0) have been defined above, we still require an expression for ρS(t0),
the state of S at t = t0. We are generally interested in stationary properties at
times t 
 t0, at which we assume S to have reached a steady state ρS(t) which
is independent of the initial state. Thus, we can choose ρS(t0) arbitrarily, and
we select it for purposes of simplicity as

ρS(t0) = |0〉〈0| = P 0
S , (3.41)
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3. The Non-equilibrium field integral

i.e. the ground state projection operator acting on S. Accordingly, the full state
ρ0 of (3.40) becomes

ρ0 =
1
Z

exp

(∑
p

−βp(Ĥp − μpN̂F
p )

)
P 0

S . (3.42)

3.2.2 Expression as a field integral

To express the model defined above as a field integral, we must calculate the total
action S defined in (3.31). To begin, we collect the component fields ψ, ψp, and
so on in total field vectors ψ̃, ¯̃ψ and φ̃. That is, we define ψ̃ = [ψ, · · · ψp · · · ]
and similarly for the other fields. The total action of the system is then given
by (3.31), with ψ substituted for ψ̃ and φ substituted for φ̃.

The evaluation of this action is a straight forward task, except for the bracket
involving ρ0. By (3.42) we have

ln 〈φ̃+
0 , ¯̃ψ+

0 |ρ0|φ̃−
0 , −ψ̃

−
0 〉 =

∑
p

ln 〈φ+
p0, ψ̄

+
p0|e−βp(Ĥp−μpN̂F

p )|φ−
p0, −ψ−

p0〉 (3.43)

+ ln 〈φ+
0 , ψ̄

+
0 |P 0

S |φ−
0 , −ψ−

0 〉 − ln Z.

From the definition (3.11) of the coherent states, it is easily realized that
〈φ+

0 , ψ̄
+
0 |P 0

S |φ−
0 , −ψ−

0 〉 = 1. To find the remaining terms we will make use
of commutation relations of exponential operators. By making use of the
fundamental commutation relations of the fermionic and bosonic fields, [φi, φ†

j ] =
φiφ

†
j − φ†

jφi = δij and {ψi, ψ†
j } = ψiψ

†
j + ψ†

j ψi = δij , together with a Taylor
expansion of the exponential, one can show that for any matrix A

eφ†φ̂eφ̂
†
Aφ̂ = eφ̂

†
Aφ̂eφ†eAφ̂, and (3.44)

eψ†ψ̂eψ̂
†
Aψ̂ = eψ̂

†
Aψ̂eψ†eAψ̂. (3.45)

These expressions can be used together with the definition of the coherent
states (3.11) to rearrange the terms of (3.43) in such a way that the relation
ψ̂j |φ, ψ〉 = ψj |φ, ψ〉 can be used to remove the operators from the expressions.
The results is

ln 〈φ+
p0, ψ̄

+
p0|e−βp(Ĥp−μpN̂F

p )|φ−
p0, −ψ−

p0〉 = φ+†
p0 e−βpHB

p φ−
p0 − ψ̄

+
p0e−βp(HF

p −μp)ψ−
p0.

(3.46)

Accordingly, making use of (3.43), (3.31) and (3.39), we can write the total
action S as

S[φ̃+, ψ̃+, φ̃−, ψ̃−] = SS +
∑

p

(
SB

p + SF
p

)
, (3.47)
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where

i

�
SS [φ+, ψ+, φ−, ψ−] =

i

�

(
S+[φ+, ψ+] + S−[φ−, ψ−]

)
+ φ−†

N φ+
N + ψ̄

−
N ψ+

N ,

(3.48)

with S+ and S− given respectively by (3.17) and (3.21), and where

i

�
SB

p =
i

�

(
SB+

p + SB−
p

)
+ φ−†

pN φ+
pN + φ+†

p0 e−βpHB
p φ−

p0 − ln ZB
p , and (3.49)

i

�
SF

p =
i

�

(
SF +

p + SF −
p

)
+ ψ̄

−
pN φ+

pN − ψ̄
+
p0e−βp(HF

p −μp)ψ−
p0 − ln ZF

p , (3.50)

with

i

�
SB+

p = − |φ+
p0|2 +

i

�

N−1∑
n=0

{
�iφ+†

pn+1(φ+
pn+1 − φ+

pn) − φ+†
pn+1HB

p φ+
pnΔt

}
(3.51)

− i

�

N−1∑
n=0

{
φ+†

pn+1bpφ+
n + φ+†

n+1b†
pφ+

pn

}
Δt,

i

�
SF +

p = − ψ̄
+
p0ψ+

p0 +
i

�

N−1∑
n=0

{
�iψ̄

+
pn+1(ψ+

pn+1 − ψ+
pn) − ψ̄

+
pn+1HF

p ψ+
pnΔt

}
(3.52)

− i

�

N−1∑
n=0

{
ψ̄

+
pn+1tpψ+

n + ψ̄
+
n+1t†

pψ+
pn

}
Δt,

i

�
SB−

p = − |φ−
pN |2 − i

�

N−1∑
n=0

{
�iφ−†

pn (φ−
pn+1 − φ−

pn) − φ−†
pn HB

p φ−
pn+1Δt

}
(3.53)

+
i

�

N−1∑
n=0

{
φ−†

pn bpφ−
n+1 + φ−†

n b†
pφ−

pn+1

}
Δt, and

i

�
SF −

p = − ψ̄
−
pN ψ−

pN − i

�

N−1∑
n=0

{
�iψ̄

−
pn(ψ−

pn+1 − ψ−
pn) − ψ̄

−
pnHF

p ψ−
pn+1Δt

}
(3.54)

+
i

�

N−1∑
n=0

{
ψ̄

−
pntpψ−

n+1 + ψ̄
−
n t†

pψ−
pn+1

}
Δt.

3.3 Integration over the leads

Combining (3.32) and (3.47), and making use of the facts that SS contains no
terms from the leads, and SB

p and SF
p no terms from the other leads q, we can
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3. The Non-equilibrium field integral

reexpress a general expectation value 〈A[φ, ψ]〉 of fields in S as

〈A〉 =
∫

D(+, −)A[φ, ψ]eiSS/�
∏

p

∫
D(φ+

p , φ−
p )eiSB

p /�

∫
D(ψ+

p , ψ−
p )eiSF

p /�,

(3.55)

so that the lead sections of the integral can be performed separately. By (3.49)-
(3.54), the lead actions SB

p and SF
p are quadratic in the fields, so accordingly,

these integrals can be performed using Gaussian integration.
Introducing a total field vector φp = [φ+

p0 · · · φ+
pN , φ−

p0 · · · φ−
pN ] and similar

for the other fields, the lead actions can be expressed as

SB
p = φ†

pApφp + φ†
pBpφ + φ†B†

pφp + �i ln ZB
p , and (3.56)

SF
p = ψ̄pCpψp + ψ̄pTpψ + ψ̄T †

p ψp + �i ln ZF
p , (3.57)

where Ap, Bp, Cp and Tp are appropriate matrices. Making use of Gaussian
integration rules found for instance in Altland and Simons[2], we find∫

D(φ+
p , φ−

p )eiSB
p /� =

�i

ZB
p

det A−1
p e−iφ†B†

pA−1
p Bpφ/�, and (3.58)∫

D(ψ+
p , ψ−

p )eiSF
p /� =

1
�iZF

p

det Cp e−iψ̄T †
p C−1

p Tpψ/�. (3.59)

Further, the prefactors of these expressions must in fact equal 1. To see this, con-
sider isolated lead systems, respectively with total Hamiltonians Ĥ = φ̂

†
pHB

p φ̂p

and Ĥ = ψ̂
†
pHF

p ψ̂p. It should be clear that the actions of these systems are given
respectively by (3.49) and (3.50), but excluding the terms involving the matrices
bp and tp. Thus, these actions can be written S = φ†

pApφp and S = ψ̄pCpψp

respectively. Applying (3.32) to these systems, and again making use of Gaussian
integration rules, we find

1 = 〈1〉 =
�i

ZB
p

det A−1
p =

1
�iZF

p

det Cp. (3.60)

Thus, making use of (3.58) and (3.59), we can express (3.55) as

〈A〉 =
∫

D(+, −)A[φ, ψ]eiSeff [φ,ψ]/�, (3.61)

where the effective action Seff is given by

Seff [φ, ψ] = SS +
∑

p

(
SB,eff

p + SF,eff
p

)
, with (3.62)

SB,eff
p = −φ†B†

pDpBpφ, and (3.63)

SF,eff
p = −ψ̄T †

p GpTpψ. (3.64)

where we have defined Dp = A−1
p and Gp = C−1

p .

32



Integration over the leads

3.3.1 Green’s functions

Following Altland and Simons[2], expressions for Dp and Gp could be obtained
by direct inversion of the matrices Ap and Cp. However, as we will see Dp and
Gp are related to certain operator expectation values, which are in fact easier to
calculate. Consider again the isolated lead systems with actions φ†

pApφp and
ψ̄pCpψp. Once again making use of (3.32) and laws of Gaussian integrals, we
have

〈φpφ†
p〉 =

1
ZB

p

∫∫ dφ†
pdφp

π2Nd
φpφ†

pe−φ†
pApφp/�i = i�A−1

p = i�Dp, and (3.65)

〈ψpψ̄p〉 =
1

ZF
p

∫∫
dψ̄pdψpψpψ̄pe−ψ̄pCpψp/�i = i�C−1

p = i�Gp. (3.66)

Accordingly, the matrices Dp and Gp describe correlations between the
various fields in the leads. In the literature, these objects are often referred to as
Green’s functions[2, 15, 7]. When dealing with more general systems, where the
action need not be quadratic, we define the Green’s functions directly through
the relations i�D = 〈φφ†〉 and i�G = 〈ψψ̄〉. It is convenient to decompose these
matrices into four sectors in the following manner:

φ†Dφ =
[
φ+† φ−†] [Dt D<

D> Dt̄

] [
φ+

φ−

]
, and (3.67)

ψ̄Gψ =
[
ψ̄

+
ψ̄

−] [Gt G<

G> Gt̄

] [
ψ+

ψ−

]
, (3.68)

where φ+ = [φ+
0 · · · φ+

N ], φ− = [φ−
0 · · · φ−

N ], and similar for the fermionic fields.
Writing out the definitions in terms of the component matrices, we have

i�Dt(t, t′) = i�Dt
nm = 〈φ+(t)φ+†(t′)〉, (3.69)

i�D<(t, t′) = i�D<
nm = 〈φ+(t)φ−†(t′)〉, (3.70)

i�D>(t, t′) = i�D>
nm = 〈φ−(t)φ+†(t′)〉, (3.71)

i�Dt̄(t, t′) = i�Dt̄
nm = 〈φ−(t)φ−†(t′)〉, (3.72)

where t = nΔt and t′ = mΔt. Similarly, for the fermionic fields we have

i�Gt(t, t′) = i�Gt
nm = 〈ψ+(t)ψ̄+(t′)〉, (3.73)

i�G<(t, t′) = i�G<
nm = 〈ψ+(t)ψ̄−(t′)〉, (3.74)

i�G>(t, t′) = i�G>
nm = 〈ψ−(t)ψ̄+(t′)〉, (3.75)

i�Gt̄(t, t′) = i�Gt̄
nm = 〈ψ−(t)ψ̄−(t′)〉. (3.76)

Making use of (3.35) and (3.36), we can reexpress the bosonic Green’s
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3. The Non-equilibrium field integral

functions in terms of operator expectation values as

D>
ij(t, t′) = −i〈φ̂i(t)φ̂†

j(t′)〉/�, (3.77)

D<
ij(t, t′) = −i〈φ̂†

j(t′)φ̂i(t)〉/�, (3.78)

Dt(t, t′) = D>(t, t′)θ(t − t′) + D<(t, t′)θ(t′ − t − Δt), and (3.79)

Dt̄(t, t′) = D<(t, t′)θ(t − t′ − Δt) + D>(t, t′)θ(t′ − t), (3.80)

where θ(t) is a step function such that θ(t) = 1 for t ≥ 0, and θ(t) = 0 for t < 0.
For the corresponding fermionic Green’s functions, we find using (3.33) and
(3.34)

G>
ij(t, t′) = −i〈ψ̂i(t)ψ̂†

j (t′)〉/�, (3.81)

G<
ij(t, t′) = i〈ψ̂†

j (t′)ψ̂i(t)〉/�, (3.82)

Gt(t, t′) = G>(t, t′)θ(t − t′) + G<(t, t′)θ(t′ − t − Δt), and (3.83)

Gt̄(t, t′) = G<(t, t′)θ(t − t′ − Δt) + G>(t, t′)θ(t′ − t), (3.84)

where the changes of sign are due to anti-commutation of the Grassmann
numbers.

There is a connection between the superscript notation of the Green’s func-
tions and the relations expressed in (3.77)-(3.84). For instance, G< and D< are
equal to Gt and Dt precisely when t < t′, while G> and D> are equal to Gt and
Dt when t > t′. Further, examining (3.79) and (3.83), we see that the nonzero
term is always the term where the operator with the largest time argument is
applied last. Therefore, Gt and Dt are referred to as time ordered Green’s func-
tions. Similarly, examining (3.80) and (3.84), we see that see that the nonzero
term is always the term where the operator with the largest time argument is
applied first. Gt̄ and Dt̄ are therefore referred to as anti-time ordered Green’s
functions[2, 15].

Expressions for the Green’s functions of non-interacting systems like our
isolated leads, are easiest to obtain by introducing a diagonal basis of the single
particle Hamiltonian. Accordingly, considering some arbitrary non-interacting
system with bosonic single particle Hamiltonian HB , and fermionic single particle
Hamiltonian HF , we introduce a basis of eigenvectors ui and vi of HB and HF

respectively, and write these matrices as

HB =
∑

i

EB
i uiu

†
i , and (3.85)

HF =
∑

i

EF
i viv

†
i . (3.86)

Using these bases, we can express both the propagator U(t − t′) and ρ0 in
diagonal form, after which (3.77), (3.78), (3.81) and (3.82) are easy to evaluate.
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Integration over the leads

The details can be found for instance in the book by Jacoboni[15], who derives

i�D<(t, t′) =
∑

i

n(EB
i )eiEB

i (t′−t)/�uiu
†
i , and (3.87)

i�D>(t, t′) =
∑

i

[
1 + n(EB

i )
]

eiEB
i (t′−t)/�uiu

†
i , where (3.88)

n(E) =
1

eβE − 1
, (3.89)

and similarly for the fermionic expressions,

i�G<(t, t′) = −
∑

i

f(EF
i )eiEF

i (t′−t)/�viv
†
i , and (3.90)

i�G>(t, t′) =
∑

i

[
1 − f(EF

i )
]

eiEF
i (t′−t)/�viv

†
i , where (3.91)

f(E) =
1

1 + eβ(E−μ) . (3.92)

Having calculated D>, D<, G> and G< using these expressions, the time ordered
and anti-time ordered Green’s functions are easily obtained from (3.79), (3.80),
(3.83) and (3.84).

3.3.2 Effective action

In (3.56) and (3.57), the matrices Tp and Bp describe the coupling of the lead
fields φp and ψp to the system fields φ and ψ. Thus, examining (3.48)-(3.54)
we see that Tp and Bp must satisfy

φ†
pBpφ = −

N−1∑
n=0

{
φ+†

pn+1bpφ+
n − φ−†

pn bpφ−
n+1

}
Δt, and (3.93)

ψ̄pTpψ = −
N−1∑
n=0

{
ψ̄

+
pn+1tpψ+

n − ψ̄
−
pntpψ−

n+1

}
Δt, (3.94)

for any appropriately sized vectors φ†
p, φ, ψ̄p and ψ, with φ =

[φ+
1 · · · φ+

N , φ−
1 · · · φ−

N ] and so on. These expressions, together with the block
decompositions (3.67) and (3.68), can be used to rewrite (3.63) and (3.64) as

SB,eff
p = −

N−1∑
n=0

N−1∑
m=0

{
φ+†

n b†
pDt

pn+1,m+1bpφ+
m − φ+†

n b†
pD<

pn+1,mbpφ−
m+1 (3.95)

− φ−†
n+1b†

pD>
pn,m+1bpφ+

m + φ−†
n+1b†

pDt̄
pn,mbpφ−

m+1

}
Δt2

and,

SF,eff
p = −

N−1∑
n=0

N−1∑
m=0

{
ψ̄

+
n t†

pGt
pn+1,m+1tpψ+

m − ψ̄
+
n t†

pG<
pn+1,mtpψ−

m+1 (3.96)

− ψ̄
−
n+1t†

pG>
pn,m+1tpψ+

m + ψ̄
−
n+1t†

pGt̄
pn,mtpψ−

m+1

}
Δt2.
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3. The Non-equilibrium field integral

We first consider the terms ψ̄
+
n t†

pG<
pn+1,mtpψ−

m+1 from (3.96). By (3.90) we have

�it†
pG<

pnmtp = �it†
pG<

p (t, t′)tp = −
∑

i

fp(EF
i )eiEF

i (t′−t)/�t†
pviv

†
i tp (3.97)

= −
∫

dEfp(E)eiE(t′−t)/�
∑

i

t†
pviv

†
i tp δ(E − EF

i ).

Since the leads are supposed to be macroscopic objects, we now take the limit
where the lead size Lp → ∞. The distance between the eigenvalues EF

i will then
approach zero, so that the delta functions in the expression will be distributed
with infinite density. In the limit we then obtain a continuous function which
we denote

ΓF
p (E) = 2π lim

Lp→∞

∑
i

t†
pviv

†
i tp δ(E − EF

i ). (3.98)

Thus, in the limit Lp → ∞ we can write (3.97) as

t†
pG<

pnmtp =
i

h

∫
dEfp(E)ΓF

p (E)eiE(m−n)Δt/�. (3.99)

Performing the sum over n and m, we find
N−1∑
n=0

N−1∑
m=0

ψ̄
+
n t†

pG<
pn+1,mtpψ−

m+1 =
i

hΔt2

∫
dEfp(E)ψ̄+(E)ΓF

p (E)ψ−(E),

(3.100)

where we have defined

ψ+(E) =
N−1∑
n=0

Δtψ+
n eiE(n+1)Δt/�, and (3.101)

ψ−(E) =
N−1∑
n=0

Δtψ−
n+1eiEnΔt/�. (3.102)

In a similar fashion, using (3.91), we obtain

t†
pG>

pnmtp =
i

h

∫
dE[fp(E) − 1]ΓF

p (E)eiE(m−n)Δt/�, (3.103)

and
N−1∑
n=0

N−1∑
m=0

ψ̄
−
n+1t†

pG>
pn,m+1tpψ+

m =
i

hΔt2

∫
dE [fp(E) − 1] ψ̄

−(E)ΓF
p (E)ψ+(E).

(3.104)

For the summation of the terms involving Gt
p and Gt̄

p, it is convenient to make
some additional definitions. We define the Fourier transform

ΓF
p (t) =

∫
dE ΓF

p (E)e−iEt/�, (3.105)
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and the two important functions

Σr
p(t) = −iθ̃(t)ΓF

p (t) and, (3.106)

Σa
p(t) = iθ̃(−t)ΓF

p (t), (3.107)

where the step function θ̃(t) differs from the previously defined function θ(t)
only in that θ̃(0) = 1

2 . We also define the inverse Fourier transforms

Σr(E) =
1

2π

∫
dE Σr(t)eiEt/� and (3.108)

Σa(E) =
1

2π

∫
dE Σa(t)eiEt/�. (3.109)

One can show that in fact

Σr
p(E) = lim

η→0+

1
2π

∫
dE′ ΓF

p (E′)
E − E′ + iη

, while (3.110)

Σa
p(E) = Σr

p(E)† = lim
η→0+

1
2π

∫
dE′ ΓF

p (E′)
E − E′ − iη

. (3.111)

Now, using (3.83), (3.99), (3.103) and (3.106), we find

t†
pGt

pnmtp = t†
pG<

pnmtp + t†
p

(
G>

pnm − G<
pnm

)
tpθ(n − m) (3.112)

=
i

h

∫
dEfp(E)ΓF

p (E)eiE(m−n)Δt/� +
1
h

Σr
p(t − t′) − i

2h
δnmt†

ptp.

Since the last term in this expression is proportional to δnm, it will upon
insertion in (3.96) result in an expression of order Δt2 · N ∼ 1/N . Thus, since
the approximation (3.9) already includes an error of order 1/N , we are free
to remove this term without changing the order of the approximation. Then
making use of (3.108), (3.101) and (3.102), we obtain

N−1∑
n=0

N−1∑
m=0

ψ̄
+
n t†

pGt
pn+1,m+1tpψ+

m (3.113)

=
1

hΔt2

∫
dE ψ̄

+(E)
[
ifp(E)ΓF

p (E) + Σr
p(E)

]
ψ+(E).

In a completely analogous manner, starting from (3.84), we find
N−1∑
n=0

N−1∑
m=0

ψ̄
−
n+1t†

pGt̄
pnmtpψ−

m+1 (3.114)

=
1

hΔt2

∫
dE ψ̄

−(E)
[
ifp(E)ΓF

p (E) − Σa
p(E)

]
ψ−(E).

Then inserting (3.100), (3.104), (3.113) and (3.114) in (3.96), we find that the
fermionic component of the effective action can be expressed as
i

�
SF,eff

p =
1

h�

∫
dE
{

fp(E) [ψ̄+(E) − ψ̄
−(E)]ΓF

p (E)[ψ+(E) − ψ−(E)] (3.115)

+ψ̄
−(E)ΓF

p (E)ψ+(E) − iψ̄
+(E)Σr

p(E)ψ+(E) + iψ̄
−(E)Σa

p(E)ψ−(E)
}

.
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3. The Non-equilibrium field integral

Repeating the procedure above with the corresponding bosonic expressions,
we also find that the bosonic component of the effective action (3.95) can be
expressed as

i

�
SB,eff

p =
1

h�

∫
dE
{

− np(E) [φ+(E) − φ−(E)]†ΓB
p (E)[φ+(E) − φ−(E)]

+ φ−(E)†ΓB
p (E)φ+(E) − iφ+(E)†Θr

p(E)φ+(E) (3.116)

+ iφ−(E)†Θa
p(E)φ−(E)

}
,

where we have defined

ΓB
p (E) = lim

Lp→∞
2π
∑

i

b†
puiu

†
i bp δ(E − EB

i ), (3.117)

ΓB
p (t) =

∫
dE ΓB

p (E)e−iEt/�, (3.118)

Θr
p(t) = −iθ̃(t)ΓB

p (t), (3.119)

Θa
p(t) = iθ̃(−t)ΓB

p (t), (3.120)

Θr(E) =
1

2π

∫
dE Θr(t)eiEt/�, (3.121)

Θa(E) =
1

2π

∫
dE Θa(t)eiEt/�, (3.122)

φ+(E) =
N−1∑
n=0

Δtφ+
n eiE(n+1)Δt/�, and (3.123)

φ−(E) =
N−1∑
n=0

Δtφ−
n+1eiEnΔt/�. (3.124)

3.4 Transport expectation values

3.4.1 Operator expressions

Let Φp be the flux of fermions exiting the system S at lead p, and let Np be the
number of fermions in p. Then since Np can change only by fermions entering
or exiting S, we must have Ṅp = Φp. Since the lead p is assumed macroscopic,
we can identify Np = 〈Np〉, and using (3.5) we get

Φp =
dNp

dt
=

d
dt

Tr ρ0N̂F
p (t) (3.125)

Now using (3.2), we have for any observable A

d
dt

Â(t) =
i

�
U†(t − t0)[Ĥ, Â]U(t − t0). (3.126)

Applying this to (3.125) we get

Φp(t) = iTr ρ0U†(t − t0)[Ĥ, N̂F
p ]U(t − t0)/�. (3.127)
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Clearly N̂F
p commutes with the bosonic degrees of freedom, and since N̂F

p

contains only fields from lead p, it also commutes with ĤS , as well as the terms
from the other leads. Thus, by (3.39) we have

[Ĥ, N̂F
p ] = [ψ̂

†
pHF

p ψ̂p, N̂F
p ] + [ψ̂

†
ptpψ̂, N̂F

p ] + [ψ̂
†
t†
pψ̂p, N̂F

p ]. (3.128)

Making use of some operator algebra, starting with the fundamental commutation
relation {ψi, ψ†

j } = ψiψ
†
j + ψ†

j ψi = δij and the definiton N̂F
p = ψ̂

†
pψ̂p, we find

that

[ψ̂
†
pHF

p ψ̂p, N̂F
p ] = 0, while, (3.129)

[ψ̂
†
ptpψ̂, N̂F

p ] = −ψ̂
†
ptpψ̂. (3.130)

Taking the adjoint of the latter, we also find [ψ̂
†
t†
pψ̂p, N̂F

p ] = −[N̂F
p , ψ̂

†
t†
pψ̂p] =

ψ̂
†
t†
pψ̂p. Thus, (3.128) becomes

[Ĥ, N̂F
p ] = ψ̂

†
t†
pψ̂p − ψ̂

†
ptpψ̂, (3.131)

so that (3.127) becomes

Φp(t) = − i

�
Tr ρ0

(
ψ̂

†
p(t)tpψ̂(t) − ψ̂

†
(t)t†

pψ̂p(t)
)

=
〈

Φ̂p(t)
〉

, (3.132)

where clearly Φ̂p(t) = −i(ψ̂
†
p(t)tpψ̂(t) − ψ̂

†
(t)t†

pψ̂p(t))/�.

Now, let EF
p = ψ̂

†
pHF

p ψ̂p be the total energy associated with fermions in lead
p, and let ΦEF

p be the corresponding energy flux entering p from S. Then by an
argument similar to the one preceding (3.125), we have

ΦEF
p =

dEF
p

dt
=

i

�
Tr ρ0U†(t − t0)[Ĥ, ψ̂

†
pHF

p ψ̂p]U(t − t0). (3.133)

Again, the term ψ̂
†
pHF

p ψ̂p clearly commutes both with bosonic degrees of freedom,
as well as with terms that are exclusive to S or to the other leads. Since it also
obviously commutes with itself, we obtain by again making use of (3.39) and
some operator algebra,

[Ĥ, ψ̂
†
pHF

p ψ̂p] = [ψ̂
†
ptpψ̂ + ψ̂

†
t†
pψ̂p, ψ̂

†
pHF

p ψ̂p] = −ψ̂
†
pHF

p tpψ̂ + ψ̂
†
t†
pHF

p ψ̂p.

(3.134)

Thus, (3.133) becomes

ΦEF
p = − i

�
Tr ρ0

(
ψ̂

†
p(t)HF

p tpψ̂(t) − ψ̂
†
(t)t†

pHF
p ψ̂p(t)

)
=
〈

Φ̂EF
p (t)

〉
, (3.135)

with Φ̂EF
p (t) = −i(ψ̂

†
p(t)HF

p tpψ̂(t) − ψ̂
†
(t)t†

pHF
p ψ̂p(t))/�.
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Letting EB
p = φ̂

†
pHB

p φ̂p be the energy associated with bosons in p, and ΦEB
p

the corresponding energy flux, it is clear that ΦEB
p can be obtained by simply

repeating the steps above. The result is

ΦEB
p =

dEB
p

dt
=

i

�
Tr ρ0U†(t − t0)[Ĥ, φ̂

†
pHB

p φ̂p]U(t − t0) (3.136)

= − i

�
Tr ρ0

(
φ̂

†
p(t)HB

p bpφ̂(t) − φ̂
†
(t)b†

pHB
p φ̂p(t)

)
=
〈

Φ̂EB
p (t)

〉
,

with Φ̂EB
p (t) = −i(φ̂

†
p(t)HB

p bpφ̂(t) − φ̂
†
(t)b†

pHB
p φ̂p(t))/�. Finally, letting Ep =

EF
p + EB

p be the total energy of lead p, and ΦE
p the total energy flux entering p

from S, we have

ΦE
p =

dEp

dt
= ΦEF

p + ΦEB
p =

〈
Φ̂E

p (t)
〉

, (3.137)

with Φ̂E
p (t) = Φ̂EF

p (t) + Φ̂EB
p (t).

3.4.2 Field integral expressions

Using the relationship (3.33) between operator and field integral expectation
values, we can reexpress (3.132) as

Φp(t) = − i

�

〈
ψ̄

−
p (t)tpψ+(t) − ψ̄

−(t)t†
pψ+

p (t)
〉

. (3.138)

In order to express this in terms of fields confined within S alone, we will make
use of a commonly applied trick where the expectation value is reexpressed as a
derivative. Thus, we define the modified action

S(x) = S + x(ψ̄−(t)t†
pψ+

p (t) − ψ̄
−
p (t)tpψ+(t)). (3.139)

Making use of (3.32), it is easily verified that we then have

Φp(t) =
d

dx

∫
D(+, −)

∏
p

∫
D(φ+

p , φ−
p )
∫

D(ψ+
p , ψ−

p )eiS(x)/�, (3.140)

where we are assuming evaluation at x = 0. The modification (3.139) changes
the matrix T of (3.94) and its adjoint T † respectively to Tp(x) and T̃ †

p (x), where

ψ̄pTp(x)ψ = ψ̄pTpψ − xψ̄
−
p (t)tpψ+(t), and (3.141)

ψ̄T̃ †
p (x)ψp = ψ̄T †

p ψp + xψ̄
−(t)t†

pψ+
p (t). (3.142)

Repeating the derivation of (3.96) with Tp(x) and T̃ †
p (x) substituted for T and

T †, we obtain the modified effective action

Seff(x) = Seff + x

N−1∑
n=0

{
ψ̄

−
mt†

pGt
pm,n+1tpψ+

n − ψ̄
−
mt†

pG<
pmntpψ−

n+1− (3.143)

ψ̄
+
n t†

pG<
pn+1,mtpψ+

m + ψ̄
−
n+1t†

pGt̄
pnmtpψ+

m

}
Δt + O(x2),
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where mΔt = t. Thus, by (3.140) and (3.61) we have

Φp(t) =
d

dx

∫
D(+, −)eiSeff(x)/� (3.144)

=
i

�

N−1∑
n=0

〈
ψ̄

−
mt†

pGt
pm,n+1tpψ+

n − ψ̄
−
mt†

pG<
pmntpψ−

n+1

− ψ̄
+
n t†

pG<
pn+1,mtpψ+

m + ψ̄
−
n+1t†

pGt̄
pnmtpψ+

m

〉
Δt.

Now we make use of the assumption that the system will approach steady state
conditions over a time scale which is short compared to tf − t0. Φp(t) will then
essentially be independent of t for all times except very close to t0. Accordingly,
we have

Φp ≈ 1
N

N∑
m=1

Φp(t) =
i

�

1
N

N∑
m=1

N−1∑
n=0

〈
ψ̄

−
mt†

pGt
pm,n+1tpψ+

n − ψ̄
−
mt†

pG<
pmntpψ−

n+1

− ψ̄
+
n t†

pG<
pn+1,mtpψ+

m + ψ̄
−
n+1t†

pGt̄
pnmtpψ+

m

〉
Δt. (3.145)

Adding (3.83) and (3.84) we find the relation

Gt
mn + Gt̄

mn = G>
mn + G<

mn + δmn(G>
mn − G<

mn). (3.146)

Combining this with the definition i�G = 〈ψψ̄〉 we also obtain〈
ψ̄

−
mt†

pG<
pmntpψ−

n+1 + ψ̄
+
mt†

pG<
pmntpψ+

n+1

〉
(3.147)

=
〈

ψ̄
−
mt†

pG<
pmntpψ+

n+1 + ψ̄
+
mt†

pG<
pmntpψ−

n+1

− δnm(ψ̄+
mt†

pG<
pmntpψ−

n+1 − ψ̄
−
mt†

pG<
pmntpψ+

n+1)
〉

Making use of (3.146) applied to the lead Green’s functions Gp, (3.147), (3.99)
and (3.103), we can after considerable algebra rewrite (3.145) as

Φp = − 1
h�N

N−1∑
m=0

N−1∑
n=0

∫
dE
〈

ψ̄
−
m+1[2fp(E) − 1]ΓF

p (E)eiE(n−m)Δt/�ψ+
n

− ψ̄
−
m+1fp(E)ΓF

p (E)eiE(n−m−2)Δt/�ψ+
n (3.148)

− ψ̄
+
mfp(E)ΓF

p (E)eiE(n−m)Δt/�ψ−
n+1

〉
Δt − 1

h�N

N−1∑
n=0

XnΔt,

where Xn is an expression of order zero in N . Thus, the entire last term is of
order 1/N · N · Δt ∼ 1/N , and can accordingly be dropped.

Further, as long as the energy range where ΓF
p (E) is nonzero is bounded,

replacing the exponentials eiE(n−m)Δt/� and eiE(n−m−2)Δt/� with unity will also
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3. The Non-equilibrium field integral

only introduce an error of order 1/N . Doing this and making use of (3.101) and
(3.102), we obtain after some rearrangement the symmetrical expression

Φp =
∫

2πdE

h2(tf − t0)

〈
(1 − fp(E)) ψ̄

−(E)ΓF
p (E)ψ+(E) (3.149)

+ fp(E)ψ̄+(E)ΓF
p (E)ψ−(E)

〉
.

Field integral expressions for energy flux can be found in the same manner.
Comparing (3.135) to (3.132), we see that the fermionic energy flux is obtained
by simply replacing tp and t†

p in (3.139) respectively with HF
p tp and t†

pHF
p . Upon

making use of (3.90), (3.91) and (3.98) to rewrite the effective action as an
integral over energy, the additional factor of HF

p simply becomes a factor of E.
Thus, the fermionic energy flux can be obtained from (3.149) simply by including
this additional factor of E. Accordingly, we have

ΦEF
p =

∫
2πdE E

h2(tf − t0)

〈
(1 − fp(E)) ψ̄

−(E)ΓF
p (E)ψ+(E) (3.150)

+ fp(E)ψ̄+(E)ΓF
p (E)ψ−(E)

〉
.

The bosonic energy flux is obtained in a similar manor. Repeating the steps
above with the corresponding bosonic expressions, we obtain

ΦEB
p =

∫
2πdE E

h2(tf − t0)

〈
(np(E) + 1) φ−(E)†ΓB

p (E)φ+(E) (3.151)

− np(E)φ+(E)†ΓB
p (E)φ−(E)

〉
.

3.4.3 Current and heat flux

In the most typical solid state applications, the model can be expressed in terms
of two different types of particles: electrons which are fermions and have charge
−e, with e the elementary charge, and phonons which are bosons and have charge
zero. Thus, the electrical currents at the leads are given simply by Ip = −eΦp,
or by (3.149),

Ip = − e

∫
2πdE

h2(tf − t0)

〈
(1 − fp(E)) ψ̄

−(E)ΓF
p (E)ψ+(E) (3.152)

+ fp(E)ψ̄+(E)ΓF
p (E)ψ−(E)

〉
.

To find an expression for the heat flux qp through lead p, we make use of the
following considerations: Since we are assuming stationary conditions except very
close to t0, there will at t = tf have passed a total energy of ΔEp = ΦE

p (tf − t0)
into lead p. This energy can be decomposed as ΔEp = Q + W , where Q is
the transferred heat, and W is electrical work having been done on that lead.
If we imagine that the contact between the leads and S is removed at t = tf ,
then the lead will reequilibrate after this time. Since the lead size Lp → ∞,
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the particle and energy content of the lead has only changed by an arbitrarily
small fraction, and accordingly it must reequilibrate to the same state it was in
before t = t0. Thus, the chemical potential associated with the lead is still μp,
so that after equilibration the change in electrical energy can be expressed as
ΔEel = W = μpΔNF

p = μpΦp(t0 − tf ).
Thus, we have ΔEp = ΦE

p (tf − t0) = Q + μpΦp(t0 − tf ), and accordingly
the stationary heat flux qp = Q/(tf − t0) can be expressed as qp = ΦE

p − μpΦp.
Using (3.137), (3.150), (3.151) and (3.149) we thus obtain

qp =
∫

2πdE E

h2(tf − t0)

〈
(np(E) + 1) φ−(E)†ΓB

p (E)φ+(E) (3.153)

− np(E)φ+(E)†ΓB
p (E)φ−(E)

〉
+
∫

dE (E − μ)
h�(tf − t0)

〈
(1 − fp(E)) ψ̄

−(E)ΓF
p (E)ψ+(E)

+ fp(E)ψ̄+(E)ΓF
p (E)ψ−(E)

〉
.
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Chapter 4

The Linear limit and Kubo relations

(3.152) and (3.153) of the previous chapter gives expression for the currents and
heat currents of a transport system under very general conditions. These currents
are driven by differences between the temperatures and chemical potentials of
the leads. In this chapter we will be concerned with the limit where these
differences are small, so that the currents can be expressed in terms of first order
approximations. In Section 4.1 we find such expressions by directly differentiating
the general expressions (3.152) and (3.153). Then, in Section 4.2 we will discuss
a particularly elegant set of expressions, known as the Kubo relations, which
will be derived using the operator formalism. Translation into field integral
expressions is considered in Section 4.3.

4.1 Direct linear limit of the field integral

4.1.1 Conductance

As discussed in Section 2.1.2, we can in the linear transport regime express the
lead currents as

Iq =
∑

p

GqpVpq =
∑

p

Gqp(Vp − Vq) =
∑

p

G̃qpΔVp, (4.1)

where ΔVp = Vp − V with V the equilibrium potential, and where we have
defined

G̃qp = Gqp − δqp

∑
r

Gqr. (4.2)

It is clear from (4.1) that we have

G̃qp =
∂Iq

∂Vp
= −e

∂Iq

∂μp
. (4.3)

Thus, making use of (3.152) and (3.61), we find that for q 
= p

G̃qp = e2
∫

2πdE

h2(tf − t0)

〈
Xq(E)

i

�

∂Seff

∂μp

〉
. (4.4)

where

Xq(E) = (1 − fq(E)) ψ̄
−(E)ΓF

q (E)ψ+(E) + fq(E)ψ̄+(E)ΓF
q (E)ψ−(E). (4.5)
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4. The Linear limit and Kubo relations

Combining (3.62) and (3.115) we see that

i

�

∂Seff

∂μp
=

1
h�

∫
dE Yp(E) +

i

�

∂SF,eff
p

∂Hp

∂Hp

∂μp
, (4.6)

where

Yp(E) = Th(E) [ψ̄+(E) − ψ̄
−(E)]ΓF

p (E)[ψ+(E) − ψ−(E)], (4.7)

with Th(E) given by (2.18), and where we are allowing for the possibility that the
lead Hamiltonian depends on the chemical potential. However, upon inserting
(4.6) in (4.4), and making use of (3.61) again, we see that

e2
∫

2πdE

h2(tf − t0)

〈
Xq(E)

i

�

∂SF,eff
p

∂Hp

∂Hp

∂μp

〉
= −e

∂Iq

∂Hp

∂Hp

∂μp
. (4.8)

But Iq is the current in equilibrium, which is always zero. Thus ∂Iq/∂Hp = 0,
so that the term above does not contribute to (4.4), which accordingly becomes

G̃qp = e2
∫∫

4π2dE dE′

h4(tf − t0)
〈
Xq(E)Yp(E′)

〉
. (4.9)

4.1.2 Thermoelectric coefficients

In the presence of a temperature gradient we have by the discussion of Section
2.1.3

Iq =
∑

p

AqpΔTpq =
∑

p

Aqp(Tp − Tq) =
∑

p

ÃqpΔTp, (4.10)

where ΔTp = Tp − T with T the equilibrium temperature, and where similarly
to (4.2) we have defined

Ãqp = Aqp − δqp

∑
r

Aqr. (4.11)

Clearly we have

Ãqp =
∂Iq

∂Tp
= − 1

kBT 2
∂Iq

∂βp
. (4.12)

Thus, again assuming q 
= p and using (3.152) and (3.61), we get

Ãqp =
e

kBT 2

∫
2πdE

h2(tf − t0)

〈
Xq(E)

i

�

∂Seff

∂βp

〉
. (4.13)

Using (3.62), (3.115) and (3.116) we find

i

�

∂Seff

∂βp
=

1
h�β

∫
dE

(
E Y B

p (E) − (E − μ)Yp(E)
)

+
i

�

∂Seff
p

∂H

∂H

∂μp
, (4.14)
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where

Y B
p (E) = Tb(E)[φ+(E) − φ−(E)]†ΓB

p (E)[φ+(E) − φ−(E)], (4.15)

with

Tb(E) = − ∂n

∂E
(E) =

β

4 sinh2 βE/2
. (4.16)

The last term in (4.14) does not contribute to the transport coefficient for
reasons similar to those given below (4.8). Thus, (4.13) becomes

Ãqp = − e

T

∫∫
4π2dE dE′

h4(tf − t0)
〈
Xq(E)

[
(E′ − μ)Yp(E′) − E′ Y B

p (E′)
]〉

. (4.17)

Similar to (4.1) and (4.10), the heat flux qq can be expressed in terms of
linear transport coefficients

B̃qp = Bqp − δqp

∑
r

Bqr =
∂qq

∂Vp
, and (4.18)

C̃qp = Cqp − δqp

∑
r

Cqr =
∂qq

∂Tp
, (4.19)

where Bqp and Cqp are introduced in Section 2.1.3. Expressions for these
coefficients can be found by repeating the derivations above, but starting with
the heat flux expression (3.153) rather than (3.152). In the end we obtain

B̃qp = −e

∫∫
4π2dE dE′

h4(tf − t0)
〈[

(E − μ)Xq(E) + E XB
q (E)

]
Yp(E′)

〉
, and (4.20)

C̃qp =
1
T

∫∫
4π2dE dE′

h4(tf − t0)
〈 [

(E − μ)Xq(E) + E XB
q (E)

]
(4.21)

×
[
(E′ − μ)Yp(E′) − E′ Y B

p (E′)
] 〉

,

where

XB
q (E) = (nq(E) + 1) φ−(E)†ΓB

q (E)φ+(E) − nq(E)φ+(E)†ΓB
q (E)φ−(E).

(4.22)

4.2 Kubo relations

The Kubo relations are a particularly elegant set of expressions for the transport
coefficients, which express these in terms of correlation functions between the
various currents. The relations were obtained by Kubo in two papers dealing
with linear response, where the first[19] dealt with mechanical perturbations,
and the second[20] with thermodynamic perturbations.

The treatment of mechanical perturbations, i.e. perturbations consisting of
an additional term in the Hamiltonian, is a fairly straight forward procedure,
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4. The Linear limit and Kubo relations

where one simply makes a first order approximation to the equations of motion.
However, in the system considered in Section 3.2.1, the currents are not driven
by modifications to the Hamiltonian, but by deviation in the state ρ from its
equilibrium value. Such thermodynamic perturbations are more difficult to
handle in a formal manner, and indeed Kubo based the derivations in his second
paper partially on a set of heuristically justified assumptions. An overview of
alternative approaches to dealing with thermodynamic perturbations is provided
by Zwanzig[31]. Many of the approaches seem to handle the thermodynamic
perturbations by replacing it with a mechanical perturbation which is in some
sense equivalent. This is also the approach we take below.

4.2.1 Linear response theory of Conductance

In the operator representation, the expectation value of the particle flux is
given by (3.132). Combining this with (3.42), and defining the current operator
Îq(t) = −eΦ̂p(t), we can express the electrical current at lead q as

Iq(t) =
〈

Îq(t)
〉

= Tr Îq(t)P 0
S

∏
r

1
Zr

e−βr(Ĥr−μrN̂F
r ). (4.23)

In order to find the conductance coefficients G̃qp, we could apply (4.3) directly
to this expression, taking the derivative with respect to the chemical potentials
μr. However, this approach turns out not to be so fruitful. Instead, we will make
use of the fact that the conductance can also be expressed as

G̃qp =
∂Iq

∂φp
= −e

∂Iq

∂εp
, (4.24)

where φp is the electrostatic potential of lead p, and εp = −eφp. Since the
electrostatic potential constitutes a mechanical perturbation, this expression can
be handled using standard linear response theory.

Accordingly, we define the perturbed Hamiltonian

Ĥ ′ = Ĥ +
∑

p

εpNF
p , (4.25)

giving rise to a modified propagator U ′(t) satisfying i�U̇ ′ = Ĥ ′U . Further, we
assume that the system is initially in an equilibrium state of the unmodified
Hamiltonian Ĥ. Putting this together, we obtain by (4.24)

G̃qp = −e
∂

∂εp
Tr U ′(t − t0)†ÎqU ′(t − t0)

1
Z

e−β(Ĥ−μN̂F ). (4.26)

From here, we proceed by making a first order expansion of the propagator U ′(t)
in the perturbing potential εp. Details of the procedure are described at multiple
locations in the literature[19, 2, 15]. In the end, one obtains

G̃qp = −e
i

�

∫ t

t0

dt′
〈

[N̂F
p (t′), Îq(t)]

〉
. (4.27)
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Using the fact that in equilibrium correlation functions of this form depend only
on time differences, together with the assumption of steady state conditions for
t 
 t0, we can modify the limits of the integral to obtain the expression

G̃qp = −e
i

�

∫ ∞

0
dt
〈

[N̂F
p (0), Îq(t)]

〉
. (4.28)

While (4.28) is itself a valid and useful linear response formula, a more
symmetric expression can be found by going through some additional steps.
The details of these steps are well described by Kubo[19] and by Jacoboni[15],
although in Jacoboni’s argument some minor modifications must be made to
convert from a canonical to a grand canonical ensemble. In the end, one obtains

G̃qp = − 1
�

∫ ∞

0
dt

∫
�β

0
dτ
〈

Îp(−iτ)Îq(t)
〉

, (4.29)

which is the Kubo relation for conductance.
Finally, although the equivalence of the two conductance expressions (4.3)

and (4.24) is certainly intuitive, it is instructive to go through an argument
showing why this is true. One way of doing that is to consider a situation where
both perturbations are applied, in such a way that they are in equilibrium. Thus,
we again perturb the Hamiltonian as in (4.25), but this time we assume that the
leads are in an equilibrium state of the perturbed Hamiltonian Ĥ ′, meaning that

ρ(0) = P 0
S

∏
r

1
Zr

e−β(Ĥ′
r−μN̂F

r ). (4.30)

Given this state, the leads are all in equilibrium with each other, but initially
not with the subsystem S. However, it is reasonable to assume all parts of
the system to equilibrate over some finite time scale, so that for large t, ρ(t)
will be an equilibrium state. In particular, since the current is always zero in
equilibrium, we have for such large t,

Iq(t) = Tr U ′(t − t0)†ÎqU ′(t − t0)P 0
S

∏
r

1
Zr

e−β(Ĥ′
r−μN̂F

r ) = 0. (4.31)

Taking the derivative of this expression with respect to εp, we find

Tr
∂

∂εp

(
U ′(t − t0)†ÎqU ′(t − t0)

)
P 0

S

∏
r

1
Zr

e−β(Ĥr−μN̂F
r ) (4.32)

+Tr U†(t − t0)ÎqU(t − t0)
∂

∂εp
P 0

S

∏
r

1
Zr

e−β(Ĥ′
r−μN̂F

r ) = 0.

Next, we note that if we set εp = μ−μp, then Ĥ ′
p −μN̂F

p = Ĥp −μpN̂F
p . Inserting

this in (4.32), we obtain

Tr U†(t − t0)ÎqU(t − t0)
∂

∂μp
P 0

S

∏
r

1
Zr

e−β(Ĥr−μrN̂F
r ) (4.33)

= Tr
∂

∂εp

(
U ′(t − t0)†ÎqU ′(t − t0)

)
P 0

S

∏
r

1
Zr

e−β(Ĥr−μN̂F
r ).
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By (4.23) we recognize the first line of this equation as ∂Iq/∂μp. Further,
comparing the second line to (4.26), we see that it is almost identical to ∂Iq/∂εp,
except that the initial state is different. However, at large times t, where we
have obtained steady state conditions, it is reasonable to assume that Iq(t) is in
fact independent of the initial state, as long as the temperature and chemical
potential of the macroscopic leads are the same. Thus, under this assumption
(4.33) simply states

∂Iq

∂μp
=

∂Iq

∂εp
, (4.34)

which justifies the use of (4.24) to calculate conductance.

4.2.2 Thermoelectric coefficients

To calculate the thermoelectric coefficient Ãqp, we would like to repeat the
procedure above, where we were able to make use of standard linear response
theory since we could rephrase the definition of the transport coefficient in terms
of a mechanical perturbation. However, while the electrostatic potential was a
clear candidate as a replacement of the electrochemical potential, there is no
obvious candidate to replace the temperature differences in (4.10). Thus, we
must proceed more formally. In particular, we will want to make an argument
similar to that leading from (4.31) to (4.34), which shows the equivalence of the
perturbations Δμp and εp.

Examining the argument, we see that the crucial step is the one below (4.32),
where we obtain Ĥ ′

p − μN̂F
p = Ĥp − μpN̂F

p . A similar expression involving
temperatures can be obtained by defining the mechanical perturbation as one
given by the perturbed Hamiltonian

Ĥ ′ = Ĥ +
∑

p

δp(Ĥp − μN̂F
p ). (4.35)

We then have Ĥ ′
p−μN̂F

p = (1+δp)(Ĥp−μN̂F
p ). Accordingly, setting δp = βp/β−1,

we get

β(Ĥ ′
p − μN̂F

p ) = βp(Ĥp − μN̂F
p ), (4.36)

which is precisely on the form we seek.
With this it is a simple matter to repeat the steps from (4.31) to (4.34). We

begin by differentiating (4.31) with respect to δp, obtaining a parallel to (4.32).
Then we insert (4.36), and make use of the relation δp = βp/β − 1 to reexpress
one of the derivatives, obtaining in the end

∂Iq

∂βp
= − 1

β

∂Iq

∂δp
. (4.37)

Then inserting this in (4.12), we see that we can calculate Ãqp as

Ãqp =
1
T

∂Iq

∂δp
. (4.38)
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Since we have then expressed the coefficient in terms of the mechanical
perturbation (4.35), we can again make use of standard linear response theory
to derive the Kubo relation

Ãqp = − 1
�T

∫ ∞

0
dt

∫
�β

0
dτ
〈

q̂p(−iτ)Îq(t)
〉

, (4.39)

where we have defined q̂p(t) = Φ̂E
p (t) − μpΦ̂p(t).

Combining the expression qp = ΦE
p − μpΦp with (3.132), (3.137) and (3.42),

we can express the heat flux in lead p as

qq(t) = 〈q̂q(t)〉 = Tr q̂q(t)P 0
S

∏
r

1
Zr

e−βr(Ĥr−μrN̂F
r ) (4.40)

Kubo relations for the remaining thermoelectric coefficients B̃qp and C̃qp can
be found from this expression in a manner analogous to what we did above,
by reexpressing (4.18) and (4.19) in terms of derivatives with respect to the
mechanical perturbations εp and δp. In the end we obtain

B̃qp = − 1
�

∫ ∞

0
dt

∫
�β

0
dτ
〈

Îp(−iτ)q̂q(t)
〉

, and (4.41)

C̃qp = − 1
�T

∫ ∞

0
dt

∫
�β

0
dτ
〈

q̂p(−iτ)q̂q(t)
〉

. (4.42)

4.2.3 Bulk expressions

In the case of macroscopic devices one typically does not need to perform an
explicit simulation of the device, since the transport coefficients G, A, B etc.
can be calculated relatively easily from bulk material coefficients. Thus, we will
briefly consider also such bulk coefficients, starting with conductivity. In the
absence of thermodynamic gradients, the conductivity ←→σ is defined through the
relation that at macroscopic size scales j = ←→σ E =

∑
ij σijEj êi, j being the

current density and E the electric field. Typically one also considers alternating
fields, and so the relation is generalized to j(ω) = ←→σ (ω)E(ω), where j(ω) and
E(ω) are respectively the Fourier transforms of j(t) and E(t).

To obtain an expression for ←→σ , we can apply the same linear response
technique made use of above. Knowing that E is related to the electrostatic
potential φ by E = −∇φ, we introduce a perturbing potential ε(x, t) = −eφ(x, t),
coupled to the local number density of electrons n̂(x). We then simply repeat
the steps leading to (4.29), with some small modifications to account for the
temporal and spatial variation of ε. Details of the derivation can again be found
in the literature[19, 2, 15]. The end result is

σij(ω) = V
1
�

∫ ∞

0
dt

∫
�β

0
dτ
〈¯̂jj(−iτ)¯̂ji(t)

〉
e−iωt, (4.43)
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where i, j ∈ {x, y, z}, V is the volume of some sufficiently large region of material,
and ¯̂j denotes the current density operator ĵ(x) averaged over this region. To
obtain the direct current conductivity, we simply insert ω = 0. In that case,
(4.43) takes the same form as the Kubo relations considered above.

More generally we have j = −←→σ ∇V − ←→A ∇T , which reduces to j = ←→σ E

when ∇T = 0 = ∇(V − φ). The thermoelectric tensor
←→A is related to the

coefficients Ãqp in the same way that ←→σ is related to G̃qp. Since we can
reinterpret Ãqp as describing responses to the mechanical perturbations δp of
(4.35), the tensor

←→A must also describe responses to gradients in a generalized
mechanical potential δ(x, t), coupled to the local heat density ĥ(x) − μn̂(x),
where Ĥ =

∫
dx ĥ(x). Accordingly, we may employ linear response theory in a

manor completely analogous to the derivation of (4.43), obtaining

Aij = V
1
�T

∫ ∞

0
dt

∫
�β

0
dτ
〈 ¯̂

φQj(−iτ)¯̂ji(t)
〉

, (4.44)

where φQ denotes heat flux, and the rest of the notation is as before.
In the linear regime the heat flux φQ can also be expressed in terms of ∇T

and ∇V as φQ = −←→B ∇V − ←→C ∇T . The thermoelectric tensors
←→B and

←→C can
be found by arguments similar to those above, and in the end we obtain

Bij = V
1
�

∫ ∞

0
dt

∫
�β

0
dτ
〈¯̂jj(−iτ) ¯̂

φQi(t)
〉

and, (4.45)

Cij = V
1
�T

∫ ∞

0
dt

∫
�β

0
dτ
〈 ¯̂

φQj(−iτ) ¯̂
φQi(t)

〉
. (4.46)

Expressions similar to (4.43), (4.44), (4.45) and (4.46) were derived by Kubo
in his second paper on the Kubo relations[20], as an example of how to treat
thermodynamic perturbations. The equations should be compared to (4.29),
(4.39), (4.41) and (4.42), which are their device analogs respectively.

In Section 2.1.3 we saw that in a simple two terminal device we could reexpress
the current I and the heat current q in terms of new thermoelectric coefficients,
as (2.30) and (2.31). In a similar manner, we can reexpress the current density
j and the heat flux φQ in terms of new thermoelectric tensors as

j = −←→σ (∇V + ←→α ∇T ) and, (4.47)
φQ = −←→κ ∇T + ←→π j, (4.48)

where ←→κ is referred to as the thermal conductivity, and ←→α and ←→π respectively
as the Seebeck and Peltier coefficients. It is a matter of simple algebra to show
that

←→α = ←→σ −1←→A , (4.49)
←→π =

←→B ←→σ −1 and, (4.50)
←→κ =

←→C − ←→B ←→σ −1←→A , (4.51)
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where the products represent matrix multiplication. These relations generalize
the simple two terminal device expressions given by (2.27)-(2.29).

4.2.4 Correlation functions

The linear response expressions derived above all share a common format where
some transport coefficient GAB is expressed as

GAB =
∫ ∞

0
dt

∫
�β

0
dτ
〈

Â(−iτ)B̂(t)
〉

=
∫∫

R

dz�dz CAB(z), (4.52)

where R = {z : 0 ≤ Im z ≤ �β, 0 ≤ Re z < ∞}, and where we have defined
the mixed time correlation function CAB(t + iτ) = 〈Â(−iτ)B̂(t)〉. In particular,
(4.29), (4.39), (4.41), (4.42), (4.43), (4.44), (4.45) and (4.46) all have this format.

In addition to the mixed time correlation function, we define a real time
correlation function Ct

AB given by Ct
AB(t) = CAB(t) with t real, and an imaginary

time correlation function Cτ
AB given by Cτ

AB(τ) = CAB(iτ) with τ real. It is
easily checked that in equilibrium such correlation functions can only depend on
time differences, and so we can also express the real time correlation function as
Ct

AB(t′ − t) = 〈Â(0)B̂(t′ − t)〉 = 〈Â(t)B̂(t′)〉.
A final correlation function to be introduced, is the spectral correlation

function Cs
AB(E). To obtain this function, we make use of a tool known as the

Lehmann representation[2], in which we express correlation functions in terms of
exact eigenstates of the full Hamiltonian Ĥ. Since Ĥ commutes with N̂F , these
operators can be simultaneously diagonalized. Thus, introducing a basis {|i〉}
which diagonalizes both Ĥ and N̂F , we can rewrite the mixed time correlation
function as

〈Â(−iτ)B̂(t)〉 = Tr
1
Z

e−β(Ĥ−μN̂F )eĤτ/�Âe−Ĥτ/�eiĤt/�B̂e−iĤt/� (4.53)

=
1
Z

∑
ij

〈i|e−β(Ĥ−μN̂F )eĤτ/�Âe−Ĥτ/�|j〉〈j|eiĤt/�B̂e−iĤt/�|i〉

=
1
Z

∑
ij

AijBjie
−β(Ei−μNF

i )+i(Ej−Ei)t/�+(Ei−Ej)τ/�.

where Aij = 〈i|Â|j〉, Bji = 〈j|B̂|i〉, and Ei and NF
i are respectively eigenvalues

of Ĥ and N̂F . If we now define

Cs
AB(E) =

1
Z

∑
ij

AijBjie
−β(Ei−μNF

i )δ(E − Ei + Ej), (4.54)

we can write (4.53) simply as

CAB(t + iτ) =
∫

dE Cs
AB(E)e−iE(t+iτ)/�. (4.55)

In particular, the real time correlation function Ct
AB(t) = CAB(t) is then a

Fourier transform of the spectral correlation function Cs
AB(E). In the limit
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Lp → ∞, where the leads become infinitely large, we again expect the distance
between the energy levels Ei to approach zero, and accordingly that Cs

AB(E)
becomes a continuous function.

In an actual calculation, one will typically obtain estimates of either the real
time correlation function Ct

AB , its Fourier transform Cs
AB , or the imaginary time

correlation function Cτ
AB . Thus, the transport coefficient GAB can be obtained

if we can reexpress (4.52) in terms of these functions. We begin by considering
the relationship between GAB and the imaginary time correlation function.
Assuming that the spectral function Cs

AB(E) is sufficiently well behaved, we
have by (4.55)

∂

∂z�
CAB(z) =

∫
dE CAB(E)

∂

∂z�
e−iEz/� = 0, (4.56)

which means the function CAB(z) is analytic in the entire complex plane. Thus,
it must equal its Taylor expansion around any point, and in particular

CAB(z) =
∞∑

n=0

1
n!

∂n

∂zn
CAB(i�β/2)(z − i�β/2)n (4.57)

=
∞∑

n=0

(−i)n

n!
∂n

∂τn
Cτ

AB(�β/2)(z − i�β/2)n.

Thus, given perfect knowledge of the imaginary time correlation function Cτ
AB(τ)

in the interval τ ∈ (0, �β), we can in principle evaluate CAB(z) at any value of
z, so that (4.52) can be used to calculate GAB. However, in typical numerical
calculations one will not have perfect knowledge of Cτ

AB(τ), so in practice the
continuation of the function to the complex plane can be a difficult task. Some
approaches to solving this problem are described in the literature[30].

Next we consider the relationship between GAB and the spectral correlation
function Cs

AB(E). Since Cs
AB is related to Ct

AB by a simple Fourier transform,
this will also give us the relationship between GAB and the real time correlation
function. Making use of (4.55), we can perform the innermost integral of (4.52)
to get

∫
�β

0
dτ CAB(t + iτ) = �β

∫
dE g(βE)Cs

AB(E)e−iEt/�, (4.58)

where we have defined

g(x) =
∫ 1

0
esxds =

{
ex−1

x for x 
= 0
1 for x = 0

. (4.59)

Defining now the function χAB(E) = �βg(βE)Cs
AB(E), and assuming this

function to be sufficiently well behaved to exchange limits and integrals, we can
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perform the outermost integral of (4.52) as follows:

GAB =
∫ ∞

0
dt

∫
dE lim

η→0
χAB(E)e−iEt/�−ηt (4.60)

= lim
η→0

∫
dE χAB(E)

∫ ∞

0
dt e−iEt/�−ηt = −�i lim

η→0

∫
dE

χAB(E)
E − iη

.

Further, one can show that for well behaved functions f , we have

lim
η→0

∫
dx

f(x)
x − iη

= πif(0) +
∫

dxP
1
x

f(x), (4.61)

where P denotes principal value. Making use of this relation, the definition of
χAB , and (4.59), we can reexpress (4.60) as

GAB = π�2βCs
AB(0) − �

2i

∫
dEP

1
E2 (eβE − 1)Cs

AB(E). (4.62)

4.2.5 Symmetries

The correlation functions introduced above obey several important symmetry
relations. Using for instance (4.62), we can translate these relations into sym-
metries of the transport coefficients. Consider first the real time correlation
function Ct

AB(t′ − t) = 〈Â(t)B̂(t′)〉. We have Ct
AB(t′ − t)� = 〈Â(t)B̂(t′)〉� =

〈B̂(t′)Â(t)〉 = Ct
BA(t − t′). Taking the inverse Fourier transform of this relation,

we also find

Cs
AB(E)� = Cs

BA(E). (4.63)

Further, exchanging A and B as well as the summation indices in (4.54), we get

Cs
BA(E) =

1
Z

∑
ij

BjiAije−β(Ej−μNF
j )δ(E − Ej + Ei). (4.64)

Now, in all of the Kubo relations derived above, the operators Â and B̂ were
single particle operators, which in particular means they commute with N̂F .
Accordingly, we have AijeβμNF

i = 〈i|eβμN̂F

Â|j〉 = 〈i|ÂeβμN̂F |j〉 = AijeβμNF
j .

Inserting this in (4.64) we find

Cs
BA(E) =

1
Z

∑
ij

AijBjie
−β(Ej−μNF

i )δ(−E + Ej − Ei) = e−βECs
AB(−E).

(4.65)

Combining this with (4.63), we also find

eβECs
AB(E) = Cs

AB(−E)�. (4.66)
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Inserting (4.66) in (4.62), we obtain after some rearrangement

GAB = π�2βCs
AB(0) − 2�2

∫
dEP

1
E2 Im Cs

AB(E). (4.67)

Since by (4.66) CAB(0) is real, so is GAB. This is as expected since GAB is
defined at ω = 0.

Next, we introduce the time reversal operator τ̂ [21]. The defining properties
of this operator is that it is conjugate linear, meaning that τ̂(c|ψ〉) = c�τ̂ |ψ〉,
that τ̂2 = I, and finally that τ̂ preserves the position basis, so that τ̂ ψ̂i = ψ̂iτ̂
for any single particle state i which is a real combination of position basis
states. Importantly, the last fact also means we can construct a basis of many
particle states |j〉 which is preserved by the time reversal operator, meaning that
τ̂ |j〉 = |j〉.

So let {|i〉} be such a many particle basis. We have

Ct
AB(t′ − t) =

1
Z

Tr e−β(Ĥ−μN̂F )eiĤt/�Âe−iĤt/�eiĤt′/�B̂e−iĤt′/� =
1
Z

∑
i

〈i|P̂ |i〉,

(4.68)

where we have defined P̂ = e−β(Ĥ−μN̂F )eiĤt/�Âe−iĤt/�eiĤt′/�B̂e−iĤt′/�. Mak-
ing use of the time reversal operator, we can rewrite this as

Ct
AB(t′ − t) =

1
Z

∑
i

〈i|τ̂2P̂ τ̂2|i〉 =
1
Z

∑
ij

〈i|τ̂
[
|j〉〈j|τ̂ P̂ τ̂ |i〉

]
(4.69)

=
1
Z

∑
ij

〈j|τ̂ P̂ τ̂ |i〉�〈i|τ̂ |j〉 =
1
Z

∑
i

〈i|τ̂ P̂ τ̂ |i〉� =
1
Z

(
Tr τ̂ P̂ τ̂

)�

,

or alternatively Ct
AB(t′ − t)� = Tr τ̂ P̂ τ̂ /Z. Now, using the Taylor expansion of

the exponential and the properties of τ̂ , it is straight forward to show that

τ̂ P̂ τ̂ = e−β(τ̂ Ĥτ̂−μτ̂N̂F τ̂)e−iτ̂Ĥτ̂ t/�τ̂ Âτ̂ eiτ̂Ĥτ̂ t/�e−iτ̂Ĥτ̂ t′/�τ̂ B̂τ̂ eiτ̂Ĥτ̂ t′/�. (4.70)

Accordingly we must consider how the involved operators change under the
time reversal transform X̂ → τ̂ X̂τ̂ . We begin by considering the Hamiltonian Ĥ.
It can always be decomposed as Ĥ = Ĥ1 +Ĥ2, where the components Ĥ1 and Ĥ2
are respectively symmetric and anti symmetric under the time reversal transform.
Indeed, we can simply let Ĥ1 = (Ĥ + τ̂ Ĥ τ̂)/2 and Ĥ2 = (Ĥ − τ̂ Ĥ τ̂)/2. In solid
state applications, the anti symmetric component Ĥ2 must be proportional to
an external magnetic field, since an external electric field, as well as any internal
force are left unchanged by time reversal.

Thus, it makes sense to generalize the Hamiltonian as Ĥ(b) = Ĥ1 + bĤ2,
where b parameterizes the magnetic field strength. In fact, we will include an
explicit dependence on the magnetic field in most operators, writing for instance
Â as Â(b). In particular, we have τ̂ Ĥ(b)τ̂ = Ĥ1 − bĤ2 = Ĥ(−b). The effect of
the time reversal transform on N̂F is easily found by expressing the operator in
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terms of a preserved single particle basis i. We have τ̂ N̂F τ̂ =
∑

i τ̂ ψ̂†
i ψ̂iτ̂ = N̂F .

Combining this with the effect on Ĥ, we can also find the effect on the current
operator Îp = −eΦ̂p. By (3.131) and the definition of Φ̂p(t) below (3.132), we
have

τ̂ Îp(b)τ̂ = τ̂(−ei[Ĥ(b), N̂F
p ]/�)τ̂ = ei[Ĥ(−b), N̂F

p ]/� = −Îp(−b). (4.71)

Similar arguments can be applied to the other currents q̂p, ĵ and etc., and result
in similar expressions. Since the operators Â and B̂ are always picked from
these currents, we thus always have τ̂ Â(b)τ̂ = −Â(−b) and τ̂ B̂(b)τ̂ = −B̂(−b).
Inserting all of this in (4.70), we get

τ̂ P̂ (b)τ̂ = e−β(Ĥ(−b)−μN̂F )e−iĤ(−b)t/�Â(−b)eiĤ(−b)t/�e−iĤ(−b)t′/�B̂(−b)eiĤ(−b)t′/�.
(4.72)

Thus, by (4.69) we have

Ct
AB(b, t′ − t)� =

1
Z

Tr τ̂ P̂ (b)τ̂ = Ct
AB(−b, t − t′), (4.73)

where we have included an explicit dependence on the magnetic field also in the
correlation functions. Taking the inverse Fourier transform of this relation, we
find

Cs
AB(b, E)� = Cs

AB(−b, E). (4.74)

Evaluating (4.67) at field strength −b, and making use of (4.74) and the
reality of Cs

AB(0), we find

GAB(−b) = π�2βCs
AB(−b, 0) − 2�2

∫
dEP

1
E2 Im Cs

AB(−b, E) (4.75)

= π�2βCs
AB(b, 0) + 2�2

∫
dEP

1
E2 Im Cs

AB(b, E).

Thus, we obtain an interpretation of the two terms in (4.67) in terms of how
they behave under reversal of the magnetic field: G1 = π�2βCs

AB(0) is invariant,
while the term G2 = 2�2 ∫ dEP Im Cs

AB(E)/E2 changes sign. In particular this
means that at zero magnetic field we must have GAB = G1 = π�2βCs

AB(0).
Finally, combining (4.74) and (4.63), we obtain CBA(b, E) = CAB(−b, E).

Inserting this in (4.67), it follows easily that

GBA(b) = GAB(−b). (4.76)

These important symmetry relations were also derived by Kubo[19]. At zero
magnetic field they reduce to GAB = GBA, which are the famous Onsager
relations[26]. These relations have several important consequences for the ther-
moelectric transport coefficients introduced above. For instance they imply
symmetry of the conductance and conductivity coefficients: Gqp = Gpq, and
←→σ = ←→σ T , as well as a relation between the Peltier and Seebeck coefficients,
stating Πqp = Tαpq and ←→π = T←→α T .
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4.3 Four point functions

In the previous section we obtained expressions for transport coefficients in
terms of real time and imaginary time correlation functions. In order to evaluate
these expressions using the field integral formalism, we must translate the
correlation functions into field integral expectation values. We begin by noting
that the operators Â and B̂ from the previous section are always single particle
operators, and accordingly are always on the form of (3.23), (3.24), or some
linear combination of these. Assuming Â and B̂ to involve only fermionic fields,
we have

〈ÂB̂〉 =
∑
ijkl

AijBkl〈ψ̂†
i ψ̂jψ̂†

kψ̂l〉. (4.77)

The generalization of this expression to include bosonic fields should be obvious.
The important point is that the correlation functions of the previous section can
always be expressed as a linear combination of correlation functions involving
four fields.

4.3.1 Real time correlation functions

The real time correlation function Ct
AB(t − t′) introduced in Section 4.2.4 will be

a linear combination of correlation functions on the form 〈ψ̂†
i (t)ψ̂j(t)ψ̂†

k(t′)ψ̂l(t′)〉,
possibly with all or two of the fields operators replaced with boson operators. In
order to express these correlation functions as field integrals, we must make a
small modification, where we instead calculate 〈ψ̂†

i (t)ψ̂j(t+Δt)ψ̂†
k(t′ +Δt)ψ̂l(t′)〉.

This modification will only introduce an error of order 1/N .
The modified correlation functions are seen to be very simple generalizations

of the expression to the left in (3.26), and can be expressed as a field integrals in
a similar manner as that expression. In particular, we generalize the second line
to the right in (3.26), expressing the correlation function in terms of two factors
U†(t − t0)ψ̂†

i U(Δt)ψ̂jU†(tf − t) and U(tf − t′)ψ̂†
kU(Δt)ψ̂lU(t′ − t0). These can

be expressed as field integrals using straight forward generalizations of (3.27) and
(3.28) respectively. Putting these expressions together in a manner generalizing
(3.29), we obtain

〈ψ̂†
i (t)ψ̂j(t)ψ̂†

k(t′)ψ̂l(t′)〉 ≈ 〈ψ̄−
i (t)ψ−

j (t + Δt)ψ̄+
k (t′ + Δt)ψ+

l (t′)〉, (4.78)

with an error of order 1/N . Field integral expectations like the one on the
right in this expression, which involves four fields, are referred to as four point
functions[2].

Another source of error in (4.78) is the fact that the two expectation values
are technically defined with different initial states. The operator expectation on
the left is defined in the equilibrium state e−β(Ĥ−μN̂)/Z of the full system, while
the field integral expectation value on the right is defined with an initial state
given by (3.42). However, as before we make use of our assumption that the
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system equilibrates over some finite time scale, and conclude that the different
initial states are irrelevant as long as t, t′ 
 t0.

By combining (4.78) with (4.77) and (4.67), we can express any transport
coefficient GAB in terms of four point functions. In particular, applying this
procedure to the transport coefficients G̃qp, Ãqp, B̃qp and C̃qp given by (4.29),
(4.39), (4.41) and (4.42), we should in principle obtain expressions equivalent to
(4.9), (4.17), (4.20) and (4.21). However, this is difficult to show explicitly.

4.3.2 Imaginary time correlation functions

Section 4.2.4 also introduces imaginary time correlation functions, which are
defined as Cτ

AB(τ) = 〈Â(−iτ)B̂(0)〉 = Tre−β(Ĥ−μN̂F )eτĤ/�Âe−τĤ/�B̂/Z. Again
making use of the fact that N̂ commutes with the single particle operators Â
and B̂, and with the Hamiltonian, we can write this as

Cτ
AB(τ) =

1
Z

Tr e−(�β−τ)(Ĥ−μN̂F )/�Âe−τ(Ĥ−μN̂F )/�B̂ =
1
Z

Tr Y (�β − τ)ÂY (τ)B̂,

(4.79)

where we have defined the imaginary time evolution operator Y (τ) =
e−τ(Ĥ−μN̂F )/�. These functions will be linear combinations of correlation function
on the form
Tr Y (�β − τ)ψ̂†

i ψ̂jY (τ)ψ̂†
kψ̂l/Z, again possibly with some field operators replaced

with bosonic fields. Again, we will make a modification with an error of order 1/N ,
and replace these functions with Tr Y (�β − τ)ψ̂†

i Y (Δτ)ψ̂jY (τ)ψ̂†
kY (Δτ)ψ̂l/Z,

where Δτ = �β/N .
By introducing the factorization Y (τ) = Y (Δτ)N ≈ (I − τ(Ĥ − μN̂F )/�)N ,

we see that these expressions can be converted to field integrals by exactly
the same technique that we employed in Section 3.1, and in our discussion of
real time four point functions above. Going through with the procedure, we
eventually end up with the expression

1
Z

Tr Y (�β − τ)ψ̂†
i ψ̂jY (τ)ψ̂†

kψ̂l ≈ 〈ψ̄i(τ + Δτ)ψj(τ)ψ̄k(Δτ)ψl(0)〉τ , (4.80)

where the imaginary time field expectation 〈 〉τ is defined through

〈X[φ, ψ]〉τ =
1
Z

∫
D(φ, ψ)X[φ, ψ]e−Sτ [φ,ψ]/� =

∫
D(φ, ψ)X[φ, ψ]e−Sτ [φ,ψ]/�∫

D(φ, ψ) e−Sτ [φ,ψ]/� ,

(4.81)

with the imaginary time action Sτ given by

− 1
�

Sτ [φ, ψ] = −|φ0|2 − ψ̄0ψ0 + φ†
N φ0 − ψ̄N ψ0− (4.82)

1
�

N−1∑
n=0

{
�φ†

n+1(φn+1 − φn) + �ψ̄n+1(ψn+1 − ψn) + Ω(φ†
n+1, φn, ψ̄n+1, ψn)Δτ

}

≈ − 1
�

∫
�β

0
dτ
(
�φ†φ̇ + �ψ̄ψ̇ + Ω(φ†, φ, ψ̄, ψ)

)
,
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where Ω(φ†, φ, ψ̄, ψ) = H(φ†, φ, ψ̄, ψ) − μψ̄ψ. Again the integral expression in
the final line must be considered a purely symbolic notation.

Using (4.80) and (4.77), any imaginary time correlation function can be
expressed as an imaginary time field integral. By the discussion of Section 4.2.4,
techniques of analytical continuation can be used to obtain transport coefficients
from these correlation functions. Imaginary time field integrals is a major subject
of Ref. [2].
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Chapter 5

Non-equilibrium Green’s functions
In the previous two chapters, we focused on exact expressions for transport
coefficients (in the limit N → ∞). In order to evaluate these expressions, one
must almost always apply some technique of approximation. One of the most
commonly applied approximation schemes, perturbation theory, is the subject
of this chapter. We will limit the discussion to the perturbative expansion
of Green’s functions, and leave the discussion of four point functions to the
literature. See for instance the Bethe Salpeter Equation[2]. In addition, we limit
the discussion to the fermionic sector.

The derivations of this chapter primarily follows Altland and Simons[2], and
to some extent also Jacoboni[15]. On the other hand, much of the notational
conventions are taken from Datta[7].

5.1 Perturbative expansion of the field integral

The effective action Seff is given by (3.62), where the sub-terms can be obtained
from (3.115), (3.116), (3.48), (3.17) and (3.21). Examining these expressions,
we observe that all terms in Seff are quadratic in the fields, except possibly for
those stemming from the Hamiltonian H(φ†, φ, ψ̄, ψ). Further, by making use
of a technique known as the Hubbard Stratonovich transformation [2], we can
remove all terms in the Hamiltonian that are of higher order in the fermionic
fields, at the cost of introducing additional bosonic fields. Thus, assuming that
this technique has been applied, we can write the effective action as

Seff [φ, ψ] = φ†A0φ + ψ̄[C0 + C(φ)]ψ + SB,int[φ], (5.1)

where C(φ) contains no constant terms, and where as indicated SB,int depends
only on the bosonic fields, and contains all such terms in the Hamiltonian which
are of order higher than quadratic.

We now define S0 = φ†A0φ + ψ̄C0ψ and Sint = SB,int + ψ̄C(φ)ψ, so that
we can write Seff = S0 + Sint. From (3.61) we then obtain the expansion

〈A〉 =
∫

D(+, −)A[φ, ψ]eiS0/�eiSint/� (5.2)

=
∑

n

1
n!

∫
D(+, −)A[φ, ψ]

(
iSint/�

)n
eiS0/�.

In particular, the fermionic Green’s function G introduced in Section 3.3.1 has
the perturbative expansion

i�G = 〈ψψ̄〉 =
∑

n

1
n!

∫
D(+, −)ψψ̄

(
iSint/�

)n
eiS0/�. (5.3)
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5.1.1 Unperturbed Green’s functions

The first term in the expansion of the Green’s function is the Green’s function
corresponding to the quadratic action S0. It is referred to as the unperturbed
Green’s function, and is given by

i�g = 〈ψψ̄〉0 =
∫

D(+, −)ψψ̄eiS0/� =
∫∫

dψ̄dψ ψψ̄e−ψ̄C0ψ/�i, and (5.4)

i�d = 〈φφ†〉0 =
∫

D(+, −)φφ†eiS0/� =
∫∫

dφ†dφ φφ†e−φ†A0φ/�i, (5.5)

for fermions and bosons respectively. As these expressions are Gaussian integrals,
they can be evaluated in the same manner as the lead Green’s functions in Section
3.3.1. Completely analogously to (3.65) and (3.66) we simply get g = C−1

0 and
d = A−1

0 .
To proceed further we write the matrix C0 as

C0 = CS −
∑

p

Σp, (5.6)

where ψ̄CSψ contains all quadratic fermionic terms of SS , and ψ̄Σpψ = −SF,eff
p .

Here SS and SF,eff
p are respectively given by (3.48) and (3.115).

Now consider a system identical to the one considered above, but isolated
from the leads. By repeating the arguments above, it should be clear that the
unperturbed Green’s function gS of this system is given by gS = C−1

S . Further,
since gS is the Green’s function of an isolated non-interacting system, it must
satisfy (3.90) and (3.91). Thus, let ψ̂

†
HF

S ψ be the quadratic and fermionic
sector of the Hamiltonian ĤS of the system S. Since by (3.41) T = 0, we get
from (3.90) and (3.91) respectively

i�g<
S (t, t′) = 0 and i�g>

S (t, t′) = eiHF
S (t′−t)/�. (5.7)

Inserting this in (3.83) and (3.84), we also find

i�gt
S(t, t′) = eiHF

S (t′−t)/�θ(t − t′) and, (5.8)

i�gt̄
S(t, t′) = eiHF

S (t′−t)/�θ(t′ − t). (5.9)

Using the relations g = C−1
0 and gS = C−1

S , we have by (5.6)

g = (CS − Σl)−1 = (I − gSΣl)−1
gS , (5.10)

where Σl =
∑

p Σp. Like the Green’s functions, the matrices Σp are also naturally
divided into four sectors. By (3.115), (3.101) and (3.102), we have

Σp,nm = Δt2 i

h

∫
dE

[
fp(E)ΓF

p (E) − iΣr
p(E) −fp(E)ΓF

p (E)
(1 − fp(E)) ΓF

p (E) fp(E)ΓF
p (E) + iΣa

p(E)

]
e−i(t−t′)E/�,

(5.11)

with t = nΔt and t′ = mΔt.
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5.1.2 Interaction terms and Feynman diagrams

Since the interaction terms in Sint = SB,int+ψ̄C(φ)ψ stem from the Hamiltonian,
we can by (3.48), (3.17) and (3.21) write these terms as

SB,int =
N−1∑
n=0

Δt
(

U(φ−†
n , φ−

n+1) − U(φ+†
n+1, φ+

n )
)

, and (5.12)

ψ̄C(φ†, φ)ψ =
N−1∑
n=0

Δt
(

ψ̄
−
n V (φ−†

n , φ−
n+1)ψ−

n+1 − ψ̄
+
n+1V (φ+†

n+1, φ+
n )ψ+

n

)
,

(5.13)

where U and V are potentials representing the non-quadratic terms in the
Hamiltonian. These can be Taylor expanded as

U(φ†, φ) =
∑

n+m>2

∂n∂mU

∂nφ†∂mφ
φ†

1 · · · φ†
nφ1 · · · φm, and (5.14)

V (φ†, φ) =
∑

n+m>0

∂n∂mV

∂nφ†∂mφ
φ†

1 · · · φ†
nφ1 · · · φm, (5.15)

where we made use of the assumption that Sint contains no quadratic terms. For
reasons of concreteness and simplicity, we will in the following make approxima-
tions to the lowest order, and keep only a third order term in U and a linear
term in V . In particular, we let

U(φ†, φ) =
∑
ijk

Uijk(φi + φ�
i )(φj + φ�

j )(φk + φ�
k), and (5.16)

Vij(φ†, φ) =
∑
ijk

V k
ij (φk + φ�

k) , (5.17)

so that

SB,int =
N−1∑
n=0

∑
ijk

ΔtUijk

{
(φ−

n+1,i + φ−�
ni )(φ−

n+1,j + φ−�
nj )(φ−

n+1,k + φ−�
nk ) (5.18)

− (φ+
ni + φ+�

n+1,i)(φ
+
nj + φ+�

n+1,j)(φ+
nk + φ+�

n+1,k)
}

,

and

ψ̄C(φ†, φ)ψ =
N−1∑
n=0

∑
ijk

ΔtV k
ij× (5.19)

(
ψ̄−

in

(
φ−

n+1,k + φ−�
nk

)
ψ−

j,n+1 − ψ̄+
i,n+1

(
φ+

nk + φ+�
n+1,k

)
ψ+

jn

)
.

Now, by (5.3) we have

i�G =
∑

n

in

n!�n

〈
ψψ̄

(
SB,int + ψ̄C(φ†, φ)ψ

)n〉
0

, (5.20)
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where 〈 〉0 denotes the field integral expectation with respect to the unperturbed
action S0. Using (5.18) and (5.19) we can express the n’th order expectation as〈

ψψ̄
(

SB,int + ψ̄C(φ†, φ)ψ
)n〉

0
(5.21)

=
∑

Δtn Uabc · · · Udef V i
gh · · · V l

jk

〈
φ�

a · · · φ�
b φc · · · φd ψ̄eψf · · · ψ̄gψh

〉
0 ,

where the sum runs over all terms in Sint in each of the n factors. The potential
factors Uabc, V i

gh and so on in this expression must be interpreted as having an
additional negative sign if they are coupled to the forward propagating fields φ+

and ψ+. The field product expectation values in (5.21) are again just Gaussian
integrals, and in fact it can be shown that[2]〈

φ�
i1 · · · φ�

in
φj1 · · · φjm ψ̄k1ψl1 · · · ψ̄kpψlp

〉
0 (5.22)

=
∑

σBσF

(−1)σF
〈

φ�
i1φj

σB
1

〉
0

· · ·
〈

φ�
in

φj
σB

n

〉
0

〈
ψ̄k1ψl

σF
1

〉
0

· · ·
〈

ψ̄kp
ψl

σF
p

〉
0

if n = m, and zero otherwise. Here σB and σF denote permutations of respec-
tively n and p elements, and (−1)σF

denotes the sign of the permutation σF .
Using 5.22 we can express (5.21) as〈

ψψ̄
(

SB,int + ψ̄C(φ†, φ)ψ
)n〉

0
(5.23)

=
∑

(−1)σF

Δtn Uabc · · · Udef V i
gh · · · V l

jk 〈φ�
aφb〉0 · · · 〈φ�

cφd〉0
〈
ψ̄eψf

〉
0 · · ·

〈
ψ̄gψh

〉
0

=
∑

(−1)σF

Δtn Uabc · · · Udef V i
gh · · · V l

jk (i�dba) · · · (i�ddc) (−i�gfe) · · · (−i�ghg),

where the sum is now also over the permutations σB and σF . Then inserting
this in (5.20), we obtain

i�G =
∑ (−1)xΔtn

�nn!
× (5.24)

iUabc · · · iUdef iV i
gh · · · iV l

jk(i�dba) · · · (i�ddc) (i�gfe) · · · (i�ghg).

The terms of this sum has a useful representation in the form of diagrams/
graphs. Note that each index except for two will be shared between a potential
factor and a Green’s function. The two remaining indices are the ones stemming
from the product ψψ̄, and accordingly these are not shared by a potential factor.
Thus, each term can be represented by a diagram where the lines represent
unperturbed Green’s functions, and the vertices represent potential factors. The
convention is then that indices of vertices are shared with the lines intersecting
them. Thus, each vertex must be an intersection of either three boson lines, or
two fermion lines and one boson line, and there can only be two line endpoints
not intersecting a vertex. These diagrams are know as Feynman diagrams, and
are extensively described in the literature[2, 15, 7, 23, 27].

Since all the potential and Green’s function factors would be identical, it is
easy to see that terms corresponding to the same diagram must have identical
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values except possibly for the sign. However, as it turns out even the sign can be
determined from the diagram. It is clear that the fermion lines of the diagram
must be organized in one path connecting the two free end points of the diagram,
and that the remainder of the fermion lines must form a set of loops. In fact,
the sign of a term corresponding to some diagram is simply (−1)l, where l is the
number of fermion loops in the diagram[15, 23, 27].

Thus, two terms in (5.23) have the same value if their Feynman diagrams
are topologically identical, i.e. if they can be made identical by a continuous
transformation. Further, as shown for instance by Jacoboni[15], all terms in
(5.24) which correspond to Feynman diagrams that are not connected, end up
canceling, and can accordingly be omitted from the sum. Finally, it is also shown
in the literature[2, 15] that for any connected Feynman diagram with n vertices,
there is exactly n! terms in (5.24) which corresponds to that diagram.

Thus, by the previous two paragraphs, we can omit the terms having discon-
nected diagrams, perform the sums over the n! terms corresponding to the same
diagrams, and finally write (5.24) as

i�G =
∑

(−1)l iUabcΔt

�
· · · iUdef Δt

�

iV i
ghΔt

�
· · ·

iV l
jkΔt

�
(5.25)

× (i�dba) · · · (i�ddc) (i�gfe) · · · (i�ghg),

where the sum runs over all topologically distinct connected Feynman diagrams
with two end points, l is the number of fermion loops in each particular diagram,
and the potential factors and Green’s functions are those represented by the
vertices and lines respectively.

5.1.3 Self energy and the Dyson equation

We now define some terminology. A connected diagram is a diagram containing
no isolated groups. A free index is an index on a vertex which is not connected
to a Green’s function line. A free index diagram is a connected diagram which
has no free endpoints, but which has two free indices. A reducible diagram is a
free index diagram that can be split into two components by removing a single
Green’s function line, in such a way that there is one of the original free indices
on each new component. An irreducible diagram is a free index diagram that is
not reducible.

Any diagram in the expansion (5.25) can be turned into a free index diagram
by removing the two free endpoint lines. If the result is then a reducible diagram,
a single Green’s function line can be removed to obtain two components which
are both free index diagrams. If any of these components are reducible, a single
Green’s function can again be removed to split also this component into two
new free index diagrams. The process can be continued until one is left with a
finite sequence of irreducible diagrams. Thus, the value of any diagram in (5.25)
can be written as

D = (i�gij)Ajk(i�gkl)Blm · · · (i�gpq)Cqr(i�grs), (5.26)
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5. Non-equilibrium Green’s functions

where Ajk, Blm, Cqr · · · represent irreducible diagrams, j, k, l, m, q and r being
the free indices. Thus, (5.25) can be written as

i�Gis =
∞∑

n=1

∑
A1A2···An

(i�gij)A1
jk(i�gkl)A2

lm · · · (i�gpq)An
qr(i�grs), (5.27)

where the factors An
ij correspond to irreducible diagrams, and the second sum is

over all such. We now define

Σs,ij = i�
∑

A

Aij , (5.28)

where the sum is over all irreducible diagrams. We refer to the matrix Σs as the
scattering self energy, in order to distinguish it from the lead self energies Σp.
Inserting (5.28) in (5.27), we get

i�Gis =
∞∑

n=1

∑
jklm···pqr

i�gijΣs,jkgklΣs,lm · · · gpqΣs,qrgrs = i�

∞∑
n=1

[
g(Σsg)n−1]

is
,

(5.29)

which can be reexpressed as

G =
∞∑

n=0
g(Σsg)n = g + gΣs

∞∑
n=0

g(Σsg)n = g + gΣsG. (5.30)

This equation is known as the Dyson equation[2, 15]. With some simple rear-
rangement it can also be expressed as

G = (g−1 − Σs)−1 (5.31)

Defining the total self energy Σ = Σs + Σl, we get by (5.10)

G = (CS − Σl − Σs)−1 = (g−1
S − Σ)−1 = (I − gSΣ)−1gS . (5.32)

5.2 The NEGF equations

5.2.1 Dyson equation as a difference equation

Making use of the last expression in (5.32), we can rewrite the Dyson equation
as (I − gSΣ)G = gS . If we explicitly include the block structure corresponding
to time arguments, this becomes

Gnm −
N−1∑
l=0

N−1∑
p=0

g,SnlΣlpGpm = gS,nm. (5.33)

66



The NEGF equations

Making use of (5.7)-(5.9) it is easy to show that g<
S,nm = 0, g>

S,nm =
e−iHF

S Δt/�g>
S,n−1,m, gt

S,nm = e−iHF
S Δt/�gt

S,n−1,m − i
�

δnm and gt̄
S,nm =

e−iHF
S Δt/�gt̄

S,n−1,m + i
�

δn−1,m. If we define matrices

M =

[
e−iHF

S Δt/� 0
0 e−iHF

S Δt/�

]
, P =

[
I 0
0 0

]
, and Q =

[
0 0
0 I

]
, (5.34)

these relations can be combined in a single matrix expression as

MgS,n−1,m = gS,nm +
i

�
(Pδnm − Qδn−1,m). (5.35)

Now making use of (5.35) and (5.33) to evaluate MGn−1,m − Gnm, we obtain
the difference equation

MGn−1,m − Gnm − i

�

N−1∑
l=0

(PΣnl − QΣn−1,l)Glm =
i

�
(Pδnm − Qδn−1,m).

(5.36)

Since we are interested in the limit N → ∞, we can expand M to the first
order in Δt, to get

M ≈ I − iHF F
S Δt/�, where HF F

S =
[
HF

S 0
0 HF

S

]
. (5.37)

Making use of this approximation, we can rewrite (5.36) as

�i(Gnm − Gn−1,m) − ΔtHF F
S Gn−1,m (5.38)

−
N−1∑
l=0

(PΣnl − QΣn−1,l)Glm = Pδnm − Qδn−1,m.

5.2.2 Contributions to the self energy

Now consider the irreducible diagrams contributing to (5.28). These can be
divided into two classes depending on whether or not the free indices sit on the
same vertex. We will refer to diagrams where the free indices sit on the same
vertex as single vertex diagrams, and those where they sit on different vertices
as double vertex diagrams. In any single vertex diagram, the remaining index
on the free vertex must be attached to a boson line. Analogously to (5.25), one
can show that the sum of all connected diagrams with a single free boson end
point is 〈φi〉 or 〈φ�

i 〉 depending on the type of endpoint. Thus, summing over all
single vertex diagrams we in fact obtain

iΔt

�

∑
k

V k
ij〈φk + φ�

k〉. (5.39)
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Examining (5.19) we see that the vertices always couple fields with the same
superscript. Also keeping in mind the comment below (5.21), we express (5.39)
in matrix form as

iΔt

�

∑
k

[
−V k

ij〈φ+
k + φ+�

k 〉 0
0 V k

ij〈φ−
k + φ−�

k 〉

]
. (5.40)

Further, essentially repeating the arguments leading to (3.35), we see that
〈φ+

k 〉 = 〈φ̂k〉 = 〈φ−
k 〉. Accordingly, we write the sum of all single vertex diagrams

as

− iΔt

�

[
δHF (t) 0

0 −δHF (t)

]
= − iΔt

�
(P − Q)δHF F (t), (5.41)

where

δHF
ij (t) =

∑
k

V k
ij〈φ+

k (t) + φ+�
k (t)〉 =

∑
k

V k
ij〈φ−

k (t) + φ−�
k (t)〉. (5.42)

A diagram in the expansion of 〈φk〉 must contain a free boson line connected
to a vertex, connected to some diagram with two end points. Summing over all
such diagrams, it should be clear that

〈φk〉 =
∑
lmn

(i�dkl)Ulmn(i�Dmn) +
∑
lmn

(i�dkl)V l
mn(i�Gmn). (5.43)

Now we turn to the double vertex diagrams. Each one of the two free vertices
in the diagram is connected to one free fermion line, and one free boson line.
Thus, removing the two free vertices we are left with an irreducible diagram
containing two free boson end points, and two free fermion end points. Since
an analogue of (5.25) applies also to four point functions, we see that these
diagrams are precisely the irreducible diagrams occurring in the expansion of
the four point function 〈

ψiψ̄j(φk + φ�
k)(φl + φ�

l )
〉

. (5.44)

Accordingly, we denote the sum of all such diagrams
〈
ψiψ̄j(φk + φ�

k)(φl + φ�
l )
〉

Irr,
so that summing over all double vertex diagrams we get

(iΔt)2

�2

∑
jklm

V k
ijV l

mn

〈
ψjψ̄m(φk + φ�

k)(φl + φ�
l )
〉

Irr . (5.45)

Again making use of the comment below (5.21), as well as the fact that (5.19)
only couples fields with the same superscript, we can express this in matrix form
as

(iΔt)2

�2

∑
jklm

V k
ijV l

mn

[ 〈
ψ+

j ψ̄+
mx+

k x+
l

〉
Irr −

〈
ψ+

j ψ̄−
mx+

k x−
l

〉
Irr

−
〈
ψ−

j ψ̄+
mx−

k x+
l

〉
Irr

〈
ψ−

j ψ̄−
mx−

k x−
l

〉
Irr

]
, (5.46)
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where we have defined xi(t) = φi(t) + φ�
i (t). Accordingly, we write the sum of

all double vertex diagrams as

− iΔt2

�
Σs(t, t′) = − iΔt2

�

[
Σt

s(t, t′) −Σ<
s (t, t′)

−Σ>
s (t, t′) Σt̄

s(t, t′)

]
, where (5.47)

Σt
s,in(t, t′) = − i

�

∑
jklm

V k
ijV l

mn

〈
ψ+

j (t)ψ̄+
m(t′)x+

k (t)x+
l (t′)

〉
Irr , (5.48)

Σ<
s,in(t, t′) = − i

�

∑
jklm

V k
ijV l

mn

〈
ψ+

j (t)ψ̄−
m(t′)x+

k (t)x−
l (t′)

〉
Irr , (5.49)

Σ>
s,in(t, t′) = − i

�

∑
jklm

V k
ijV l

mn

〈
ψ−

j (t)ψ̄+
m(t′)x−

k (t)x+
l (t′)

〉
Irr , and (5.50)

Σt̄
s,in(t, t′) = − i

�

∑
jklm

V k
ijV l

mn

〈
ψ−

j (t)ψ̄−
m(t′)x−

k (t)x−
l (t′)

〉
Irr . (5.51)

An important approximation to these expressions is the self consistent Born
approximation[2], where one makes the approximation〈

ψjψ̄mxkxl

〉
Irr ≈

〈
ψjψ̄m

〉
〈xkxl〉 = −�

2Gjm(Dkl − D�
lk). (5.52)

This expression can be further approximated by replacing the full Green’s
functions with the unperturbed ones, so that

〈
ψjψ̄mxkxl

〉
Irr ≈ −�

2gjm(dkl −d�
kl).

The latter is referred to simply as the Born approximation.

5.2.3 Continuum limit

Now, inserting the sum of all single vertex diagrams (5.41), and the sum of all
double vertex diagrams (5.47) in (5.28), we get

Σs,nm = Δt (P − Q)δHF F (t)δnm + Δt2Σs(t, t′), (5.53)

where t = nΔt and t′ = mΔt. Combining this with the definition of the total
self energy Σ above (5.32), we have

Σnm = Δt (P − Q)δHF F (t)δnm + Δt2Σ(t, t′), (5.54)

where

Σ(t, t′) = Σs(t, t′) +
∑

p

Σp,nm

Δt2 , (5.55)

with Σpnm given by (5.11). Inserting (5.54) in (5.38), we obtain

�i(Gnm − Gn−1,m) − ΔtHF F
S Gn−1,m (5.56)

−ΔtPδHF F (nΔt)Gnm − ΔtQδHF F (nΔt − Δt)Gn−1,m

−Δt2
N−1∑
l=0

(PΣ(nΔt, lΔt) − QΣ(nΔt − Δt, lΔt))Glm = Pδnm − Qδn−1,m.
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Note that the order of this equation is 1/N , except near n = m, where it is of
order N0. So consider the expression ΔtP (δHF F (nΔt)Gnm − δHF F (nΔt − Δt)
Gn−1,m). Since δH is differentiable as a function of time, and G is differentiable
everywhere except at t = t′, the expression must be of order 1/N2 everywhere
except at n = m, where it is of order 1/N . Thus, the expression is always of
higher order than (5.56), and so it can be added to the left side of the equation
without changing the order of the approximation. Similarly, the expression

Δt2
N−1∑
l=0

Q(Σ(nΔt, lΔt) − Σ(nΔt − Δt, lΔt))Glm (5.57)

is also of order 1/N2, since Σ is differentiable everywhere except at t = t′. Thus,
this expression can also be added to the left side of (5.56). Making both of these
modifications, we obtain

�i(Gnm − Gn−1,m) − ΔtHF F
C (nΔt − Δt)Gn−1,m (5.58)

−Δt2
N−1∑
l=0

(P − Q)Σ(nΔt, lΔt)Glm = Pδnm − Qδn−1,m,

where we have defined HF F
C (t) = HF F

S + δHF F (t).
Multiplying (5.58) by (P − Q)/Δt, and then finally taking the continuum

limit Δt → 0, we obtain the integro-differential equation

(P − Q)
(
�i

∂G

∂t
(t, t′) − HF F

C (t)G(t, t′)
)

−
∫ tf

t0

dt′′ Σ(t, t′′)G(t′′, t′) = δ(t − t′),

(5.59)

If one is to obtain the strictly correct continuum limit of (5.58), one must
take care to make the appropriate interpretation of the delta function in this
expression. Indeed, adopting the standard interpretation of the delta function
will result in slightly modified Green’s functions where the step functions θ in
(3.83) and (3.84) are replaced with step functions θ̃, with θ̃(0) = 1/2 rather than
1. However, since this modification only affects the time ordered and anti time
ordered Green’s functions at t = t′, and since Gt(t, t) and Gt̄(t, t) are never used
in the calculation of expectation values, this consideration is not so important
in practice. Thus, we will in fact make the modification θ → θ̃ to the Green’s
functions discussed in the remainder of the chapter.

We now assume the existence of a finite correlation time τ such that Σ(t, t′) ≈
0 for |t − t′| 
 τ . This allows us to replace the limits on the integral in (5.59)
with ±∞, thereby obtaining[
�i∂t − HF

C (t) 0
0 −�i∂t + HF

C (t)

]
G(t, t′) −

∫ ∞

−∞
dt′′ Σ(t, t′′)G(t′′, t′) = δ(t − t′),

(5.60)

where we have defined the corrected Hamiltonian HF
C (t) = HF

S + δHF (t), and
introduced the short notation ∂t = ∂/∂t. Similar equations can be found in the
literature[2, 15].
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5.2.4 Energy representation

Now we make use of the assumption that the system approaches a steady state,
so that for t 
 t0 all functions depend only on the argument difference t − t′.
Thus, HF

C (t) becomes a constant HF
C , while G and Σ become functions G(t − t′)

and Σ(t − t′). We define energy representations of these functions as Fourier
transforms, i.e. we let

G(E) =
∫ ∞

−∞
dt G(t − t′)eiE(t−t′)/�, (5.61)

while analogous expressions define Σ(E), as well as the component functions
Σp(E), Σ<(E), Gt(E) and so on. Making use of the inverse Fourier transform,
we can invert these relationships, obtaining

G(t − t′) =
1
h

∫ ∞

−∞
dE G(E)e−iE(t−t′)/�, (5.62)

and similar for the other functions.
Taking the Fourier transform of (5.55) and making use of the block decom-

positions of (5.47) and (5.11), we obtain the relationship

Σ(E) =
[

Σt(t, t′) −Σ<(t, t′)
−Σ>(t, t′) Σt̄(t, t′)

]
(5.63)

where

Σt(E) = Σt
s(E) +

∑
p

(
ifp(E)ΓF

p (E) + Σr
p(E)

)
, (5.64)

Σ<(E) = Σ<
s (E) + i

∑
p

fp(E)ΓF
p (E) (5.65)

Σ>(E) = Σ>
s (E) + i

∑
p

(fp(E) − 1) ΓF
p (E), and (5.66)

Σt̄(E) = Σt̄
s(E) +

∑
p

(
ifp(E)ΓF

p (E) − Σa
p(E)

)
. (5.67)

Finally, inserting the inverse Fourier transform of Σ(E) in (5.60), and then
Fourier transforming the entire equation, we obtain[

E − HF
C 0

0 −E + HF
C

]
G(E) − Σ(E)G(E) = I, (5.68)

the energy representation of the Dyson equation.

5.2.5 Component Green’s functions

Making use of (3.81)-(3.84), one easily shows that G<(t, t′)† = −G<(t′, t),
G>(t, t′)† = −G>(t′, t) and Gt(t, t′)† = −Gt̄(t′, t). Fourier transforming these

71



5. Non-equilibrium Green’s functions

relations, we obtain G<(E)† = −G<(E), G>(E)† = −G>(E), and Gt(E)† =
−Gt̄(E). Further, adding (3.83) and (3.84), and keeping in mind the modification
θ → θ̃, we get Gt(t, t′) + Gt̄(t, t′) = G<(t, t′) + G>(t, t′). Fourier transforming
this we obtain

Gt(E) + Gt̄(E) = G<(E) + G>(E). (5.69)

Now we define new Green’s functions

Gr(E) = Gt(E) − G<(E), and (5.70)
Ga(E) = Gt(E) − G>(E), (5.71)

which we refer to respectively as the retarded and advanced Green’s functions.
Making use of (5.69) and the other relations of the previous paragraph, we can
also express these functions as

Gr(E) = G>(E) − Gt̄(E), and (5.72)

Ga(E) = G<(E) − Gt̄(E) = Gr(E)†. (5.73)

Analogously to (5.70) and (5.71), we also define retarded and advanced self
energies respectively as

Σr(E) = Σt(E) − Σ<(E), and (5.74)
Σa(E) = Σt(E) − Σ>(E). (5.75)

Similar expressions define the scattering self energies Σr
s(E) and Σa

s(E).
Inserting the block decompositions of G and Σ given by (3.68) and (5.63) in

(5.68), we get[
E − HF

C − Σt(E) Σ<(E)
Σ>(E) −E + HF

C − Σt̄(E)

] [
Gt(E) G<(E)
G>(E) Gt̄(E)

]
=
[
I 0
0 I

]
, (5.76)

or in terms of the component functions,(
E − HF

C − Σt(E)
)

Gt(E) + Σ<(E)G>(E) = I, (5.77)(
E − HF

C − Σt(E)
)

G<(E) + Σ<(E)Gt̄(E) = 0, (5.78)

Σ>(E)Gt(E) +
(

− E + HF
C − Σt̄(E)

)
G>(E) = 0, and (5.79)

Σ>(E)G<(E) +
(

− E + HF
C − Σt̄(E)

)
Gt̄(E) = I. (5.80)

Subtracting the first two of these equations, and then making use of (5.70), (5.72)
and (5.74), we obtain

(
E − HF

C − Σr(E)
)

Gr(E) = I, and upon inverting

Gr(E) =
(
E − HF

C − Σr(E)
)−1

. (5.81)

Similarly, subtracting (5.79) and (5.80), we find(
E − HF

C + Σt̄(E) − Σ>(E)
)

Gr(E) = I. Then multiplying on the right by
E − HF

C − Σr(E) and making use of (5.81) we get

Σr(E) = Σ>(E) − Σt̄(E), (5.82)
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which in combination with (5.74) yields

Σt(E) + Σt̄(E) = Σ<(E) + Σ>(E). (5.83)

Then combining this with (5.75), we also find

Σa(E) = Σ<(E) − Σt̄(E). (5.84)

Note that (5.83), (5.82) and (5.84) respectively form analogs of (5.69), (5.72)
and (5.73).

Now adding (5.77) and (5.79) and making use of (5.75), (5.84) and (5.71),
we get

(
E − HF

C − Σa(E)
)

Ga(E) = I, and upon inverting

Ga(E) =
(
E − HF

C − Σa(E)
)−1

. (5.85)

By (5.73) we can equate this to the adjoint of (5.81), and upon inverting we get
Σa(E) = Σr(E)†. Making use of (5.74), (5.84), (5.64)-(5.67) and (3.111) we then
also find Σa

s(E) = Σr
s(E)†.

Solving (5.74) and (5.73) for Σt(E) and Gt̄(E) respectively, and then in-
serting the resulting expressions in (5.78), we get

(
E − HF

C − Σr(E)
)

G<(E) −
Σ<(E)Ga(E) = 0. Then finally multiplying this expression on the left by Gr(E),
and making use of (5.81) we obtain

G<(E) = Gr(E)Σ<(E)Ga(E). (5.86)

Together with an expression for the self energies, (5.86) and (5.81) are the only
equations one needs to solve to find all Green’s functions, since the remaining
ones are then easily obtained using the relations (5.70)-(5.73). (5.86) and (5.81)
are identified as the main NEGF equations by Datta[7].

5.3 The spectral density

Following Datta[7], we define the spectral density A(E) in terms of the Green’s
functions introduced above as

A(E) = i (Gr(E) − Ga(E)) . (5.87)

It follows immediately from this definition and (5.73) that A(E) is Hermitian.
Further, making use of the definitions (5.70) and (5.71), we can also express the
spectral density as

A(E) = i
(
G>(E) − G<(E)

)
. (5.88)

Defining

Γ(E) = i (Σr(E) − Σa(E)) , (5.89)
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5. Non-equilibrium Green’s functions

we also have the relations

A(E) = Ga(E)Γ(E)Gr(E) = Gr(E)Γ(E)Ga(E), (5.90)

derivations of which can be found in the book by Datta[7].
Inserting the Fourier representation (5.61) of the Green’s functions in (5.88),

we obtain

A(E) =
∫ ∞

−∞
A(t − t′)eiE(t−t′)/�, (5.91)

where in general we define

A(t, t′) = i
(
G>(t, t′) − G<(t, t′)

)
. (5.92)

Making use of (3.81) and (3.82), we see that

Aij(t, t′) =
1
�

(
〈ψi(t)ψ̄j(t′)〉 + 〈ψj(t′)ψ̄i(t)〉

)
=

1
�

〈{
ψi(t), ψ̄j(t′)

}〉
, (5.93)

meaning that A(t, t′) is in fact the anti-commutator correlation function of the
field operators.

Taking the inverse Fourier transform of (5.91), and making use of the funda-
mental anti-commutation relations of the field operators, we find∫ ∞

−∞

Tr A(E)
2π

dE =
∑

i

�Aii(t, t) =
∑

i

1 = sF , (5.94)

where sF is the total number of fermion single particle states. Thus, it is
reasonable to identify the quantity Tr A(E)/2π with the contribution to sF from
different energies, i.e. the Density of states. In the literature[15, 7] it is in fact
shown that in the absence of many particle interactions

Tr A(E)
2π

=
∑

i

δ(E − Ei), (5.95)

where the sum is over all fermionic single particle states. The quantity on the
right is of course the single particle density of states D(E). Accordingly, we
regard Tr A(E)/2π as a meaningful generalization of the density of states outside
of the single particle approximation, and make the general identification[2]
D(E) = Tr A(E)/2π. Naturally, the diagonal elements Aii(E)/2π are then
identified with the projected density of states Di(E).

Finally, there are some important relations between the various Green’s
functions in equilibrium. These can be derived by once again making use of the
Lehmann representation, as in Section 4.2.4, to obtain equilibrium expressions
for G< and G>. These representations can then be used to find a relationship
between the two Green’s functions, which can be reexpressed in terms of the
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spectral density using (5.88). The details can be found for instance in the book
by Jacoboni[15], who derives the equilibrium relation

G<(E) = if(E)A(E), (5.96)

where f(E) is the Fermi function defined in (3.92). Multiplying (5.96) by
(E − HF

C − Σr(E)) and (E − HF
C − Σa(E)) on the left and right respectively,

and making use of (5.86) and (5.90), we also obtain the equilibrium relation

Σ<(E) = if(E)Γ(E). (5.97)

5.4 Transport expressions

From (3.152) we see that we can calculate the electrical current from the expec-
tation values

〈
ψ̄−

i (E)ψ+
j (E)

〉
and

〈
ψ̄+

i (E)ψ−
j (E)

〉
as

Ip = −e

∫
2πdE

h2(tf − t0)
∑

ij

(
(1 − fp(E)) ΓF

pij(E)
〈
ψ̄−

i (E)ψ+
j (E)

〉
(5.98)

+ fp(E)ΓF
pij(E)

〈
ψ̄+

i (E)ψ−
j (E)

〉 )
.

By (3.101) and (3.102) we have
〈
ψ̄−

i (E)ψ+
j (E)

〉
=
∑
nm

Δt2 〈ψ̄−
n+1,iψ

+
mj

〉
eiE(m−n+1)Δt/�. (5.99)

Making use of (3.82) and taking the limit Δt → 0 this becomes

〈
ψ̄−

i (E)ψ+
j (E)

〉
= −i�

∫ tf

t0

dt

∫ tf

t0

dt′ G<
ji(t′, t)eiE(t′−t)/� (5.100)

≈ −i�

∫ tf

t0

dt

∫ ∞

−∞
dt′ G<

ji(t′ − t)eiE(t′−t)/� = −i�(tf − t0)G<
ji(E),

where we have made use of the assumption that G< has a finite correlation time
to replace the innermost integration limits. In a completely analogous manor,
from (3.81) we also find〈

ψ̄+
i (E)ψ−

j (E)
〉

= −i�(tf − t0)G>
ji(E). (5.101)

Inserting (5.100) and (5.101) back in (5.98), and then making use of (5.88), we
obtain

Ip =
ei

h

∫
dE Tr ΓF

p (E)
(
G<(E) − ifp(E)A(E)

)
. (5.102)

By (3.153), the heat current qp can be decomposed into a bosonic (phonon)
component ql

p and a fermionic (electron) component qe
p such that qp = ql

p + qe
p.
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5. Non-equilibrium Green’s functions

Since we are limiting our discussion to the fermionic sector, we will only consider
the fermionic component, which can be expressed as

qe
p =

∫
2πdE (E − μ)

h2(tf − t0)
∑

ij

(
(1 − fp(E)) ΓF

pij(E)
〈
ψ̄−

i (E)ψ+
j (E)

〉
(5.103)

+ fp(E)ΓF
pij(E)

〈
ψ̄+

i (E)ψ−
j (E)

〉 )
.

Inserting (5.100) and (5.101) in this expression, we obtain in a manor analogous
to the derivation of (5.102)

qe
p = − i

h

∫
dE (E − μ)Tr ΓF

p (E)
(
G<(E) − ifp(E)A(E)

)
. (5.104)

Comparing (5.102) and (5.104) to (2.11) and (2.12), we see that the expres-
sions for Ip and qe

p are respectively on the form of (2.11) and (2.12), with the
energy resolved particle flux ip(E) given by

ip(E) = − i

h
Tr ΓF

p (E)
(
G<(E) − ifp(E)A(E)

)
. (5.105)

This is also the expression presented by Datta[7].
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Chapter 6

Markov and semiclassical
approximations
In this chapter, we will discuss two remaining important transport formalisms,
which are master equations, and the Boltzmann equation. Master equations
apply when the dynamics of the model can be regarded Markovian, i.e. when the
future development depends only on the current state. Typically a Markovian
approximation can be made when the system develops more slowly than some
characteristic non-Markovian time scale. The Boltzmann equation on the other
hand, will apply when in addition to such slow temporal variations, there are
also slow spatial variations, i.e when the system is homogeneous over long length
scales.

In Section 6.1 we will make a Markovian approximation to the NEGF equa-
tions introduced in the previous chapter, and derive a general nonlinear master
equation. The three remaining sections will be devoted to the Boltzmann equa-
tion. For this discussion, we will make use of two important tools known as the
Wigner transform and the Moyal expansion, which are introduced in Section 6.2.
Then, in Section 6.3 we will discuss how these techniques can be generalized, in
such a way that they are applicable to a solid state system with multiple bands.
Finally, in Section 6.4 we discuss how the Boltzmann equation arises within this
context.

6.1 The Markov approximation and the general Master
equation

Combining (3.82) with (3.25), we have

〈A〉 = −i�
∑

ij

AijG<
ij(t, t) = −i�Tr AG<(t, t), (6.1)

for any single particle observable A. Thus, the matrix −i�G<(t, t) plays the role
of a single particle density operator ρe(t), since we then have 〈A〉 = Tr Aρe(t).
An important note however, is that while the trace of the density operator is
usually set to one, in this case we instead have Tr ρe = Nf , the total number
of fermions. One could argue that the latter is in any case a more appropriate
convention when one is dealing with multiple identical particles.

Thus, we make the identification ρe(t) = −i�G<(t, t), and obtain the deriva-
tive

dρe

dt
(t) = −i�

d
dt

(
G<(t, t′)|t=t′

)
= −i�

(
∂

∂t
+

∂

∂t′

)
G<(t, t′)|t=t′ . (6.2)
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6. Markov and semiclassical approximations

Writing out the upper right component of (5.60), we get(
�i

∂

∂t
− HF

C (t)
)

G<(t, t′) =
∫ ∞

−∞
dt′′ (Σr(t, t′′)G<(t′′, t′) + Σ<(t, t′′)Ga(t′′, t′)

)
,

(6.3)

where we have made use of the definition (5.74) and the relation (5.73). Taking
the adjoint of (6.3), and then interchanging the time arguments, we obtain also
an equation involving the other time derivative:

�i
∂

∂t′ G<(t, t′) + G<(t, t′)HF
C (t′) = (6.4)

−
∫ ∞

−∞
dt′′ (Gr(t, t′′)Σ<(t′′, t′) + G<(t, t′′)Σa(t′′, t′)

)
.

Here we have made use some relations concerning the adjoint of Green’s functions,
all of which either appear in the beginning of Section 5.2.5, or are easily obtained
from relations appearing there.

Finally adding (6.3) and (6.4), we get by (6.2)

−dρe

dt
(t) − i

�
[HF

C (t), ρe(t)] =
∫ ∞

−∞
dt′′ (Σr(t, t′′)G<(t′′, t) − G<(t, t′′)Σa(t′′, t))

−
∫ ∞

−∞
dt′′ (Gr(t, t′′)Σ<(t′′, t) − Σ<(t, t′′)Ga(t′′, t)).

(6.5)

To proceed further, we will once more make use of the assumption that
the various Green’s functions have finite correlation times τ , and that they
are essentially zero whenever the time arguments are further apart than this
characteristic time scale, i.e. when |t − t′| 
 τ . We also assume that these
correlation times are typically different for the different Green’s functions, so
that we have separate correlation times τ<

F , τ r
F , τ<

B , τ r
B and so on, corresponding

to the Green’s functions G<, Gr, D<, Dr and so on. The Markov approximation
is based upon the assumption that the correlation time τ<

F of the lesser Green’s
function G< is much larger than all other significant time scales. In particular,
we then assume τ<

F 
 τ r
B and τ<

B . These conditions essentially amount to the
assumption that scattering interactions are sufficiently weak.

The important aspect of this assumption, is that Σr and Σa will only be signif-
icantly different from zero in a range where G< is approximately constant. Thus,
on the right hand side of (6.5), we may approximate G<(t, t′′) ≈ G<(t′′, t) ≈
G<(t, t). Doing this, we find∫ ∞

−∞
dt′′ (Σr(t, t′′)G<(t′′, t) − G<(t, t′′)Σa(t′′, t)

)
≈ R(t)ρe(t) + ρe(t)R†(t),

(6.6)

where we have defined

R(t) = − i

�

∫ ∞

−∞
dt′Σr(t, t′). (6.7)
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By the discussion in Section 5.1.2 and 5.1.3, the self energies Σr and Σ< can
be expressed as integrals involving products of the various Green’s functions.
In these expression also, we can apply the Markov approximation to exchange
factors of G< with a factor of ρe(t). Thus, if ρe is known at t, the self energy
expressions together with (5.81) forms a self contained set of equations which
can be solved for Σr(t, t′), Σ<(t, t′) and Gr(t, t′) without needing any more
information about G<. Accordingly, we can express the solutions as functions of
ρe, so that Σr = Σr(ρe, t − t′), Σ< = Σ<(ρe, t − t′) and Gr = Gr(ρe, t − t′). We
are here assuming time independent dynamics, so that the solutions must be
invariant under time translation. Inserting for instance the expression for Σr in
(6.7), we have

R(t) = − i

�

∫ ∞

−∞
dt′Σr(ρe(t), t − t′) = R(ρe(t)), (6.8)

so that the matrix R is also some function of ρe. Likewise, for the last integral
in (6.5), we have∫ ∞

−∞
dt′′ (Gr(t, t′′)Σ<(t′′, t) − Σ<(t, t′′)Ga(t′′, t)) (6.9)

=
∫ ∞

−∞
dt′′ (Gr(ρe, t − t′′)Σ<(ρe, t′′ − t) − Σ<(ρe, t − t′′)Ga(ρe, t′′ − t)) = S(ρe(t)).

Finally, combining (5.42) and (5.43), we see that we do not need to apply the
Markov approximation to the expression for δHF , since it already only involves
G<(t, t). Accordingly, HF

C (t) = HF
S + δHF (ρe) = HF

C (ρe), and we can write
(6.5) simply as

−dρe

dt
− i

�
[HF

C (ρe), ρe] = R(ρe)ρe + ρeR†(ρe) − S(ρe). (6.10)

It makes sense to rewrite this expression by separating out the Hermitian and
anti-Hermitian components of the Matrix R. Thus, we write

R =
1
2

Γ +
i

�
δHF

M , (6.11)

where Γ and δHF
M are both Hermitian matrices. Inserting this in (6.10), we

finally obtain the general Markovian nonlinear master equation
dρe

dt
= − i

�
[He(ρe), ρe] − 1

2
{Γ(ρe), ρe} + S(ρe). (6.12)

Here curly brackets denote anti commutation, and

He(ρe) = HF
C (ρe) + δHF

M (ρe) = HF
S + δHF (ρe) + δHF

M (ρe). (6.13)

From (6.7) and (6.11) it should be clear that

δHM (ρe) = −1
2

∫ ∞

−∞
dt′ (Σr(ρe, t − t′) + Σa(ρe, t′ − t)) , while (6.14)

Γ(ρe) = − i

�

∫ ∞

−∞
dt′ (Σr(ρe, t − t′) − Σr(ρe, t′ − t)) . (6.15)
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6.2 The Weyl-Wigner transform

6.2.1 Weyl quantization

The subject of this section is the Weyl and Wigner transforms. The introduction
of the Weyl transform in particular, can be motivated from the problem of
quantization, which concerns how one may transform a function g(x, p) defined
in classical phase space, into a corresponding Hilbert space operator ĝ = g(x̂, p̂).
Quantization is a simple procedure when the involved function is a simple
polynomial where all terms contain only one of the variables x or p. One may
then simply replace these variables with the corresponding operators, replacing
for instance the term p2 with p̂2 and so on. However, if we generalize the
situation simply by including cross terms in x and p, the problem becomes more
complex. Since the operators x̂ and p̂ do not commute, there will in general be
several inequivalent ways to represent such cross terms as operators[14]. And if
the function g is not even analytic, the problem becomes even more difficult.

The procedure known as Weyl quantization seeks to resolve these problems by
employing a Fourier transform[13]. Taking the Fourier transform of the function
g, and then the inverse Fourier transform of the result, we obtain

g(x′, p′) =
1

(2π)6

∫
d3k

∫
d3r

∫
d3x

∫
d3p g(x, p)eik·(x′−x)−i(p′−p)·r. (6.16)

From this expression it is a simple matter to obtain a Hilbert space operator
g(x̂, p̂) by simply substituting x′ and p′ with x̂ and p̂. Thus, we obtain the
expression

ĝ = g(x̂, p̂) =
1

(2π)6

∫
d3k

∫
d3r

∫
d3x

∫
d3p g(x, p)eik·(x̂−x)−i(p̂−p)·r,

(6.17)

which is well defined for any Fourier transformable function g. The operator ĝ is
referred to as the Weyl transform of the function g.

It will also be convenient to have more direct expressions for the Weyl
transform, in terms of the position and momentum bases. To obtain these, we
make use of the Baker-Campbell-Hausdorff theorem[15, 24], which states

eik·x̂e−ip̂·r = eik·x̂−ip̂·r+�ik·r/2, (6.18)

to reexpress (6.17) as

ĝ =
1

(2π)6

∫
d3k

∫
d3r

∫
d3x

∫
d3p g(x, p)e−ik·�r/2eik·(x̂−x)e−i(p̂−p)·r.

(6.19)

Making use of the position and momentum bases respectively, we have

eik·x̂ =
∫

d3y eik·y|y〉〈y|, and (6.20)

e−ip̂·r =
∫

d3q e−iq·r|q〉〈q|. (6.21)
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Inserting (6.20) in (6.19) we obtain after making use of the Fourier representation
of the delta function to integrate over k and y,

ĝ =
1
h3

∫
d3x′

∫
d3x

∫
d3p g(x, p)|x + x′/2〉〈x + x′/2|e−i(p̂−p)·x′/�, (6.22)

where x′ = r/�. Making use of the translation formula eip̂·x′/�|x〉 = |x − x′〉,
we find in particular 〈x + x′/2|e−i(p̂−p)·x′/� = 〈x − x′/2|eip·x′/�. Inserting this
back in (6.22), we finally obtain

ĝ =
1
h3

∫
d3x′

∫
d3x

∫
d3p eip·x′/�g(x, p)|x + x′/2〉〈x − x′/2|, (6.23)

where the Weyl transform is expressed in terms of the position basis. Instead
inserting (6.21) in (6.19), and essentially repeating the steps above, we can also
express the Weyl transform in the momentum basis, as

ĝ =
1
h3

∫
d3x

∫
d3p

∫
d3p′ e−ip′·x/�g(x, p)|p + p′/2〉〈p − p′/2|. (6.24)

6.2.2 The Wigner transform, and the Wigner distribution

Starting from (6.23), and making use of the delta function normalization 〈x|x′〉 =
δ(x − x′), as well as the Fourier representation of the delta function, one can
show that

g(x, p) =
∫

d3x′ e−ip·x′/�〈x + x′/2|ĝ|x − x′/2〉. (6.25)

Thus, (6.25) gives the inverse of the Weyl transform, which is referred to as
the Wigner transform[15]. The Wigner transform can also be expressed in the
momentum basis. Indeed, starting from (6.24) we find in a similar manner

g(x, p) =
∫

d3p′ eip′·x/�〈p + p′/2|ĝ|p − p′/2〉. (6.26)

Clearly, the Wigner transform simplifies significantly if ĝ is diagonal in either
the position or momentum bases. That is, if 〈x|ĝ|x′〉 = g(x)δ(x − x′) or
〈p|ĝ|p′〉 = g(p)δ(p − p′). By (6.25) and (6.26), we have respectively in these
two cases simply g(x, p) = g(x) and g(x, p) = g(p). In particular, since
〈x|I|x′〉 = δ(x − x′), the Wigner transform of the identity operator is 1.

Assume now that we are given two operators Â and B̂, whose Wigner
transforms are respectively AW (x, p) and BW (x, p). Then making use of (6.23)
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and (6.25), we can write the trace of the product of the two operators as

Tr ÂB̂ = Tr
1
h3

∫
d3x′

∫
d3x

∫
d3p eip·x′/�AW (x, p)|x + x′/2〉〈x − x′/2|B̂

=
1
h3

∫
d3x

∫
d3p AW (x, p)

∫
d3x′ eip·x′/�〈x − x′/2|B̂|x + x′/2〉

=
1
h3

∫
d3x

∫
d3p AW (x, p)

∫
d3x′ e−ip·x′/�〈x + x′/2|B̂|x − x′/2〉

=
1
h3

∫
d3x

∫
d3p AW (x, p)BW (x, p). (6.27)

In particular, since the Wigner transform of I is 1, we get the important special
case

Tr Â =
1
h3

∫
d3x

∫
d3p AW (x, p). (6.28)

It should also be noted that the Wigner transform preserves the adjoint operation.
Indeed, we have

AW (x, p)� =
∫

d3x′ eip·x′/�〈x − x′/2|Â†|x + x′/2〉 (6.29)

=
∫

d3x′ e−ip·x′/�〈x + x′/2|Â†|x − x′/2〉,

which is the Wigner transform of Â†.
The Wigner transform of the density operator is referred to as the Wigner

distribution, and denoted fW . That is, we have[15, 29, 25]

fW (x, p) =
∫

d3x′ e−ip·x′/�〈x + x′/2|ρ̂|x − x′/2〉. (6.30)

Since the Wigner transform preserves the adjoint operation, it follows from the
Hermiticity of ρ̂ that fW (x, p) is a real function. However, it does not follow from
the positive definiteness of ρ̂ that the Wigner distribution is necessarily positive,
and in general this is not the case. But in the special cases where ρ̂ is diagonal
in the position or momentum basis, fW (x, p) will be positive, since in those
cases we respectively have fW (x, p) ∼ 〈x|ρ̂|x〉 ≥ 0 and fW (x, p) ∼ 〈p|ρ̂|p〉 ≥ 0.

From (6.28) together with our choice of normalization Tr ρ̂ = Nf , we find

1
h3

∫
d3x

∫
d3p fW (x, p) = Nf . (6.31)

Further, by (6.27) we have for any observable A

〈A〉 = Tr ρ̂Â =
1
h3

∫
d3x

∫
d3p fW (x, p)AW (x, p). (6.32)

Thus, the Wigner function plays the role of a probability distribution in phase
space. However, fW is not fully interpretable as a probability distribution, since
as mentioned it does not generally have to be positive.
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The Weyl-Wigner transform

6.2.3 The Moyal product and the Moyal expansion

In order to express equations of motion for the Wigner distribution, we will
need to find the Wigner transform of a product of Weyl transforms. That is,
if Â and B̂ are respectively the Weyl transforms of A(x, p) and B(x, p), we
need an expression for the Wigner transform of ÂB̂. This object is referred to
as the Moyal product of the functions A and B, and denoted A � B[2, 10, 25].
Making use of (6.23) and (6.25), and then repeated use of the delta function
normalization of the position basis and the Fourier representation of the delta
function to integrate away the dummy variables, we eventually end up with the
integral representation

(A � B)(x, p) (6.33)

=
16
h6

∫∫
d3yd3qd3rd3q′ e2i(q′−p)·(y−x)/�−2i(q−p)·(r−x)/�A(y, q)B(r, q′)

of the Moyal product. If either both A and B are independent of x, or both A
and B are independent of p, then the Moyal product simplifies to an ordinary
product, so that (A � B)(x, p) = A(x, p)B(x, p).

In a closed system the density matrix obeys the Von Neumann equation

dρ̂

dt
= − i

�
[Ĥ, ρ̂]. (6.34)

Taking the Wigner transform of both sides of this equation, we obtain the
equation

∂f

∂t

W

= − i

�
(H � fW − fW � H) =

{{
H, fW

}}
, (6.35)

where H is the Wigner transform of the Hamiltonian Ĥ, and we have introduced
the Moyal bracket, defined by the expression

{{A, B}} =
A � B − B � A

i�
. (6.36)

If the system instead obeys the master equation (6.12), we obtain the modified
equation

∂f

∂t

W

=
{{

H, fW
}}

− 1
2
(
ΓW � fW + fW � ΓW

)
+ S[fW ], (6.37)

where ΓW and S[fW ] are respectively the Wigner transforms of the operators Γ
and S(ρ) appearing in (6.12).

Systematic approximations to these equations can be obtained by expressing
the Moyal product in terms of a differential expansion. To find this expansion,
we start by Taylor expanding the functions A and B in x:

A(x + y, q) =
∞∑

n=0

1
n!
∑

i1···in

∂nA

∂xi1 · · · ∂xin

(x, q)yi1yi2 · · · yin
, (6.38)
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and similarly for B

B(x + r, q′) =
∞∑

m=0

1
m!

∑
i1···im

∂mB

∂xi1 · · · ∂xim

(x, q′)ri1ri2 · · · rim
. (6.39)

At this point it becomes highly simplifying to introduce left acting differential
operators. Thus, we define operators

←−
∂

∂x by the relation

f(x)
←−
∂

∂x
=

∂

∂x
f(x). (6.40)

To make the distinction as clear as possible, we will in this context also write
the ordinary right acting differential operator as

−→
∂

∂x . Thus, for functions f(x)
and g(x), we have

f(x)
←−
∂

∂x
g(x) =

∂f

∂x
(x)g(x), while (6.41)

f(x)
−→
∂

∂x
g(x) = f(x)

∂g

∂x
(x). (6.42)

With these definitions, one can start with (6.38) and verify that

e2i(q′−p)·y/�A(x + y, q) =
∞∑

n=0

1
n!

A(x, q)

(
i�

2

←−
∂

∂x
·

−→
∂

∂p

)n

e2i(q′−p)·y/�, (6.43)

while similarly, one can use (6.39) to verify that

e−2i(q−p)·r/�B(x + r, q′) =
∞∑

m=0

1
m!

e−2i(q−p)·r/�

(
− i�

2

←−
∂

∂p
·

−→
∂

∂x

)m

B(x, q′).

(6.44)

Inserting both these expressions in (6.33), and then again making use of the
Fourier representation of the delta function to perform the remaining integrals,
we obtain the differential expansion

(A � B)(x, p) (6.45)

=
∞∑

n=0

∞∑
m=0

1
n!m!

A(x, p)

(
i�

2

←−
∂

∂x
·

−→
∂

∂p

)n(
− i�

2

←−
∂

∂p
·

−→
∂

∂x

)m

B(x, p).

Reindexing the sum, and using the binomial theorem, we can simplify the
expression further as

(A � B)(x, p) (6.46)

=
∞∑

N=0

1
N !

A(x, p)
N∑

m=0

(
N

m

)(
i�

2

←−
∂

∂x
·

−→
∂

∂p

)N−m(
− i�

2

←−
∂

∂p
·

−→
∂

∂x

)m

B(x, p)

=
∞∑

N=0

1
N !

A(x, p)
(

i�

2

)N
(←−

∂

∂x
·

−→
∂

∂p
−

←−
∂

∂p
·

−→
∂

∂x

)N

B(x, p).
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Thus, interpreting the exponential function as its Taylor expansion, we have
the formal identity

A � B = A

[
exp

i�

2

(←−
∂

∂x
·

−→
∂

∂p
−

←−
∂

∂p
·

−→
∂

∂x

)]
B, (6.47)

in agreement with typical literature expressions[2]. To save some space we now
introduce the short notation

←−
∂ q

−→
∂ r =

−→
∂ r

←−
∂ q =

←−
∂

∂q ·
−→
∂

∂r =
−→
∂

∂r ·
←−
∂

∂q . (6.47) can

then be written as A � B = A e
i�
2 (←−

∂ x
−→
∂ p−←−

∂ p
−→
∂ x)B. The reverse Moyal product

B � A can then be evaluated as

B � A = B e
i�
2 (←−

∂ x
−→
∂ p−←−

∂ p
−→
∂ x)A = A e

i�
2 (−→

∂ x
←−
∂ p−−→

∂ p
←−
∂ x)B (6.48)

= A e
i�
2 (←−

∂ p
−→
∂ x−←−

∂ x
−→
∂ p)B = A e− i�

2 (←−
∂ x

−→
∂ p−←−

∂ p
−→
∂ x)B.

Accordingly, the Moyal bracket of (6.36) can be written as

{{A, B}} = A
e

i�
2 (←−

∂ x
−→
∂ p−←−

∂ p
−→
∂ x) − e− i�

2 (←−
∂ x

−→
∂ p−←−

∂ p
−→
∂ x)

i�
B (6.49)

=
2
�

A

(
sin

�

2
(
←−
∂ x

−→
∂ p − ←−

∂ p
−→
∂ x)

)
B,

where the sine function is also to be interpreted as its Taylor expansion. In
particular, the Wigner transformed Von Neumann equation (6.35) then becomes

∂f

∂t

W

=
2
�

H

(
sin

�

2
(
←−
∂ x

−→
∂ p − ←−

∂ p
−→
∂ x)

)
fW . (6.50)

The Moyal anti-commutator A � B + B � A can be evaluated in a similar manor,
yielding

A � B + B � A

2
= A

(
cos

�

2
(
←−
∂ x

−→
∂ p − ←−

∂ p
−→
∂ x)

)
B, (6.51)

and accordingly we can write the Wigner transformed master equation (6.37) as

∂f

∂t

W

=
2
�

H
(

sin
�

2
(
←−
∂ x

−→
∂ p − ←−

∂ p
−→
∂ x)

)
fW (6.52)

− ΓW
(

cos
�

2
(
←−
∂ x

−→
∂ p − ←−

∂ p
−→
∂ x)

)
fW + S[fW ].

6.3 Multi-band systems

6.3.1 Bloch states, Wannier states and Envelope transformations

The purpose of this section is to generalize the Wigner transform to multi-
band systems. This will be done by utilizing a technique known as envelope
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transformations or envelope functions, which will seamlessly merge the concept
of band structures with the formalism introduced above. Since band structure
arises in systems with a periodic potential, we begin by discussing such systems,
and some mathematics which naturally arises there.

Consider a single particle in tree dimensions, having the Hamiltonian

Ĥ =
p̂2

2m
+ V (x̂), (6.53)

where V (x) is a potential satisfying the periodic conditions

V (x) = V (x + bi), i ∈ {1, 2, 3}. (6.54)

One can then show that the eigenstates |ψ〉 of the system must themselves
satisfy[11]

〈x + bi|ψ〉 = eik·bi〈x|ψ〉, i ∈ {1, 2, 3}. (6.55)

Such states are known as Bloch states, and the vector k as the vector of Bloch
indices, or alternatively, as the crystal momentum. The Bloch states are denoted
|n, k〉, where n is the band index, needed to distinguish different Bloch states
with the same crystal momentum.

Starting with a basis of Bloch states, one can define so called Wannier states[2]
as

|n, j〉 =
∫

B

d3k√
VB

e−ik·xj+iθ(k)|n, k〉, (6.56)

where j is a vector of integers, xj = j1b1 +j2b2 +j3b3, B = {k : |k ·bi| ≤ π}, VB

is the volume of B, and θ is some function of k. The definition can be inverted
to obtain the relation

1√
VB

∑
j

eik′·xj−iθ(k′)|n, j〉 =
∑

j

∫
B

d3k

VB
ei(k′−k)·xj−iθ(k′)+iθ(k)|n, k〉 = |n, k′〉.

(6.57)

Using the defining property of the Bloch states, we find that the Wannier
states satisfy the relation

〈x|n, j〉 =
∫

B

d3k√
VB

e−ik·xj+iθ(k)−ik·xj′−j 〈x + xj′−j |n, k〉 = 〈x + xj′−j |n, j′〉,

(6.58)

meaning that different Wannier states of any single band are related by transla-
tion.

If we assume the Bloch states to be delta function normalized, so that
〈n, k|m, k′〉 = δnmδ(k − k′) and I =

∑
n

∫
B

d3k |n, k〉〈n, k|, then making use of
(6.56) and its inverse (6.57), it is straight forward to show that

I =
∑
nj

|n, j〉〈n, j|, (6.59)
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while 〈n, j′|m, j〉 = δnmδjj′ . Thus, the Wannier states form an orthonormal
basis. In particular, the fact that they are orthonormal means they must be
localized, and accordingly the Wannier state basis is a basis of localized states,
which is invariant under translations that respect the periodic symmetry.

Finally, we define envelope operators Ên as

Ên = �
3/2
∫

B

d3k e−iθ(k)|�k〉〈n, k|, (6.60)

where |�k〉 is the momentum state with momentum p = �k. Given a state
|ψ〉, we refer to Ên|ψ〉 as an envelope transformation of |ψ〉. The functions
ψE

n (x) = 〈x|Ên|ψ〉 are referred to as envelope functions[4]. These satisfy

ψE
n (x) = �

3/2
∫

B

d3k e−iθ(k)〈x|�k〉〈n, k|ψ〉 =
∫

B

d3k

(2π) 3
2

eik·x−iθ(k)〈n, k|ψ〉.

(6.61)

Thus, the envelope functions are in fact Fourier transforms of functions which
are zero for k /∈ B. Crucially, this means that the envelope functions are almost
always more smooth than the wave function ψ(x) = 〈x|ψ〉. Further, we have in
particular

ψE
n (xj) =

∫
B

d3k

(2π) 3
2

eik·xj−iθ(k)〈n, k|ψ〉 =
√

VB

2π
〈n, j|ψ〉. (6.62)

This tells us both that there is an important relationship between envelope
transformations and Wannier states, and by (6.59) also that all information
about the wave function is contained in the value of the envelope functions at
the discrete set of points xj .

It is easily seen that the envelope operators satisfy Ê†
nÊn = P̂n and ÊnÊ†

m =
δnmP̂B, where P̂n and P̂B are projection operators such that P̂n|m, k〉 =
δnm|m, k〉, while P̂B |p〉 = |p〉 if p/� ∈ B and zero otherwise. We then also
have ∑

n

Ê†
nÊn = I. (6.63)

Given an operator Â, we refer to ÊnÂÊ†
m as an envelope transformation of Â.

Using (6.63) we have

Tr Â =
∑

n

Tr Ê†
nÊnÂ =

∑
n

Tr ÊnÂÊ†
n. (6.64)

Further, we also have

ÊnÂB̂Ê†
m =

∑
l

ÊnÂÊ†
l ÊlB̂Ê†

m. (6.65)
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Combining (6.64) and (6.65) we get

Tr ÂB̂ =
∑
nm

Tr ÊnÂÊ†
mÊmB̂Ê†

n (6.66)

so that in particular

〈A〉 = Tr Âρ̂ =
∑
nm

Tr Ênρ̂Ê†
mÊmÂÊ†

n. (6.67)

6.3.2 The multi-band Wigner transformation

We now define a multi-band version of the Wigner transform, as the composition
of the standard Wigner transform with an envelope transformation. That is,
given an operator Â, we combine (6.60) and (6.26), defining

Aw
nm(x, k)= (ÊnÂÊ†

m)W (x, �k) =
∫

d3p′ eip′·x/�〈�k + p′/2|ÊnÂÊ†
m|�k − p′/2〉

= 8
∫∫

B2
d3k′d3k′′ ei(k−k′′)·x/�〈n, k′|Â|m, k′′〉δ(k′ + k′′ − 2k). (6.68)

We also define Aw(x, k) as the matrix with elements Aw
nm(x, k). Similar defini-

tions, as well as analogs to the derivations below, can be found in the literature[3].
Like the standard Wigner transform, the multi-band Wigner transform re-

spects the adjoint operation. Indeed, (A†)w
nm = (ÊnÂ†Ê†

m)W = ((ÊmÂÊ†
n)†)W =

(ÊmÂÊ†
n)W � = Aw�

mn = (Aw†)nm. Further, for k′, k′′ ∈ B we have |(k′+k′′)·bi| ≤
|k′ · bi| + |k′ · bi| ≤ 2π, so that also (k′ + k′′)/2 ∈ B. Thus, because of the delta
function in (6.68), we must have Aw(x, k) = 0 whenever k /∈ B. Making use of
this together with (6.64) and (6.28), we get

Tr Â =
∑

n

∫
d3x

∫
d3k

(2π)3 Aw
nn(x, k) =

∫
d3x

∫
B

d3k

(2π)3 Tr Aw(x, k). (6.69)

Similarly, we can combine (6.66) and (6.27) to get

Tr ÂB̂ =
∫

d3x

∫
B

d3k

(2π)3 Tr Aw(x, k)Bw(x, k). (6.70)

Finally, using (6.65) we have

(ÂB̂)w
nm = (ÊnÂB̂Êm)W =

∑
l

(ÊnÂÊ†
l ÊlB̂Ê†

m)W (6.71)

=
∑

l

(ÊnÂÊ†
l )W � (ÊlB̂Ê†

m)W =
∑

l

Aw
nl � Bw

lm.

Thus, defining a matrix Moyal product by (A � B)nm =
∑

l Anl � Blm, we have

(ÂB̂)w = Aw � Bw. (6.72)
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Making use of the differential expansion (6.47), we can write the matrix Moyal
product as

(A � B)nm =
∑

l

Anl � Blm =
∑

l

Anle
i
2 (←−

∂ x
−→
∂ k−←−

∂ k
−→
∂ x)Blm (6.73)

= (A e
i
2 (←−

∂ x
−→
∂ k−←−

∂ k
−→
∂ x)B)nm.

However, since the ordinary matrix product is not commutative, the matrix
Moyal bracket does not take the simple form of (6.49). But under the assumption
that both A and B are Hermitian, we can instead write it as

{{A, B}} =
Ae

i
2 (←−

∂ x
−→
∂ k−←−

∂ k
−→
∂ x)B − Be

i
2 (←−

∂ x
−→
∂ k−←−

∂ k
−→
∂ x)A

i�
(6.74)

=
Ae

i
2 (←−

∂ x
−→
∂ k−←−

∂ k
−→
∂ x)B − (Ae

i
2 (←−

∂ x
−→
∂ k−←−

∂ k
−→
∂ x)B)†

i�
=

2
�

Im Ae
i
2 (←−

∂ x
−→
∂ k−←−

∂ k
−→
∂ x)B,

where for any matrix X we define Im X as the anti-Hermitian component
(X − X†)/2i.

Generalizing the proceedings of Section 6.2.2 in the obvious manor, we define
the multi-band Wigner distribution as the multi-band Wigner transform of the
density operator:

ρw
nm(x, k) =

∫
d3p′ eip′·x/�〈�k + p′/2|Ênρ̂Ê†

m|�k − p′/2〉. (6.75)

Since the multi-band Wigner transform respects the adjoint, ρw is a Hermitian
matrix. Further, by (6.69) and (6.70) we have

Nf =
∫

d3x

∫
B

d3k

(2π)3 Tr ρw(x, k) and (6.76)

〈A〉 =
∫

d3x

∫
B

d3k

(2π)3 Tr ρw(x, k)Aw(x, k). (6.77)

Taking the multi-band Wigner transform of the Von Neumann equation 6.34,
and making use of the fact that both Hw and ρw are Hermitian, we find

∂ρ

∂t

w

= {{Hw, ρw}} =
2
�

Im Hwe
i
2 (←−

∂ x
−→
∂ k−←−

∂ k
−→
∂ x)ρw. (6.78)

Applying the same procedure to the Master equation (6.12), we find

∂ρ

∂t

w

= {{Hw, ρw}} − 1
2

(Γw � ρw + ρw � Γw) + Sw[ρw] (6.79)

=
2
�

Im Hwe
i
2 (←−

∂ x
−→
∂ k−←−

∂ k
−→
∂ x)ρw − Re Γwe

i
2 (←−

∂ x
−→
∂ k−←−

∂ k
−→
∂ x)ρw + Sw[ρw],

where we define Re X as the Hermitian component (X + X†)/2.
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6.4 Classical limit and the Boltzmann equation

In the classical limit � → 0, we identify the Wigner distribution fW (x, p) with
the classical distribution function f(x, p). Taking the limit � → 0 of the Wigner
transformed Von Neumann equation (6.50), amounts to keeping only the terms
of the differential expansion that are of order zero in �. Thus, we obtain the
classical Liouville equation

∂f

∂t
= H(

←−
∂ x

−→
∂ p − ←−

∂ p
−→
∂ x)f =

∂H

∂x
· ∂f

∂p
− ∂H

∂p
· ∂f

∂x
. (6.80)

Applying the same procedure to (6.52), we obtain the Boltzmann equation

∂f

∂t
=

∂H

∂x
· ∂f

∂p
− ∂H

∂p
· ∂f

∂x
− Γf + S[f ], (6.81)

where ΓW has also been identified with a classical function Γ.
Since the terms of order zero in � are also the lowest order terms in the

differential expansion, the classical limit amounts to an assumption that all
functions are slowly varying with x or p. Of these, the easiest to justify is slow
variations with x. However, in a solid state system this assumption is in fact not
justified, since the potential has large variations at an atomic size scale. However,
we may get around this by first applying a set of envelope transformations, since
these will normally smoothen the state, and if appropriately selected, also the
potential.

Applying the Wigner transform after such envelope transformations, we are
of course actually applying the multi-band Wigner transformation. Thus, when
taking the limit of slow variation with x, it is more appropriate to start out with
(6.79). Keeping only the terms of differential order zero and two, we obtain

∂ρ

∂t

w

= − i

�
[Hw, ρw] − 1

2
{Γw, ρw} +

1
�

Re Hw(
←−
∂ x

−→
∂ k − ←−

∂ k
−→
∂ x)ρw (6.82)

+
1
�

Im Γw(
←−
∂ x

−→
∂ k − ←−

∂ k
−→
∂ x)ρw + Sw[ρw].

In order to obtain a multi-band version of the Boltzmann equation, we must
transform this equation into a corresponding diagonal format. We do this by
making use of a first order perturbation argument. Thus, we begin by making
the decompositions Hw = H0 + ΔH, Γw = Γ0 + ΔΓ and ρw = ρ0 + Δρ, where
in all cases the matrix with subscript 0 is the diagonal component of the matrix
on the left. We also define S0[g] as the diagonal component of the functional
Sw[g]. Then defining the functional

Λ[g] = − i

�
[ΔH, g] − 1

2
{ΔΓ, g} + Sw[g] − S0[ρ0] (6.83)

+
1
�
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∂ x)g +
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Im Γw(
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−→
∂ k − ←−

∂ k
−→
∂ x)g,
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we can write (6.82) as

∂ρ

∂t

w

= − i

�
[H0, ρw] − 1

2
{Γ0, ρw} + Λ[ρw] + S0[ρ0]. (6.84)

Now we will make the assumption that the magnitude of the functional Λ is in
some sense small, and the ansatz that this causes the non-diagonal component
Δρ to be small as well. Thus, we can make a linear expansion of Sw[ρw] in Δρ.
Further, since both Λ and Δρ are small, any term in Λ[ρw] containing Δρ will
in fact be second order, and so to the first order we can make the substitution
Λ[ρw] = Λ[ρ0] in (6.84). In particular, for the non-diagonal element ρnm of ρw

we then get

∂ρnm

∂t
= − i

�
(En − Em)ρnm − 1

2
(Γn + Γm)ρnm + Λ[ρ0]nm, (6.85)

where En and Γn are respectively the elements of the diagonal matrices H0 and
Γ0. Noting that Γn < 0 would cause an unphysical exponential growth of some
ρnm, we will assume Γn > 0. (6.85) then implies that effects of the initial value
of ρnm will quickly die out, and that we will be left with the long term solution

ρnm =
∫ t

−∞
dt′ e− i

�
(En−Em)(t−t′)− 1

2 (Γn+Γm)(t−t′)Λ(t′)nm, (6.86)

where we have defined Λ(t) = Λ[ρ0(t)]. Assuming that the frequency (En−Em)/�
is much faster than the temporal variations of Λ, there will be a significant
cancellation between different regions of the integral, and the leading contribution
will come from the region t′ ≈ t, where the exponential is decreasing most rapidly.
Thus, we may substitute Λ(t′) ≈ Λ(t), obtaining

ρnm(t) =
Λ(t)nm

i(En − Em)/� + (Γn + Γm)/2
. (6.87)

Accordingly, we have verified the ansatz that small values of Λ will cause the
non-diagonal component of ρw to be small, and we have identified the precise
condition as �Λ(t)nm � |En − Em|.

Finally, we turn to the diagonal elements of (6.84). Denoting the diagonal
elements of ρw as fn, the diagonal elements of S[ρ0] as Sn[f ], and keeping in
mind that we are still making the substitution Λ[ρw] = Λ[ρ0], we obtain

∂fn

∂t
=

1
�

∂En

∂x
· ∂fn

∂k
− 1

�

∂En

∂k
· ∂fn

∂x
− Γnfn + Sn[f ], (6.88)

which is a multi-band generalization of the Boltzmann equation (6.81). It is
common to approximate the scattering term Sn[f ] as a functional which is linear
and local in x. Thus, introducing the integral kernel Γnm(k, k′), we have[15]

Sn[f ](x, k) =
∑
m

∫
d3k′ Γnm(k, k′)fm(x, k′), (6.89)
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Inserting this in (6.88) and making use of the fact that
∑

n

∫∫
d3kd3xfn(x, k) is

constant, and that the integral of the differential terms cancel by Gauss theorem,
we find

∑
n

∫∫
d3kd3x

(
Γn(x, k) −

∑
m

∫
d3k′ Γmn(k′, k)

)
fn(x, k) = 0, (6.90)

and since this must hold for all distributions fn, we must have

Γn(x, k) =
∑
m

∫
d3k′ Γmn(k′, k). (6.91)

Inserting this and (6.89) in (6.88), we obtain

∂fn
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∂x
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∂k
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�

∂En
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· ∂fn
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(6.92)

+
∑
m

∫
d3k′

(
Γnm(k, k′)fm(x, k′) − Γmn(k′, k)fn(x, k)

)
,

which is the standard form of the multi-band Boltzmann equation[15, 11, 22].
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Chapter 7

Context of published and
submitted works

7.1 Motivation

My work has been motivated by the problem of calculating thermoelectric
transport coefficients in nanoscale heterostructures. For most thermoelectric
applications, the Boltzmann equation (6.92) is relied upon as the appropriate
transport formalism. By the discussion of Section 6.4 this is certainly justified
in many bulk systems, since one can then find a single envelope transform which
transforms the Hamiltonian into a function that is both diagonal and independent
of x. Indeed, in the bulk case it would usually be the failure of the Markov
approximation which would make the Boltzmann equation inappropriate. In
cases where the field strength is very high, there could also be problems with
the assumption of slow spatial variations, but this is usually not the case when
calculating thermoelectric coefficients, since we are typically interested in the
linear regime.

In nanoscale heterostructures however, the situation is different. In the case
of a non-periodic heterostructure, there will not exist an envelope transform
which makes the Hamiltonian independent of position, even when no field is
applied. And since the envelope transformed Hamiltonian will have variations
on the nanoscale, the step from (6.79) to (6.82) is not justified, since it assumes
slow spatial variations. In the case of a periodic heterostructure such as a
superlattice, one will be able to find an envelope transform which makes the
Hamiltonian independent of position, so (6.82) should in fact apply. However,
if the superlattice period is large, the bands of the structure will be very close
in energy, so that the requirement Λ(t)nm � |En − Em| from below (6.87) may
fail. Accordingly, in this case the step from (6.82) to (6.88) is not justified.

Thus, the applicability of the Boltzmann equation to the problem at hand
is not guarantied. This can also be argued from the discussion in Section 2.3,
by which it seems clear that if the size scale of the heterostructure is gradually
increased, there will be a transition from the coherent to the incoherent regime.
Clearly, the Boltzmann equation will not be able to pick up this transition, since
it is not at all concerned with the coherence of the particles it describes. However,
the fact that the Boltzmann equation is not strictly justified, does not by itself
guarantee that calculations will deviate significantly from other methods.

Because of this, one of the first questions we wanted to answer, was how big
of a difference one can expect between a semiclassical model like the Boltzmann
equation, and a more general method. Work by Wacker[28] has shown that there
can be a substantial difference between the Boltzmann equation and NEGF
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in superlattice transport. However, his work was mostly concerned with high
field applications, and not with the linear regime. In terms of the functional
Λ, Wacker’s work shows that the Boltzmann equation can be expected to fail
when the first term of the second line of (6.83) is to large. For thermoelectric
applications, where we are typically in the linear regime, this term can be
assumed to be arbitrarily small, and so we are more concerned with the terms
from the first line of (6.83), particularly those involving Γ and S, which describe
scattering.

In order to directly observe whether Wacker’s results generalize to the linear
regime, we set out to construct a relatively simple transport model, which could
be compared to the Boltzmann equation in a straight forward manor. As material
system superlattices of Mercury-Cadmium-Telluride was chosen, since this was
the system on which we were likely to do the later calculations. As a scattering
model, we made use of the Büttiker approximation. This was mostly because
this approximation can be implemented in ballistic transport frameworks.

7.2 The Büttiker approximation

Within the NEGF framework, the Büttiker approximation can be considered
as an approximation to the scattering self energy Σs introduced in (5.47). The
approximation is expressed in terms of the Fourier transformed self energy Σs(E)
as

Σr
s(E) =

∑
φ

Σr
sφ(E), and (7.1)

Σ<
s (E) =

∑
φ

iΓsφ(E)gφ(E), (7.2)

where Γsφ = i(Σr
sφ − Σr†

sφ) is positively definite, and gφ(E) ≥ 0. As we discuss
to some length in our third paper (Paper III), it seems highly plausible that
Γs(E) = i(Σr

s(E) − Σa
s(E)) is positively definite, in which case (7.1) is satisfied

with {Σr
sφ}φ = {Σr

s}. Thus, the approximation consists of the the assumption
that the lesser scattering self energy can be expressed as (7.2) with the same
set of matrices Σr

sφ. In our third paper we consider an important special case
of this, namely the one where the self energies Σr

s(E) and Σ<
s (E) commute at

all energies. In that case we may choose Σr
sφ = θφ|φ〉〈φ|, where the vectors |φ〉

make up an orthonormal basis of eigenvectors, and θφ are the corresponding
eigenvalues. Since Σ<

s (E) has the same eigenvector expansion, (7.2) follows
immediately.

Combining the Büttiker approximation with (5.63)-(5.67), and also making
use of (5.74), we see that the total self energies Σr(E) and Σ<(E) can be written
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as

Σr(E) =
∑

α

Σr
α(E), and (7.3)

Σ<(E) =
∑

α

iΓα(E)hα(E), (7.4)

where the summation index α runs both over the leads p and the indices φ, and
where hp(E) = fp(E) and hφ(E) = gφ(E). Thus, we can reinterpret the equations
as describing a transport problem without scattering, but with an additional
set of "fictitious leads" indexed by φ, in which the electrons have arbitrary
distributions gφ rather than equilibrium distributions fφ. These fictitious leads
are sometimes referred to as Büttiker probes.

Since there is no scattering in the reinterpreted problem, electron motion
within the system S can be treated in a coherent framework, while the effects of
both the real and fictitious leads can be dealt with by Landauer-Büttiker theory,
as discussed in Chapter 2. In fact, it was in precisely that context Büttiker
first introduced fictitious leads in order to study the effects of coherence loss in
electronic devices[5]. In our case, the fact that we could reinterpret the model
as a ballistic problem in this way, meant it could be implemented in the ballistic
transport framework Kwant[12, 1].

In order to define a scattering model within the Büttiker approximation, one
must specify the self energy operators Σr

sφ, as well as a model of the distribution
functions gφ. In our calculations we set Σr

sφ(E) = −i�/2τ · Pφ, where τ is a
constant relaxation time, and Pφ is a projection operator projecting onto a small
group of atoms. Further, we let the scatting mechanism be elastic and local,
meaning that at each fictitious lead, the energy resolved current iφ(E) = 0. This
latter condition implicitly defines the distribution functions gφ(E).

7.3 Discussion of the first two publications

Our first publication (Paper I) is mainly a documentation of calculations we
made in order to test our implementation of the Büttiker approximation within
Kwant. These tests were done by comparing the calculations to the Boltzmann
equation, which we expected to be in agreement with the model in those cases,
since the systems were all either bulk or short period super lattices. And indeed,
the deviations between the two methods are quite small, and seem to have origins
that are understandable. Partially, the deviation originates in the finite value
of the scattering time τ , which even in Bulk system will result in small errors.
Another major source of discrepancy, is that in order to make the calculations
computationally tractable, we had to modify the scattering mechanism, so that
the probe operators Pφ did not cover every atom. However, we believe that both
of these discrepancies are under control, as the Büttiker results seem to converge
toward the Boltzmann results when the relevant parameters are adjusted.

In our second publication (Paper II), we compare the Büttiker approximation
to the Boltzmann equation in superlattices of longer period, and we also study
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the effect of increasing the scattering time. By the discussion above, these are
precisely the systems in which we would expect to observe major discrepancies
between these two methods. And indeed this is precisely what we observe.
In particular, upon increasing the super lattice period, we do observe a clear
transition which is not picked up by the Boltzmann equation. In addition to
the Boltzmann equation, we also compare these results to a semiclassical model
based upon the incoherent transport expressions of Section 2.3.1, and indeed
this is in much better agreement with our results at long periods. Accordingly,
the observed transition seems to be a coherent-incoherent transition.

Concluding from this, it seems that if our results are to be reliable, we can
not base our calculations on the Boltzmann equation, but must make use of a
different formalism. It could be argued, as some of our reviewers did, that the
scattering mechanism employed in our calculations is somewhat to simple and
specialized to make very broad conclusions about this. However, if nothing else,
our results at least show that applicability of the Boltzmann equation is not
guarantied, and that considerable care must be taken.

7.4 Choice of formalism and method for the general
transport framework

Having determined that the Boltzmann equation is not sufficiently general for
our purposes, the next step was to find a formalism which is. Considering the
discussions of part I, we see that there are at least five different approaches that
should be considered. First, one may consider a direct evaluation of the path
integral expressions of Chapter 3, with the time discretization size N set to a
finite value. Secondly, we could make use of the perturbative NEGF framework,
covered in Chapter 5. As a third option, we could calculate the thermoelectric
coefficients by using the Kubo relations, or other linear response expressions,
as described in Chapter 4. These expressions could also be evaluated directly
through path integration, or we could make use of a perturbative expansion of
the four point functions. The final option would be to make use of a Markovian
master equation, as discussed in Section 6.1.

Let us first consider the question of path integration versus perturbative
calculations. Both of these approaches involve approximations. In the path
integral approach, the approximation consists of setting a finite value for N ,
while in the perturbative approach the approximation lies in the fact that we
can only include a subset of the infinitely many Feynman diagrams. In the path
integral approach, the computational burden increases very fast both with N and
with the number of included single particle states. Thus, we are limited by the
need to keep these parameters at a small value, which will again severely limit
the quantitative accuracy of the method. In addition, it is commonly agreed that
such non-perturbative techniques are required mostly in cases involving strong
correlations, such as super conductors and fractional quantum hall systems.

Next, let us consider the Markovian master equation approach. This would in
a sense be the most natural generalization of the Boltzmann equation, since we
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are only modifying the assumptions of coherence between states, while keeping
the assumption of Markovian dynamics. However, in many solid state systems
the Markovian approximation is not formally justified. Consider the discussion
below (6.5). In the case of phonon scattering, the time scale τ r

B can be estimated
from the optical phonon frequency, which typically lies in the range 1013-1014

Hz. Thus, we estimate τ r
B ∼ 10−14-10−13 s = 10-100 ps. On the other hand,

the time scale τ<
F satisfies τ<

F � τp, the momentum relaxation time. Since τp

may also often extend into the range 10-100 ps, the condition τ<
F 
 τ r

B for
Markovian dynamics will often not hold. In addition to this, the computational
requirements of the master equation approach is very similar to those of the
non-Markovian NEGF method, the only difference being that NEGF requires an
additional integral over energy.

Considering the discussion of the previous two paragraphs, it seems clear that
the most appropriate formalisms are the two perturbative approaches, NEGF
together with the perturbative evaluation of the Kubo relations. In choosing
between these two methods, we originally concluded that the approach based on
the Kubo relations would be best suited, since this is a linear formalism, and we
are interested in linear thermoelectric coefficients. However, before being able to
make much progress on this approach, we changed our mind and decided to make
use of the NEGF formalism. The reason for this was the increased generality of
the NEGF method, the fact that it is formulated in terms of Green’s functions
rather than four point functions, and thus seems easier to handle, and finally
that we figured we could in any case calculate the linear transport coefficients by
taking a numerical derivative of the currents. However, in retrospect this choice
seems to have been a mistake, as will be discussed further in the concluding
chapter (Chapter 9).

Having decided to make use of the NEGF formalism, the next step was to
select a method by which to solve the NEGF equations (5.81) and (5.86). We
quickly discovered that the RGF method[6] is particularly well suited to solve
(5.81) in quasi-one-dimensional systems. However, in the presence of scattering,
this equation must be solved self consistently with (5.86), and with expressions
for the scattering self energies Σr

s and Σ<
s . In the literature, the approach most

commonly applied for this purpose, is to make use of an iterative procedure.
In the general case, the computational scaling of each iteration is ∼ (MNg)2,

where M is the dimension of the matrices G(E), and Ng is the size of the
integration grid. In a quasi-one-dimensional system M ∼ NbZ, where Nb is
the number of bands included, and Z is the extent of the system in the z
direction. Further, Ng = NENkxNky, where NE , Nkx and Nky are respectively
the sizes of integration grids over energy, and over the Bloch indices kx and
ky. Thus, the full scaling of the method is ∼ NittN

2
b Z2N2

EN2
kxN2

ky, with Nitt

being the number of iterations required for convergence. Accordingly, without
the introduction of drastic approximations, the solution of (5.81) and (5.86) is a
daunting computational task.

We spent some time experimenting with the benchmarked nanoscale transport
software NEMO5[8], which contains routines for the iterative solution of (5.81)
and (5.86) within the self consistent Born approximation. However, while this
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software is probably very well suited for the nanoscale electronic devices for
which it is written, it turned out to be difficult to repurpose it for our somewhat
different application. In addition, the fact that we required both a large extent
in the z direction, as well as a dense integration grid over kx and ky, makes the
scaling of the iterative approach a big problem.

7.5 Discussion of the third paper

Accordingly, we decided to abandon both our work on NEMO5, and in fact the
iterative approach all together. Instead, we decided to focus on Monte Carlo
methods, motivated somewhat by the success of such methods in solving the
Boltzmann equation (see Section 8.1 below, and Refs. [15, 22]).

Our third paper (Paper III) is concerned with this subject. The paper
describes a Monte Carlo algorithm for evaluating the NEGF lead current given
by (5.102). We prove formally that under certain conditions, the expectation
value of the estimator equals the lead current. In particular, this is under a
particular positivity condition which we show to be satisfied in the self consistent
Born approximation. Further, the method is exclusively concerned with the
solution of (5.86), which must be assumed to satisfy a certain condition of
linearity. In order for this linearity condition to be satisfied, Σ<

s must be a linear
function of G<, while Gr can not be a function of G<, so that (5.81) and (5.86)
can not be coupled. Accordingly, the linearity requirement is a major limitation
of the method. We discuss some options for getting around this. In particular,
we argue that with appropriate linearization the method is in any case applicable
to linear transport, and we show this explicitly in the case of elastic scattering.

On the other hand, the positivity requirement seems to be an absolute
requirement of the method. It is presently unclear under what conditions this
is fulfilled beyond the self consistent Born approximation, but we do find some
heuristic justification for the assumption in the general case, as long as we
specialize to stationary transport.

We also perform some numerical tests of the method. In particular, we
calculate conductances of a few short nanowires, and use this to estimate the
conductivity in the wires. We compare the results to standard methods like the
iterative approach, and find the Monte Carlo results to be in agreement with
the alternative methods within a few percent. The relative standard deviation
of the Monte Carlo results is also about one percent, so this is as expected.

When it comes to the performance of the method, the nanowire system is not
the best suited model for testing this. This is because the Monte Carlo method
must be expected to be most competitive in systems with a dependence on a
crystal momentum k, of which there is none in short nanowires. Indeed, part of
the reason for employing the Monte Carlo method in the first place, is to avoid the
numerically costly integration grid over k, which must be employed by iterative
methods. We nevertheless decided to do the first calculations on nanowires, since
the introduction of a k-dependence complicates the implementation, and we felt
that the initial tests should be performed with as simple of an implementation
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as possible. For the same reason we again made use of Büttikers approximation
as the scattering model.
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Chapter 8

Results not submitted for
publication

In this chapter I present some calculations done during the course of my work,
which are either not sufficiently new or have not matured sufficiently far for
publication. Nevertheless, they serve as useful illustrations, and may form
important elements of a future general transport framework.

In Section 8.1 I describe some experiments with the Boltzmann Monte Carlo
method, which was the first method for transport calculations I pursued. Section
8.1.1 includes results obtained using a direct simulation approach, where currents
are estimated directly from the flow of particles through a simulated system.
Section 8.1.2 includes a few simple tests of a method where Boltzmann Monte
Carlo is combined with the Green-Kubo relations, by which linear transport
coefficients can be calculated from correlation functions at equilibrium. While
the direct method is applied to superlattices, the Green-Kubo method is only
tested in a simple bulk system.

In Section 8.3 I discuss some experiments with a method for making the
calculation of the retarded Green’s function Gr more efficient. This was work
performed before we landed on the RGF method as the best suited method for
this purpose in quasi-one-dimensional systems. Put shortly, the method treats
exactly only those states which have an energy close to the range of interest,
and handles the remaining states using a perturbative expansion.

Finally, in Section 8.2 I present some further results of the NEGF Monte
Carlo method, which were omitted from our third paper (Paper III) for reasons
of brevity. While the paper illustrates the method on a set of thin nanowires,
Section 8.2 includes results obtained from simulations of a small quantum dot,
and of a thin film.

8.1 Boltzmann Monte Carlo

As discussed above, the Boltzmann equation is only applicable in a fairly limited
range when quantitative accuracy is required. However, most of the important
physical effects are still at work, so it serves well for illustrative purposes. In fact,
two such effects, namely inelastic scattering and a self consistent electrostatic
potential, have in this work only been investigated using the Boltzmann Monte
Carlo method. In all other calculations presented in this thesis, scattering is
assumed elastic, and electrostatic interactions between the charge carriers are
ignored.

This is not because these effects are unimportant. As will be shown below,
they are in fact very important. Instead, in the case of the NEGF Monte Carlo
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calculations, it is simply because there are more fundamental complications
and problems that must be solved first. In the case of our calculations using
Kwant, these were made almost exclusively for the purpose of investigating
the coherent-incoherent transition, and accordingly the introduction of further
complications seemed unnecessary.

The Boltzmann Monte Carlo method is well described in the literature[22, 15].
Put shortly, it involves the explicit simulation of particles as they move through
a device or material according to the classical equations of motion

dx

dt
= v =

1
�

∂E

∂k
, (8.1)

dk

dt
=

1
�

F = − 1
�

∂E

∂x
, (8.2)

interrupted by random discontinuous transformations of the momentum k,
occurring with a rate given by the scattering rate Γ(k′, k) from (6.92). In
a multi-band simulation, these scattering events may also change the band
index. It can be shown that this process results in the simulated particles being
distributed according to a probability proportional to the distribution function
f(x, k) which solves the Boltzmann equation[22, 15]. Thus, the process can be
used to estimate any measurable quantity that can be expressed in terms of this
distribution function.

8.1.1 Direct approach

In the direct simulation approach, we directly simulate a charge carrier, or a
set of charge carriers, moving according to the procedure described above in
the presence of an applied field, or other non-equilibrium perturbation. We
may either consider a situation like that described in chapters 2 and 3.2, where
some electronic device is connected to a set of leads, or we may simulate some
bulk/periodic region of material. In the latter case, one will typically implement
periodic boundary conditions, where only a single small region of material is
simulated, and the charge carriers are instantly transported to the opposite side
whenever they hit a boundary of this region.

Currents can be estimated from the rates by which the carriers exits different
leads, or from the average velocity of particles at different locations. The spatial
distribution of the particles can be used to calculate variations in charge carrier
concentration. These variations are used to evaluate an electrostatic potential,
which will act back on the charge carriers through (8.2), resulting in a self
consistent potential.

The calculations shown below are performed with highly simplifying approx-
imations. The charge carrier bands are assumed parabolic, according to the
relation E = E0 + U(x) + �

2

2m� k2, where U(x) is the electrostatic potential, E0
is a material specific band minimum, and m� is a material specific effective mass.
A single simulation may contain different materials in different regions, and so
there may be a spatial dependency in the parameters E0 and m� as well.
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Further, the scattering mechanism is also based on a fairly unphysical phe-
nomenological approximation, where the charge carriers are affected by a con-
tinuous thermal noise. Thus, rather than introducing discontinuous scattering
events, we modify (8.2) to

dk

dt
=

1
�

F − γk +
1
�

√
2γm�kBTη(t), (8.3)

where T is the local lattice temperature, and η is a stochastic noise term satisfying
〈ηi(t)ηj(t′)〉 = δijδ(t − t′). It can be shown that in the absence of a force term
F , the mean square 〈k2〉 will satisfy the equation

d
dt

〈k2〉 =
2γ

�2
(
3m�kBT − 〈�2k2〉

)
, (8.4)

which has the correct equilibrium solution 〈�
2k2

2m� 〉 = 3
2 kBT .

Finally, the geometries of the simulations are quasi-one-dimensional. Thus,
the material composition, electrostatic potential, and temperature varies only
along a single direction. As mentioned, the electrostatic potential is calculated
self consistently. The temperature on the other hand, is either constant, or varies
linearly.

8.1.1.1 IV- and qV-characteristics

Among the most common things to calculate using Boltzmann Monte Carlo
simulations, are IV-characteristics, which show how the current I varies with an
applied voltage V . The IV-characteristic is an important characteristic of several
different electronic devices. In Figure 8.1a we show the IV-characteristic of a
superlattice, calculated by the method described above. The simulations were
performed with a well thickness of 20, a barrier thickness of 2, and we imposed
periodic boundary conditions over a single superlattice period. The effective
mass in both layers was set to m� = 1, the barrier height to b = E0b − E0w = 2,
and the temperature was set to kBT = 1. The scattering rate parameter γ
was set to 0.1. Finally, the solution of the Poisson equation to obtain the self
consistent potential makes use of a permittivity of ε = 1. The units of these
parameters are arbitrary.

Note that the characteristic does not contain a region of negative differential
conductivity, which one expects to see in certain high quality superlattices[28, 15].
This is because this classical model is not able to capture such resonant effects.
Accordingly, the model is more appropriate when dealing with superlattices of
poor quality, or with broad wells, as discussed in our second publication (Paper
II).

Instead the superlattice current grows rapidly with the applied field. Starting
out an order of magnitude lower than the bulk current, it grows exponentially
with increasing V , and eventually approaches the bulk value. This can be
understood from the fact that at high fields, the field will excite the particles
into a higher state of energy, and so a larger proportion will have energies above
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Figure 8.1: IV and qV characteristics of a superlattice heterostructure, according to an
incoherent classical transport model. The IV-characteristic in (a) shows how the current I
varies with the potential V over a single period. The current is normalized by the charge
carrier density ρ. The qV-characteristic in (b) shows instead how the heat current q varies
with V . The heat current is also normalized by ρ. Results shown in blue, green and red are
respectively calculated with ρ = 0.01, ρ = 1.0 and ρ = 2.0. For comparison, corresponding
bulk currents are included as dashed lines. In bulk, the normalized current I/ρ is independent
of ρ, so only a single dashed line is shown in (a). All units are arbitrary.

the barrier height, where they are able to contribute to the current. We also
see that the superlattice currents lie closer to the bulk values at higher charge
carrier concentrations. This is because charge realignment of the superlattice
cell will tend to reduce the barrier height. These effects are illustrated in Figure
8.1, which shows more details from the simulations.

In Figure 8.1b we show the qV-characteristic of the same superlattice. Unlike
the normalized current, the normalized heat current q/ρ has a dependency on
ρ also in bulk. This is because heat is a measure of entropy, and the average
entropy per particle decreases with increasing density. In fact, the heat current is
calculated as q = JE − μJ , where JE is the energy flux, J the particle flux, and
μ ∼ ln ρ is the chemical potential. However, in the superlattice the dependency
of q/ρ on ρ is reversed, with q/ρ increasing with the carrier concentration. This
is again because charge realignment reduces the barrier height, so that more
particles are able to participate in the current. We also observe that unlike I/ρ,
q/ρ is a nonlinear function of V also in the bulk case. This is because the field
excites the particles to higher energies, so that they carry more heat.

8.1.1.2 Linear transport coefficients

In our work, we are interested in the linear conductivity, and in linear thermo-
electric transport coefficients. To calculate such coefficients using the direct
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Figure 8.2: Transport through superlattice. x denotes position along direction of transport,
ρ is charge carrier concentration, and V is the potential applied over a single period. The
electrostatic potential energy is shown in blue, and the conduction band minimum in green.
The average particle energy 〈E〉 is shown in red, while the black curve shows 〈Ev〉/〈v〉,
where v is particle velocity. The irregularities in the black curve at low fields is due to
numerical noise. All units are arbitrary.
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simulation approach, we apply a small field V , so that we are in the linear regime
of the IV- and qV-characteristics of Figure 8.1, and then calculate the linear
transport coefficient as response/stimuli. In Figure 8.3, we have calculated the
mobility μ = σ/ρ = I/ρV and the Seebeck coefficient α of a superlattice using
this approach. The Seebeck coefficient is found using the relationship α = Π/T
mentioned at the end of Section 4.2.5, where the Peltier coefficient is calculated
as Π = q/I. The voltage difference V over a single superlattice period was set
to V = 0.5. Observing Figure 8.1, this should be small enough to be more or
less in the linear regime.
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Figure 8.3: Mobility μ and Seebeck coefficient α of a superlattice structure, as a function
of barrier height b and charge carrier concentration ρ. The figures to the left are calculated
with a self consistent Poisson potential, while in the figures to the right no such potential is
included. All units are arbitrary.

Figure 8.3 illustrates how the transport coefficients vary with the barrier
height b, and with the charge carrier concentration ρ. The other parameters are
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set identically as in the previous calculations. We have also included calculations
both with and without a self consistent Poisson potential, in order to examine
the importance of calculating this field. Observe first that, as expected, the
mobility μ decreases rapidly when the barrier height is increased. The largest
difference between the calculations with and without self consistent Poisson
potential is also observed in the mobility. As expected, in the absence of a self
consistent potential, the mobility is independent of ρ, but when such a potential
is included, μ tends to fall of more slowly with b at high values of ρ. Again, this
is because charge realignment tends to reduce the effective barrier height, as
illustrated in Figure 8.2b.

The Seebeck coefficient α tends to increase in absolute value both as the
barrier height b is increased, and as the charge carrier density ρ is decreased.
The reason why |α| increases with b can again be understood from Figure 8.2.
Since q ∼ 〈Ev〉 and I ∼ 〈v〉, we have α ∼ q/I ∼ 〈Ev〉/〈v〉, which is included as
a black curve in Figure 8.2. As illustrated by the figure, this curve is forced to
pass above the barrier.

Some difference can be observed between the calculations with and without
self consistent Poisson potential also in the Seebeck coefficient, although the
effect is less visible than it is for the mobility. In particular, at the highest values
of ρ and b, α is increased from about −6 to about −5 when a self consistent
potential is included. In the absence of a self consistent potential, the dependency
of α on ρ is due only to the reduction of the chemical potential.

It deserves mentioning that the effects of charge realignment both on the
mobility and on the Seebeck coefficient is underestimated to some extent in these
calculations. This is because this particular semiclassical approach is not able to
model tunneling through the barriers. Again observing Figure 8.2b, we see that
also the shape of the barrier is different at high ρ, in such a way that if electrons
were able to tunnel through thin sections of the barrier, then the effective barrier
height would be reduced even further. At very high charge carrier concentrations,
this could potentially remove almost the entire effect of the barrier.

8.1.1.3 Currents induced by temperature gradients

In order to estimate the electronic component ke of the thermal conductivity
using the direct simulation approach, it is necessary to impose a temperature
gradient over the region of simulation. This poses a major problem, since we
can then no longer impose periodic boundary conditions. A potential difference
can be formulated in terms of an electrical field, which can be periodic even at
V > 0. Thus, periodic boundary conditions can be imposed, as we have done
above. An explicit temperature gradient however, will always explicitly break
the periodic translation symmetry, so that this is no longer possible.

Thus, we must instead perform the simulation in a finite region, without
periodic boundary conditions, but instead including two leads between which
the currents can flow. This poses a problem, since the presence of the leads
will introduce contact effects which must be dealt with in some way. As a test
of the approach we have calculated the Seebeck coefficient again, using a more
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direct approach where we estimate it from the electrical current induced by a
temperature gradient. In particular, we have performed a simulation where the
charge carrier density as well as the electrostatic potential is equal between the
leads, but where the temperature differs by ΔT = 0.4. This will induce a current
of I = σ(V + αΔT ) = σ(αΔT − eΔμ), so that we can estimate the Seebeck
coefficient as

α =
I/σ + e(μ1 − μ2)

ΔT
, (8.5)

where the chemical potential is estimated according to the non-degenerate model

μ = T ln ρ − 3
2

T ln T − 1
2

T ln 2π. (8.6)

The result is shown in Figure 8.4a. Comparing this to Figure 8.3c, we see that
the results are very similar, but that the result in Figure 8.4a is slightly smaller
in absolute magnitude. This can be understood from the fact that the mobility,
and thus indirectly other transport coefficients, will be underestimated in a
simulation of finite size, due to an additional contact resistance.
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Figure 8.4: Seebeck coefficient α and Lorenz coefficient L of a superlattice structure, as a
function of barrier height b and charge carrier concentration ρ. The coefficients are calculated
from currents induced by temperature gradients.

In Figure 8.4b we show the Lorenz coefficient, which is estimated as L =
ke/σT = (q − ΠI)/ΔT/σT . This result appears more noisy than the others,
which is probably because more Monte Carlo samples are required to obtain an
accurate average. In addition, we observe that the Lorenz coefficient becomes
very high for large barriers. To understand the reason for this, we examine
Figure 8.5. We observe that at the location of the barrier, the energy average
〈Ev〉/〈v〉 increases with the barrier height, so that we always have 〈Ev〉/〈v〉 > b.
However, in fact it increases even more rapidly in the regions outside of the
barrier.

110



Boltzmann Monte Carlo

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E

(a) b = 0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

x

0

1

2

3

4

5

E

(b) b = 2

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

x

0

1

2

3

4

5

6

7

E

(c) b = 2.8

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

x

0

2

4

6

8

10

E

(d) b = 3.6

Figure 8.5: Transport through superlattice, induced by temperature gradients. b denotes the
height of the barrier. The electrostatic potential energy is shown in blue, and the conduction
band minimum in green. All four figures are obtained with the charge carrier concentration
set to ρ = 0.01. The average particle energy 〈E〉 is shown in red, while the black curve shows
〈Ev〉/〈v〉, where v is particle velocity. All units are arbitrary.
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This is somewhat counter intuitive, and indeed reversed relative to Figure
8.2. However, it can be understood in the following way: The average 〈Ev〉/〈v〉
is effectively a measure of the electronic component qe of the heat flow. There is
also a lattice contribution ql to the heat flow, and in stationary state the total
heat flow q = qe + ql must be conserved throughout the material. The fraction of
the total heat flow which is due to electrons will be qe/q = ke/k = ke/(ke + kl),
where ke and kl are respectively the electronic and lattice contributions to the
heat conductivity k. Now, since only a small fraction of the electrons is able to
pass over the barrier, the electronic heat conductivity ke is significantly reduced
at the location of the barrier. Thus, let us give all quantities a superscript b to
signify its value in the barrier region. We then have

qe

qb
e

=
qe/q

qb
e/q

=
ke

kb
e

· kb
e + kb

l

ke + kl
. (8.7)

We can in general expect also the lattice contribution to k to be somewhat reduced
in the barrier region, but not exponentially like the electronic contribution. Thus,
we expect the quantity on right of the equation above to be larger than one, and
accordingly qe and also 〈Ev〉/〈v〉 will be larger in regions outside of the barriers.

Thus, the discussed effect seen in Figure 8.5 is in fact a real effect. However,
the effect is probably overestimated in these calculations, since we are assuming
a constant temperature gradient. This implies we are implicitly assuming
kb

e + kb
l = ke + kl, so that by the equation above qe/qb

e = ke/kb
e 
 1. In addition

to this, the heat flow is overestimated somewhat due to contact effects in the
simulation. This is seen from Figure 8.5a, in which there is no barrier, so that
the heat current should be homogeneous in a true bulk system. Accordingly,
since the heat flow is being overestimated by two distinct effects, it is unclear
whether the behavior of the Lorenz coefficient seen in Figure 8.4b will be seen
in real systems. This is particularly the case in superlattices with thin wells,
where electrons will not have time to interchange energy with the lattice before
reaching the next barrier.

8.1.1.4 Variation of the well thickness

In order to optimize the superlattice for thermoelectric applications, we must
study not only how the relevant transport coefficients vary with material proper-
ties like charge carrier concentration and barrier height, but also with parameters
describing the geometry of the superlattice. In a simple superlattice, like the
one above, there are only two such parameters, namely the thicknesses of the
two distinct layer types. In the absence of tunneling, it is quite clear that the
barrier layer should be as thin as possible, so that it contributes a minimal
resistance. However, when tunneling is considered, this conclusion does not hold,
since having a to thin barrier could potentially remove the entire effect. Since
the transport model considered here is not able to account for tunneling effects,
we can thus not correctly optimize the well thickness, and we have accordingly
set it arbitrarily to 2.
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In the case of the well layer however, significant effects of varying the thickness
will be present even in the classical model, so that we can at least illustrate its
optimization. Thus, in Figure 8.6 we study how a few thermoelectric transport
coefficients depend on the well thickness, which we denote d. In figures 8.6a and
8.6b we show respectively how the mobility and the Seebeck coefficient varies
with d, and in 8.6c we show the power factor σα2. The simulations are performed
with a charge carrier concentration of ρ = 0.01 and a barrier height of b = 2. The
other parameters are as above. As expected, the mobility increases when the
distance between the barriers is increased. However, the absolute value of the
Seebeck coefficient tends to drop. The reason for this is illustrated in Figure 8.7.
There we see that the energy average 〈Ev〉/〈v〉 is only raised in a moderately
sized region around the barrier. Thus, as the thickness of the wells is increased,
the fraction of the material in which 〈Ev〉/〈v〉 is enlarged drops. Thus, the ratio
π = q/I ∼ 〈Ev〉/〈v〉 will also drop, as will the Seebeck coefficient α = π/T .

Examining Figure 8.6c, we see that even though the Seebeck coefficient is
largest in the limit d = 0, the power factor is actually largest in the bulk limit
d → ∞, indicating that the increasing mobility is more important. However, for
optimal thermoelectric properties, one must consider not only the power factor,
but also the thermal conductivity κ of the material. In fact, if we define z as the
ratio between the power factor and κ, one can show that unconstrained by other
concerns, the material which is best suited for any thermoelectric application is
the material in which zT is higher, where T is absolute temperature. Thus, as
was briefly mentioned in the introduction, our goal is not to optimize the power
factor, but the dimensionless figure of merit

zT =
σα2

κ
T =

σα2T

κe + κl
=

α2

L

(
1 +

κl

κe

)−1
. (8.8)

To optimize this quantity, we will need a model also of the two contributions
to the thermal conductivity, κe and κl. The electronic component may be
calculated as κe = ρμLT . As mentioned, it is questionable whether the Monte
Carlo simulations discussed here result in values for the Lorenz coefficient that
can be trusted. Because of this, we will arbitrarily make use of a constant model
with L = 1. Further, inspired by the Matthiessen rule[15], we model the lattice
contribution to κ as

1
κl

=
1

κl0
+

1
κlB

, (8.9)

where κl0 is the bulk value of κl, and κlB describes a reduction from scattering
on the barriers. We expect the barrier contribution 1/κlB to be inversely
proportional to the well thickness d. Thus, defining the length scale λl =
dκl0/κlB , we may write the model as

κl = κl0

(
1 +

λl

d

)−1
. (8.10)

In Figure 8.6d we show the figure of merit as a function of d, assuming a
lattice contribution to κ given by (8.10), with κl0 = 1 and λl = 100. Unlike the
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Figure 8.6: Mobility μ, Seebeck coefficient α, power factor σα2, and figure of merit zT of a
superlattice structure, as a function of well thickness d. In (d), two different models have
been used for the lattice component of the thermal conductivity: The curve in orange assume
a constant value κl = 0.2, while the curve in blue assumes κl = (1 + 100/d)−1. All units are
arbitrary.
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Figure 8.7: Transport through superlattice. d denotes the thickness of the wells, or equivalently
the distance between the barriers. The electrostatic potential energy is shown in blue, and
the conduction band minimum in green. All four figures are obtained with the charge carrier
concentration set to ρ = 0.01, and a barrier height of b = 2. The average particle energy 〈E〉
is shown in red, while the black curve shows 〈Ev〉/〈v〉, where v is particle velocity. All units
are arbitrary.
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power factor, this particular model for zT is maximal in the limit d = 0, and in
fact seems to get a significant boost in the region where |α| is enlarged. However,
in reality (8.10) is unlikely to apply all the way down to d = 0, since for thin wells
we will probably have a transition to coherent transport, as discussed in Section
2.3. Thus, to illustrate the importance of the model for κl, Figure 8.6d also
include a model for zT where we assume a constant lattice thermal conductivity
of κl = 0.2. In this model, the improvement near d = 0 is completely gone, and
instead the dependence of zT on d resembles that of the power factor, illustrating
that the optimization of thermoelectric materials is a nontrivial task.

8.1.1.5 Discussion

The model employed in the simulations above, is too simplified to allow for
making conclusions about real materials. Indeed, knowing that this would in
any case not be possible, we have not made use of parameters from existing
materials, and have made all calculations in arbitrary units. Nevertheless, when
it comes to the importance of different physical effects, a few conclusions can still
be drawn from the above discussions. Awareness of these effects is important to
understand which elements of the model must be generalized to obtain reliable
results.

The first important conclusion is drawn from the equation (8.8). We see that
in order to obtain a high value of zT , we will typically want the ratio

κe

κl
=

μL

κl
ρT (8.11)

to be quite high. Thus, we expect that the optimal thermoelectric performance
is usually obtained at quite high charge carrier concentrations ρ, so accordingly
it is important to be able to model such high charge carrier concentrations. In
particular, this means it will be necessary to model a self consistent Poisson
potential, since as seen from Figure 8.2 there will be a significant effect of charge
realignment at high values of ρ. Figure 8.3 also shows that the Poisson potential
can have a significant effect on the transport coefficients.

While a self consistent Poisson potential has been included in the simulations
above, there are two important effects of high charge carrier concentrations which
are not accounted for. First, the simulations assume non-degenerate statistics,
where electrons are distributed according to a Boltzmann distribution. At high
ρ, this is not a correct description, and we must instead use degenerate statistics
and a Fermi distribution. Secondly, at particularly high values of ρ, we must
expect the chemical potential to lie far above the band minimum. In this region,
the employed assumption of parabolic bands will not be realistic, so that we
must make use of a more accurate description of the band structure.

Next, two important conclusions can be drawn from Figure 8.6d. First of
all, in thermoelectric applications, it is impossible to optimize the electronic
properties of the material alone, since the model used to describe lattice heat
transport will significantly affect the behavior of zT . Thus, a complete model
must also include a model of phonons. Secondly, due the effect of κl, one can not
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apriori know at which value of the well width d one will obtain the optimal zT .
Indeed, the two models employed in Figure 8.6d yield completely opposite results,
with one having maximal zT at d = 0, and the other in the bulk limit d → ∞.
Given a more realistic phonon transport model, which correctly accounts for
coherent transport at small d, it is entirely possible that the optimal value of d
will lie in some intermediate range. Thus, it is important to be able to model
the entire range of superlattice geometries, limited neither to small or to large
periods.

Another important effect related to the geometry of the superlattice, is of
course tunneling through the barrier. As mentioned, it is important to be able
model tunneling in order to find the optimal barrier thickness. In addition, we
have also mentioned that if tunneling is not accounted for, one may end up
underestimating the effects of charge realignment on the effective barrier height.

Finally, the discussion of figures 8.4 and 8.5 illustrates two important points
concerning the modeling of heat flows. Firstly, in a wide well super lattice,
there will usually be an interchange of energy between electron and lattice
contributions to the heat flow, so that these two contributions can not be
considered separately, but must actually be modeled self consistently. Secondly,
since the direct simulation approach is not able do model currents induced by
temperature gradients without breaking the periodic symmetry, one is inevitably
stuck with some kind of contact effects, which can be quite severe. In order to
remove these effects, one will have to simulate a larger region, containing more
than a single superlattice period, which will inevitably increase the computational
requirements. This is the approach we have followed in our first two publications,
Papers I-II. The alternative is to make use of an indirect approach, such as the
Kubo relations.

8.1.2 Green-Kubo relations

As discussed in Section 6.4, the Boltzmann equation is obtained from quantum
transport in the limit � → 0. Accordingly, this limit can also be applied to the
Kubo relations (4.43)-(4.46). In this limit the integrand of these expressions
will be approximately constant in the innermost integration range, so that the
innermost integral can be evaluated explicitly, yielding a factor of �β. Further, in
the classical limit � → 0 we can also replace operators such as ĵ(t) with classical
functions. Thus, (4.43)-(4.46) become

σij =
V

kBT

∫ ∞

0
dt
〈
j̄j(0)j̄i(t)

〉
, (8.12)

Aij =
V

kBT 2

∫ ∞

0
dt
〈
φ̄Qj(0)j̄i(t)

〉
, (8.13)

Bij =
V

kBT

∫ ∞

0
dt
〈
j̄j(0)φ̄Qi(t)

〉
and, (8.14)

Cij =
V

kBT 2

∫ ∞

0
dt
〈
φ̄Qj(0)φ̄Qi(t)

〉
. (8.15)
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These equations represent the classical limit of the Kubo relations (4.43)-(4.46).
Relations of this type are often referred to as Green-Kubo relations, since
they were independently discovered by Green. The correlation functions in the
expressions can be estimated from Monte Carlo simulations at equilibrium, and
accordingly these relations can be used to calculate thermoelectric transport
coefficients without the need of imposing explicit fields or temperature gradients.
As discussed in the previous section, this is a particularly important advantage
when modeling the effects of temperature gradients.

In this section, some results are presented which were obtained using the
relations (8.12)-(8.15). As in the previous section, we assume parabolic bands
and non-degenerate statistics. However, a more realistic scattering mechanism is
utilized, compared to the phenomenological model of (8.3), which was employed
in the previous section. In particular, the calculations of this section make
use of a model of acoustic phonon scattering described by Jacoboni[15]. On
the other hand, our implementation has not progressed far enough to model
heterostructures like those of the previous section, so it is limited to simple bulk
simulations.

The fact that we are assuming non-degenerate statistics allows us to simplify
the relations (8.12)-(8.15) even further. This is because under this assumption,
and an additional assumption of weak interactions, the particles in the system
are uncorrelated. This significantly simplifies the evaluation of the involved
correlation functions. Consider for example (8.12). The average current density
in the system can be expressed as

j̄(t) =
−e

V

N∑
n=1

vn, (8.16)

where we assume that there are N particles within the volume V , and where vn

is the velocity of the n’th particle. Thus, since the particles are uncorrelated, we
find

〈
j̄j(0)j̄i(t)

〉
=

e2

V 2

N∑
n=1

〈vnj(0)vni(t)〉 =
Ne2

V 2 〈vj(0)vi(t)〉 , (8.17)

where we have used that the correlation function is independent of n, since the
particles are indistinguishable. Inserting this in (8.12), and using ρ = N/V , we
obtain

σij =
e2ρ

kBT

∫ ∞

0
dt 〈vj(0)vi(t)〉 . (8.18)

Similarly, the average heat flux in the system can be expressed as

j̄(t) =
1
V

N∑
n=1

(En − μ)vn, (8.19)
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where μ is the chemical potential, and En is the energy of the n’th particle.
Repeating the arguments above, we see that (8.13)-(8.15) simplify to

Aij = − eρ

kBT 2

∫ ∞

0
dt 〈(E(0) − μ)vj(0)vi(t)〉 , (8.20)

Bij = − eρ

kBT

∫ ∞

0
dt 〈vj(0)(E(t) − μ)vi(t)〉 and, (8.21)

Cij =
1

kBT 2

∫ ∞

0
dt 〈(E(0) − μ)vj(0)(E(t) − μ)vi(t)〉 . (8.22)

The correlation functions on the right are easy to estimate in a Monte Carlo
simulation. The Seebeck coefficient, Peltier coefficient and the electronic compo-
nent of the the thermal conductivity, can then be found from

←→A ,
←→B and

←→C
using (4.49)-(4.51).

The scattering mechanism is taken from Ref. [15]. In particular, we make use
of model C of chapter 9.3, which describes inelastic scattering on acoustic phonons,
assuming spherical and parabolic electron bands. The model is formulated in
terms of the integral kernel Γnm(k, k′) introduced above (6.89). Since we only
have a single band, the band indices n and m are subsumed. The model states

Γ(k, k′) (8.23)

=
qE2

l

8π2ρmcl

(
n(q)δ(E(k′) − E(k) + �qcl) + (n(q) + 1)δ(E(k′) − E(k) − �qcl)

)
,

where E(k) = k2/2m� ,q = |k − k′|, El is a deformation potential constant,
cl is the speed of sound for longitudinal modes, ρm is the mass density of the
material, and

n(q) =
1

eβ�qcl − 1
. (8.24)

The implementation of this model as a Monte Carlo process follows Ref. [16],
which describes how to draw new Bloch-vectors k with a probability distribution
proportional to (8.23). The simulations were performed with cl = 0.1 and
E2

l /ρmcl = 100.
Since (8.23) is a fairly complicated model of scattering, it is important to

test the implementation. A particularly important test, is to check whether the
particles end up with the correct distribution in k-space. Since the simulation
coccus at equilibrium, they should be distributed according to the Boltzmann
distribution

p(k) =
1√

2πkBTm�
e

− k2
2kB T m� . (8.25)

As a very simple test, we can simply simulate a few electrons, plot their position
in k-space, and check if the resulting distribution seems reasonable. Figure
8.8 shows a scatter plot of the position in k-space of 1000 electrons, after an
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Figure 8.8: k-space scatter plot of 1000 electrons after equilibration.

equilibration time of t = 50. The result is consistent with a Gaussian distribution
centered at the origin.

As a more quantitative test, we study the distribution of energies of the
electrons. It is easy to show that the energies E = k2/2m� will have a distribution
∼

√
Ee−βE , and that the average energy is 3

2 kBT . Figure 8.9a shows how the
energy average of 10 000 electrons develops during a Monte Carlo simulation.
The electrons are initialized with E = 0, and are equilibrated over a time scale
of about t = 20. After this the energy average is approximately constant and
≈ 1.5. Since the simulations were performed with kBT = 1, this fits perfectly
with the theory. In Figure 8.9b we show the distribution of energies at t = 50,
where the equilibration should be complete. Again the Monte Carlo result fits
perfectly with the analytical result.

Having tested that the simulations yield the correct equilibrium distribution,
we turn to time dependent phenomena. First, we estimate the energy- and
momentum relaxation times, which are defined respectively as

1
τE

=
〈

E(k′) − E(k)
E(k′)t

〉
and, (8.26)

1
τm

=
〈

(k′ − k) · k′

|k′|2t

〉
, (8.27)

where t is the time between scattering events, and k′ and k are respectively the
momentums before and after a scattering event. These quantities are estimated
by averaging over multiple scattering events in a simulation. The averaging starts
only after equilibration. We obtain τE = 4.7, and τm = 0.095. In Figure 8.9a we
saw that the electrons are equilibrated over a time scale of about t = 20 ≈ 4τE .
Thus, the energy equilibration time is some small number times τE , which seems
very reasonable.
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Figure 8.9: Electron energy. (a) shows the average energy as a function of time, and (b)
shows the distribution of energies at t = 50. The orange stars represent a histogram obtained
from the Monte Carlo simulation, while the curve in blue represents the analytical Boltzmann
distribution (8.25). The distributions have been normalized so that max p(E) = 1.

Next, we turn to the correlation functions of (8.18)-(8.22). These functions are
calculated by first equilibrating the simulated particles, and then approximating
the expectation values as mixed ensemble and time averages. For instance, the
correlation function 〈vj(0)vi(t)〉 is estimated as

〈vj(0)vi(t)〉 ≈ 1
NM

N∑
n=1

M∑
m=1

vnj(t0 + mΔt)vni(t0 + mΔt + t), (8.28)

where t0 is larger than the equilibration time, N is the number of simulated
particles, and MΔt is a sufficiently large range of time. The correlation functions
〈E(0)vj(0)vi(t)〉, 〈vj(0)E(t)vi(t)〉 and 〈E(0)vj(0)E(t)vi(t)〉 are estimated in a
similar manor. The results are shown in Figure 8.10. Note that many of these
correlation functions are related by exchange of time arguments, and that in
those cases they are identical due to time reversal symmetry. For instance,
〈vj(0)vi(t)〉 = 〈vi(0)vj(t)〉, and 〈vj(0)E(t)vi(t)〉 = 〈E(0)vi(0)vj(t)〉. Whenever
this is the case, only one of the functions are shown in Figure 8.10.

Examining Figure 8.10, we first observe that all of the non-diagonal results,
with i 
= j, are essentially zero within the expected accuracy of the calculation.
Further, the diagonal results with i = j are identical for all values of i. Both of
these facts follow as a consequence of the spherical symmetry of the model. The
fact that these symmetries are realized in the simulations is another important
consistency check of the implementation. We also observe that the diagonal
correlation functions seem to fall of over a time scale ∼ 0.1, which fits well with
the calculated value of τm = 0.095.

As a final consistency check, we may consider the well known fact that the
conductivity σ is related to the diffusion constant D by σ = e2ρD/kBT , which
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Figure 8.10: Correlation functions. The top, middle and bottom rows respectively show
〈vj(0)vi(t)〉, 〈vj(0)E(0)vi(t)〉, and 〈vj(0)E(0)vi(t)E(t)〉. The figures on the left show results
with i = j, while those where i 
= j are shown on the right. On the left, results shown in
blue, orange and green respectively represent the cases ii = xx, yy and zz. On the right,
the cases ij = xy, xz, yz, yx, zx and zy are respectively shown in blue, orange, green, red
purple and brown.
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follows from the Einstein relation[7, 15]. Comparing this to (8.18), we see that
we must have

D =
∫ ∞

0
dt 〈vi(0)vi(t)〉 , (8.29)

where i is any of x, y or z. This can be used as a consistency check, since the
diffusion constant can also be estimated more directly by considering how the
variance of the particles position varies with time. In fact, it is not hard to see
that in three dimensions we should have σ2

x = 〈x2〉 + 〈y2〉 + 〈z2〉 = 6Dt. Thus, in
Figure 8.11 we show Monte Carlo estimates of σ2

x as a function of the simulation
time t. The dependency of σ2

x on t takes on a linear character after ∼ t = 20.
This fits well with the fact that the electrons are equilibrated at about this time,
as seen in Figure 8.9a.
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Figure 8.11: Estimation of diffusion constant. The orange stars show estimates
of σ2

x = 〈x2〉 + 〈y2〉 + 〈z2〉 after various simulation times t. The dashed line in
blue shows a linear fit, fitted only against the points with t ≥ 20.

Figure 8.11 also includes a linear model, which is fitted against the Monte
Carlo results where t ≥ 20. This model is −5.04 + 0.596t. Thus, we estimate the
diffusion constant as D = 0.596/6 = 0.099. Numerically integrating the function
〈vi(0)vi(t)〉 shown in Figure 8.10a, we obtain D = 0.095 by (8.29). Within the
expected accuracy, these results are equal, so the implementation passes also
this consistency check.

Finally, we calculate the thermoelectric transport tensors ←→σ , ←→α , ←→π and
←→κe , using (8.18)-(8.22) and (4.49)-(4.51). The simulations are performed with
kBT = 1 and μ = 0, which yields a charge carrier density of ρ = 0.785. We also
assume units where kB = e = 1. The results are shown in table 8.1.

Again we note that the off diagonal results are essentially zero, and that
the diagonal elements of each tensor are practically identical. Again, this is a
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σ α
x y z x y z

x 0.07451 1.074e-4 8.425e-5 -2.021 -0.002883 -7.182e-04
y 1.074e-4 0.07453 5.231e-5 -3.348e-4 -2.017 0.01105
z 8.425e-5 5.231e-5 0.07474 0.02104 0.008486 -2.024

π κe

x y z x y z
x -2.021 -3.348e-4 0.02104 0.1505 1.002e-5 0.004471
y -0.002883 -2.017 0.008486 1.002e-5 0.1491 -0.003897
z -7.182e-4 0.01105 -2.024 0.004471 -0.003897 0.1504

Table 8.1: Thermoelectric transport tensors.

consequence of the spherical symmetry of the system, and indeed follows from
the fact that the correlation functions also have these properties. We also note
that the conductivity has the expected value given the formula σ = e2ρD/kBT =
0.785 · 0.95 = 0.746. The Peltier and Seebeck coefficients are identical since
T = 1, and have a value of α ≈ −2. We also calculate the Lorenz coefficient to
be L = κe/σT ≈ 0.15/0.075 = 2.

In the literature[22] we find analytical estimates of α and L within certain
approximations. These are α = −kB/e(βμ + s + 5/2) and L = k2

B/e2(s + 5/2),
where s is an exponent describing the energy dependence of the scattering rates.
For acoustic phonon scattering with parabolic bands[22], s = −1/2. Accordingly.
we should have α = −(0 − 1/2 + 5/2) = −2 and L = −1/2 + 5/2 = 2, which fits
perfectly with the simulation results.

8.1.2.1 Discussion

Clearly, the application of this method to the simple bulk system above an
overkill, since the simple analytical estimates yield the same results. But the
application to the bulk system serves as a test of the implementation. Indeed,
the agreement with the analytical estimates, together with the other test results,
indicates that we can put some trust in the implementation. Thus, the next step
would be to apply the method to superlattices, after which we could repeat the
studies of the previous section.

The indirect Green-Kubo method described here would be much better suited
for that purpose, compared to the direct method made use of there. The fact
that we are making use of a more realistic scattering mechanism is only one of
the reasons for this. In addition, it is a major advantage that we can perform
the simulation at equilibrium, since this entails that we will not have to solve
the Poisson equation self consistently with the transport problem, and that we
can always apply periodic boundary conditions. Further, when applying the
direct method, we always have to make sure the perturbations we apply are
small enough for the transport to be within the linear regime. On the other
hand, if we choose the perturbations to small, the signal to noise ratio will be
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very low, which can also cause erroneous results. This trade-of is something we
do not have to consider when using the indirect method presented here.

However, while the implementation is better suited than that of the pre-
vious section, it is still lacking important aspects. First of all, like the direct
implementation, it is still limited to parabolic bands. This could however be
easily remedied, for instance by making use of a tight binding model like the
ones we have used in our publications (papers I-II). A larger problem is the
limitation to non-degenerate statistics. The derivation of (8.18)-(8.22) assumed
that the particles are uncorrelated, which will not be the case if the statistics
is degenerate. In addition, the introduction of degenerate corrections to the
scattering rates seem to cause a drastic increase in the variance of the correlation
functions. However, both of these issues could probably be resolved by more
careful consideration.

A more serious problem is the fact that the method is still limited to classical
transport, which means we are not able to model quantum transport phenomena
such as tunneling and resonance between barriers. Tunneling can probably be
dealt with in terms of pre-calculated transmission functions, like we try in our
second publication (Paper II). Resonances however, can only be dealt with in a
classical transport framework if we assume coherence throughout the super cell,
so that the miniband dispersion relation of the superlattice can be utilized. The
extent to which that assumption affects the results is the subject in our second
publication.

8.2 Perturbative approximations to Gr

This section concerns the evaluation of the retarded Green’s function Gr through
the solution of (5.81). This is an important step in the evaluation of currents
through the NEGF formalism, and indeed in any perturbative transport frame-
work formulated in terms of Green’s functions. A major problem when dealing
with large systems like those considered in our publications, is the time it takes to
solve this equation. Solving the equation through direct inversion would require
an amount of time proportional to N3, where N is the side of the involved
matrices. In an atomistic model N = nona, where na is the number of atoms
in the system, and no is the number of states included per atom. Accordingly,
direct inversion is fairly intractable in large systems.

In our two first publications (Papers I-II), the solution of (5.81) is done by
the external transport framework Kwant[12, 1], which is able to use a variety
of different methods. In our third paper (Paper III) we make use of the RGF-
algorithm, which is described in detail in the literature[6]. The RGF-algorithm
assumes that the system can be divided into a set of nZ slices, in such a way
that there is only nearest neighbor coupling between the slices. It then scales
as n3

XnZ(1 + nC), where nX is the number of states per slice, and nC is the
number of columns required in the block decomposition of Gr(E). In particular,
if only the diagonal of Gr(E) is required, then the RGF-algorithm scales as
n3

XnZ , while if the full matrix is required it scales as n3
Xn2

Z . In any case, this is
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a significant improvement compared to direct inversion, as long as one is dealing
with a quasi-one-dimensional system, where nX is smaller than nZ .

Before deciding to use the RGF algorithm, I spent some time considering
alternative ways to speed up the solution of (5.81). This section deals in particular
with one such approach, which was quite successful. It involves treating states
with energies far away from the range of consideration using perturbation theory,
rather than the exact expressions. The computational requirements are still
cubically scaling with system size, so the approach is not able to compete with
the RGF-algorithm in large quasi-one-dimensional systems. However, it may
have an advantage over RGF in more general systems.

We begin by considering (5.81) in the absence of scattering, so that it can be
written as

Gr(E) =

(
E − H −

∑
p

Σr
p(E)

)−1

, (8.30)

where Σr
p is the retarded lead self energy associated with lead p. Combining

(5.105) with (5.86), (5.65) and (5.90) it is easy to see that in the absence of
scattering

ip(E) =
1
h

∑
q

Tr ΓF
p (E)Gr(E)ΓF

p (E)Ga(E)(fq(E) − fp(E)), (8.31)

where we have also used that

Γ(E) = i (Σr(E) − Σa(E)) =
∑

q

ΓF
p (E), (8.32)

which follows from (5.74), (5.75), (5.65) and (5.66). Comparing (8.31) to (2.16),
we see that we must have

T̄qp(E) = Tr ΓF
p (E)Gr(E)ΓF

p (E)Ga(E), (8.33)

an equation which is also derived by Datta[7]. The accuracy of the following
approximations will be judged in terms of their ability to reproduce the correct
transmission function T̄ (E), where the subscripts qp have been omitted, since
we are considering a system with only two leads.

The perturbative procedure requires that the states of our system is divided
into two groups based on their energies. One of these groups will be treated
exactly, and one perturbatively. However, the states in terms of which a model
is formulated, does usually not have a wide range of different energies. For
instance, the tight binding model of CdTe employed in our publications (Papers
I-II), only has two different types of states: s-orbitals with energy 4.95 eV, and
p-orbitals with energy 0.52 eV. This is too coarse grid of energies for us to expect
the method to work particularly well.

To introduce a larger variety of different energies, we proceed as follows:
First we construct small groups of states localized close to each other. In our
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case these groups consist of four neighboring unit cells of CdTe. Indexing these
groups by i, the total Hamiltonian of the system can be written as H =

∑
ij Hij ,

where Hii represents the Hamiltonian of group i by itself, and the terms with
i 
= j represent interactions between the groups. We then diagonalize each of
the operators Hii to get a new set of states |il〉, with energies equal to the
corresponding eigenvalues εil. The resulting grid of energies is much denser than
that of the original model, as illustrated in Figure 8.12.
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Figure 8.12: Energy levels in a CdTe system. The red lines on the left show
the two energy levels of the original tight binding model, while those on the
right show the energy levels after applying the procedure described in the text,
where four neighboring unit cells of CdTe are grouped together, and the groups
isolated Hamiltonian is diagonalized, resulting in a new set of states.

Next, we define an energy range [E1, E2], where states |il〉 such that E1 ≤
εil ≤ E2 will be treated exactly, and the others perturbatively. In the calculations
below, we have unless otherwise specified set E1 = 0.4 eV and E2 = 5.2 eV,
which results in roughly a third of the energies εil being in the range [E1, E2].
Following a fairly standard procedure[27], we define a projection operator P
such that P |il〉 = |il〉 if E1 ≤ εil ≤ E2, and P |il〉 = 0 otherwise. We also define
Q = I − P . The total Hamiltonian can then be written

H = (Q + P )H(Q + P ) = H0 + H� + V + V †, (8.34)

where we have defined H0 = PHP , H� = QHQ, and V = PHQ.
The first approximation we will consider involves interaction with the leads.

These interactions are described by the matrices ΓF
p from (8.35), with p ∈ {1, 2}

since there are only two leads. The approximation consists of replacing these
operators with PΓF

p P , which means we are allowing only states with energy
within the range [E1, E2] to interact with the leads. The consequences of this
approximation is shown in Figure 8.13. There we show the transmission function
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of a system consisting of 32 unit cells of CdTe, arranged along the z-axis, and
employing the tight bind model of our first publication. Periodic boundary
conditions are imposed in the x- and y-directions, and for the lead self energies
we use a simple diagonal model Σr

p(E) = −iPp/2τ , with τ = 2 eV−1, and Pp a
projection operator projecting upon the atoms nearest lead p.
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Figure 8.13: Transmission function of a CdTe system. The curve in blue shows
the unapproximated transmission function, while the curve in red shows the
result after the approximation ΓF

p = PΓF
p P .

Figure 8.13 contains both the exact result, and the result of the approximation
ΓF

p = PΓF
p P . We observe that the exact and the approximate results are quite

similar in the low lying range E ∼ 3.6 eV, but that deviations start to become
significant at higher energies, closer to the upper limit E2 = 5.2 eV. In the long
run we could consider making corrections also to the self energies, which might
reduce the deviations seen in Figure 8.13. For now however, such corrections
have not been implemented. The model with ΓF

p = P ΓF
p P is thus to be regarded

as the target result, to which further approximations will be compared.
Within the approximation ΓF

p = P ΓF
p P , we can use the fact that P 2 = P to

write (8.31) as

T̄ (E) = Tr PΓF
1 (E)PPGr(E)PPΓF

2 (E)PPGa(E)P. (8.35)

In order to calculate the transmission function, we only need the projected
Green’s function PGr(E)P . Combining (8.30) with (8.34) we obtain(

E − H0 − H� − V − V † − Σr
l (E)

)
Gr(E) = I, (8.36)

where we have defined Σr
l (E) =

∑
p Σr

p(E). Multiplying (8.36) on both sides by
P , and using that P 2 = P , Q2 = Q, and PQ = QP = 0, we obtain

(E − H0 − Σr
l (E)) PGr(E)P − V QGr(E)P = P. (8.37)
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Similarly, multiplying (8.36) on the left by Q and on the right by P , we get

(E − H�) QGr(E)P − V †PGr(E)P = 0. (8.38)

Solving (8.38) for QGr(E)P , we find QGr(E)P = (E − H�)−1
V †PGr(E)P ,

and upon inserting this in (8.37) we obtain the equation(
E − H0 − Σr

l (E) − V (E − H�)−1
V †
)

PGr(E)P = P. (8.39)

Thus, if we consider inversion only in the subspace spanned by the states |il〉
with energy in the range [E1, E2], we obtain the expression

PGr(E)P = (E − H0 − Σr(E))−1
, (8.40)

which is on the same form as (8.30), but where we are using a corrected self
energy Σr(E) = Σr

l (E) + Σr
R(E), with

Σr
R(E) = V (E − H�)−1

V †. (8.41)

The perturbative approximation consists of approximations to (8.41). We
begin by writing H� as

H� =
∑

il

εil|il〉〈il| +
∑
i �=j

H�
ij , (8.42)

where the first sum is only over l such that εil /∈ [E1, E2], and where H�
ij = QHijQ.

We then define D =
∑

il εil|il〉〈il|, and U =
∑

i�=j H�
ij , and we write

(E − H�)−1 = (E − D − U)−1 = (E − D)−1 (
I − U(E − D)−1)−1 (8.43)

= (E − D)−1
∞∑

n=0

[
U(E − D)−1]n ,

assuming converge of the sum. Finally, we insert (8.43) in (8.41), and obtain

Σr
R(E) = V (E − D)−1

∞∑
n=0

[
U(E − D)−1]n V †. (8.44)

Perturbative approximations of various orders are now obtained simply by
replacing ∞ by some finite number N . Note that the order of the expansion
refers to the total number of interaction factors U or V . Thus, the term with
n = 0 is a second order term, the term with n = 1 a third order term and so on.

Finite order termination of (8.44) are easy to implement using a sparse
matrix library, as we have done using Python. In Figure 8.14 we show results
of such an implementation, applied to the same system studied in Figure 8.13.
The reference result is the result shown in red in Figure 8.13, and is shown in
black in Figure 8.14a. The perturbative result of order zero, obtained by setting
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Figure 8.14: Transmission function of a CdTe system. (a) shows T (E) itself, while (b) shows
the error |Tn(E) − T (E)|, where Tn(E) is a perturbative approximation of order n. In (a)
T (E) is shown as a solid black line, while the perturbative results are shown as dashed
lines. In both figures, the blue, orange, green, red, purple, brown, grey and turquoise lines
respectively represent perturbative results of order zero, two, three, four, five, six, seven and
eight.

Σr
R(E) = 0, lies quite far from the reference. However, already the second order

result, with Σr
R(E) = V (E − D)−1

V †, is almost indistinguishably from the
reference result. So are also the higher order results. Thus, in Figure 8.14b we
show the errors |Tn(E) − T (E)| in a log plot, in order to more clearly illustrate
the improvement in accuracy with increasing order.

As one would expect, the error varies quite a bit with energy. To remove this
variation, we can consider the maximal error in some range of interest, which
we here set arbitrarily to [3.5, 3.7]. In Figure 8.15 we show how the maximal
error in this range varies both with the perturbation order n, and with the two
energy limits E1 and E2. Note that the most accurate results are limited by the
numerical accuracy, and flatten out at ∼ 10−13. The dependency of the error on
n is seen to fit well with a simple exponential model arn. The most important
parameter from this fit is the base r, which tells us how fast the perturbative
approximation converges towards the correct result. Figure 8.16 shows how this
parameter depends on the choice of limits E1 and E2. Other than the fact that r
decreases when the energy range [E1, E2] is increased, the most important thing
to note is that we always have r < 1, which indicates that we at least in this
case, always have convergence in the limit n → ∞.

In addition to the accuracy of the perturbative approximations, we must
also compare their computation time requirements to that of the exact solution.
Figure 8.17a illustrates how the computation time depends on the perturbation
order. It increases close to linearly, which makes sense since for each new order a
new term in the expansion (8.44) must be calculated. We note however that the

130



Perturbative approximations to Gr

0 2 4 6 8 10 12

n

10
−17

10
−14

10
−11

10
−8

10
−5

10
−2

10
1

e
r
r
o
r

(a)

0 2 4 6 8 10 12

n

10
−19

10
−16

10
−13

10
−10

10
−7

10
−4

10
−1

10
2

e
r
r
o
r

(b)

Figure 8.15: Maximal error |Tn(E) − T (E)| of the perturbative approximation in the energy
range [3.5, 3.7], as a function of the perturbation order n. In (a) E1 = −∞, and the results
shown in blue, green, purple and pink are obtained respectively with E2 = 5.12, 4.74, 4.24
and 3.74 eV. In (b) E2 = ∞, and results obtained with E1 = −0.13, 0.38, 1.06, 1.60, 2.37,
2.59, and 3.74 eV are shown respectively in blue, green, purple, pink, yellow, blue and green.
The solid lines represent exponential models arn fitted against the results where 2 ≤ n ≤ 8.
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Figure 8.16: Dependency of convergence rate on the energy range [E1, E2]. We
show all possible combinations of E2 ∈ {5.12, 4.74, 4.24, 3.74, ∞} and E1 ∈
{−∞, −0.13, 0.38, 1.06, 1.60, 2.37, 2.59, 3.74}. The y-axis shows the parameter r
from the exponential fits illustrated in Figure 8.15, and the x-axis shows the
energy εil /∈ [E1, E2] which is closest to the range [4.5, 4.7], i.e. the closest
perturbatively treated energy.
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growth rate goes down slightly after n = 8. This is probably related to the fact
that we have divided the system into 8 groups. Since we have nearest neighbor
interaction between these groups, the sparse matrices [U(D − E)−1]n from (8.44)
will be maximally dense after ∼ 8 orders.

0 2 4 6 8 10 12

n

0

5

10

15

20

25

30

35

t

(a) Computation time vs perturbation order

0 10 20 30 40 50 60

N

0

5

10

15

20

(b) Fit coefficients a and b

Figure 8.17: Computation time of the perturbative method. (a) Shows how the computation
time depends on the perturbation order n, for six different arbitrarily chosen energy ranges
[E1, E2]. We also show linear fits an + b, fitted in the range n ∈ [2, 8]. (b) shows how the fit
coefficients a and b vary with N , the number of states |0l〉 with energy in [E1, E2], i.e. the
number of exactly treated states. The constant contribution b is shown in green, while a is
shown in blue. We also show a second order polynomial fitted to a(N), and a third order
polynomial fitted to b(N).

Figure 8.17a also shows linear fits, obtained in the range n ∈ [2, 8]. Figure
8.17b shows how the fit coefficients depend on the chosen energy range [E1, E2].
The relevant parameter here is the number of exactly treated states N =∑

E1≤ε0l≤E2
1, since this determines the size of all dense and sparse matrices

involved in the calculation. The exact functional dependency of the computation
time on N is determined by internal details of the the sparse matrix library,
and is beyond our scope here. We do however note that the coefficient a,
describing the order-proportional contribution to the computation time, is roughly
proportional to N(64−N). This is probably related to the fact that the matrices
[U(D − E)−1]nV † from (8.44) have dimension 8(64 − N) × 8N .

Finally, in Figure 8.18 we compare the computation time requirements to
the obtained accuracy. As long as we do not require an accuracy better than
10−4, the fastest calculation is always that shown as grey diagonal crosses. These
represent the perturbative approximation where only a single type of state
with energy 3.74 eV is treated exactly. This is the least accurate method in
terms of convergence with n, but still converges faster in terms of the required
computation time, due to the speed of the operations. According to projections
based on our fitted models, this trend will continue beyond the twelfth order, so
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that the approximation with N = 1 will be the fastest method at all levels of
accuracy, until it catches up with the exact solution at an accuracy of ∼ 10−24.
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Figure 8.18: Perturbative approximation accuracy as a function of computation
time. Results in blue, orange, green, red, purple, brown, turquoise and grey are
respectively obtained with E1 = −∞, -0.13, 0.38, 1.06, 1.60, 2.37, 2.59, and 3.74
eV. Results where E2 = ∞, 5.12, 4.74, 4.24 and 3.74 eV are shown respectively
as circles, stars, squares, and horizontal and diagonal crosses. The order of the
result always increases towards the right, and goes up to 12 in all cases. For some
of the results we also include projections based on the fitted models. These are
shown as dotted lines. The vertical dashed line in black represents the average
computation time of the exact solution.

8.3 NEGF Monte Carlo

The NEGF Monte Carlo method is described in our third paper (Paper III).
Here we just describe some additional results, which were omitted from that
work for reasons of brevity. In Section 8.3.1 we use the method to calculate
transport coefficients of a small quantum dot. We did this calculation originally
as a proof of concept in a small system where the computational requirements
are not very large. The quantum dot results also illustrates that the method can
be used to calculate thermoelectric coefficients, such as the Seebeck coefficient
and the electron contribution to the thermal conductance. In Section 8.3.2 we
test the method on a thin film. This was done in order to test the method in a
system with k-point dependency.
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8.3.1 Quantum dot

In this section we show results of transport calculations in a simple two by two
by two unit cells cubic quantum dot of CdTe, employing the tight binding model
from our first publication (Paper I). Scattering is implemented within Büttikers
approximation, with Σr(E) = −iΓI/2, where Γ = 0.06 eV. The scattering is
assumed elastic and local. As in the previous section, we set Σr

p = −iΓlPp/2,
but this time with Γl = 0.2 eV. The transmission function is shown in Figure
8.19, which also illustrates that both the error estimates and the spread of the
Monte Carlo results converge as 1/

√
n, in agreement with theory. The Monte

Carlo results of Figure 8.19 are compared to a direct solution approach. This
approach involves solving equation (5.86) together with an equation for Σ<

s (E)
derived from Büttikers approximation and the elastic criterion. This is described
further in Paper III. The direct solution is obtained with and without scattering,
in order to show the magnitude of scattering effects and thereby demonstrate
that the Monte Carlo approach estimates these effects correctly.
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Figure 8.19: (a) Transmission function T (E). The solid blue line shows the transmission
function of the quantum dot, calculated by the direct inversion approach. The dashed orange
line shows the transmission function of the same quantum dot without scattering. The green
red and purple error bars respectively show Monte Carlo estimates obtained with 100, 1000
and 10000 samples. (b) Relative error (Tmc − T )/T as function of the number n of Monte
Carlo samples. The nine different colors represent the nine energies in (a). The two dashed
blue lines show the functions ±10/

√
n.

Figure 8.20 shows the conductance of the quantum dot. The Monte Carlo
simulation was set to accumulate samples for 1000 s (17 min) for each value of μ,
which resulted in approximately 20000 samples per value. As can be seen from
Figure 8.20b, this results in a relative standard deviation ΔG/G in the range
of 1-4 percent. The Monte Carlo results are compared to the direct inversion
method, which is integrated over a regular energy grid of 13 points, in the range
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μ±0.25 eV. The interpolated method referenced in this figure and the succeeding
ones will be explained below.
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Figure 8.20: (a) Conductance in Siemens, as function of chemical potential μ in eV. The solid
blue line shows the result of the direct inversion approach. The orange and green error bars
show results of the Monte Carlo simulations, respectively employing the straight forward and
the interpolated method. All of the Monte Carlo results were obtained with an accumulation
time of 1000 s. (b) Error estimate of the Monte Carlo calculations in terms of the relative
standard deviation ΔG/G. The orange line represents the straight forward method, while the
green line represents the interpolated method.

To obtain the other thermoelectric transport coefficients we make use of
(2.24)-(2.26), and define

Sn =
∫

(E − μ)nT (E)Th(E)dE. (8.45)

The thermoelectric coefficients A and B are obtained from S1, while the coefficient
C is obtained from S2. In the Monte Carlo simulation these coefficients are
obtained simultaneously with the conductance calculation, by simply weighting
the result respectively with (E − μ) and (E − μ)2, E being the energy of the
transmitted electron. The thermal conductance k of the quantum dot, and its
Seebeck coefficient α can be calculated from A and C using (2.27)-(2.29). In
terms of S1 and S2, the resulting expressions are

α = − 2eS1
hTG

, and (8.46)

ke =
2S2
hT

− 4e2S2
1

h2TG
. (8.47)

By making use of the general formula

ΔF 2 ≈
∑

i

(
∂F

∂xi

)2
Δx2

i , (8.48)
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we can estimate the standard deviation of the Monte Carlo calculations of α and
k as

Δα =
2e

hT

√
ΔS2

1
G2 +

S2
1 ΔG2

G4 , and (8.49)

Δk =
2

hT

√
ΔS2

2 +
(

2e2

h

)2(4S2
1 ΔS2

1
G2 +

S4
1 ΔG2

G4

)
. (8.50)

Monte Carlo calculations of α and k are compared to the direct inversion approach
respectively in figures 8.21 and 8.22.
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Figure 8.21: (a) Seebeck coefficient S = V/ΔT in μV/K. The solid blue line shows the result
of the direct inversion approach. The orange and green error bars show results of the Monte
Carlo simulations, respectively employing the straight forward and the interpolated method.
(b) Error estimate of the Monte Carlo calculations in terms of the relative standard deviation
ΔS/S. The orange line represents the straight forward method, while the green line represents
the interpolated method.

8.3.1.1 Interpolated method

While the transmission function shown in Figure 8.19 is quite fast to calculate
using the Monte Carlo technique, calculation of transport coefficients is much
slower. This is because in these calculations the electron energy is different in
every Monte Carlo sample, which means Gr will have to be recalculated for
every such sample. Since calculation of Gr is the most demanding part of the
procedure, one could potentially gain a substantial speed improvement if the
amount of such recalculations were reduced. One way of obtaining this would be
interpolation. That is, instead of always recalculating the scattering probabilities
pij from the Green’s function, we sometimes interpolate between previously
calculated values of these functions at different energies. One such interpolation
scheme is tested here.
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Figure 8.22: (a) Thermal conductance in W/K. The solid blue line shows the result of the
direct inversion approach. The orange and green error bars show results of the Monte Carlo
simulations, respectively employing the straight forward and the interpolated method. (b)
Error estimate of the Monte Carlo calculations in terms of the relative standard deviation
Δk/k. The orange line represents the straight forward method, while the green line represents
the interpolated method.

This interpolation scheme is implemented as follows: Whenever some column
of the Green’s function is calculated, all corresponding scattering probabilities
pij(E) = γiγj |Gij(E)|2 are stored in a table together with their respective energy.
Then, whenever transmission functions are required at an energy E between two
energies E1 and E2 where these probabilities have previously been calculated, we
test whether the relevant probabilities differ by more than 5 percent on average
between E1 and E2. If this is not the case, pij(E) is interpolated linearly between
pij(E1) and pij(E2). Otherwise, the relevant sections of the Green’s function is
recalculated, and pij(E) is obtained from this.

The figures 8.20-8.22 also contain results from the interpolated method.
These calculations were executed for 1000 s (17 min), and resulted on average
in approximately 200 000 Monte Carlo samples. Relative to the uninterpolated
method this is a tenfold improvement. As can be seen from the figures, this
has resulted in the relative standard deviation being reduced by approximately
a factor of

√
10 = 3.16. Figure 8.23 compares the sampling rates of the two

methods in a single simulation. The sampling rate of the uninterpolated method
stays approximately fixed at 60 samples per second, while the interpolated
method starts out at this frequency, but then becomes progressively faster as the
interpolation table is filled in. This process saturates after approximately 10000
samples, after which the interpolated method stays fixed at 600-700 samples per
second.

Thus, the sampling rate of the interpolated method is seen to saturate at
approximately ten times that of the uninterpolated one. However, since the Monte
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Carlo method is implemented in Python, it seems likely that this ratio is limited
primarily by the Python overhead, and that for instance a C-implementation of
the interpolation scheme would be significantly faster still.
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Figure 8.23: Comparison of sampling rate. The uninterpolated method is shown in orange,
while the interpolated method is shown in green.

8.3.2 Thin Film

This section includes results of transport calculations in a CdTe thin film with a
thickness of two unit cells. Both the CdTe Hamiltonian, the scattering model,
and the coupling to the leads make use of the same models as in the previous
section. However, this time we set Γ = Γl = 0.02 eV.

A major focus of this section is to compare the computational efficiency of
the Monte Carlo method to that of alternative approaches, when these have
to be integrated over a k-grid. Thus, some effort is put into a study of how
the computation time and accuracy of these other methods scale with the grid
resolution. We study both the direct solution approach mentioned in the previous
section, and in addition an iterative approach. These methods solve the same set
of equations, and their only difference is that the first method solves the equations
by direct linear inversion, while the second method solves them iteratively. The
particular iterative method employed is the Scipy implementation of the gmres
method. In both methods, integration over energy is performed over a grid with
a quite high resolution of 50 points in the range μ ± 0.25 eV. This is to assure
minimal contribution to the error from energy integration.

8.3.2.1 Results

In Figure 8.24 the direct and iterative methods, employing various k-grid reso-
lutions, are compared to Monte Carlo results. The calculations are performed
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both at a chemical potential μ = 4.3 eV, which is quite low in the conduction
band, and at μ = 5.1 eV which lies deeply into the conduction band, where the
entire Brillouin zone contributes to conduction. In addition, the calculations
are performed with two different scattering models. In one of these, scattering
does not couple the k-points, i.e. the k-value of an electron is not changed
after scattering. In the other model, the electrons are scattered homogeneously
between all k-points, i.e. when an electron is scattered, it may end up with any
value of k with equal probability.
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Figure 8.24: Conductance of thin film in Siemens/m2, as a function of k-grid resolution. Solid
lines employ direct inversion, dashed lines employ the iterative approach, while the error bars
represent the Monte Carlo results. Among these, the results shown in green blue and purple
employ the k-conserving scattering model, while the results shown in red, orange and brown
employ the k-coupling scattering model. The Monte Carlo results do not employ a k-grid,
and their position along the horizontal axis is determined simply so as to be convenient in
comparing them to the other results.

At the high value om μ, integration is performed over the entire Brillouin
zone kx, ky ∈ [− 1

2 , 1
2 ], wile at the low value of μ it is only performed over the

range kx, ky ∈ [− 1
4 , 1

4 ]. This is because the outer extents of the Brillouin zone
have no significant contribution to transport this low in the conduction band.
In addition, because of the symmetry of the Brillouin zone, values need only
be calculated in one quarter of the integration region, for instance that where
kx, ky > 0. The grid resolution Nk referenced in Figure 8.24 and in the following
figures, refers to the number of points along one dimension, in the region where
values are calculated. That is, in the region kx, ky ∈ [0, 1

2 ] when μ = 4.3 eV, and
kx, ky ∈ [0, 1

4 ] when μ = 5.1 eV.
When the k-conserving scattering model is employed, the transport problem

can be separated into isolated problems for each k-point. When the k-coupling
model is employed however, this is not possible, and as a result the computa-
tional demands of the alternative approaches become drastically larger. When
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employing the k-conserving model, it was possible to take the grid resolution
all the way up to Nk = 160 without trouble, but with the k-coupling model,
we ran into problems of too little memory at Nk > 14 with the direct inversion
approach. With the iterative approach such problems did not arise, but after
Nk > 40 the calculations were just too time consuming.

The Monte Carlo calculations were allowed to accumulate samples until
the result was determined with a relative standard deviance of approximately
one percent. Relevant information about the results is summarized in table
8.2. The required computation time is determined by the sampling rate, and
by the variance ΔX2 of the estimator. We observe that the sampling rate is
roughly 3 times higher when the k-conserving model is employed, compared to
the k-coupling model. This is because when the k-coupling model is employed,
the diagonal of the Green’s function must be recalculated every time an electron
is moved, whereas when the k-conserving model is used, this needs only be
calculated once per sample.

μ (eV) 4.3 4.3 5.1 5.1
scattering model k-conserving k-coupling k-conserving k-coupling
G (S/m2) 4.5552·1011 4.8270·1011 2.0955·1013 2.4066·1013

Gmc (S/m2) 4.6667·1011 4.7856·1011 2.1022·1013 2.3839·1013

ΔGmc (S/m2) 4.7897·109 4.8657·109 2.0424·1011 2.3668·1011

ΔX (S/m2) 2.9387·1012 6.6054·1012 8.9526·1013 9.3588·1013

num. samples 376451 1842945 192140 156351
comp. time (s) 6411.1 102406. 2565.9 6405.8
ts (s) 0.01703 0.05557 0.01335 0.04097

Table 8.2: Monte Carlo results. G is the result of the standard methods, Gmc

is the Monte Carlo result, ΔGmc is the standard deviance of the Monte Carlo
result, ΔX is the standard deviance of the estimator X which is sampled to
calculate Gmc = X̄, and ts is the computation time per sample.

In addition, we observe that the ratio ΔX/G is higher at the low value of
μ. This is because a large fraction of the samples are then drawn from k-points
which do not contribute significantly to conduction. In the k-conserving case,
this problem is mitigated by drawing the k-points from a probability distribution
proportional to the k-projected density of states of bulk CdTe, so that most of
them are drawn from the region contributing to conduction. In the k-coupled case
however, this technique is not effective, and in fact leads to a significant increase
in the variance of X. Accordingly, we have not made use of this technique in
the k-coupled case.

8.3.2.2 Analysis of computational scaling

In Figure 8.25a we study how the relative error of the direct solution and iterative
method depends on the k-grid resolution. The relative error is estimated as
ΔG/G, where ΔG is calculated as the difference between each result and the same
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result with maximal grid size. The first thing to note is that for the k-conserving
μ = 4.3 eV case, the direct solution and iterative results are coinciding until an
error of less than about 10−6 is reached. We thus conclude that the separation
point 10−6 represents the accuracy of the iterative method. Similar conclusions
hold for the other three cases, so in order to simplify the figure we include only
the direct inversion result in the other k-conserving case, and only the iterative
results for the two k-coupling cases.
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Figure 8.25: Accuracy and computation time of direct and iterative solution. (a) Error
estimate as function of grid size. Circles represent results with k-conserving scattering,
employing the direct solution approach. Squares represent results with k-coupling scattering,
employing the iterative approach. The blue circles and green squares are obtained with
μ = 4.3 eV, while the red circles and purple squares are obtained with μ = 5.1. The orange
crosses are obtained with the same parameters as the blue circles, but using the iterative
approach. The brown and pink line are power functions fitted respectively to the k-conserving
and k-coupling results at μ = 4.3 eV. (b) Computation time as function of grid size. Direct
inversion results are shown as circles, and iterative results as stars. The blue circles and green
stars were obtained using the k-conserving scattering model, while the orange circles and
red stars were obtained using the k-coupling model. The results are from the calculation
at μ = 4.3 eV, but the results at μ = 5.1 eV are almost identical. The solid lines in purple,
brown and blue show respectively the power functions N2

k , 0.05 · N4
k and 0.00111 · N6

k .

The solid line shown in brown in Figure 8.25a represents a power function
fitted to the k-conserving μ = 4.3 eV case. The first six points are ignored in
this fit, and the result is ε = 51.931 · N−4.0235

k . We observe that the asymptotic
behavior of the two cases with μ = 5.1 eV also agree fairly well with this function.
The k-coupling μ = 4.3 eV case however, lies a little higher than the other results,
and we thus make a separate fit of that case. The result is ε = 477.44 · N−3.8633

k ,
and is shown as a solid line in pink in Figure 8.25a. Both of the fitted functions
have an exponent fairly close to 4, and we thus conclude that the integration
accuracy is of fourth order in these cases.
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8. Results not submitted for publication

In Figure 8.25b we study how the computation time of the direct solution
and iterative methods scale with k-grid resolution. The results are compared
to appropriate power functions. We see that in the k-conserving case, both the
direct inversion and iterative approach lies close to the function t = N2

k . This is
reasonable, since in that case the problem can be divided into isolated problems
for each k-point, so that the total computation time should be proportional to
the total number of k-points N2

k .
In the k-coupled case, we see that the iterative computation time asymp-

totically approaches the function t = 0.05 · N4
k , while the direct inversion time

approaches 0.00111 · N6
k . This is also reasonable, since we are then solving a

linear equation set with a number of equations proportional to the number of
k-points. It is well known that direct inversion scales as N3 and an iterative
method as Nitt · N2, where N is the number of equations and Nitt the required
number of iterations.

At small grid sizes all of the methods lie close to the function N2
k . We

conclude that this function describes the time required to calculate Gr, which
will always be proportional to the number of k-points.

Summarizing, the error ε of both the direct solution and the iterative method
scales with N−4

k , the computation time t of the k-conserving cases with N2
k , while

in the k-coupled cases the computation time of the iterative method scales with
N4

k , and the computation time of direct inversion method with N6
k . Combining

all this, we find that the error scales with t−2 in the k-conserving cases, while in
the k-coupled cases the iterative and direct inversion errors scale respectively as
t−1 and t− 2

3 .
For the case of the Monte Carlo calculations, corresponding expressions for

the relative deviation ε = ΔG/G, with ΔG now being the standard deviation,
can be found from the general relation

ε =
ΔX

G
√

Ns − 1
≈

√
tsΔX

G
t− 1

2 , (8.51)

where ts is the average computation time per Monte Carlo sample. Thus, the
error of the Monte Carlo method always scales as t− 1

2 . Concrete expressions for
the relation between ε and t in the four cases we have tested can be found by
inserting the numbers from table 8.2 into (8.51). In the k-conserving cases, we
obtain respectively ε ≈ 0.84 · t− 1

2 and ε ≈ 0.94 · t− 1
2 in the μ = 4.3 eV and μ = 5.1

eV cases, while in the k-coupling cases, we obtain respectively ε ≈ 3.2 · t− 1
2 and

ε ≈ 0.79 · t− 1
2 in the same two cases. All of these scaling relations are compared

in Figure 8.26, where the error and computation time of the actual results is also
included. We observe that even the worst scaling of the alternative approaches,
the k-coupled direct solution, has an error which scales better with computation
time than the Monte Carlo method.

However, it remains a question how general the fourth order scaling of the
error seen in Figure 8.25a actually is. Further, the Monte Carlo method can
be parallelized much more efficiently than the other methods, and has smaller
memory requirements. It should also be mentioned that the k-coupled Monte
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Figure 8.26: Relative error as a function of computation time in seconds. The blue
circles and orange crosses show respectively the direct and iterative solutions in
the k-conserving μ = 4.3 eV case. The other results assume k-coupled scattering.
Among these, the green and purple squares show respectively the direct solution
in the μ = 4.3 eV and μ = 5.1 eV cases, while the red and black crosses show
respectively the iterative solutions for the same values of μ. The dotted lines
show scaling estimates obtained in the text. These are in the same colors as the
results they are obtained from. The solid lines show the scaling of the relative
deviation in the Monte Carlo calculations. The blue and red lines represent
respectively the k-conserving and k-coupled μ = 4.3 eV cases, while the orange
and black lines represent respectively the k-conserving and k-coupled μ = 5.1
eV cases. The Monte Carlo results from our simulations obtained a relative
deviation of 10−2. These points are marked on the scaling relation as overlying
circles.

Carlo calculations are slowed down quite significantly by the unnatural scattering
mechanism, where all k-points are drawn with equal probability. This causes the
electrons to spend most of the simulation in regions of the Brillouin zone where
they are almost immobile, and accordingly causes the calculation to be very
inefficient. In more realistic scattering models, the probability of scattering to a
particular k-point is proportional to the k-projected density of states, meaning
that the electrons would spend most of the simulation time in regions contributing
more to the conductivity. This could significantly improve the efficiency of the
simulation.
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Chapter 9

Conclusions

During the course of this thesis, I have pursued a series of different methods
for performing transport calculations. All of these have been lacking important
aspects, by not employing sufficiently accurate models of band structure and
scattering, and by ignoring important physical effects. Because of this, none of
my results are useful as predictions concerning values of transport coefficients
in real materials. Nevertheless, my experimentation with these methods has
allowed me to make a few conclusions concerning the appropriate way forward
for implementing a general transport framework. In particular, I would like to
share some conclusions concerning how the appropriate method varies between
different regimes of heterostructure transport.

The first parameter I will use to distinguish different regimes, is the typical
size scale of structures in the heterostructure. In a superlattice, this size scale
would typically be the superlattice period, while in a disordered three dimensional
structure it could be the average grain size, or some similar parameter. Whenever
this size scale is considerably larger than the coherence length of the transported
particles, which is usually similar to their mean free path, the transport problem
is well described by the Boltzmann equation, and the Boltzmann Monte Carlo
method seems best suited to solve this. In high field applications, one must
use the method described in Section 8.1.1, while for the calculation of linear
transport coefficients, the method of Section 8.1.2 seems much better suited,
assuming it is appropriately generalized.

A second important parameter which distinguishes different regimes, is the
effective dimensionality of the problem. In particular, I will distinguish between
quasi-one-dimensional systems, and systems that have fully three-dimensional
structures. All of my own calculations have been limited to the quasi-one-
dimensional case, so my discussion of the fully three-dimensional case will be
limited to a discussion merely of what seems intuitive. In fully three-dimensional
systems, there seems to have been some success in modeling heterostructure
transport using the Boltzmann equation, even when the heterostructure size
scale is small. In a sense, it also seems intuitive that this approach should work
better in such systems than in quasi-one-dimensional systems, since failure of
the Boltzmann equation is due to interference effects, which will be reduced by
the inverse square law in fully three-dimensional systems.

On the other hand, peculiar transport phenomena like Anderson localization
have been predicted to occur also in three-dimensionally disordered systems.
Since such effects are not predicted by the Boltzmann equation, it is clear that
Boltzmann based approaches are not always applicable to three-dimensional
heterostructures. All in all this indicates that in the fully three-dimensional
case, more study is required in order to understand precisely which cases are
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9. Conclusions

treatable by the Boltzmann equation, and which ones are not. In the mean
time, Boltzmann Monte Carlo methods seems like a good starting point for
doing practical calculations. Again, the choice between the methods described
in 8.1.1 and 8.1.2 will depend on whether the problem is in the linear or high
field regimes.

In the quasi-one-dimensional case, we must distinguish between the periodic
case of superlattices, and the non-periodic case, which is sometimes referred to
as disordered superlattices. The regimes of high field transport in superlattices is
well described by Wacker[28], so the discussion here will be limited to the regimes
of linear transport, which was investigated in our second publication (Chapter
II). Assuming a simple superlattice, with a single well and barrier layer, our
results show that semiclassical approaches are applicable when the superlattice
period is ether considerably larger, or considerably smaller than the coherence
length. However, when the period is large, one must use the band structure of
the composing materials, while in the regime of small superlattice period, the
minibands of the superlattice should be used. In the first of these cases, the
Monte Carlo method of Section 8.1.2 seems like the best suited method. In
the second case, the Boltzmann equation can be solved directly as long as the
scattering model is not too complicated. Given a more complicated scattering
model, the method of Section 8.1.2 again seems like the appropriate choice.

The results in our second publication also show that one can expect the
existence of an intermediate regime, where neither of the two semiclassical
approaches work particularly well. Based upon the discussion of Section 6.4, the
failure of the miniband approach in this regime is due to the step from (6.82)
to (6.88) not being justified. Thus, the fairly specialized regime of superlattices
with a period comparable to the coherence length, can probably be handled by
applying (6.82) directly.

The final regime to be discussed, is that of non-periodic quasi-one-dimensional
heterostructures. It is probably in this regime that the Monte Carlo method
described in our third paper (Chapter III) is most useful. This is both because
there are few other methods capable of handling this regime, at least when
accurate scattering models are required, and also because it is precisely in quasi-
one-dimensional systems where one can expect Monte Carlo methods to have a
major advantage, since they do not require explicit integration over the crystal
momentum.

Thus, the NEGF Monte Carlo method could have potential applications
within several different areas, among which our original application of thermo-
electric effect in quasi-one-dimensional heterostructures is only one. However,
before this can be realized, considerable amounts of additional testing is required
to determine the actual utility of the method. In particular, we must perform
more appropriate tests of how competitive the method is performance wise, and
perform tests with more realistic scattering mechanisms. In addition, additional
investigations are needed into the linear limit, and the range of applicability of
the positivity assumption.

Finally, in retrospect it seems that the choice to base our calculations on
the NEGF formalism rather than the Kubo relations was a mistake. The main
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reason for this has to do with the numerical derivative of the NEGF currents.
As it happens, all methods for solving the NEGF equations we have encountered,
have some problems with numerical noise. Often, this noise will be insignificant
in the currents themselves, but the numerical derivative can severely magnify
the effect. Thus, to obtain stable results, it is best to calculate these derivatives
analytically, in which case we will in any case obtain expressions similar to the
Kubo relations. In addition to this, there is no reason to assume four point
functions to be considerably much harder to handle in a perturbative framework,
where everything is in any case expressed in terms of unperturbed Green’s
functions. Thus, the perceived advantage of the NEGF formalism, in that one
does not need to handle four point functions, seems not to be that relevant.
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a b s t r a c t

An implementation of the Landauer approach utilizing the ballistic quantum transport package Kwant to
calculate thermoelectric transport properties is presented. Incoherent scattering is included by an
approach suggested by Buttiker, where scattering is mimicked by virtual contacts (Buttiker probes). In
this paper we present the implementation and provide a simple validation by comparing results to the
Boltzmann transport equation (BTE) for bulk CdTe and a simple short period superlattice. The electronic
structure, serving as a base for fitting a tight-binding model, is calculated from first-principles. From
there, the electronic structure on a dense k-point grid is generated and passed to the BTE routines, while
the transmission coefficients in the Landauer approach are calculated from Green’s functions based on
the tight-binding model. Our results show good agreement between the results from the Buttiker and
the BTE calculations, which indicates a successful initial implementation. We discover significant perfor-
mance bottlenecks tied to the density of the Buttiker probes and as such the implementation needs addi-
tional optimization to be viable for production work.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Improvements in the conversion efficiency of thermoelectric
materials have been proposed to be possible by the use of con-
trolled heterostructures, such as superlattices [1–17]. Such
improvements would be a consequence both of reduced heat con-
ductivity, and from effects on electron transport. These effects
include quantum confinement, tunnelling, and band offsets
between the different layers. The idea is that these effects may
limit the energy range contributing to electron transport, which
is an approach commonly referred to as energy filtering
[5,9,14,17–23]. Because of the complexity of such materials, mod-
elling will form an important part in testing whether this proposal
holds true, and if so to guide synthesis and assist interpretation of
measurements.

In thermoelectric research, the usual modelling approach is to
solve the semi-classical Boltzmann Transport Equation (BTE)
within the Relaxation-time Approximation (RTA) [24–26], an
approach which has proven successful for the modelling of bulk
materials [26–36]. However, it has long been known that when

the mesoscale geometry of the material is complicated, the Boltz-
mann equation is no longer strictly valid [27,28,37]. For certain
applications this fact has been shown to have significant conse-
quences in superlattices [38,39]. More specifically, the BTE does
not reproduce resonances at high fields, and even at low fields it
can be quantitatively different from calculations that include quan-
tum effects [38,39]. In view of the recent focus on the concept of
energy filtering, investigations of such effects on the thermoelec-
tric transport coefficients of these structures is thus of great
importance.

For the modelling of systems where both quantum and scatter-
ing effects are important, the Nonequilibrium Green’s functions
(NEGF) method [28,37] is becoming increasingly popular. This
approach is also the only widely applicable method that is close
to being rigorously correct. It has already been applied to the mod-
elling of thermoelectric superlattices [40–43], and was found to
give insight to why the predicted improvements are difficult to
realize experimentally [43]. However, no argument was given as
to whether the same conclusions could have been found by utiliz-
ing the BTE.

In other work [41] some difference between NEGF and BTE
results was found, but as stated by the authors, this difference
was probably mainly due to the small total thickness of the super-
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lattice (6 nm) causing quantum confinement effects. At this length
scale transport is still in the semi-ballistic regime, and is not com-
parable to the BTE.

An approach to quantum transport that is related to NEGF, but
which is conceptually simpler, is one that has been referred to as
the Buttiker approximation [42]. The central idea of this approach
is that scattering processes can be modelled by so called Buttiker
probes [37,42,44–50], which are a set of virtual floating contacts
attached to the system. Since the probes are floating their only
net effect on the system is to randomize the momentum and phase
of the carriers, thus effectively acting like a simple scattering
mechanism. The Buttiker approximation can also be applied to
phonon transport [42,51].

By the use this approach, the transport problem is transformed
into a ballistic problem, and is thus treatable within a ballistic for-
malism, and can be solved with a ballistic solver. Here we report on
an implementation of the Buttiker approximation within the Lan-
dauer formalism, utilizing the ballistic quantum transport package
Kwant [52,53], which is used to calculate the transmission function
T. Within the Landauer framework both the conductivity and the
other thermoelectric transport coefficients are expressed in terms
of the transmission function.

The purpose of this paper is primarily to present and to validate
our implementation. Our approach to validation is to compare our
results to those of the BTE in a regime where the BTE is expected to
be valid. This is the case in bulk materials, and also in short period
superlattices. Accordingly, we present transport calculations on
bulk CdTe, as well as on a super lattice with a period consisting
of four unit cells of CdTe followed by four unit cells of
Hg:25Cd:75Te. Kwant requires a tight-binding model of electrons
in the material. We acquire this model by fitting its parameters
to the band-structures of CdTe and Hg:25Cd:75Te obtained by DFT
calculations using VASP [54–56].

This paper is organized as follows:
In Section 2 we describe some of the theory behind the

approach: In Section 2.1 we discuss thermoelectric transport prop-
erties and how these are expressed in the Landauer formalism.
Then, in Section 2.2 we describe the Buttiker approximation in
more detail. In Section 2.3 we discuss in which cases the semiclas-
sical BTE can be expected to agree with our implementation based
on quantum transport.

Following, in Section 3 we describe the details of our implemen-
tation: In Section 3.1 we describe in detail the fitting procedure we
used to obtained the tight-binding model that was used in our cal-
culations. Then, in Section 3.2 we describe the implementation of
the Buttiker approximation, and how we use this together with
Kwant to calculate the transmission function and the backscatter-
ing mean free path [57], while in Section 3.3 we describe the
numerical integrals needed to calculate the thermoelectric trans-
port coefficients.

In Section 4 we present our results: In Section 4.1 we present
the tight-binding models obtained by our fitting procedure, while
in Sections 4.2 and 4.3 we present transport calculations on bulk
CdTe and on the short period superlattice 4xCdTe-4xHg.25Cd.75Te,
respectively. Finally, in Section 5 we summarize and conclude.

2. Theory

2.1. Thermoelectric transport coefficients and Landauer framework

The most relevant thermoelectric transport properties are the
electrical conductivity r, the thermal conductivity j and the See-
beck coefficient a. These are the three transport coefficients that
enter the thermoelectric figure-of-merit: zt ¼ ra2t=j, which deter-
mines the conversion efficiency of the material [58–60]. The ther-

mal conductivity has contributions from electrons and lattice
vibrations: j ¼ je þ jl respectively. In this work, we focus on elec-
tron transport, and will thus be exclusively concerned with je,
commonly written as je ¼ rLt; t being absolute temperature and
L being the Lorenz coefficient [61,62]. L reduces to
2:44 � 10�8 V2=K2 in highly degenerate systems, such as simple
metals [59–63].

We will restrict this work to elastic scattering, in which case
these coefficients can be expressed within Landauer formalism as
[57,64]

r ¼
Z

dERðEÞFTðEÞ; ð1aÞ

a ¼ � 1
ret

Z
dERðEÞFTðEÞ E� lð Þ; ð1bÞ

je ¼ 1
e2t

Z
dERðEÞFTðEÞ E� lð Þ2 � tra2: ð1cÞ

These expressions are identical to the ones obtained from the RTA
BTE formalism, where RðEÞ is often referred to as the transport dis-
tribution function. FTðEÞ is the thermal broadening function [37] or
Fermi window, defined by

FTðEÞ ¼ � @f ðEÞ
@E

¼ b

4cosh2bðE� lÞ=2
; ð2Þ

where f ðEÞ is the Fermi function and b ¼ 1=kt.
Within Landauer formalism the transport distribution function

can generally be expressed as [57]

RðEÞ ¼ l
A
2e2

h
TðEÞ: ð3Þ

Here l is the length of the sample, A is the cross sectional area and
TðEÞ is the transmission function TðEÞ integrated over all final and
initial modes. The factor 2 comes from assumed spin degeneracy.

In this work we will also assume that the initial and final modes
are always the same. This amounts to the assumption that scatter-
ing is not only elastic, but also conserves k-components orthogonal
to the transport direction. This is not an assumption that is in any
way physically justified, and is made only for reasons of numerical
efficiency. However, the approach should produce a reasonable
effective description. This is similar to the relaxation time approx-
imation of the BTE, which is also not physically justified in general.
In addition, since our present concern is mainly to compare our
approach to the BTE, a realistic description of scattering is not
important as long as the same form of scattering is assumed in
both formalisms.

The assumption of identical initial and final modes, together
with the fact that the transmission is expressed as T ¼ k=L in the
diffusive limit [57], allows us to express the transport distribution
function as

RðEÞ ¼ 2e2

h

Z
d2k?
ð2pÞ2

kðE;k?Þ: ð4Þ

Here k? is the component of the Bloch vector that is orthogonal to
the transport direction (transverse component), and k is the
backscattering mean free path [27,57].

The backscattering mean free path k may be calculated from its
relationship with T. However, in practical calculations where the
size of the system is limited, we cannot expect to reach the diffu-
sive limit T ¼ k=l. But assuming that we can at least reach the inco-
herent limit, the literature derivation [27] of this expression can be
generalized to give

1
T
¼ 1

TC
þ l
k
; ð5Þ
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where TC is the total transmission of the two contacts.

2.2. Scattering within the Buttiker approximation

As mentioned, we treat scattering within the so-called Buttiker
approximation [42,45–50], where the effects of scattering is mim-
icked by a set of virtual contacts known as Buttiker probes. That is,
the simulated region has several contacts attached, but only two of
them represent real contacts. These model the emitter and collec-
tor contacts between which currents would be measured in an
actual experiment. The other contacts are Buttiker probes, which
are left floating so that no net current is emitted or absorbed. Thus,
the only net effect of the Buttiker probes is the randomization of
momentum and phase coherence. They thus mimic a simple but
rather flexible scattering mechanism.

The absorption of carriers by the Buttiker probes can generally
be described by the retarded self energy functions Rr [37]. This
functionality is already implemented in Kwant. In the case of real
contacts, an expression of the self energy can be derived from con-
siderations of modes in the leads [37]. However, since we are inter-
ested in an effective description of scattering, and not in physical
contacts, we will take a simpler approach. We will instead assume
the simplest form the self energy could have, while still causing the
correct relaxation of momentum. Thus, we will assume Rr propor-
tional to the identity. In addition, we observe that only anti-
hermitian self energies cause relaxation, since any hermitian part
would effectively just be an energy dependent addition to the
Hamiltonian. Thus, we assume the retarded self energy of the But-
tiker probes to be anti-hermitian, and write it as Rr ¼ �inðE;k?ÞI,
with n a real function.

To find the actual value of n, we consider the fact that carriers
moving through the simulated region will effectively obey the
modified Schrödinger equation �hi _w ¼ H þ Rrð Þw. Knowing that the
Bloch momentum k commutes with the single particle Hamilto-
nian H, we derive

�h
dk
dt

¼ �h
d
dt

wykw

¼ iwy H þ Rry� �
kw� iwyk H þ Rrð Þw

¼ �2nðE;k?Þk: ð6Þ

In addition we should consider the momentum injected through the
Buttiker probes, but in the case of kz this is entirely randomized, and
averages to zero. We thus obtain the solution kzðtÞ ¼ kzð0Þe�2nt=�h and
a momentum relaxation time of s ¼ �h=2n. Thus, we may express the
Buttiker probe self energies as

RrðE;k?Þ ¼ � �hi
2sðE;k?Þ I: ð7Þ

Since we are at this point only concerned with validating our
implementation, we will assume a constant relaxation time
sðE;k?Þ ¼ s in our calculations. We need to emphasize that con-
cerns about the representative nature of this assumption is not
the focus of this work, it is only introduced in order to make an
as equal as possible footing where the transport distribution func-
tion RðEÞ can be compared to the BTE calculations. By the assump-
tion of elastic scattering, RðEÞ will in each formalism and at each
individual energy depend only on the relaxation time at that
energy.

The retarded self energy describes the way in which carriers are
absorbed by the Buttiker probes [37]. In addition it is necessary to
describe the way in which carriers are re-emitted. Within the NEGF
formalism emission is described by the lesser self energies R< [37],
but within our underlying ballistic framework, there is no way of
explicitly defining these. Instead, the re-emission process is simply

defined in the following way: Carriers are re-emitted from the
same probe at which they were absorbed, they have the same
energy, and the same transverse momentum as they had before
absorption, and finally, as a consequence of the probes being local,
the momentum component parallel to the transport direction is
fully randomized. Thus the scattering process conserves charge,
energy and transverse momentum.

2.3. Agreement with the BTE

Our approach to validate the implementation and method is to
compare it to the BTE in systems where the BTE is expected to be
valid. Thus, we need a simple criterion by which to determine
when the BTE is valid. The relationship between the BTE and Lan-
dauer approach have been studied in previous work [57], where it
was found that the two formalism are mathematically equivalent if
one makes the substitution

hhkii ¼ 2hv2
zsi

hjvzji : ð8Þ

Here v is the group velocity v ¼ @E=@k=�h, and the averages are taken
over different modes [57]. In the case of one dimensional conduc-
tors the authors find that this expression reduces to k ¼ 2vzs, where
only one mode in the one dimensional conductor is assumed.
Because of our assumption that scattering conserves transverse
momentum, RðEÞ can be expressed by Eq. (4), which is essentially
an integral over multiple independent one dimensional channels.
Thus we may in our case also make use of the simple expression
k ¼ 2vzs.

Intuitively this expression makes sense, except for the factor of
two. We can however understand this factor by considering that s
is a relaxation time, representing the time it takes before the
expected momentum of a particle is relaxed to zero. On the other
hand, k is the length the particle moves before it is reflected, and
has the opposite momentum. Intuitively, this takes twice as long
as the relaxation to zero, which explains the factor of two.

With this in mind we now argue that since the BTE is equivalent
to setting k ¼ 2vzs, it is the validity of this expression that determi-
nes the validity of the BTE. At first this expression seems universal,
but due to the quantum nature of charge carriers, their velocity is
not sharply defined. Although the group velocity of each Bloch
state is well defined, an actual particle moving through the sample
will generally be in a superposition of several Bloch states, and will
thus not have a sharp velocity. In order for a sharply defined veloc-
ity to be a good approximation, the uncertainty in velocity must
satisfy Dv � v , which can be written as

@v
@k

Dk � v : ð9Þ

From the uncertainty principle, 2DkDx P 1. By combining this
inequality with Eq. (9) we get @v=@k=Dx � v . Finally @v=@k should
be of order @v=@k � av , where a is the lattice parameter, so that the
condition becomes

a � Dx: ð10Þ
Thus, the BTE is only strictly justified when the carriers are

delocalized over a scale much larger than the lattice period. It is
physically reasonable to assume that the carriers are localized
when they scatter, and delocalize when they move between scat-
tering events. Thus Dx should be of order Dx � k � vs, which
finally lets us write the condition as

a � vs: ð11Þ
This condition is also equivalent to the one described in the work on
superlattices by Wacker et al. [38,39]. They found that the
miniband-transport-model, i.e. applications of the BTE to superlat-
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tices, is valid when C ’ �h=s� u, where u is the coupling between
the wells. We can realize this equivalence by comparing two rea-
sonable estimates of the transfer time tT between the wells:

a
v � tT � �h

u
: ð12Þ

Semiconductor scattering rates typically lie in the range [28]
C ’ 1=s ’ 1012—1014 s�1, or 100 fs after a geometric average. For
the group velocity we base our estimate on simple dimensional
analysis and pick �hv � eV Å, since this is a typical unit of this quan-
tity. From this we obtain the estimate vs � 10 nm, which if used
together with Eq. (11) suggests that the BTE should be applicable
for bulk materials where a � a few Å, and for superlattices with
a short period. These two cases are tested in this work to demon-
strate a working implementation.

3. Implementation

3.1. Fitting of tight-binding model

Kwant relies on a tight-binding description of the system of
interest, which allows for the inclusion of atomistic detail for very
large systems. Thus, as the first step, it is necessary to obtain tight-
binding models of the materials of interest, which in our case are
alloys of HgTe and CdTe. These alloys were chosen due to the fact
that they can be combined to produce super lattices of very high
quality [65].

Our parametrized tight-binding model can be described as fol-
lows: We combine each Te atom with one of the nearby Hg or
Cd atoms to form larger units consisting of two atoms. These effec-
tive units can be seen to be organized in an fcc structure rather
than in the slightly more complex Zinkblende structure of the
atomic lattice. This together with the electronic configuration of
these materials allows us to make use of a simple nearest neigh-
bour model described in the literature [66], where hybridized sp3

states are associated to each atom in an fcc-structure.
Among the parameters of this model are clearly the energy

levels of the s and p states of both the HgTe and CdTe units. In addi-
tion there are 5 hopping parameters Ess; Esp; Exx; Exy and Ezz, the
meanings of which are described in the literature [66]. In our case
we have hopping both between HgTe and HgTe, between CdTe and
CdTe and between HgTe and CdTe, so that the number of such hop-
ping parameters is increased by a factor of three. This means that
the total number of parameters in our model is 19.

However, since our present calculations only concern systems
that are Hg sparse, the HgTe-HgTe hopping parameters are not
needed. The remaining 14 parameters were determined by fitting
against density functional theory (DFT) calculations of the band
structure of CdTe as well as the alloy Hg:25Cd:75Te. These calcula-
tions made use of VASP [54–56] and were based on the Perdew-
Burke-Ernzerhof (PBE) exchange correlation functional. A plane-
wave energy cutoff of 650 eV with a k-point sampling of
31 � 31 � 31 was used. We are not in this work concerned with
how well these DFT calculations reproduce the actual electronic
structure, as generalization to more accurate methods is straight
forward.

The fitted model is obtained by use of a numerical minimization
routine, minimizing the quantityX
nk

EDFT
nk � ETB

n ðkÞ
� �2

w EDFT
nk

� �
þw ETB

n ðkÞ
� �h i

by varying the 14 remaining tight-binding parameters. Here the
index n is chosen to run over the 12 highest valence bands and
the 4 lowest conduction bands, EDFT

nk and ETB
n ðkÞ are the DFT and

tight-binding results respectively, while wðEÞ is a weighting func-

tion used to make the fitting prioritize energy regions where agree-
ment is desired. For transport calculations, a good fit close to the
band gap is essential, while other regions are unimportant. Without
a weighting function the fit would overall be better, but less accu-
rate in the interesting region. In our minimization we put
wðEÞ ¼ FTðEÞ, which is defined in Eq. (2). The parameters l and b
were chosen so that l lies in the middle of the band gap and
1=b ¼ 0:15 eV.

3.2. Calculation of the transmission function and backscattering mean
free path

In the following we give details of our implementation, which
employs the quantum transport package Kwant [52,53]. For addi-
tional details related to Kwant consult its documentation [53].

3.2.1. Definition of the system
Kwant needs a system definition. The current available imple-

mentation of Kwant is tailored for systems of finite size, and there
is no native support for translational symmetry in two directions.
We circumvent this by Fourier transforming the tight-binding
model in the x and y directions, and treating the resulting Bloch
momenta kx and ky as parameters of a one-dimensional model. This
transformation to a k-dependent model is straight forward, and we
have thus chosen to not include these details here. The resulting
system, consisting simply of a long chain of unit cells, is declared
and set up in Kwant, together with the resulting k-dependent
tight-binding model.

We attach a set of contacts, or leads as they are referred to in
Kwant, to this system. Two of these are the real contacts, and are
attached to the end points of the chain. The other leads are Buttiker
probes, and these are distributed evenly along the chain. The most
correct approach would be to attach these Buttiker probes to every
single atom in the system. However, the calculation time scales
strongly with the size of the region to which contacts are attached.
Such an approach is thus not feasible. Instead the Buttiker probes
are only connected to an evenly distributed subset of the unit cells,
and their density is controlled by a numerical parameter dsc . More
specifically, the Buttiker probes are attached at regular intervals
between the end points, with one single probe per dsc unit cells.

The leads are declared in Kwant by defining their self energies.
For the Buttiker probes we make use of the model defined in Eq.
(7), but scale the magnitude of Rr by a factor dsc in order to com-
pensate for the lower density of Buttiker probes. Since by construc-
tion our calculations are independent of contact effects, the self
energies of the two real contacts do not matter, and we choose
them simply as Rr ¼ �iI � 1 eV.

3.2.2. Ballistic transmission functions
For each combination ðkx; ky; EÞ of transverse k-points and ener-

gies in the integration grid, we calculate the ballistic transmission
functions between all leads. This is done in the following manner:

(i) first we update the tight-binding model by updating the
transverse momenta ðkx; kyÞ, which are treated as parame-
ters of the model,

(ii) then we ask Kwant to calculate the Greens function of the
system at energy E, and

(iii) finally we ask Kwant to calculate all transmission functions
given this Greens function.

This yields the ballistic transmission functions Tpq between the
two real contacts, Tp/ between the real contacts and the Buttiker
probes, and T/w between different Buttiker probes.
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3.2.3. The effective transmission function
The next step is the calculation of the effective transmission

function T. This can be interpreted as the probability that a carrier
injected at one end eventually ends up at the other end, possibly
taking a path via multiple Buttiker probes. In the case that there
is only a single Buttiker probe, an expression for the effective trans-
mission is derived in the literature [37] as

T ¼ Tpq þ Tp/T/q

T/p þ T/q
: ð13Þ

The derivation is easily generalized, and we obtain

T ¼ Tpq þ
X
/w

Tp/ R�1
� �

/w
Twq; ð14aÞ

where the matrix R is given by

R/w ¼
X
w

T/w þ T/p þ T/q

 !
d/w � T/w: ð14bÞ

This is the expression we use to calculate the effective transmission.
It is essentially the solution of a random walk problem.

3.2.4. The backscattering mean free path
Finally, for each point in the integration grid we calculate the

backscattering mean free path kðE;k?Þ. We approach this by eval-
uating the effective transmission of two systems differing only in
their lengths l1 and l2. These two systems will have different effec-
tive transmissions T1 and T2, respectively, and utilizing Eq. (5) we
obtain

1
T2

� 1
T1

¼ l2
k
� l1

k
: ð15Þ

This gives us an estimate of k as

k ¼ l2 � l1
1=T2 � 1=T1

; ð16Þ

which is used in our implementation. The lengths l1 and l2 are cho-
sen in such a way that l1 is always an even number of fundamental
periods, while l2 ¼ 3l1=2.

As mentioned, Eq. (5) is only valid in the incoherent regime, and
both systems thus need to be large enough to be in that regime. We
made sure this was the case by a simple process of trial and error,
where l1 was increased until the linear relationship of Eq. (5) was
obtained. In the case of our CdTe model we found that we are well
within this regime at l1 ¼ 512a ¼ 337 nm, where a ¼ 6:59 Å is the
lattice constant of CdTe.

However, this concrete number is clearly related to the particu-
lar material, and to the model that we use. Thus, a more general
criterion should be formulated. We approach this by relating the
system size to the coherence length l/ [28,37]. With our simplified
treatment of scattering, where both momentum and phase is com-
pletely randomized at each scattering event, the coherence length
is equal to the momentum relaxation length: l/ ¼ lp ¼ vs. As men-
tioned we use a constant relaxation time of s ¼ 100 fs, while at the
highest energy in our integration grid E ¼ 4:1 eV, the group veloc-
ity of our CdTe model is �hv � 6 eV Å. This gives vs ¼ 91 nm, and
the required system size corresponds to l1 ¼ 3:7 l/.

In other words, we are in the incoherent regime when the sys-
tem size is about four times the coherence length. This also makes
sense heuristically, since coherent effects should decrease expo-
nentially with l=l/.

3.3. Integration and calculation of transport coefficients

3.3.1. The transport distribution function
By utilizing the approach of the previous section, we can now

calculate kðE;k?Þ for any value of E and k?, which allows us to cal-
culate the transport distribution function by Eq. (4). The integral
extends over the transverse part of the Brillouin zone, and can be
re-expressed as

RðEÞ ¼ 2e2

h

Z p=a

�p=a

dkx
2p

Z p=a

�p=a

dky
2p

kðE; kx; kyÞ

¼ 2e2

a2h

Z 1=2

�1=2
dkx

Z 1=2

�1=2
dky k E;

2p
a

kx;
2p
a

ky

� �
: ð17Þ

In both CdTe and the alloy Hg.25Cd.75Te, the materials considered in
this work, the band edges lie at the Gamma point. Because of this,
the regions where k? > 2p=a will have non-zero contributions only
when E is far from the band gap. Thus, these regions will not con-
tribute significantly to transport, and we can allow ourselves to
ignore these regions. We can then write the integral in circular
coordinates as

RðEÞ ¼ 2e2

a2h

Z 1=2

0
dk
Z 2p

0
kdhk E;

2p
a

k cos h;
2p
a

k sin h

� �

¼ 16e2

a2h

Z 1=2

0
dkk

Z p=4

0
dhk E;

2p
a

k cos h;
2p
a

k sin h

� �
; ð18Þ

where the last equality comes from the square symmetry of the
transverse Brillouin zone. When circular integration is not possible,
one would instead use Eq. (17). This would however be at an
increased computational cost.

To evaluate Eq. (18) numerically, we divide both the h and k
intervals into regular subintervals, and use simple midpoint inte-
gration. The number of points Nk along the radial direction is kept
fixed, while the number of points Nn

h in the angular direction varies
with the radial coordinate. Nn

h is chosen in such a way that the arc
distance between neighbouring points in the angular direction is
smaller than some minimal step:

pkn
4Nn

h

<
2p
a

dh: ð19Þ

If dh P p=8 ¼ 0:393 then Nn
h ¼ 1 for all n.

3.3.2. Thermoelectric transport coefficients
Given the transport distribution function RðEÞ, we calculate the

transport coefficients by Eqs. (1a)–(1c). All of these expressions can
be written as integrals of the form

Y ¼
Z

dEXðEÞRðEÞFTðEÞ: ð20Þ

We approximate these as integrals over the range ½Emin; Emax�, and
evaluate them by the same simple midpoint technique, using NE

regularly spaced points. This approach is used to evaluate the con-
ductivity r, the Seebeck coefficient a, and the Lorenz coefficient
L ¼ je=rt.

In the calculations of this work, we always have Emin ¼ 2 eV,
Emax = 4.1 eV and normally NE ¼ 200. The chemical potential l in
our calculations is in the range between 2.5 and 3.6 eV, while the
temperature is chosen to be 300 or 700 K. This results in a buffer
of 0:5 eV P 8kt between the chemical potential and the integra-
tion limits. Outside of this buffer we have
FTðEÞ=FTðlÞ � 4e�bE < 4e�8 � 10�3, so that the contributions from
these ranges are in any case very small. In addition we always have
kt=ðDE=NEÞ P 2:5, meaning that there will always be at least 5
energy points within an interval of 2kt. This assures a quite reason-
able sampling of the function FTðEÞ of Eq. (2).
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4. Results

4.1. Fitted tight-binding model of the HgCdTe system

In this section we present and validate the tight-binding model
we will use for the rest of our calculations. The model was obtained
by use of the fitting procedure described in Section 3.1.

In Fig. 1 band structures of CdTe and the alloy Hg:25Cd:75Te are
compared to the fitted models. The gray shaded area shows where
good agreement has been achieved. This is in a reasonably sized
region around the band gap. The parameters of the resulting mod-
els are shown in Table 1. The CdTe and CdTe-CdTe parameters are
obtained from the fit against the CdTe band structure shown in
Fig. 1a. The HgTe and CdTe-HgTe parameters are obtained from

the fit against the Cd0:75Hg:25Te band structure of Fig. 1b. The
meaning of the parameters are explained in the literature [66].

To verify that the resulting model captures the physics relevant
to describing electronic structure in hetero-structures, we also cal-
culate the band structures of two superlattices and compare these
to DFT calculations. The results are shown in Fig. 2. Fig. 2a shows
the band structure of a super lattice made up of two unit cells of
HgTe followed by two unit cells of Hg:25Cd:75Te, while Fig. 2b shows
that of a super lattice with a period of four unit cells of CdTe fol-
lowed by four unit cells of Hg:25Cd:75Te. We stress that this model
also makes use of the parameters of Table 1, and is not fitted to the
DFT calculations of Fig. 2. Given this, the agreement within the
included region is quite impressive, although it is not perfect. Per-
fect agreement would in any case not be expected, since there are

(a) CdTe

(b) Hg.25Cd.75Te

Fig. 1. Fitted models. Blue lines are tight-binding results, while the red stars are
DFT results. In (a) the results have been shifted to better match the band alignment
between the two materials. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

(a) 2×HgTe-2×Hg.25Cd.75Te superlattice

(b) 4×HgTe-4×Hg.25Cd.75Te superlattice

Fig. 2. Superlattice band structures. Blue lines are tight-binding results, while the
red stars are DFT. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Table 1
Fitted parameters of the HgCdTe model. Es and Ep are the energy level of s and p states respectively. Ess; Esp; Exx; Exy and Ezz are hopping parameters, the meanings of which can be
found in the literature [66].

CdTe CdTe-CdTe CdTe-HgTe

Es: 4.9530 eV Ess: �0.11853 eV Ess: �0.16814 eV
Ep: 0.51990 eV Esp: 0.25609 eV Esp: 0.23259 eV

HgTe Exx: 0.21377 eV Exx: 0.30393 eV

Es: 3.9439 eV Exy: 0.31457 eV Exy: 0.37341 eV
Ep: 0.21829 eV Ezz: 0.10939 eV Ezz: �0.11725 eV
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several microscopic details that are not captured by our tight-
binding model. In particular these include strain effects and partial
charge transfers.

4.2. Transport in bulk CdTe

Here we present transport coefficients in bulk CdTe calculated
by our implementation, and compare these to BTE calculations,
the implementation of which is covered in a separate work [67].
The results are shown in Fig. 3, where figures a–d show, respec-
tively the transport distribution function, the electrical conductiv-
ity, the Seebeck coefficient and the Lorenz coefficient. The
transport coefficients are calculated with two different tempera-
tures of 300 and 700 K.

The BTE result in Fig. 3a is in reality the electrical conductivity
at 10 K as a function of l. At this low temperature the integral of
Eq. (1a) samples only a very small region around l, so that the cal-
culated function should be almost identical to the transport distri-
bution function. The small oscillations in this function are likely
due to the expected poor convergence in the integrals at such
low temperatures.

In the calculations employing the Buttiker approximation, the
function sðEÞ was set to a constant value of 100 fs, the simulated

region had a thickness of l1 ¼ 675 nm, corresponding to 1024 unit
cells of CdTe, while the various numerical parameters defined in
Sections 3.2 and 3.3 were set to Emin ¼ 2:0 eV, Emax ¼ 4:1 eV,
NE ¼ 200; Nk ¼ 100; dh ¼ 0:03 and dsc ¼ 32.

The BTE calculations made use of the same constant relaxation
time s ¼ 100 fs, and used the band structure obtained from the
same tight-binding model that was used by Kwant to calculate
the Green’s functions. For the purpose of making a convergence
study, we did the BTE calculations with several different integra-
tion grids, having sampling sizes of NB

k � NB
k � NB

k , with

NB
k ¼ 11;51;101 and 201. The results of the convergence study

are shown more explicitly in Fig. 4, where the relative difference
between the two methods is shown as a function of NB

k for some
selected values of l. These values are indicated as vertical lines
in Fig. 3.

As expected the Boltzmann results converge towards the Lan-
dauer results with increasing NB

k , and in most of the results, the dif-

ference seems to saturate somewhere between NB
k ¼ 51 and

NB
k ¼ 201. The saturated value is in almost all cases on the order

of a few percent or smaller, which gives a strong indication that
we have a successful implementation. One exception is the Lorenz
coefficient at t ¼ 700 K and l ¼ 3:6 eV, where the saturated differ-

(a) Transport distribution function

(b) Conductivity

(c) Seebeck coefficient

(d) Lorenz coefficient

Fig. 3. Comparison of BTE and Buttiker approximation results in bulk CdTe. (a) The blue curve is calculated by the BTE while and red curve by the Buttiker approximation.
(b-d) The solid lines are Buttiker approximation results while the circles are BTE results. The black, blue, green and turquoise results are calculated with T ¼ 300 K, while
purple, red, orange and grey are at 700 K. Among the BTE results black and purple is with an 11 � 11 � 11 k-grid, red and blue with 51 � 51 � 51, turquoise and orange with
101 � 101 � 101 and green and grey with 201 � 201 � 201. The black vertical lines show values of l where the convergence with grid density is shown more explicitly in
Fig. 4. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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ence is as high as 7%. This is probably because the Lorenz coeffi-
cient is extra sensitive to the integration interval over energy,
and a clearing of 8kt from the chemical potential is too small.

As for the remaining few percent difference, this could have
several different sources. The fact that the relative difference satu-
rates at the higher k-point densities in Fig. 4, shows that it is unli-
kely that this difference comes from the integration density used in
the BTE. It could in principle come from any of the numerical
parameters EMax; EMin; NE; Nk; dh; dsc and L used in our implemen-
tation of the Buttiker approximation. In addition to this, part of the
difference could come from a true physical difference between the
two methods, which according to Eq. (11) are only fully in agree-
ment in the limit vs=a ! 1. We are in any case more interested
in using this method on heterostructures, where the answers to
these questions could be completely different from the case of bulk
materials. Therefore, we address these issues more carefully in the
next section, where we study transport in a short period
superlattice.

4.3. Transport in a 4xCdTe-4xHg.25Cd.75Te superlattice

In this section, we present transport calculations on the short
period super lattice whose band structure is shown in Fig. 2b. As
mentioned, this structure consists of four unit cells of CdTe fol-
lowed by four unit cells of Hg:25Cd:75Te. It has a total period of
asl ¼ 5:3 nm, and according to the considerations of Section 2.3,
should still be within the regime where the BTE is valid given rea-
sonable values of vs � 10—100 nm.

The numerical parameters related to the integration grid were
set to NE ¼ 200; Nk ¼ 100 and dh ¼ 0:03. Most of the calculations
are carried out using a material region with a total thickness of
l1 ¼ 337 nm, containing 64 superlattice periods and a total of 512
unit cells of CdTe and Hg:25Cd:75Te. To verify convergence with
respect to these parameters, we performed calculations where
the integration densities in the energy, radial k and angular k-
directions, as well as the simulation thickness L were respectively
doubled. This caused only minor changes to the results, signifi-
cantly smaller than the changes observed when dsc and s are var-
ied. We thus conclude that the results are sufficiently converged
at the lower values of NE;Nk; dh and l1, and focus the more detailed
convergence study on the two remaining parameters dsc and s.

The results of the calculations are shown in Fig. 5. Fig. 5a, b, c
and d shows the transport distribution function, the conductivity
and the Seebeck and Lorenz coefficients, respectively. The calcula-
tions are performed with different constant relaxation times of
s ¼ 100, 200 and 400 fs. Calculations with higher values of s also
simulate a thicker region of material. This is because higher values
of s result in higher values of l/, so that the material region must be
larger in order to remain in the incoherent regime.

In order for the results to be more directly comparable, Fig. 5a
shows the transport distribution function divided by s. For the
same reason the conductivities in figure b with s ¼ 200 and
400 fs have been scaled down by a factor of two and four, respec-
tively. Also, the Buttiker approximation calculations employ differ-
ent values of the parameter dsc. These are dsc ¼ 8, 4, 2 and 1, where
dsc ¼ 1 corresponds to the ‘‘exact” case, where Buttiker probes are
attached to every single unit cell. In addition, Fig. 5b–d shows
results at two different temperatures of 300 and 700 K.

Results calculated by the BTE are also included in Fig. 5. The BTE
calculations make use of a regular cubic integration grid with a res-
olution of 51� 51 points in the inplane directions of k-space and
13 points in the crossplane direction. They make use of the same
tight-binding model as the Buttiker approximation to calculate
the superlattice band structures, and also uses the same values of
s for the momentum relaxation time. The BTE result included in

Fig. 5a is actually the conductivity calculated at 50 K. Again, the
conductivity is very similar to the transport distribution function
RðEÞ at such low temperatures. Both the BTE and Buttiker approx-

(a) Conductivity

(b) Seebeck coefficient

(c) Lorenz coefficient

Fig. 4. Relative difference between the BTE and Buttiker approximation results of
Fig. 3. The results are shown as function of the BTE integration grid, which has a
cubic sampling of NB

k � NB
k � NB

k . The blue curves are at T ¼ 300 K while the red
curves are at T ¼ 700 K. Also, the solid, dashed and dotted lines are calculated
respectively with l ¼ 2:5, 3.0 and 3.6 eV. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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imation results show oscillations in RðEÞ, and also in the three
transport coefficients. This is a consequence of the formation of
minibands, which can be seen in Fig. 2b.

For reasons of clarity we make a more explicit convergence
study in Fig. 6, where we show how the relative difference
between the BTE and Buttiker results varies with dsc and s. The
study is done at four different values of the chemical potential.
These values are indicated as vertical lines in Fig. 5.

In Fig. 6, we observe two trends: At the higher values of l of
3.15 eV (in turquoise and orange) and 3.4 eV (in blue and grey)
the agreement between the models generally improves greatly as
dsc is decreased. At the lower values of l of 2.58 eV (in black and
purple) and 2.8 eV (in green and red) this trend is much less clear.
However, for these low values of l, the agreement instead tends to
improve greatly when s is increased, which is an effect much less
noticeable at the higher l-values. Both of these trends are more
clear in Fig. 6b than in the others. In particular the improvement
with s is close to absent in Fig. 6d. In fact it tends to oscillate as
we increase s, which might be an indication that the Lorenz coef-
ficient is highly sensitive to numerical noise stemming from the
finite resolution of the k-space integration grid.

The different behaviour between the low values of l ¼ 2:58 and
2:8 eV and the high values of l ¼ 3:15 and 3:4 eV can be under-
stood from the fact that transport at the lower values of l is dom-
inated by the valence band, while transport at the higher values is
dominated by the conduction band. As seen from the band struc-
ture of Fig. 2b the valence band contains several minibands that
are much flatter than those of the conduction band. This means
that the group velocity v ¼ @Ek=@k=�hwill be lower, and accordingly
that higher values of s are required for Eq. (11) to be satisfied. Thus,
the results at l ¼ 2:58 and 2:8 eV may not be fully within the
regime of validity of the BTE when s ¼ 100 fs. This explains why
the agreement is not improved with decreasing dsc , but instead
improves much when s is increased.

Our results are thus seen to be fully in agreement with theoret-
ical expectations. In addition we obtain quite small relative differ-
ences in the transport coefficients on the order of 10�2 between the
Buttiker approximation and the BTE at low values of dsc. This is on
the order of magnitude of the error we expect from our integration
methods, and also what we obtained in the previous section. We
thus conclude once more that we have a successful implementa-
tion, and that it produces results that are comparable to the BTE

(a) Transport distribution function

(b) Conductivity

(c) Seebeck coefficient

(d) Lorenz coefficient

Fig. 5. Transport coefficients in a 4-4 CdTe-Hg.25Cd.75Te super lattice as function of chemical potential l. (a) The single red curve is the BTE result while the other curves are
calculated using the Buttiker approximation. Circles, squares and crosses are for s = 100, 200 and 400 fs, respectively, while black, green, turquoise and blue represent
respectively results with dsc = 8, 4, 2 and 1. (b-d) BTE results are included as lines and filled circles, in blue at 300 K and red at 700 K. Buttiker approximation results are shown
in the same styles as in figure a, and in the same colours at 300 K. At 700 K the results with dsc = 8, 4, 2 and 1 are shown in purple, red, orange and yellow, respectively. The
four vertical lines represent the values of l at which explicit convergence studies are shown in Fig. 6. Note that the results of figure b with s ¼ 200 and 400 fs have been scaled
down by a factor of two and four, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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in such a degree that it can be used to study physical differences
between these models for a more general set of systems.

5. Conclusions

The primary purpose of this paper was to describe and verify a
particular implementation of the Buttiker approximation applied
to the calculation of thermoelectric transport coefficients. The
agreement between the implemented approach and an existing
implementation using the BTE is very good in the regime where
this is expected, indicating a successful implementation of this
method. In particular, in bulk CdTe the small difference that
remains is only of order a few percent, and is likely due mostly
to finite accuracy in the numerical integration.

In the short period superlattice studied in Section 4.3, the situ-
ation is more complex. There, the agreement between the Buttiker
approximation and the BTE shows a strong dependence on dsc and
on the relaxation time s. However, our results show a strong indi-
cation of convergence between these two methods in the limit
dsc ! 1 and s ! 1, thereby giving further credence to our imple-

mentation. In our bulk calculations, we obtained very good agree-
ment with the BTE already for dsc = 32, while in Fig. 6, for our
example short period superlattice, dsc must be at least as low as
2–4 to obtain acceptable convergence. The poor convergence in
superlattices probably originates from varying carrier densities
within the superlattice period. These variations will not be sam-
pled correctly for large values of dsc .

An important point that should be emphasized is the computa-
tional cost of this implementation. The most important factor
determining the efficiency of the calculations is the parameter
dsc , which describes the density of Buttiker probes. The computa-
tional time scales quite poorly with dsc. In the calculation where
dsc was set to 2 and the system size was l ¼ 337 nm, the calculation
of one single transport distribution function took a total of 9200
CPU hours. Mainly because of the poor convergence in dsc , we find
that this implementation is probably too inefficient for general
purpose calculations. Possibly steps can be taken to improve this
convergence, for instance by in some way weighting the relaxation
time with electron density. Alternatively, one could employ a more
efficient inversion algorithm, such as the RGF algorithm [68],
which might not require dsc > 1.

(a) Transport distribution function

(b) Conductivity

(c) Seebeck coefficient

(d) Lorenz coefficient

Fig. 6. Relative difference between the Buttiker approximation and BTE results of Fig. 5, and its dependence on dsc and s. The black, green, turquoise and blue curves are
calculated respectively at the values of l ¼ 2:58, 2.8, 3.15 and 3.4 eV indicated in Fig. 5, and at 300 K in figures b-d. The purple, red, orange and grey curves are calculated at
700 K and respectively at the same values of l. The solid and dashed curves and the circles are calculated respectively with s ¼ 100, 200 and 400 fs. The dsc ¼ 1 results are
only calculated for one value of s, and the s ¼ 400 fs results only for one value of dsc . This is because of the high computational cost of these two cases. In (a) the result at
l ¼ 2:8 eV is omitted since RðEÞ ¼ 0 in the band gap. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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A B S T R A C T

Calculations of thermoelectric transport coefficients including quantum effects are performed on superlattices
using the Buttiker approximation. The results are compared to the Boltzmann transport equation with minibands
present, and to an incoherent transport model. Comparisons are performed in the linear regime for the electrical
conductivity, Seebeck and Lorenz coefficients. We show that at superlattice periods smaller than the typical
electron mean free path, the former model and the calculations including quantum effects are in agreement.
However, for longer superlattices the incoherent model is shown to be more correct.

1. Introduction

The thermoelectric properties are often improved by nano struc-
turing [1] materials. This improvement stems mostly from a reduction
of the thermal conductivity due to a reduced phonon mean free path.
However, such modifications could also have a positive impact on the
transport of charge carriers. Inclusion of nanoscale structures affects
both the electronic structure and the scattering properties of carriers,
and if tailored properly, these effects could increase the thermoelectric
conversion efficiency.

An approach to nanostructuring that is motivated by this, is the
concept of energy filtering [2–6]. In this approach the contributions to
the electrical conductivity at different carrier energies are modified
[7,3]. These contributions are contained in what is usually referred to
as the transport distribution function. For applications of thermoelec-
tricity, it is beneficial that the transport distribution function is asym-
metric and sharply peaked close to the chemical potential. Previously it
has been shown that the ideal shape of the transport distribution
function is a delta function [7,8]. Unfortunately this can never be
achieved, but by utilizing the flexibility of nano structuring it might be
possible to approach this ideal case.

The concept of energy filtering rely on the possibility to tune the
alignment of the charge carrier energy levels between different layers of
materials. A model system where such effects can be studied is for in-
stance periodic heterostructures, also known as superlattices.
Consequentially, an extensive literature has appeared that address how
the thermoelectric effect behaves in superlattices. Some of these suggest

there is a large potential for improving the conversion efficiency by this
approach [9–12,3]. Apart from isolated cases [13,14], experimental
demonstration of such improvement is largely absent. This discrepancy
could have several different sources. In fact, the synthesis and mea-
surement phases are inherently difficult. However, it has also been
suggested that the discrepancies between experiment and theory are
mainly due to the approximations employed in the applied theoretical
models [15].

Thus, there is a need too investigate less approximate models. For
this purpose, several considerations are important. It might be neces-
sary to: (i) include multiple bands past the effective mass approxima-
tion. (ii) include electrostatic interactions due to charge redistribution,
as well as strain effects in the heterostructure. (iii) explicitly consider
both the correct atomistic structure of the superlattice that is targeted,
and also how close the synthesis process actually gets to that ideal case:
Both interface roughness and deviations from the ideal periodic struc-
ture should be accounted for in the model. (iv) use better models for the
carrier scattering. This applies in particular to the constant relaxation
time approximation which is often employed. In order for the model to
have predictive power, scattering models should either be developed
from ab initio, or be based on empirical models that have been rigor-
ously demonstrated to hold in a large number of different hetero-
structures. And finally, (v) consider the validity of the applied transport
formalism.

The latter topic will be the subject of this work. The transport
formalism that is usually applied to bulk thermoelectric materials is the
semiclassical Boltzmann transport equation (BTE) [16–19]. Commonly,
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the BTE is linearized and used within the relaxation time approximation
(RTA), thus making calculations particularly tractable [18]. The BTE is
also applied to heterostructures.

However, it is not clear how the heterostructural properties of a
superlattice should be treated in the BTE. One possibility is to assume a
position dependent charge carrier energy dispersion relation upon
solving the BTE itself. However, according to the uncertainty principle
a position dependent dispersion relation is ill defined at the nanoscale.
Another possibility is to use the band structure of the dominant mate-
rial, and to treat the interfaces and barriers as a scattering mechanism.
This approach has been pursued utilizing tractable, but not necessarily
realistic models of interface scattering [10,20–23]. It is also possible to
use the BTE within individual layers of the heterostructure, and treat
transport of carriers between layers as an instance of thermionic
emission [24,11,25,26]. Finally, in the case of superlattices, the peri-
odicity of the structure allow to apply Bloch’s theorem to the hetero-
structure itself. The effect of heterostructuring is then included in the
band structure [27–31,2,32–34]. Since the energy bands of the bulk
material are split into smaller subbands known as minibands, this
model has been referred to as the miniband transport model [35]. The
miniband transport model also has a limited regime of validity [35].

Recently the thermoelectric effect in superlattices have been studied
by the application of non-equilibrium Green’s functions (NEGF)
[36–44,15,45–52]. The advantage of NEGF, is that it is derived directly
from quantum mechanics and does not rely on a semi-classical model
like the variety of BTE that is usually applied. Information dependent
on position can thus be included in the calculations without violating
the uncertainty principle. Due to its computationally demanding
nature, applications of NEGF to thermoelectric materials usually rely on
the effective mass approximation and simplified scattering models.
NEGF has however been applied beyond these approximations [53–56]
in other fields, but usually only to ordered structures. Recently new
techniques has appeared to tackle also disordered structures, typically
by employing non-equilibrium coherent potential approximation
(NECPA) [57,58].

Studies of the range of validity of the BTE and the NEGF approach
are thus of great interest. For the case of superlattices, Wacker
[35,59–61] have made a significant contribution. In particular Wacker
concludes that the miniband transport model is in agreement with
NEGF when the superlattice wells are strongly coupled in comparison
both to the scattering rate and to the electric field. Furthermore, he
describes two other approximate schemes, valid when the scattering
rate or the electric field is strong, respectively. These approximate
models are justified in three different ways: by heuristic arguments, by
formal derivation from NEGF, and finally by direct comparison of nu-
merical calculations. Thus, Wacker demonstrates quite thoroughly the
existence of three regimes where approximations to the NEGF form-
alism are valid.

However, Wacker’s work was exclusively concerned with electrical
conductivity σ . For thermoelectric applications, the Seebeck coefficient
α [17,18] and the Lorenz coefficient L [62,63] are equally important. In
addition, Wacker was mostly concerned with transport at high fields. In
thermoelectric applications we are mostly concerned with low fields, or
linear transport. A comparison of this kind was made in one recent
work employing NEGF [37]. However, this work was limited to het-
erostructures with a total spatial extent of 6 nm. Since the bulk BTE
expressions only apply in the diffusive regime, the sample should be
considerably thicker in order for the results to be comparable.

The purpose of this study is to extend the work of Wacker to include
also the Seebeck and Lorenz coefficient at low field for superlattices
with different thickness. This work is not about obtaining experimental
accuracy or reproducibility, but to investigate how quantum effects
modify the themoelectric transport coefficient and how these results
differ from the results from the BTE.

In this work we consider the most important quantum effects to
include to be the wave nature of carriers, and the momentum and

coherence loss caused by scattering. Accordingly, we have chosen to use
a ballistic quantum transport simulator, which inherently captures the
wave nature of carriers, and to incorporate the effects of momentum
and coherence loss by the use of Buttiker probes
[64,65,54,49–52,39,36]. The Buttiker probes are a set of virtual
floating contacts attached to the ballistic system. Since these probes are
floating, their only effect on the system is to randomize the momentum
and phase of the carriers similar to a scattering mechanism. This ap-
proach is often referred to as the Buttiker approximation [36]. It is
related to NEGF, but is less general and usually bears a lower compu-
tational cost. The Buttiker probes are described by self energies, in the
same way as scattering processes are in NEGF. However, a key differ-
ence between the two methods is that the Buttiker approximation does
not allow for the explicit definition of lesser self energies [64,66]. In
practice this yields less control of the assignation of new states to car-
riers after scattering [64].

This work is organized as follows: The theoretical aspects are de-
scribed and discussed in Section 2, where our quantum transport ap-
proach is described in Section 2.1. Sections 2.2 and 2.3 describes re-
spectively the miniband transport model, and a second semiclassical
approach that assumes incoherent transport between barriers. In Sec-
tion 3 we show the results of our calculations. There we make two
separate studies where we compare the electrical conductivity, the
Seebeck and the Lorenz coefficient, as calculated by the Buttiker ap-
proximation, the miniband transport model, and by the incoherent
model of Section 2.3. In Section 3.1 we study how the agreement be-
tween the models depend on the scattering rate, while in Section 3.2 we
study how this agreement is affected by the size of the superlattice
period. Finally, in Section 4 we provide final discussion and conclu-
sions.

2. Theory and models

2.1. The Buttiker approximation

We utilize a ballistic quantum transport simulator with Buttiker
probes [64,65]. The employed simulator is Kwant [67,68], which re-
quires the definition of a tight binding model in the transport region,
and a set of attached leads. Kwant efficiently solves the resulting
quantum mechanical scattering problem, using either a wave function
or a Green’s function based approach. On completion, the ballistic
transmission functions between the leads are obtained.

Only two of the leads attached to the transport region represent real
contacts. These are the emitter and collector, between which currents
would be measured in an experiment. The remaining leads are Buttiker
probes, which are included to emulate scattering processes. For reasons
of computational efficiency, the Buttiker probes are only connected to a
subset of the sites in the transport region, and the density of Buttiker
probes are controlled by the parameter dsc. More specifically, the
Buttiker probes are attached at regular intervals between the two real
contacts, with one single probe per dsc unit cells of the materials com-
posing the heterostructure.

The interactions between the leads and the scattering region are
described by retarded self energy functions [64,68]. In this work, the
retarded self energies of the Buttiker probes are defined as = −i τΣ ℏ/2r ,
which result in the relaxation of carrier momentum with a character-
istic relaxation time τ [69,50]. This allows for a particularly simple
comparison to the BTE within the RTA. When >d 1sc , the scattering self
energies are modified to = −d i τΣ · ℏ/2r

sc , to compensate for the lower
density of Buttiker probes. The magnitude of the self energies of the
contacts are not of significance, since our calculations are made in such
a way as to be independent of contact effects. Please consult our pre-
vious work for additional details [69].

The retarded self energy functions describe how carriers are ab-
sorbed by the Buttiker probes [64]. In addition, it is necessary to de-
scribe how carriers are emitted. Within the NEGF formalism, carriers
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that enter the system are described by the lesser self energies <Σ [64].
However, within our ballistic framework, these cannot be explicitly
defined. Instead, we define the re-emission of carriers after absorption
by a Buttiker probe as follows: Carriers are re-emitted from the same
probe at which they were absorbed with the same energy and mo-
mentum orthogonal to the transport direction as before absorption. The
momentum component parallel to the transport direction is rando-
mized. The scattering process thus conserves charge, energy and
transverse momentum. The conservation of energy is by choice, since
we want to model elastic scattering. On the other hand, the conserva-
tion of transverse momentum is only introduced for reasons of com-
putational efficiency.

By extending the expression for transmission [64,69], we use Kwant
together with the scheme described earlier to calculate the effective
transmission between the two real contacts. Since only elastic scattering
is present, we make use of the Landauer transport formalism to connect
the effective transmission function to the relevant transport coeffi-
cients. These are in our case the electrical conductivity σ , the Seebeck
coefficient [17,18] α and the Lorenz coefficient L. The latter is defined
as =κ σLTe [62,63]. Here κe is the electron contribution to the thermal
conductivity. In the linear regime, the magnitude of these coefficients in
the cross plane direction can be expressed as [69–71]

∫=σ E E F Ed Σ( ) ( ),T (1a)

∫= − −α
σeT

E E F E E μ1 d Σ( ) ( )( ),T (1b)

∫= − −L
σe T

E E F E E μ α1 d Σ( ) ( )( ) .T2 2
2 2

(1c)

where EΣ( ) is the transport distribution function, and F E( )T is the
thermal broadening function or Fermi window = −∂ ∂F E f E( ) /T , where
f is the Fermi-function.

2.2. The miniband transport model

Following Wacker’s nomenclature [35], we refer to the application
of the BTE, using the band structure of the superlattice, as the miniband
transport model. The superlattice band structure may be obtained by
schemes of varying approximation, ranging from the introductory
Kronig Penney model [27,28,72] to ab initio approaches such as DFT
[30,34]. In this study we use the band structure resulting from the
solutions of the same tight binding model used in the Kwant simulations
discussed above as input to the BTE. This allows for a direct comparison
of the results, without considering differences in electronic structure
between the models. In addition, the tight binding model allows cal-
culations on superlattices with very large periods with acceptable ac-
curacy.

The validity of the miniband transport model have been extensively
investigated by Wacker [35,59]. He describes two conditions ≫t ℏΓ
and ≫t eFa, both of which must be satisfied for the miniband model to
be valid. Here t is the coupling energy between neighboring wells of the
superlattice, Γ is the scattering rate, F is the applied electric field, and a
is the superlattice period. In this work we study linear transport and the
latter condition is satisfied by definition. The former may be heur-
istically rewritten as follows: within a simple nearest neighbor tight
binding description, the miniband energy dispersion along the growth
direction is given by =E k t ka( ) 2 cos . Thus, the velocity is
= ∂ ∂ ∼v E k ta/ /ℏ /ℏk . Given this, we may rewrite Wacker’s first condi-

tion as

≪a vτ. (2)

Here =τ 1/Γ is the average scattering time, which in the case of our
simple scattering model is equal to the momentum relaxation time. In
our previous work [69], Eq. (2) was also derived by a heuristic argu-
ment involving Heisenberg’s uncertainty relations.

The product vτ will generally be similar to the coherence length

[64] lϕ. As such Eq. (2) is thus equivalent to a condition stated in
previous work [10,2], namely that the superlattice period should be
shorter than lϕ for the miniband model to apply. This condition is in-
tuitive, since the minibands always arise from the solution of some
wave equation. When >a lϕ, the electron behavior is not coherent
within the unit cell, and accordingly no wave equation is applicable.

2.3. The sequential transmission model

In addition to the case ≫t ℏΓ, Wacker also describes an approx-
imate model that applies in the opposite limit ≪t ℏΓ [35,59], here
given by ≫a vτ . This model, which he refers to as the sequential tun-
neling model, is extensive and involves scattering theory beyond
Fermi’s golden rule. The reason why this is necessary, is that the applied
field misaligns the energy levels of the different wells, so that first order
scattering expressions result in zero current due to energy conservation
[35]. However, since we here only study linear transport, we express
the currents in terms of transmission functions at zero bias [64], where
this does not pose a problem.

Thus, we make use of another model employed in previous work
[20], which we will refer to as the sequential transmission model. It is
derived here again for consistency. A central assumption for proceeding
is that transport between different wells in the superlattice is incoherent
[35]. We then use incoherent transmission functions [73] in series,
expressed as

= + −
T T T
1 1 1 1.

1 2 (3)

The transmission through a single superlattice period can be found
from this by substituting the well transmission Tw for T1, and the barrier
transmission Tb for T2. The transmission through N periods can then be
found by applying the addition formula inductively to get

⎜ ⎟− = ⎛
⎝

+ − ⎞
⎠T

N
T T

1 1 1 1 2
w b (4)

⎜ ⎟⎜ ⎟= ⎛
⎝

− ⎞
⎠
+ ⎛

⎝
− ⎞
⎠

N
T

L
a T

1 1 1 1 ,
w b

where L is the total length of the N periods.
In the case where there are no barriers present we obtain by the

same procedure

⎜ ⎟− = ⎛
⎝ ′ −

⎞
⎠T

N
T

1 1 1 1 ,
bulk w (5)

where ′Tw is the transmission function of the well sections. Since these
sections are thicker in absence of barriers, ′ ≠T Tw w. However, if the
well sections are considerably thicker than the barriers, then the change
in thickness will be small and = ′T Tw w is a good approximation. In this
case, we may combine Eqs. (4) and (5) such that

⎜ ⎟− = − + ⎛
⎝

− ⎞
⎠T T

L
a T

1 1 1 1 1 1 .
bulk b (6)

In the literature, we also find the back scattering mean free path λ
defined through the expression − =T L λ1/ 1 / [73,70]. Inserting this, Eq.
(6) becomes

⎜ ⎟= + ⎛
⎝

− ⎞
⎠λ λ a T

1 1 1 1 1 ,
bulk b (7)

which applies in the limit where both ≫a vτ and ≫a b, with b being
the thickness of the barriers. If we also assume ≪b vτ , we can ap-
proximate Tb to be ballistic, which allows for more efficient calcula-
tions.

Within the Landauer transport formalism, the transport distribution
function EΣ( ) is determined by the back scattering mean free path [70]
and Eq. (7) is thus sufficient to determine the thermoelectric transport
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coefficients σ α, and L. One can also use the derived expressions for the
transport in the Landauer approach and the BTE [70,69] to express Eq.
(7) in terms of relaxation times in the RTA. The resulting expression
becomes

⎜ ⎟= + ⎛
⎝

− ⎞
⎠τ τ

v
a T

1 1 2 1 1 ,
bulk b (8)

and must be used in the BTE together with the band structure of the
well material. This expression is an instance of Matthiessen’s rule [66]:
The first term on the right is the relaxation rate of the bulk well ma-
terial, while the last term is the relaxation rate of scattering on barriers.

3. Results

The transport distribution function is calculated from the trans-
mission function [64] by utilizing the Landauer formalism. Please
consult our previous work [69], where this approach is explained in
detail. Additional details can also be found in the literature
[73,64,70,71]. In this work we again utilize CdTe and CdHgTe alloys as
a model system. Their only role of this work is to provide a somewhat
realistic system from which the band structure can be constructed.
Details of the tight-binding model and fitting procedure from first-
principle calculations, as well as the resulting parameters, can be found
in our previous work [69].

3.1. Dependence on the scattering time.

According to the discussion of Section 2.2 we expect agreement
between the Buttiker and the miniband model for large values of τ . At
smaller values this agreement should disappear, and the quantum
transport model should eventually agree with an incoherent model. In
this section, the calculations are performed on a superlattice containing
at total of 16 unit cells, eight of CdTe followed by eight of
Cd Hg Te0.75 0.25 . The resulting spectral function and transport properties
are shown in Fig. 1 for different values of τ , ranging from 1 fs to 0.1 ps.
At larger values of τ , the thickness L of the simulated region must be
larger in order for the transport process to remain incoherent. Ac-
cordingly, L is chosen respectively as 337, 169, 84.5 and 42.3 nm for
=τ 100, 50, 20 and 10 fs, and as 21.1 nm (two superlattice periods) for
=τ 5, 2 and 1 fs. Similarly, at smaller values of τ the coherence length is

shorter, so that dsc must be smaller in order to sample structures at
smaller length scales. Thus, we choose =d 2sc when =τ 100, 50 or 20 fs,
and =d 1sc when =τ 10, 5, 2 or 1 fs.

The operating principles behind these choices are that we always
have ≳L vτ4 , while dsc satisfies both ⩽d 2sc and <d a vτ/4sc . The first
two of these conditions originate from our previous work [69], while
the latter is a heuristic condition based on the desire to have a rea-
sonable sampling of the coherence length. The group velocity v is es-
timated to 〈 〉 = 〈∂ ∂ 〉 ≈kv Eℏ / 0.6 eVÅ, from the band structure of the
Cd Hg Te0.75 0.25 model [69].

Our implementation of the Buttiker approximation calculates the
transport distribution function as an integral over the transverse com-
ponent of k-space. This integration makes use of the midpoint method,
and is performed in cylindrical coordinates. The integration grid has an
evenly distributes sampling of =N 100k points in the radial k-direction,
and a distance of =δ 0.03θ between points in the angular direction in
direct k-space [69]. Calculation of transport coefficients requires in-
tegration over energy, which also utilize the midpoint method on a
regular sampling of =N 200E points between =E 2.0min eV and

=E 4.0max eV. This interval surrounds the band gaps of the involved
materials, as can be seen in our previous work [69].

The routines to perform the BTE calculations required by the
miniband transport model, are explained in detail in a separate work
[74]. In summary a regular cubic integration grid was used, employing
a resolution of =N 51k

xy points in the kx and ky directions, and =N 13k
z

points in the kz direction, which is the transport direction and the cross
plane direction of the super lattice. These choices were again based on
convergence studies performed in our previous work [69]. The tight
binding model was used to generate the band structure on this grid
followed by a step of numerical differences to extract the velocities.
Finally, a trapezoidal integration scheme was performed. The relaxa-
tion time was fixated at 1 fs to be compatible with the model used for
the Buttiker model.

In Fig. 1a, we present the results of E τΣ( )/ for different values of τ .
Since evaluating EΣ( ) using the BTE is demanding, we show only results
of the Buttiker approximation and the sequential transmission model.
However, in our previous work we demonstrated that our im-
plementation of the Buttiker approximation is in agreement with the
miniband transport model for short period superlattices and large va-
lues of τ , in agreement with Section 2.2. We thus expect the miniband
transport result to largely agree with results from the Buttiker ap-
proximation at =τ 100 fs. Since the BTE expression for EΣ( ) is pro-
portional to τ [18,17], the miniband results with smaller values of τ
would also be identical to this curve. The calculated results from the
miniband model contains numerical noise, which originates from a too
course integration grid. As we approach a very low temperature which
is required to produce EΣ( ) an extremely dense integration grid is
needed. In the calculation of transport coefficients, this noise is smeared
by the finite temperature, and is thus not of particular significance. In
order not to confuse readers we thus opted not to show these results in
Fig. 1a.

The sequential transmission model does not agree with the Buttiker
approximation, even for small values of τ . However, such agreement is
not to be expected here. In addition to the requirement ≪ ≫vτ a a b,
also need to be satisfied. This is not the case, since = =b a/2 5.3 nm.
The sequential transmission model is by design more suited for large
superlattice periods than small values of τ . Small values of τ may in-
stead require a more sophisticated sequential model, such as the one
described by Wacker [35,59].

Figs. 1b–d compare the electrical conductivity, Seebeck and Lorenz
coefficients calculated using the Buttiker approximation and the mini-
band transport model. The sequential transmission model is not shown,
since its failure is demonstrated already in Fig. 1a. In Fig. 1b the
electrical conductivities are normalized by the magnitude of τ . This
makes the miniband transport results independent of τ in all three
figures, due to the cancellation of a constant relaxation time in the α
and L [18,17]. The miniband transport results are in good agreement
with those of the Buttiker approximation when =τ 100 fs, but when τ is
reduced the agreement gradually disappears. This effect is in agreement
with the discussion concerning Eq. (2).

In all four Figs. 1a-d, we see clear oscillations in the transport
coefficients as a function of the chemical potential μ. This effect ori-
ginates when the chemical potential is varied, and the contributions
from the minibands are picked up. When τ is decreased, the oscillations
are gradually smeared, indicating that the miniband structure dis-
appears. For the smallest values of τ , even variation in transport
properties originating in the bulk band gap is beginning to smooth out.
However, the disappearance of the band gap is probably an artifact of
the crudeness of our scattering model. One can show that a scattering
model of the type described in Section 2.1 will cause a Lorenzian
broadening of eigenstates [64], which given sufficiently small values of
τ will smooth out any structures in the transport properties. However,
in the more realistic case of a non-constant relaxation time, the
broadening of eigenstates can have a more complicated shape [64],
allowing for the band gap to be maintained.

3.2. Dependence on the superlattice period

The question of dependence on the superlattice period is experi-
mentally relevant to a larger extent than that of the previous section,
since the scattering time tends to fall in the range =τ 10–1000 fs, while
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the superlattice period can be tailored during synthesis.
In Figs. 2 and 3, results are shown for several different superlattices,

having periods ranging from 11 to 340 nm. All of the supercells are
composed of a single barrier layer composed of eight unit cells of CdTe,
and a single well layer composed of Cd0.75Hg0.25Te. The results from
the Buttiker approximation were obtained at =τ 100 fs, with =d 2sc ,

and using the same integration grid as in the previous section. The BTE
calculations also use the same integration grid as in the previous sec-
tion.

Fig. 2 shows the transport distribution function, which is compared
to that of pure CdTe and Cd0.75Hg0.25Te. Only results from the Buttiker
approximation and the sequential transmission model are shown.
Comparison to the miniband transport model is left for Fig. 3 where we
show respectively the conductivities, Seebeck coefficients and Lorenz
coefficients of the mentioned superlattices, calculated at 300 and 700 K.
Fig. 3 includes results from the Buttiker approximation, the sequential
transmission model, and the miniband transport model.

At short superlattice periods, the Buttiker approximation is in rea-
sonable agreement with the miniband transport model, while for large
superlattice periods it agrees more closely with the sequential trans-
mission model. Consequently, the expectation that Eq. (7) is valid for
large periods is confirmed, also for the Seebeck and Lorenz coefficient.
The transition between the two regimes is better illustrated in Fig. 4,
which shows the calculated transport coefficients as a function of the
superlattice period a at the three values of =μ 2.6, 3.0 and 3.35 eV.
These chemical potentials are also illustrated by vertical lines in Fig. 3.

In all results where significant difference can be seen between the
models, the Buttiker approximation changes from agreeing with the
miniband model to the sequential transmission model at around
=a 100 nm. As discussed above, the average group velocity of

Cd0.75Hg0.25Te in the conduction band is approximately 0.6 eVÅ. Since
=τ 100 fs, 〈 〉 ≈v τ 90 nm. The transition at ∼a 100 nm is thus confirmed

to be close to the relaxation length vτ , which gives confidence that the
mean free path is a reasonable estimate of the transition point between
the two regimes. In fact, within the accuracy to which this can be

Fig. 1. Transport coefficients for electrons in an 8-8 CdTe-Hg0.25Cd0.75Te superlattice as function of the chemical potential μ. The solid and dashed lines are
calculated by the Buttiker approximation, the circles by the miniband transport model, and the dotted lines and crosses by the sequential transmission model. For the
solid and doted lines, the black, green, turquoise and blue results are from calculations with τ =100, 50, 20 and 10 fs, respectively. For the dashed lines and the
crosses, the black, green and turquoise lines are from calculations with τ =5, 2 and 1 fs, respectively. Furthermore, in panel (b–d) results in black, green, turquoise
and blue are calculated at 300 K, while the purple, red, orange and gray lines are calculated at 700 K. Among the solid and dashed lines, the purple, red, orange and
gray lines respectively have τ =100, 50, 20 and 10 fs. Among the dashed lines and crosses the purple, red and orange lines have τ =5, 2 and 1 fs respectively. The
miniband results are shown as blue and red dots at 300 K and 700 K, respectively. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 2. Transport distribution function in multiple superlattices. Results shown
in green, turquoise, blue, purple red and orange are calculated respectively with
superlattice periods of 16, 32, 64, 128, 256 and 512 unit cells of the composing
materials. Among these, solid lines represent the Buttiker approximation, while
crosses represent the sequential transmission model. The brown and black da-
shed lines are respectively the transport distribution function of bulk CdTe and
Cd0.75Hg0.25Te. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

L. Musland, E. Flage-Larsen

171



judged, the transition seems to happen exactly at =a vτ . However, this
is likely to be an artifact of our simplified scattering model, where the
momentum relaxation time is by construction equal to the coherence
time [69]. In general we should expect the transition to happen near the
phase relaxation length, of which the momentum relaxation length vτ is
usually only a rough estimate [64].

We would also like to emphasize that the transition region in Fig. 4
appears to be quite small. If this fact generalizes, then the respective
conditions ≫vτ a and ≪vτ a of the miniband transport and sequential
transmission regimes, can be modified to ≳vτ a and ≲vτ a. The ther-
moelectric effect in superlattices can thus possibly always be studied
using semiclassical approaches, and that the only role of quantum
transport is to determine the transition point between the coherent and
incoherent regimes. In order to confirm this, further studies are needed,
which include different material systems and more realistic scattering
mechanisms.

4. Summary and conclusion

The purpose of this work was to provide demonstrations of validity
regimes of semiclassical treatment of electron transport in superlattices,
extend earlier work [35,59–61] to also include thermoelectric transport
coefficients, and to perform an exclusive treatment of the linear regime.
Our approach utilized the Buttiker approximation, and performed ex-
plicit comparisons between the resulting transport coefficients and two
different semiclassical models described in Sections 2.2 and 2.3.

We showed that the miniband transport model is better fit to re-
produce the results of the Buttiker approximation for large values of the
scattering time τ . We also compared the results of the Buttiker ap-
proximation to the sequential transmission model, and in the case of the
structure with a short period discussed in Section 3.1, we found a poor
match for all values of τ . However, as we showed, this is expected. In
Section 3.2, we showed that the miniband transport model and the

Fig. 3. Transport coefficients in multiple superlattices as function of the chemical potential μ of electrons. Results shown in green, turquoise, blue, purple red and
orange are calculated respectively with superlattice periods of 16, 32, 64, 128, 256 and 512 unit cells of the composing materials. Solid lines represent the Buttiker
approximation, crosses represent the sequential transmission model, while circles represent the miniband transport model. The three vertical lines represent values of
μ at which the dependence on period is examined more closely in Fig. 4. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

L. Musland, E. Flage-Larsen

172



Buttiker approximation are in good agreement for superlattice periods
shorter than ∼ 100 nm, while the sequential transmission model and
Buttiker approximation are in agreement for periods larger than
∼ 100 nm. To summarize, our results are in excellent agreement with
the expectations discussed in Sections 2.2 and 2.3, and with those stated
in earlier works for the case of conductivity [35,59–61]. We can con-
clude that these observations should also hold for the Seebeck and
Lorenz coefficient.

It has been argued that superlattices with high thermoelectric effi-
ciency should have a short period to inhibit phonon transport [2].
Consequently they should then fall into the miniband regime which
would simplify future interpretation and calculations significantly.
However, a good thermoelectric material also requires a high electrical
conductivity, which suggests that the superlattice period should be
large, so as not to inhibit the motion of carriers. Increased focus on the
electrical properties is also becoming increasingly important due to the

fact that several bulk materials already possess a very low thermal
conductivity below 1W/mK. Secondly, there could be other ways of
reducing phonon transport than having a short period. For instance, one
could let the superlattice period itself have a complex structure. Ac-
cordingly, we conclude that the question of coherent versus incoherent
transport models may in fact be important to the design of thermo-
electric heterostructures, and that some special cases may even require
a full quantum transport approach, such as the Buttiker approximation
or NEGF.

Acknowledgments

We would like to acknowledge the Research Council of Norway
(NANO2021 project Thelma, number 228854) for providing funding,
and the Norwegian Metacenter for Computational Resources (NOTUR)
for providing computational resources.

Fig. 4. Transport coefficients as function of the superlattice period a. Results shown in black, green and blue are calculated respectively with a chemical potential of
=μ 2.6 eV, =μ 3.0 eV and =μ 3.36 eV. The different line styles represents different models. The solid lines represent the Buttiker approximation, the dashed lines the

miniband transport model, while the dotted lines represent the sequential transmission model. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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