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Abstract

The main aim of the thesis is to use low-cost hardware components to create an
environment-aware robot arm system capable of analysing its workspace using
vision sensors and ensure collision-free operation. The objective is not only to
build a physical system, but the focus is to develop algorithms to understand the
environment by using image and depth information from multiple cameras and
allow the robot to calculate and execute safe movement trajectories in dynamically
changing environment.

In this thesis, we have developed an automatic camera-to-robot calibration
system to perform camera internal and Eye-to-Hand calibrations. Furthermore, a
visually based reactive-reflexive robot behaviour method allows the robot to find
safe trajectories throughout a dynamically changing environment with a capability
of quickly reacting to unexpectedly appearing close obstacles. The robot was also
used to charge electric vehicles by using vision-based guidance autonomously.
Eventually, the work evolved to using deep learning approaches to recognise the
robot and estimate its 3D position with a simple 2D colour image used as an input.
Multi-objective convolutional neural networks and transfer learning techniques
allowed to expand the method to more robot types when having a limited amount
of training data.

The thesis concludes that commercially-available hardware can be integrated
using advanced algorithms to precisely model the workspace of the robot and al-
low path planning and quick reactions to unexpected situations. Many 3D cameras
as well as robots, including Universal Robots, Kuka iiwa LBR and Franka Emika
Panda, were used to perform all the experiments in real-world conditions.
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Preface

This thesis is submitted to the University of Oslo for the degree of Doctor of Phi-
losophy. The research was conducted at the Department of Informatics, Univer-
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Chapter 1

Introduction

The first significant impact in changing the manufacturing industry took place
in the 1980s during the early industrial robotic revolution [1]. Then, the robots
were developed which were stronger and more precise than before. They could
work tirelessly without any fatigue symptoms, being especially useful in repetitive
movements. Factories were remodelled to incorporate these robots in the produc-
tion lines allowing to reduce the number of workers needed, reduce manufacturing
errors, handle more substantial and heavier parts, and most importantly - reduce
the costs.

However, there is an issue regarding the flexibility of industrial robots. They
are outstanding in performing pre-programmed movements, but they usually oper-
ate blindly and have to be fenced off from the people because they will not notice
anything on their way and might cause a severe injury. The same issue is present
when the conditions differ even slightly from what is expected and programmed.
The robot will not adjust to changing conditions. Lastly, for any adjustment to the
setup or the operation program, a qualified robotics engineer has to be present to
implement these changes.

However, we are approaching a new robotic revolution, often referred to as
Industry 4.0 [2]. It is a result of the hardware costs going down and making
both the robotic arms as well as vision sensors more affordable, together with the
increasing processing power of computers [3]. It allowed for the development of
a new kind of industrial robots: collaborative robots, or so-called cobots [4]. The
development and adoption of cobots have seen a steep increase over the last 10
years [5]. The main advantage of cobots compared to traditional industrial robots
lies in their safety features. Instead of having a necessity of fencing them off
from people, the robots will be to detect any potential impact with a person and
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Figure 1.1. UR5 robot holding an ultrasound probe over a dummy patient next to a C-arm
mounted flouroscopy scanner. Photo taken in Oslo University Hospital.

perform a safety stop to avoid causing any injury. Furthermore, cobots need a

more intuitive programming interface, so hiring a robotics engineer to adjust the

behaviour of the robot should not be required anymore.

Despite the significant advances in the robot and sensor development, there

is still an outstanding issue of allowing the robot to understand its environment

and have a flexible, adaptive behaviour. It is possible to sense the environment of

the robot, but often it is difficult to define where the robot itself is, which of the

setup components are fixed (like a table-top), and distinguish between the objects

of interest and obstacles that should be avoided. Furthermore, the camera-robot

setups are often fixed; thus, reconfiguration requires additional work.

1.1 Related Work

Despite the robots being actively used in industry, the shared workspace issue

is still being solved despite being researched for many years [6] [7]. Workspace

sharing can be classified as robot-robot and human-robot systems for task sharing,

collaborative or supportive tasks. Normally, in robot-robot sharing, controllers of

all involved robot systems have direct communication and can coordinate moves

easier by knowing the planned trajectories for all the manipulators. This thesis
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will be focusing on human-robot shared workspaces, where sensors are used to
observe the environment and adapt the manipulator behaviour according to move-
ments in the workspace, normally caused by human motion.

Many systems have been proposed addressing the trajectory planning in a
shared workspace. One example is a system running a genetic algorithm based
on fuzzy logic. As all the obstacles are defined as static while the new trajectory
is calculated, the method would not be suitable if objects are moving at high ve-
locities [8]. Some of the systems for human-robot interaction assign the robot arm
as a lightweight manipulator, thus reducing a possible collision force and then us-
ing inertia reduction, passivity and parametric path planning [9]. However, this
method leads to light collisions, which ideally should be avoided.

Another work has analysed the usage of non-verbal cues given by humans and
robots, which would be an equivalent of body language in our daily interactions. It
has proven that understanding of movement plays an essential role in the usability
of a system and the human-robot interaction (HRI) [10].

Cameras are quite commonly used to overlook the workspace of the robot
and analyse the environment. Using the visual information, together with the
depth data, typically provided by 3D cameras, collision-free trajectories could be
calculated. It has been shown that a robot can rapidly react and recalculate the
movements when an obstacle blocks the current path [11]. Another system uses
multiple Kinect cameras observing the same workspace from different viewing
points to avoid collisions, but no particular planning approach was proposed in the
paper [12]. Furthermore, a system was introduced using the historical data of ob-
stacle positions in the workspace of the robot. It avoids the areas which are com-
monly occluded by a human and plans movement trajectories around them [13].
The mentioned works have shown significant progress in the human-robot interac-
tion in the shared workspace. However, the issue remains of having a combination
of both reactive and predictive behaviour and ensuring that no contact between the
robot and a person will occur.

Another research area that has been increasingly gaining popularity, especially
in natural language processing (NLP) and computer vision (CV), is deep learn-
ing. It is a field of artificial intelligence (AI) based on multi-layer artificial neural
networks (ANNs) which are capable of self-adjusting the parameters in order to
solve a given task [14] [15] [16] [17]. A breakthrough in computer vision was
done after the introduction of ImageNet convolutional neural network (CNN) rev-
olutionising object classification in images [18]. Many variations and other types
of deep learning algorithms were developed since then to solve a variety of tasks.
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For example, recurrent neural networks (RNNs) are suitable for sequential data
like text or speech [19]. They are often based on having long short term mem-
ory (LSTM), which stores information over extended time intervals by using a
recurrent backpropagation method during the training [20].

For computer vision, CNN is typically the best choice, given its ability to
analyse an image using spatial filters and choosing the most effective ones for the
given task during the training process [21]. However, ordinarily, large amounts of
training data have to be used to correctly train the network. Every training sample
has to be given ground truth (a class label or an accurately estimated value), which
is the correct answer for the network. If done manually, an extensive amount of
work is needed to generate this data. However, if there is a readily-trained CNN,
it can be adjusted for new variants of input data by re-training it using transfer
learning method [22]. Instead of modifying all the parameters in the CNN, some
layers are locked, while the rest are adjusted during the training process. It uses
the fact that the first layers of the CNN learn more general visual features like
edges, corners, gradients and similar so that they can be reused. In the meantime,
subsequent layers learn more object-specific features. It has proven to work and
requires significantly smaller datasets, and reduces the training time [23].

1.2 Research Objectives

The main aim of this thesis is to take state-of-the-art commercially-available equip-
ment like 3D cameras and collaborative robots and push the boundaries of the en-
vironment understanding as well as to allow setups to be quickly reconfigured. All
of the work is oriented to allow the developed methods to be used in real-world
practical applications.

The work has to be done in a step-by-step manner by proving the general
concept first, followed by solving more specific problems in each of the areas.
It is a combination of hardware and software solutions, which have to function
together to create an environment-aware robotic system.

The main objective of this thesis is defined as:

Combine low-cost sensors and a robot arm to make an environment-
aware robotic system (EAR) capable of real-time operation.

and with the following research questions:
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RQ 1. Is it possible to make an EAR system to reliably work in a shared
workspace with a person without a risk of collision and injury? More
specifically, what precision in obstacle detection and robot movement
accuracy can be reached? Would the system be able to react quickly
enough to avoid hitting obstacles moving at high velocity?

RQ 2. Are EAR systems able to learn during the operation from the sur-
rounding environment and adapt to changing conditions automati-
cally? To be more specific, can deep learning be applied to this prob-
lem and is it possible to train the system using a limited amount of
training data?

1.3 Achievements

According to the defined research questions, the thesis work resulted in seven
research papers: six already published at peer-reviewed conferences and one ac-
cepted for publication in May 2019.

Research question 1 was addressed by developing an automatic camera-robot
calibration system followed by an environment-aware robotic system capable of
quickly adapting to changing dynamic conditions in the workspace. It is achieved
by having a precise workspace mapping and enabling a predictive-reflexive robot
behaviour model. Furthermore, gained knowledge was applied to a project focus-
ing on using a robot arm to detect the charging port and charge electric vehicles
automatically.

In the on-going work, the dependency of Hand-Eye calibration in camera-
robot systems was seen as a limiting factor. It gave inspiration for approaching
research question 2. The work started by testing deep learning approach to iden-
tify the robot in a 2D camera image and estimate its position in 3D space. Suc-
cessful results motivated further research in this area resulting in using a more
complex multi-objective convolutional neural network and expanding the system
to recognise more robots by using transfer learning approaches.

1.4 Thesis Outline

This thesis is a collection of papers, and the seven included research papers con-
stitute the research contribution of the thesis. Chapter 2 reviews relevant methods
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and approaches that were used throughout the work to develop state-of-the-art
techniques as well as the hardware and software used. Chapter 3 gives an overview
of the research contributions of this thesis. In Chapter 4, the main findings of this
thesis are discussed together with the conclusions. The thesis is finalised with the
collection of published papers.
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Chapter 2

Background and Equipment Used

In this chapter, the background, as well as the hardware used will be described to
provide an overview and motivation of the chosen approaches.

2.1 Hardware

(a) UR3, UR5 and UR10 (b) Kuka iiwa LBR R800 (c) Franka-Emika Panda

Figure 2.1. Robots used in this thesis.

The hardware used in the project can be divided into two major parts: robot
manipulators and vision sensors. A brief description is given about each of the
hardware components.

2.1.1 Robot Manipulators

Robot manipulator is the centrepiece of the work presented in this thesis. The ma-
jority of work has been done with a UR5 robot developed by Universal Robots,
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Table 2.1. Specifications of the robots used in this thesis.

Specs UR3 UR5 UR10 Kuka Franka Panda
Weight, kg 11 18.4 28.9 23.9 18
Payload, kg 3 5 10 7 3
Reach, mm 500 850 1300 1 855
Joint ranges, ± ° 360 360 360 120-175 166
Joint Speed, °/s 180-360 180 120-180 98-180 150-180
Repeatability, mm ±0.1 ±0.1 ±0.1 ±0.1 ±0.1
DoF 6 6 6 7 7

given direct access to this robot in the home lab. However, during the exchange
period at TU Graz and through the partners at Joanneum Research: Robotics the
following robots were also used: UR3, UR10, Kuka iiwa LBR R800 and Franka-
Emika Panda. Each of the robots is of a different size, degrees-of-freedom, oper-
ational speed and possible payload, as well as the appearance. All of the robots
can be seen in Figure 2.1 and their specifications are summarised in Table 2.1.
Diversity in visual appearance and specifications are especially useful for the im-
plementation of deep learning methods to reduce the chance of overfitting the
system for one type of robot. Furthermore, having 7 DoF adds redundancy for the
robot control; however, it makes the inverse kinematics more complicated.

2.1.2 Sensors: Vision and Motion Capture System

Table 2.2. Technical Specifications of Kinect V1 and V2, Intel Realsense R200 and F200.

Kinect V1 Kinect V2 Intel R200 Intel F200
Sensor type Struct Light ToF Active Stereo Coded Light
RGB Cam Res 640x480 1920x1080 1920x1080 1920x1080
IR Cam Res 320x240 512x424 480x360 640x480
Refresh Rate 30 Hz 30 Hz 60 Hz 30 Hz
Depth Range, m 0.4 to 4.5 0.5 to 4.5 0.5 to 3.5 0.2 to 1.2
FoV Horizontal 57° 70° 59° 73°
FoV Vertical 43° 60° 46° 59°

For environment sensing, an approach to use vision sensors was taken. Given
the reduced cost of 3D cameras, which provide both colour and depth images, a
selection of such cameras was used. Additionally, a motion capture system was
used to precisely track the position and orientation of the cameras and the robot in
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the environment. The system also provided the relative position of tracked objects

in relation to each other. It has proven useful when collecting ground truth data

for the datasets.

Kinect V2

Kinect V1

Motion Capture System

Intel RealSense F200

Intel RealSense R200

Figure 2.2. Vision sensors used in the projects: 3D cameras and Optitrack motion capture sys-
tem.

The following vision sensors were used: Kinect V1, Kinect V2, Intel Re-

alsense F200 and R200 cameras. Specifications of the vision sensors can be found

in Table 2.2. The cameras and Optitrack motion capture system is shown in Fig-

ure 2.2 [24]. The main differences between the cameras lie in the depth detection

method, with structured light having interference with several cameras overlook-

ing the same area, while time-of-flight (ToF) method projects IR patterns at vary-

ing frequencies avoiding the interference problem. The Intel F200 has a smaller

depth range making it more suitable for short-range detection. Furthermore, the

field-of-view differs between the cameras.
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2.1.3 Computers

Given that many of the developed algorithms were optimised for GPU, the main
machines used in this thesis contained two nVidia GTX 1080 Ti graphics cards
and were equipped with Intel i7 processors and at least 16 GB of RAM. However,
many of the algorithms were tested on other machines with nVidia GTX 1060 and
GTX 1070 Ti GPUs and were still capable of running in real-time, but at a slightly
lower frame rate.

2.2 Software

All the work in this thesis has been running on Linux, specifically Ubuntu operat-
ing system, versions 14.04 and 16.04. Other software packages used in this the-
sis were: OpenCV, Point Cloud Library (PCL), Robot Operating System (ROS),
Ceres Solver, Theano framework with Lasagna, Tensorflow and some prototyping
was done in MATLAB. Many open-source algorithms were tested and evaluated
from public GitHub repositories, usually published by other researchers.

2.2.1 Robot Operating System

Robot Operating System (ROS) is a meta-operating system running on Ubuntu,
which provides many algorithms and methods for robotics applications as well as
integration with many robotic platforms and sensors [25]. Furthermore, it supports
a modular design, which allows to efficiently distribute parts of the algorithm on
multiple machines and integrate the whole system to work simultaneously. It
is achieved by automatically synchronising all the communication between the
modules.

ROS includes a number of libraries useful for environment-aware robotic ap-
plications. These include OpenCV [26] for computer vision applications, Point
Cloud Library (PCL) [27] for processing point clouds, MoveIt! [28] for robot inte-
gration and motion control and ROS Industrial [29] aimed specifically at industrial
robot arms.

The whole work of this thesis was based on ROS and its subsystems, as it al-
lowed to use many packages out of the box, significantly reducing the time needed
to integrate sensors to the robot, develop robot path planning and connect the
whole system altogether.
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2.3 Robot Control and Path Planning

The control of the robot was done by using official ROS libraries for Kuka and

Franka Panda robots, and UR Modern Driver [30] for all three of the Univer-

sal Robots. It was used to calculate inverse kinematics and execute movements

directly on the robot. Movement trajectory calculations were based on MoveIt!

integration of the RRT-Connect algorithm [31], which has proven to be the most

efficient planners considering the structure of the robot arm, variety of movements

needed and calculation speed.

Start
Pos

Goal PosObstacle

Found trajectory from start pos
Found trajectory from goal pos
Random search
Optimised successful trajectories

Figure 2.3. Visualisation of a two-dimensional RRT-connect trajectory planning algorithm. The
method is based on growing Rapidly-exploring Random Trees (marked in thin blue) from the
start and goal positions until a connected path is found (visualised in pink and purple). Once one
or more successful trajectories are found, they are optimised and smoothed (green dashed lines)
before they are executed on the robot.

RRT-Connect motion planner implementation is used for the Cartesian trajec-

tory planning. RRT-Connect stands for Rapidly-exploring Random Trees (RRTs).
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The method works by incrementally building two Rapidly-exploring Random
Trees rooted at the start and the goal configurations respectively. Both trees
explore space around them independently and also advance towards each other
through the use of a greedy heuristics until they connect joining together into a
path from the starting point to the goal. A two-dimensional example of RRT-
Connect algorithm can be seen in Fig. 2.3.

For the trajectory planner to work successfully, the obstacles are precisely
modelled in the environment. Then, the free space is defined by calculating all the
points, which can be successfully reached given that no part of the robot collides
with the obstacles. Then, two RRTs are initialised, both at the start and goal
positions and grown in the free space. The exploration uses the randomly-assigned
direction and magnitude of vectors, but they are biased towards the goal position
as well as unexplored areas. If the tree reaches the goal position or meets the
other tree grown from the opposite direction, the successful trajectory has been
found. When one or more successful trajectories are found, they are smoothed to
avoid choppy robot movements. The most efficient path is executed for the robot
to reach the goal position successfully.

2.4 Camera Calibration
Cameras provide beneficial visual information for the computer or robotic system
and can be used to detect objects, make measurements or take preventative actions
to avoid hitting an obstacle.

To achieve good precision using the information coming from a 3D camera,
calibration is typically needed. The calibration for the camera-robot system can
be divided into three main categories:

• Internal camera calibration, like lens distortion, focal length, optical center,
and for RGB-D cameras, colour and depth image offsets [32] [33]. Typi-
cally, a calibration is performed by taking an object of a known structure,
like a checkerboard, and it is moved around in front of the camera, while
distortions and distance to the points are calculated. It allows creating a cal-
ibration matrix, which corrects the differences between the desired position
of the object points and the recorded ones.

• External camera calibration: when the sensor comprises of multiple cam-
eras, like two stereo cameras or, in the case of a 3D camera, colour and

12



Uncalibrated CalibratedError
Offset

Figure 2.4. Reprojection error is shown in the colour image and depth point cloud overlay. The
offset in the left image is caused by imprecisely defined relative positions between the colour and
infrared cameras in the 3D camera. Internal camera calibration compensates for this error. The
result is seen in the image on the right side, where the offset is reduced.

infrared camera, a relative position between the two cameras has to be pre-

cisely calculated. It allows mapping the colour image information on top

of the depth or infrared image. Normally, cameras come pre-calibrated;

however, the precision is rarely sufficient for applications of high precision.

During the calibration procedure, the object like a checkerboard is recorded

in both cameras simultaneously, and the transformation between the sets of

the same points in two camera images is calculated, and error minimised.

The error of between-the-camera calibration is called a reprojection error,

which has to be minimised. An example of the reprojection error before

and after the calibration is shown in Figure 2.4.

• Camera to the robot (or object) calibration: the pose (position and orienta-

tion) of a camera in a coordinate reference frame. It is commonly called

Hand-Eye calibration [34] [35]. The Hand-Eye calibration or transforma-

tion from the camera coordinate system to the robot base coordinate system

is shown in Figure 3.2(a). The calibration results in an homogeneous trans-

formation comprised of the rotation component R and translation compo-

nent t as defined in Equation 2.1.

T
R
C3

=

{

R3x3 t3x1

01x3 1

}

(2.1)

Compared to the internal camera calibration, usually fewer frames are needed

13



for Hand-Eye calibration and either a similar checkerboard or visually dis-
tinct features of a rigid object can be used as keypoints.

2.5 Workspace Sensing and Mapping

The first step, to allow operations of the environment-aware robot, is to sense the
workspace of the robot and create a model of it. It can be done using a variety of
sensors, but in this work, we limit ourselves to visual sensing. Different cameras
can be used to achieve the goal, including simple colour cameras, stereo cameras
and 3D cameras, which provide not only a colour image but also depth image.
Depth image indicates the distance from the sensor to various points in the space.

Furthermore, having multiple cameras overlooking the workspace from dif-
ferent angles have proven beneficial to avoid obstacle obstructions as well as to
improve the accuracy of the measurements and remove blind spots. If the robot
itself is seen in the images, it is essential to identify it. Otherwise, the system
might classify it as a collision object by estimating a false self-collision. It can be
done by using a self-filtering algorithm, which takes the robot pose information
from the robot motor encoders together with the robot model and filters it out from
the camera images [36]. It requires a fully calibrated camera-robot system using
Hand-Eye calibration.

2.5.1 Point Clouds

The dimensionality of the data is increased by having the depth information from
laser scanners, stereo cameras or 3D cameras, compared to a traditional colour
camera. On top of the typical X and Y information representing the coordinates,
we also have Z for depth, as well as possibly pixel colour information in grayscale
or colour. One of the most popular representations of such data is by using point
clouds. The recorded points are mapped into the 3D space by using transforma-
tions provided by the camera, and they can be visualised efficiently. An example
of a point cloud of the UR5 robot can be seen in Figure 2.5(a).

On the other hand, the amount of data increases exponentially with each added
dimension, meaning that point cloud data for the equivalent frame is significantly
larger compared to a simple colour image information of the same frame. Addi-
tional data can become an issue when dealing with many frames from multiple
cameras, both regarding the processing speed and storage space requirements.
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(a) Point cloud (b) Octomap representing the input point cloud

Figure 2.5. Octomap created from the Kinect V2 point cloud data of the robot scene. colour-
scheme represents the distance of objects from the 3D camera.

2.5.2 Octomaps

A more concise volumetric representation is needed to process all the point cloud
data provided by multiple cameras in real time. However, the desired precision
and resolution should be maintained to allow precise operations. When merging
point clouds, it was observed that there are many points which are closely overlap-
ping and adding the density of the points representing the same part of the object,
which is not necessarily needed. The representation of the robot workspace using
octomap is shown in Figure 2.5(b).

Octomaps are based on an octree hierarchical data structure, which can map
the volumetric space by using cubic volumes, defined as voxels [37] [38]. The vi-
sualisation of the octree structure is seen in Figure 2.6. The volume is recursively
subdivided into eight subvolumes until a given minimum voxel size is reached.
This minimum voxel size determines the resolution of the octree. Since an octree
is a hierarchical data structure, the tree can be cut at any level to obtain a coarser
subdivision.

The main benefit of using an octomap is that only certain parts of the space,
like areas containing points of interest, can be represented in high resolution,
while coarse resolution can be used for the rest. Furthermore, it automatically
combines nearby points from multiple point clouds into the same voxel, which
is equivalent to using filtering, resulting in higher processing speed. Having oc-
tomap representation of the robot workspace allows processing the complex data
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Figure 2.6. a) Octree structure representation. White voxels define empty space, while black
voxel represents occupied space. b) The corresponding tree representation. c) The data structure
of the corresponding tree is taking up just 6 bytes. Figure is taken from [37]

in a more efficient manner reaching real-time performance.

2.6 Deep Learning

Deep learning is a computational model which allows learning representations of
data with increasing levels of abstraction by using multiple processing layers [17].
These machine learning methods have significantly improved visual object detec-
tion, speech recognition and generation as well as other domains based on large
amounts of data. Deep learning is capable of processing large amounts of data and
learn to recognise specific patterns and intricate data structure by using backprop-
agation algorithm, which indicates to the network which parameters should be
changed and how to provide a more accurate answer. Deep convolutional neural
networks (CNNs) are typically used to process images, videos, speech and audio.
Recurrent nets (RNNs) are used for sequential and time series data analysis and
forecastings such as speech and text.

16



2.6.1 Convolutional Neural Networks

Given that mainly the visual information was being processed in work described

in this thesis, convolutional neural networks provided the best performance on

the collected data. CNNs are suitable when the data to be learned is provided in a

format of arrays, which can have one or multiple dimensions. Images are supplied

as 2D arrays if grayscale and 3-layered 2D arrays for colour images.

CNNs typically consist of many interconnected layers placed in sequence,

mainly containing convolutional and pooling layers. The network is generally fin-

ished with one or two fully connected layers, which eventually connect to output

values to provide an answer to the given problem. An example of a CNN structure

can be seen in Figure 2.7. However, the structure of CNN can be application-

dependent.

Figure 2.7. Example structure of the Convolutional Neural Network (CNN). Image source [39]

Deep neural networks exploit the idea of compositional hierarchies, where

higher level features are composed of lower level features, which is the reason for

a sequential structure. Similar approaches can be found in other signal processing

applications.

Units in a convolutional layer are organised in feature maps, within which

each one is connected to local patches in the feature maps of the previous layer

through a set of weights called a filter bank. The result of this locally-weighted

sum is then passed through a non-linearity such as a ReLU. The same filter bank

is shared among all units in a feature map. Different feature maps in a layer use

different filter banks. The reason for this architecture is twofold. First, in array

data such as images, local groups of values are often highly correlated, forming

distinctive local motifs that are easily detected. Second, the local statistics of

images and other signals are invariant to location. In other words, if a motif can
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appear in one part of the image, it could appear anywhere, hence the idea of units
at different locations sharing the same weights and detecting the same pattern in
different parts of the array.

Between the convolutional layers, pooling layers can be used. First of all, it
reduces the dimensionality of the layers, thus reducing the number of parameters
that have to be adjusted. Furthermore, it adds robustness, especially regarding the
relative position of the detected features by selecting the most distinct ones in the
local area.

The training is done by providing images together with the correct classifica-
tion labels, correctly marked mask or other information. If the input images are
too large to fit into the memory of the GPU, they are sub-divided into mini-batches
and fed to the network for training one mini-batch at a time. At each epoch, the
result using current network parameters is estimated and an error calculated by us-
ing the defined loss function. Then, using this information, the backpropagation
algorithm adjusts the parameters of the neural network to reduce the error. The
process is repeated until no more improvements are seen or the desired accuracy
is achieved.

Loss function allows CNN to evaluate the quality of the learning process by
penalising the network for deviations between the predicted output and the actual
desired output. The loss is explicitly defined for the type of output and considers
possible values, so it is often application-specific.

2.6.2 Multi-Objective Convolutional Neural Networks

Normally the CNN optimises for one type of objective, like classification or re-
gression. However, there are occasions, when having outputs of multiple types
would be beneficial. For example, let it be a face recognition task. The primary
objective would be to identify who is the person in an input image. On top of that,
we can have a face localisation to say where accurately in the picture the face is
located, emotion recognition and even gaze direction estimation can provide use-
ful data. To achieve this, CNN has to be able to estimate and optimise for multiple
heterogeneous objectives.

To solve this issue, a method called "multi-objective convolutional neural net-
works" was developed. It uses a similar structure to a standard CNN. However,
it provides branching off to multiple outputs. Branching off can be done either
at the final fully-connected layer or in the middle of the CNN with some addi-
tional objective specific layers before the output layer. An example structure of a
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Figure 2.8. Example structure of the Multi-Objective Convolutional Neural Network (CNN).

multi-objective CNN can be seen in Figure 2.8.
The loss function for a multi-objective CNNs has to comprise a combination

of losses, one for each of the objectives. One approach is to have a weighted sum
of the losses, where weight can represent the importance, or the impact, of each
of the outputs to the whole system. CNN is trained simultaneously for all of the
objectives.

2.6.3 Transfer Learning
One problem of training CNNs is that large amounts of well-marked and diverse
training data are required to successfully train the network. It also results in rather
long training processes even on powerful GPUs. It is mainly caused by having
large amounts of parameters that have to be tuned at each epoch.

However, when we consider the compositional hierarchy of the CNN and some
observations that the first couple of initial layers commonly learn general visual
features. These include edges, corners and contrasts of the image. It has been
noticed that when given one trained CNN, it is possible to re-train it for a different
domain by adjusting just some of the layers of the network instead of all. Typi-
cally, some closest layers to the output layer are adjusted. This approach is called
transfer learning [22] [40].

The benefit of transfer learning technique is that the parameters contained in
so-called frozen layers are copied from the previously-trained network, while only
some of the layers are trained during the process. It speeds up the training process
and requires smaller training datasets compared to the full CNN training, while
still capable of reaching the equivalent accuracy compared to the fully trained
CNNs.
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Chapter 3

Research Summary

This chapter will give an overview of the PhD research progress and achievements

by the publications.

Paper IV Paper VI

Paper V Paper VII

Robot Detection using 
Convolutional Neural Networks

Transfer Learning


Deep LearningMulti-Cam Systems

Paper I

Paper II

Paper III

Automatic Robot-Camera 
Calibration

Predictive and Reflexive Collision 
Avoidance

Robotic EV Charging Station

Research Question 1 Research Question 2

Figure 3.1. Publication overview graph with indications of research questions addressed by each
paper or paper group.

3.1 Overview

In total, six papers have been published, with the seventh one accepted to be pub-

lished in May 2019. Figure 3.1 visualises the topics and research questions ad-

21



dressed by each publication.

The work started by setting up a robot-camera system for robot workspace
mapping and understanding. Such a setup requires a precise Hand-Eye calibration
to allow the cameras and the robot to function in a common coordinate system. A
novel method was developed to perform this calibration automatically, resulting
in a Paper I described in Section 3.2.1.

Having a precise workspace map recorded as a point cloud, it was converted to
an octomap to allow for real-time obstacle detection. Having this information, ob-
stacle movement trajectories were estimated, and a predictive and reflexive robot
manipulator behaviour was developed to quickly react and avoid any static or dy-
namic obstacles, as published in a Paper II described in Section 3.2.2.

While on an exchange at TU Graz in Austria, knowledge from the first two
publications was applied to a real project - a robot-based electric vehicle charging
station. It required a multi-step movement approach from Paper II, as well as
some automatic calibration features from Paper I, but using the charging plug
as calibration keypoints instead of a defined marker. This work is described in
Section 3.2.3.

Dependency on a Hand-Eye calibration used in the first three papers was seen
as a possible issue when working with physical systems, which have to be recon-
figured. It gave inspiration for Paper IV, described in Section 3.2.4, which tested
deep learning approaches to detect a robot and estimate its joint coordinates using
a simple 2D colour image from the camera, without the Hand-Eye calibration.

This work was extended further to use a single multi-objective CNN instead of
a cascaded CNN system to achieve the same performance. The system was trained
once for three types of Universal Robots at once, instead of having multiple CNNs
for each of the robot types. This resulted in Paper V described in Section 3.2.5.

To extend this method to more robot types without having a full training cycle,
a transfer learning approach was proven to work to re-train the system for a Kuka
robot arm significantly faster than a complete training process, as described in
Paper VI in Seciont 3.2.6.

The last publication, Paper VII expands the transfer learning method not just
to retrain to the new robot type, but by using a two-stage approach, the system
can be trained to include new, more complex robots like Franka Emika Panda,
still keeping the recognition for previously-trained robots. The system has proven
to work for UR, Kuka and Franka Panda robots all at once, as described in Sec-
tion 3.2.7.
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3.2 Papers
This section presents details of the motivations and contributions of each paper.

3.2.1 Paper I
Automatic Calibration of a Robot Manipulator and Multi 3D Camera System

The first step to enable the robot for environment-aware operation is to sense the
workspace. Many types of sensors can be used; however, considering the price of
the sensors and the information provided by them, 3D cameras, or so-called RGB-
D sensors are very suitable in environment-aware robotic applications. On top of
the colour image provided by the visual camera part, depth information from the
camera to detected objects is also provided. Various representations like point
clouds, octomaps, coloured depth maps can be derived by using this information.

To accurately use the camera in the same system with the robot, it has to be
calibrated. There are two types of calibration that need to be performed:

• Internal camera parameters, like lens distortion, focal length, optical centre,
and for RGB-D cameras, colour and depth image offsets [32] [33].

• External camera parameters: the pose (position and orientation) of a cam-
era in a coordinate reference frame. It is commonly known as Hand-Eye
calibration [34] [35]. The Hand-Eye calibration or transformation from the
camera coordinate system to the robot base coordinate system is shown in
Figure 3.2(a). This calibration allows for recalculating any object found in
the camera’s field-of-view, thus coordinate frame, to the coordinate frame
of the robot. For example, if the robot needs to grasp or avoid an object
detected by the camera.

Usually, an internal calibration needs to be performed only once for each sen-
sor, unless the hardware of the sensor is modified; for example, a lens is changed.
On the other hand, the Hand-Eye calibration has to be repeated every time the
sensors or the robot are moved relative to each other. It is crucial to have this
calibration done precisely for the system to have good accuracy in sensing, espe-
cially for precise robot operations or visual servoing. Visual servoing uses visual
information as a feedback loop to control the robot. It is achieved by calculating
the error between the position where the robot end-effector is expected to be in
the image compared to the actual location of it in image pixel coordinates.

23



(a) System Setup with three cameras. In the
system, Hand-Eye calibration is represented by
the Affine transformation matrix TR

C , which
transforms the coordinate system of each cam-
era to the coordinate system of the robot base,
making it common for the whole setup.

Camera Frame

First Stage Second Stage

Initial Checkerboard 
Position

(b) Robot movement trajectory as seen in the
3D camera image. It is split into multiple
stages by the positions calculated at increas-
ing distance from the centre point of the image.
Movements are done stage-by-stage while im-
proving the Hand-Eye transformation accuracy
at each step. This figure shows just a two-stage
example.

Figure 3.2. Robot-camera setup and calibration movement trajectory.

Provided that most of the experiments for this thesis were done in a shared lab.
A possible issue in the given environment is the risk that the setup can be shifted,
accidentally or on purpose, resulting in an imprecise and often invalid Hand-Eye
calibration. The process of performing this calibration traditionally can easily
take 20 to 60 minutes, depending on a number of vision sensors used in the setup.
It motivated the idea of creating an automated solution for camera calibration in
robot-camera setups.

The calibration marker - a checkerboard was mounted on the UR5 robot using
a custom designed, and 3D printed end-effector. The robot was used to move the
checkerboard around to calibrate the cameras. The primary constraint for the sys-
tem to function correctly is to make sure that each of the cameras is overlooking
the robot itself together with its workspace. During the initialisation procedure,
the robot performs a rotational movement around its base axis, while each of the
cameras is trying to detect a checkerboard in its field-of-view (FoV). Once the
checkerboard is detected, the robot joint configuration is saved for that position to
be later used as a starting point for the calibration movements.

Once the checkerboard has been detected in all the cameras, the calibration
procedure can start for each one at a time. First of all, the robot moves to the
starting point, where the checkerboard is in front of the camera. Then, the tilting
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Figure 3.3. Picture of the actual experimental setup. A checkerboard with a hollow square to
allow the detection of its orientation is attached to the robot.

motion is performed to record different angles of the board followed by the tra-

jectory of movements with offsets in all of the directions from the starting point.

The movement trajectory, as seen in Figure 3.2(b), is guided by the camera, simi-

larly to the visual servoing concept, which allows covering the largest area of the

camera’s field-of-view. At each position, a new frame is captured by the camera

and together with the actual robot position information from the joint encoders is

added to the calibration data to improve the accuracy further. Then the next tra-

jectory point is recalculated using the improved calibration and actions repeated.

Many experiments were conducted to test the efficiency of the system. Each

experiment used the dataset consisting of a different number of frames to cali-

brate the camera. They were also divided into two categories, one for the internal

camera calibration and another for the Hand-Eye calibration. Experiments were

conducted by using a three camera setup consisting of two Kinect V2 cameras

and one Kinect V1 placed around the robot, as shown in Figure 3.3. Results of the

internal camera calibration were evaluated by calculating the reprojection error,

and Hand-Eye calibration was assessed by calculating an error by the predicted

robot position using a camera image versus the actual position based on the robot

joint encoder information. The results of the internal camera calibration can be

seen in Figure 3.4(a) and the results of the Hand-Eye calibration are shown in

Figure 3.4(b).

The method has been proven to work, and an optimum number of frames

needed for each type of calibration was found. For the internal camera calibration,

at least 50 frames for each of the sensors are required to achieve the reprojection

error under 1 pixel, and at least 30 frames are needed for accuracy of under 1 cm in
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(a) Calibration accuracy results by showing
the errors of internal 3D camera calibration.
Colour camera, IR errors define averages of
each sensor’s cameras. Reprojection error de-
termines the average error of the offset in the
images between the colour image and the depth
information. It has to be noted that right Y axis
for error rates is in log scale.

(b) Hand-Eye calibration accuracy results.
Overall position error (in cm), as well as each
axis separately, are shown by comparing the ac-
tual robot position versus the predicted robot
position from the 3D camera sensor. Dotted
lines indicate the number of frames used in
each experiment.

Figure 3.4. Evaluation of the presented automatic calibration process.

Hand-Eye calibration. Calibration time using the automatic method can be under
3 minutes to achieve acceptable accuracy using 50 frames for the internal calibra-
tion. For the Hand-Eye calibration of the system with three cameras overlooking
the robot, the error of under 1 cm was achieved in under 2 minutes of operation
for all the cameras. It is approximately ten times faster compared to performing
these calibrations manually.

The automatic calibration system was used continuously in the following work
when cameras were moved around and had to be re-calibrated.

The work resulted in an automatic calibration system for the robot and multi-
camera systems. It allows reducing the calibration time from 20-60 minutes down
to 2-10 minutes with close to none of the manual work.

3.2.2 Paper II
Multi 3D Camera Mapping for Predictive and Reflexive Robot Manipulator
Trajectory Estimation

Having a system consisting of a robot manipulator and multiple calibrated 3D
cameras allows the system to observe the workspace and detect moving obstacles.
By utilising this information, the robot can adapt to changing dynamic conditions.
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This work aims at solving the issue of relatively slow trajectory recalculation pro-
cess of existing methods when an unexpected obstacle appears in very close prox-
imity to the robot, which sometimes can lead to a collision.

Our setup consisted of having in total four different 3D cameras. It allowed
for redundancy as well as ensuring the workspace is seen from many angles, so
obstacles do not obstruct the field-of-view. However, with every camera providing
a point cloud, the amount of data to be processed was too large for a single com-
puter to provide real-time performance. To address this issue, but still keeping the
necessary accuracy, the point clouds were pre-filtered, then merged by using the
calibration data, and position fine-tuning using the iterative closest point (ICP)
method and then converted to an octomap. Octomaps can have a different resolu-
tion in different parts of the map allowing to have a finer resolution on the points
of interest, while background objects, which are out of reach for the robot could
be set to have a coarse resolution, thus saving a significant amount of processing
power.

Once the map of the workspace was created, the robot itself had to be removed
from the octomap to prevent false-positive self-collision instances. It has been
done by taking its joint encoder information and fitting a simplified model using
finely fit cylinders and overlaying it in the volumetric octomap. Any voxels that
are covered by the estimated robot model were removed from the octomap. What
was left was a collision map representing static structure obstacles, like a table
and a robot cart, as well as any dynamic obstacles that come into a field-of-view
of the cameras.

By using a long-term observation of the workspace, a danger map was con-
structed. It was based on analysing the frequency of the objects occupying the
workspace and a cost function based on a logarithmic decay calculates the likeli-
hood that this part of the map will be free or obstructed long-term. By utilising
this information, the predictive behaviour part of the robot motion planner calcu-
lates the trajectory, which takes into consideration the length of the path together
with the risk that the area being crossed might be obstructed. The planner is based
on the RRT-Connect algorithm [31].
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(a) Overview of the algorithm. Green ovals rep-
resent the sensing part, blue rectangles - process-
ing part, yellow hexagons - motion planning and
grey rectangle (dashed borders) - motion execu-
tion. Reflexive motion planning marked as a yel-
low hexagon (dashed borders) overrides the pre-
dictive motion planning when an unexpected ob-
stacle gets close to the robot.

Start
Pos

Goal
Pos

Reactive Planning

Obstacle
Stop and 

replan point

(b) Reactive Behaviour Planning: When the ob-
stacle is present, the robot stops and recalculates
the path. Occupied workspace is never crossed.

Start
Pos

Goal
Pos

Danger Map

Predictive Planning

(c) Our method: the trajectory fully avoids, but
gets close to the medium risk area in the danger
map. If detour is not large, a safe path is chosen
over a risky one.

Start
Pos

Goal
Pos

Danger Map

(d) Our method: the trajectory crosses the low
risk area in the danger map.

Start
Pos

Goal
Pos

Danger Map

Obstacle

Predictive + Reflexive Planning

(e) Our method: Predictive and Reflexive Plan-
ning combined, when an unexpected obstacle
gets very close to the robot.

Figure 3.5. Algorithm overview for the robot reflexive-predictive behaviour model.
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To react quickly and avoid any unexpected obstacles that appear in a very close
proximity to the robot, a reflexive behaviour model was used. It was inspired
by how many of us would pull back an arm if we touch anything hot or sharp,
even without understanding or observing what happened. Instead of calculating
a new path, the model retraces some previously-executed trajectory points, while
a new and safe route is being recalculated using a predictive model in parallel.
Before the execution, a check is made to ensure that retracing the previous path
is free of obstacles. Otherwise, a movement vector facing away from the detected
obstacle is used as a reflexive behaviour trajectory. The algorithm is explained in
Figure 3.6.

Start
Pos

Goal
Pos

Obstacle

Backtracking avoidance move

Obstacle movement
Initial robot trajectory
Invalidated robot trajectory

Replanned trajectory
Alternative avoidance move

Collision object 
movement estimation

Collision checking areas 
for avoidance moves

Trace of the obstacle’s 
previous positions

Figure 3.6. Reflexive Behaviour. The planned robot trajectory (solid green line) is blocked by a
moving obstacle (marked in red). The first option is to backtrack on the executed path (pink dotted
line) until the collision risk is over. If backtracking still results in a collision, the second option is
to use the alternative avoidance move and move to the direction opposite from where the obstacle
is approaching (dotted orange line). In the meantime, an alternative collision-free trajectory to the
goal position is calculated and executed (blue dashed line).

In normal operation, the predictive and reflexive behaviour models are com-
bined. The predictive one is used typically, but in case of an obstacle getting very
close to the robot, the reflexive one can override the movement if necessary. The
whole process workflow can be seen in Figure 3.5(a).

Many experiments were carried out to evaluate the functionality of the danger
map construction, predictive behaviours, reflexive behaviour separately as well as
analysing the operation of the whole system. The movements were fixed to be
repeated continuously between two points in the pattern A - B - A and with some
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static obstacles as well as the dynamic ones occasionally entering the workspace.
We compared a simple reactive behaviour, our proposed predictive model, a direct
(not-obstructed) path as well as our proposed combined predictive and reflexive
behaviour model. It has been shown that our proposed method provides on av-
erage three times quicker execution compared to a reactive-only behaviour and
around 20% faster compared to our predictive-only behaviour based on a danger
map. No collisions were observed by using our proposed method.

The work resulted in a fully working concept, which takes the shortest path
considering a calculated risk of possible collisions. In case there is an unexpected
obstacle coming close to the robot, a reflexive movement overrides the motion
plan, and the robot quickly moves away from the danger.

3.2.3 Paper III
3D Vision Guided Robotic Charging Station for Electric and Plug-in Hybrid
Vehicles

During the exchange at TU Graz in Austria, a project was started to develop an
autonomous robotic electric vehicle charging station. The project has targeted to
solve issues becoming more relevant with a growing number of electric vehicles
(EVs). One of them being many fully charged vehicles left at the charging stations
and occupying the chargers, while other drivers are waiting in the queue. On top
of that, more powerful fast chargers are being developed allowing the users to
charge their EV for a long trip in under an hour. However, putting 120 kW or
higher power requires very thick, durable and heavy power cables. For example,
the weight of a 200 kW charging cable can be up to 2.26 kg/m. With longer cable
lengths, this becomes difficult for people to handle, but would not be an issue for
a robot [41]. The final problem comes with having many different standards for
the charging sockets. It is quite common for EV owners to face a situation, where
they arrive at the quick charging station to find out that the offered plug does not
match the charging port of their car. In such circumstances, they either cannot
charge, or have to carry some bulky adapters to ensure they can plug-in at most of
the charging stations.

The project started by creating a robotic electric vehicle charging station con-
cept. The hardware setup, robot operation, vehicle and charging port detection, the
whole process work-flow and necessary communication channels between the de-
vices together with the graphical user interface for the driver had to be considered.
The concept of the charging station can be seen in Figure 3.7(a). After the initial
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design of the charging station, an actual BMW i3 vehicle was acquired for testing

purposes and the charging station was constructed as shown in Figure 3.7(b). The

following work focused on the algorithms for the detection of the charging port

and the motion planning for the robot plugging in and out the charger.

(a) 3D design of the robotic electric vehicle
charging station concept.

(b) The actual robotic electric vehicle charging
station used for testing with a BMW i3. Image
source [42]

Figure 3.7. EV charging station project, from concept to reality.

In order to allow the robot to precisely plug in the charging cable into the

vehicle, an exact location and orientation of the charging port have to be deter-

mined. After testing RGB-D cameras, it was noticed that the material charging

ports are made of absorbs IR light making it very difficult to get any useful depth

information using these cameras. Also, the system has to be functional outdoors,

where there can be infrared disturbance from the sunlight. The camera setup was

shifted to use stereo cameras. Such a configuration is more robust to changing

illumination conditions; however, getting depth information is more challenging.

To identify the charging port type and identify many distinct keypoints for

the triangulation between the two cameras, shape-based templates were created

for each of the plug types. By using template matching algorithms included in

Halcon Machine Vision software, a precise overlay of the generated template and

the image of the charging port was achieved in both camera images, as shown in

Figure 3.8(a). Model matching for Type 1 and Type 2 charging ports as well as the

connector plug (Type 2) has worked well for various illumination and angles up

to 45◦ relative to the viewing angle of the camera. The detection distance was up

to 2.5 meters, which matched the reachability of the UR10 robot. The matching

confidence score for proper alignment was over 95%. The recognition speed on

the full camera image was varying between 300ms and 800ms. By narrowing
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down the search area, for example by identifying the darker than normal regions
in the image, the recognition speed can be reduced to under 150ms.

(a) Results of the template matching. A high
variety of angles and lighting conditions were
tested. Viewing angles up to 45� resulted in
successful detection with accuracy dropping
beyond that. Row 1: Type 2 connector plug.
Row 2: Type 1 socket. Row 3: Type 2 socket.

(b) Hand-Eye calibration results. Visualisation
of the assigned coordinate frames to the vi-
sion sensor, the end-effector of the robot and
the end point of the connector plug. Result-
ing point cloud visualising the charging plug
is overlayed onto the visualisation of the robot
model.

Figure 3.8. Using template matching for charging port and plug detection.

Given the accurate detection in both stereo cameras, keypoints aligned with
the pins of the charging port or plug were used to calculate the depth information
using triangulation. It resulted in a precise pose estimation of the charging port,
which included 3D coordinates of the centre of the plug as well as orientation as
roll, pitch and yaw angles.

Having an accurate detection of the charging plug, also allowed to perform a
marker-less Hand-Eye calibration using the centre point of the connector plug as
the reference point. Instead of using markers like a checkerboard for the calibra-
tion, the structure of the plug is used to get the keypoints while the robot moves
it around to acquire the needed accuracy of under 1.5mm. It becomes useful if
the robot has interchangeable connector plugs of different types so that the system
can re-calibrate fully automatically. Results of the successful Hand-Eye calibra-
tion based on a connector plug structure is visualised in Figure 3.8(b).

Once the system is calibrated and the pose of the charging port of the vehicle is
detected, the three-step robot plug-in movement is initiated, as seen in Figure 3.9.
Firstly, the robot moves the plug at high velocity to the approach position, which is
within a 0.1 meter radius from the charging port. The second step is to reduce the
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velocity to 10% of the maximum robot joint speed and move to the final alignment

position. In this pose, the connector plug and the charging port are fully aligned by

their Z-axis and just a few millimetres away from the contact point. The last step

is to move at only 2% of the maximum speed along Z-axis and perform the plug-in

motion. During this move, the forces and torques exerted on the end effector of

the robot are monitored. In case the forces exceed a given threshold, the system is

halted to prevent any damage.

Figure 3.9. Three step plug-in procedure plan. Firstly, the robot moves the connector plug to the
Approach Position, which lies approximately 0.1 meter away from the charging port. The second
move aligns the Z-axes of the charging port and the plug and gets the plug just a few millimetres
away from the port. The final plug-in movement performs the plugging in motion along Z-axis.

Under the assumption that the vehicle was stationary during the charging pro-

cess when the battery is fully charged, the unplugging motion is merely the inverse

of the plug-in movement by retracing the same trajectory steps in the reverse order

and returning the end-effector to the standby position.

The concepts have been proven to work in 10 experiments under different

rotation angles that the plug was placed at. It has worked successfully 8 out of

10 times, with it failing twice due to the rotation misalignment. Even with small

angular offsets of up to 5°, the plug was inserted successfully making contact.

The work has resulted in the actual working robotic electric vehicle charging

station, where our approach has proven to work under varying lighting condi-

tions. The project has been successfully submitted to the partners and was re-

leased publicly in September 2018 followed by some mainstream media articles

about it [42]. Furthermore, a patent citing this work was published in 2019 by

Intel Corporation [43].
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3.2.4 Paper IV

Robot Localisation and 3D Position Estimation Using a Free-Moving Camera

and Cascaded Convolutional Neural Networks

Input Image Intermediate: Robot Mask Robot 3D Joint Coordinate 
Estimation

Figure 3.10. A simple colour image of the robot body is provided as an input to the system. The
first CNN estimates the mask containing the robot body and this result is overlayed with the colour
image and used as an input to the second CNN. The second CNN provides an estimate of the joint
coordinates of the robot in 3D. Each robot joint is visualised with a circle of a different colour.

Each of the robot-camera system in this thesis so far required performing a

Hand-Eye calibration. It was not only time consuming, but it also had to be done

every time the camera or the robot was moved in relation to each other. A new

challenge was set to find a workaround where calibration would not be necessary

anymore. Given the recent advances in deep learning based object recognition

for item classification or self-driving applications, using convolutional neural net-

works (CNNs) for this purpose was analysed. Robot arms have distinct visual fea-

tures, and humans can easily identify robots in environments like factory floors.

The first part of the cascaded CNN is used to identify the mask of the robot

in the input image. Then the estimated mask is overlayed with an input image

and fed as an input to the second layer of the cascaded CNN, which estimates the

position of each of the robot joint in 3D relative to the camera. The whole process

is summarised in Figure 3.10.

The work started by collecting training datasets for the full line of Universal

Robots: UR3, UR5 and UR10. Kinect V2 cameras were used as vision sensors

with the robot joint encoder information used to precisely fit the robot model in

the recorded image, both colour and depth. Depth information was only used to

create training dataset, while only a 2D colour image is needed as an input to the

system. This information could be used to determine the mask of where the robot

is located in each image. Furthermore, 3D positions of each of the robot joints
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(a) CNN architecture for the robot mask classification. The network consists of 5 convolutional
layers with varying dilation. Input is a colour image and output is a mask image defining the body
of the robot.
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(b) CNN architecture for the robot joint coordinate estimation. The network consists of 3 con-
volutional layers, 2 pooling layers and a fully connected layer in the end. Input is an overlayed
colour image with a robot foreground mask and output is 3D coordinates of the robot joints in the
coordinate system of the vision sensor.

Figure 3.11. Cascaded CNN architecture for the robot position estimation.

were saved for each of the frames. For each of three recordings, the camera was

placed at many positions overlooking the robot with varying angles and distances

resulting in different backgrounds. During each of the recording, the robot was

moved in many different configurations to add a variety of viewing angles. Dataset

summary can be found in Table 3.1.

The training datasets were then used to train a specially designed cascaded

CNN to optimise for the following objectives:

• The robot mask in the input image

• 3D coordinates of each of the robot joints in relation to the camera

Despite the depth information being used during the training, an input to the

CNN for the detection phase was a simple 2D colour image. The structure of the

network can be seen in Figure 3.11.

Results of the system were promising with the mask estimation accuracy be-

tween 92.8% and 98.1% depending on the robot type, and the joint position esti-

35



Table 3.1. Dataset summary describing the number of samples collected for each type of the
robot. In total 9 recordings were made, 3 for each type of the robot.

Recording Robot Type Number of Frames
Rec 1 UR3 211
Rec 2 UR3 252
Rec 3 UR3 463
Rec 4 UR5 252
Rec 5 UR5 756
Rec 6 UR5 1512
Rec 7 UR10 112
Rec 8 UR10 278
Rec 9 UR10 514

mation error was under 4cm in all the cases with as low as 2.02cm error for the
UR5 robot.

The work resulted in a cascaded CNN based system capable of successfully
finding the robot in a 2D colour image and estimating its 3D base and joint coor-
dinates with an accuracy of approximately 3 cm compared to the ground truth.

3.2.5 Paper V

Multi-Objective Convolutional Neural Networks for Robot Localisation and
3D Position Estimation in 2D Camera Images

Given the promising results of the previous work using cascaded CNNs described
in Section 3.2.4, the main problems remaining with that system were addressed in
Paper V. Having the cascaded structure, each network had to be trained separately
for each of the robot types, meaning the system was not universal. Furthermore,
the training process was split into two for each of the objectives, and it was dif-
ficult to determine the optimum configuration that would minimise the error both
for the mask and for the coordinate estimation.

It motivated a reconsideration of the structure of the deep neural network used
and finding a more versatile solution to the problem. Given the three robot types
used and multiple objectives to optimise the system for, a new approach of using a
multi-objective CNN was found. It can tune for four goals simultaneously: Robot
Mask, Robot Base Coordinates, Robot Joint Coordinates and Robot Type. This
information is sufficient not only for the robot detection and pose estimation in an
un-calibrated system, but also to classify which robot is seen by the camera.
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Figure 3.12. Multi-objective CNN structure. Input is a simple 2D colour image, and the network
is trained for four outputs: robot mask, 3D coordinates of robot joints, 3D coordinates of robot
base position and robot type. There are two main branches of the CNN. The first one is aimed
to learn the features leading to an accurate robot mask mainly consisting of dilated convolutional
layers, marked by solid red arrows. The second branch, marked in blue dashed arrows, consists of
max pooling and dilated convolutional layers with fully connected layers at the end. The whole
CNN is trained for all four outputs simultaneously using a common loss function.

To allow for a direct comparison with the previous method, the same training
and test datasets were used to evaluate the multi-objective CNN approach. The
network itself has multiple branches splitting and joining to share information
in some of the layers and reduce redundancy. The network structure is seen in
Figure 3.12. Given that the whole network is trained simultaneously, a single loss
function had to be constructed optimising for all of the objectives. It was solved
by using a weighted sum of the loss functions for each of the goals.

The results of the multi-objective CNN approach compared to the cascaded
CNN method were promising. The system not only could be trained once for all
the robots but also improved accuracy on all of the objectives. The comparison
between the two methods can be seen in Figure 3.13(a) and error of the joint
coordinates in Figure 3.13(b). Furthermore, the detection time or feed-forward
of the multi-objective CNN was just 15ms on a GPU, proving that the method is
capable of real-time detection in a live image stream.

The work resulted in a successfully working multi-objective CNN, which can
estimate the robot mask and estimate the coordinates of its base and joint positions
using just a 2D colour image as an input. Results have shown an improvement in
all the detection metrics compared to the previous cascaded CNN approach.
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Figure 3.13. Evaluation of our method by testing the trained system on the test dataset.

3.2.6 Paper VI

Transfer Learning for Unseen Robot Detection and Joint Estimation on a
Multi-Objective Convolutional Neural Network

Having a common multi-objective CNN capable of training for all of the desired
outputs simultaneously added a significant amount of flexibility to the system.
However, it was still limited to the robots produced by Universal Robots and
required collecting vast amounts of training data. These two main issues were
addressed in paper VI.

To test the ability to adopt a readily-trained multi-objective CNN to a new,
and significantly different robot type, a Kuka iiwa LBR robot was applied. Not
only does it have a different appearance, but it also has seven degrees-of-freedom
(DoF) compared to 6 DoF of all of the Universal Robots. A training dataset was
similarly collected for the Kuka robot as it was done before for the UR robots.

However, instead of re-training the system from scratch, a fully-trained sys-
tem from our previous work was taken as a starting point. Then, some layers in
the multi-objective CNN were frozen, which means that during the training pro-
cess, the parameters of those layers are not modified, while the remaining layers
are being trained. It allows to reuse more general visual features learned by the
network, and outer layers adapt how to utilise them to identify a new type of the
robot. Furthermore, an additional output for the 7th joint of the robot was added.
The network structure and frozen/unfrozen layers can be seen in Figure 3.14. Es-
sentially, it is the same multi-objective CNN structure as in work described in
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Figure 3.14. Structure of the multi-objective CNN. The network uses part of common convolu-
tional layers and then branches off for objective-specific training. Fully-connected (FC) layers,
marked by the blue area, are the ones being adjusted during the transfer learning process to adapt
to the new robot model. Convolutional layers learn generalised visual features of the image, so
their parameters stay frozen during the transfer learning. It allows for quicker adaptation with a
limited number of input images compared to the full training process.

Section 3.2.5.
The results of the transfer learning approach have proven the capability of

the system to adapt to the robot using a limited amount of training data, thus
significantly reducing the training time. While the full training of the network
took around 60 hours for the UR robots, the transfer learning approach to adapt to
the Kuka robot took only around 2 hours on the same GPU hardware.

Furthermore, a detection accuracy almost equal to the fully trained system
could be reached with just using 300 training samples compared to over 2000

needed for full training of the system. Performance results are shown in Fig-
ure 3.15.

This work has moved the previously-shown concept of using a multi-objective
CNN to find the robot and estimate its position in 3D space a lot closer to the
real-world applications by reducing the need for large amounts of training data to
adapt it to new robot types.

The work resulted in significantly shorter training time and a smaller training
dataset by using a transfer learning method on an already trained multi-objective
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Figure 3.15. Evaluation of the transfer learning method using the test dataset.

CNN to adapt it to a new robot type.

3.2.7 Paper VII

Two-Stage Transfer Learning for Heterogeneous Robot Detection and 3D
Joint Position Estimation in a 2D Camera Image using CNN

Using the transfer learning approach to re-train a multi-objective CNN to a new
robot type was an efficient method. However, the problem remained that the net-
work was adapted to a new robot and forgot the previously-trained robot types.
In this work, we develop a method to include new robot types into the multi-
objective CNN without forgetting previously-trained information, making it capa-
ble of recognising all the robots at once.

A new robot was added: Franka Emika Panda. It has 7 DoF and plain white-
black appearance, which is even more difficult to distinguish in front of white or
grey walls, making it a more difficult challenge. The training dataset consisted
of a collection of frames containing all the robots: Universal Robots, Kuka and
Franka Panda. It allowed the network to train to include a new robot type, while
still being able to recognise previously-known robots.

The transfer learning approach was modified to a two-stage model, shown in
Figure 3.16. Stage 1 adjustment consisted of the outer layers of the CNN, and the
training was continued until no more improvement in the loss was detected. Once
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Figure 3.16. The multi-objective CNN with a two-stage transfer learning. The network is taught
in two stages using the transfer learning approach. In stage 1, the parameters for all the layers,
besides the final ones marked in blue are frozen and the system is trained until there is no more
improvement. Afterwards, in stage 2, the parameters of the CNN layers marked in red, together
with all the stage 1 layers, are adjusted during the training.

the training settles, Stage 2 starts where more layers are unlocked, and the neural
network trains further to improve the detection accuracy. This approach allows
to keep the training process still short but adjusts more parameters in the CNN to
adapt it to more distinct visual appearances of the robots.

A new training dataset collection method was developed to avoid overfitting.
By adding motion capture markers on the camera, we were able to precisely track
the vision sensor and move it freely around the space capturing the robot in a large
variety of backgrounds and changing lighting conditions. This more diverse data
ensures that the CNN is learning the right features of a robot instead of figuring
out how to identify the background, which would prove difficult recognition in
real-world scenarios.

Compared to the previously presented work in Paper VI, the detection accu-
racy of the current two-stage transfer learning approach achieved similar accuracy
with a joint position error of 2.46cm vs 3.12cm and slightly worse accuracy for a
robot mask estimation: 97% vs 98% in the previous work. Full training time of
the multi-objective CNN for UR robots took 60 hours vs 10 hours in the current
work to include the detection of Kuka and Franka Panda robots based on two-stage
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Figure 3.17. Evaluation of the two-stage transfer learning method using the test dataset.

transfer learning.
Furthermore, a more precise analysis was done on the detection precision

depending on the distance between the camera and the robot, visualised in Fig-
ure 3.17(b). There is close to a linear relationship between the distance between
the robot and the accuracy of the 3D position estimation of the robot joints. The
performance of each training stage of transfer learning is shown in Figure 3.17(a).
Stage 1, where the parameters in final CNN layers are adjusted, saturates after
6000 iterations. Afterwards, further layers are unlocked switching to Stage 2, and
the loss function reduces even further settling down between 10000� 12000 iter-
ations.

The work resulted in the successful expansion of the multi-objective CNN to
include two new robot types: Kuka and Franka Panda, to an already existing
CNN trained on Universal Robots, without forgetting previously-trained informa-
tion. Camera movement was fully unconstrained and moved by hand while being
tracked by a motion capture system. It is not necessary, but it allows for collect-
ing a significantly more diverse training data resulting in a more robust system.
A two-stage transfer learning approach ensures rapid learning to include a new
robot type by having a fraction of the training data compared to a full training
process.
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Chapter 4

Discussion

This section discusses the work presented in this thesis. First, the research ap-
proaches taken throughout the work together with the achievements are discussed
in Section 4.1. Limitations of the given work are described in Section 4.2.

4.1 Research Approaches and Achievements

When addressing the research questions of this thesis, some decisions regarding
the research approaches were made. All the hardware used consisted of standard
commercially-available products without any hardware modifications. It provided
many benefits: the equipment could be easily swapped with new components, and
the system could be quickly expanded to have more cameras or robots. Further-
more, the cost of the equipment is significantly lower compared to the custom
designed robots; additionally, the commercially-available hardware is already cer-
tified for use with people. The discussion below is divided into two sections ad-
dressing each of the research question previously defined in Section 1.2.

4.1.1 Collision-Free Robot Operation in a Shared Workspace

Initially, the goal was to operate the system indoors in a fixed environment, where
the robot and the surrounding sensors would have dedicated fixed locations, al-
lowing for high-accuracy visual detection of objects that are close to the robot.
The research focus was oriented to the mapping of the workspace, making the
system immune to visual obstructions and developing the robot behaviour model
allowing for an adaptive and collision-free operation in a dynamic environment.
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The robot control model was developed for higher-level commands, like tra-
jectory generation in Cartesian or joint coordinates with the actual execution of
the movement completed by using ROS and MoveIt! libraries and drivers to cal-
culate inverse kinematics and motor commands. Given the movement require-
ments, the robot reaction and movement time were sufficient for the given ap-
plications, as tasks requiring high-frequency feedback, like force control, were
not necessary. Quick robot reactions to unexpectedly-changing conditions could
be achieved by reusing previously-calculated trajectory points instead of starting
new calculations. It was proven in a reflexive behaviour model developed in work
described in Paper II.

Many iterations of testing different vision sensors were done. They varied
from testing regular cameras to RGB-D cameras, where the latter provides depth
information on top of the colour image. Despite the differences, an Eye-to-Hand
calibration had to be performed for every new setup with a new camera or a new
configuration. This lead to the development of the automatic calibration system,
where the robot was used to move the calibration board and self-calibrate together
with the vision sensors connected to the system, described in Paper I. Furthermore,
it was noticed that some materials, like rough black matt plastic, typically used in
car manufacturing for parts like charging ports on electric vehicles, highly absorb
infrared light. It led to noisy and inaccurate measurements of any RGB-D cameras,
which use infrared patterns to calculate the depth information. A workaround
was to use a stereo camera setup instead, which could provide depth information
on such difficult materials as well by using shape-based methods at the cost of
more expensive hardware. However, a stereo camera setup performs better in
an outdoors environment, where infrared noise is introduced by the sun. Given
that the work described in Paper III was aimed at charging electric vehicles, it is
necessary for the system to work both indoors and outdoors.

Referring back to the defined research question 1 (RQ 1), the system was able
to ensure collision-free operation in a dynamic environment. The robot was capa-
ble of reacting quickly enough to avoid even fast-moving obstacles. However, the
robot was keeping a safe distance of at least 2 cm from obstacles to compensate
for the errors in detection and workspace mapping.

4.1.2 Robot Body and Pose Estimation Using Deep Learning

With the following work, the research focus shifted to machine learning approaches
for robot-camera systems. In previously-presented solutions, the system highly
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relied on having uninterrupted communication channels to send camera images,
real-time robot position and even relied on an exact robot model information. If
any of this information were delayed or inaccurate, the whole system would pos-
sibly malfunction. To reduce the high dependency on multiple systems working
reliably, deep learning approaches were used to teach the computer to recognise
the robot in the image and estimate the exact position where it is located in 3D
space without having any direct information from the robot sensors or even having
an explicit model of the robot.

Given the task requirements of using a 2D colour image as an input and pre-
dicting a mask of the robot in an image as well as the 3D position of each joint of
the robot, convolutional neural networks (CNNs) were chosen as the most suitable
approach to solve the task. CNNs are capable of learning complex tasks by effec-
tively adjusting large amounts of weights between neurons and selecting the most
appropriate filters automatically. However, they require extensive training datasets
with correctly marked ground truth to train efficiently. An automatic training data
collection system was set up using Universal Robots and RGB-D cameras, which
allowed to collect thousands of training samples, which could be used to train the
CNN.

The first successful approach was by using cascaded CNNs, where the first
CNN was used to estimate a mask of the robot in the image and then the result was
passed on to the second CNN, which predicted the 3D position of the robot joints,
as described in Paper IV. The system has proven to work with a few-centimetre
accuracy. However, the training process was cumbersome. A separate CNN was
necessary for each of the robot types, and if the robot mask estimation had signif-
icant errors, the joint position estimation was prone to fail because of imperfect
input.

Naturally, a better CNN structure was explored to make the system more ro-
bust. Instead of passing output from one CNN to be used as an input in the further
process, the structure of the CNN was modified by merging both CNNs into one.
It resulted in a multi-objective convolutional neural network, which was capable
of estimating four outputs at the same time: robot type, robot mask, 3D base po-
sition of the robot and 3D positions of robot joints. The improvements meant that
the system was able to not only estimate all the same information as cascaded
CNNs but also identify the robot type. Everything was done in a single neural
network. The improved system resulted in Paper V. On the other hand, larger
multi-objective CNN meant that teaching it to recognise all the robots required
training data for all of them to be collected and used in the training process all at
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once.
Despite having an automatic collection method for the robot training data,

it was still a time-consuming process. The robot had to do hundreds of physical
movements, with the camera frames captured and saved for each of the movement.
In some cases, there were still some unexpected irregularities or accuracy issues
present when the trained system was tested in operation. Even though a multi-
objective CNN was capable of recognising multiple robots, once the system was
trained, it was limited just to the robots it was taught. If a new robot was added,
the whole training process had to be repeated. A new approach was explored on
how to reduce the amount of training data and time needed for adding a new robot
to the recognition system. Transfer learning can re-train the network for a new
robot type using a limited amount of training data. It allowed to reuse low-level
features and reduced the amount of needed training data ten-fold as well as cut the
training time from 60 to 2 hours. The work was described in Paper VI.

Re-training CNN using transfer learning is very efficient, but one significant
issue remained. CNN effectively learned to recognise the new robot. However,
it forgot the previously-known robots and was unable to identify or estimate their
position anymore. It would not be useful in practical applications. Aiming to
solve this problem, the transfer learning approach was adjusted not only to teach
CNN to identify the new robot but also use the information of previously-known
robots in the training process. This way, the network is capable of including the
new robot into the current recognition system without losing previous knowledge.
Given the more complicated setup, a two-stage transfer learning approach was
used, where a number of layers to be adjusted was changing during the training
process to allow the system to adapt better, but still keep the training time low.
Eventually, the system was capable of using the base CNN trained on Universal
Robots and include both Kuka and Franka Panda robot recognition in the same
multi-objective CNN by using a two-stage transfer learning method presented in
Paper VII.

Referring back to research question 2 (RQ 2), we have been able to teach the
system to recognise the robot not only in an input image but also to estimate its
position in 3D space in relation to the camera. It was made possible by using
deep learning and CNNs. It allows the robot to be recognised under various il-
lumination or in dynamically re-configurable camera-robot environment. To train
the network having just a limited amount of training data, a readily-trained net-
work can be taken with the transfer learning approach applied to it to incorporate
recognition of new robot types.
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4.2 Limitations
All the work in this thesis was based on using the actual hardware, both for
robot platforms and vision sensors. It was a significant complication compared
to simulation-based approaches. Problems to address ranged from sensor noise,
which is hard to model, to constantly-changing conditions of the real world, some
of which were initially known, while others unexpectedly appeared when con-
ducting experiments and evaluating the system. In this section known limitations
will be discussed by dividing them into three main categories: robot limitations,
vision sensor limitations and deep learning limitations.

Some of the limitations, especially hardware-based ones, are out of control
by the researchers. However, most of the known limitations were approached
during the development of the presented methods to minimise their impact on the
performance of the system.

4.2.1 Robot Limitations
Collaborative robot arms have high flexibility and mostly intuitive control, usually
with a collision detection method. In this thesis, it was decided to use standard
robot controllers through a ROS interface to control the robots. It allowed for
rapid integration and effective robot control; however, at the same time, introduced
some problems. First of all, the actual high-frequency real-time control of the
robot was not possible using both standard and modified ROS interface with the
robot. The refresh rate of the controller was too low for real-time control. Thus,
approaches like force-feedback were not possible and not explored. At the same
time, throughout the work, some random delays were experienced, which were
at the robot controller level and difficult to compensate. Using this approach, the
researcher has to rely on the good functionality of the algorithms provided by
the robot manufacturer as well as path planning algorithms provided by ROS and
MoveIt! packages. An alternative approach could be taken by controlling the robot
motors directly. However, that would require developing its own implementation
of the robot’s inverse kinematics and control algorithms, taking up a significant
amount of time focusing purely on engineering tasks.

4.2.2 Vision Sensor Limitations
A new low-cost commercially-available RGB-D sensor is a great choice when not
only a colour image but also depth information is needed. Creating models of the
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robot workspace was made significantly easier by having distance information or
even full point clouds of the area. However, this meant a significant increase in
the sensor data flow. Typically, these sensors required USB 3 connection to the
computer, and the amount of data to be processed used most of the resources of
the computer, leaving little processing power to the rest of the algorithms, like
robot trajectory planning. Some optimisations were taken, but having more than
three sensors connected to one machine was complicated to get to work.

Furthermore, having structured light based sensors, like Kinect V1, meant that
multiple sensors observing the same object would have their projected IR patterns
interfere with each other, significantly reducing the accuracy or failing to provide
depth data overall. Newer sensors based on time-of-flight approach had less or
no interference allowing to use multiple of them overlooking the same area at
once. However, the impact of having strong infrared light sources around, like a
motion capture system with active IR lights or direct sunlight still highly reduced
the depth data accuracy.

Given that most of the RGB-D sensors use a combination of projecting IR
patterns and using stereo matching, there is a distance limitation, both minimum
distance the object can be detected at, as well as maximum distance. The success-
ful depth detection for an RGB-D sensor is typically in the range from 0.3 meters
to 10 meters depending on the sensor. It has to be accounted for when operat-
ing the system, as getting too close to the camera means that objects will not be
detected anymore.

Occlusions is another major issue in robot workspace mapping tasks. Having
multiple cameras can add redundancy, but still, does not guarantee entirely reliable
detection. If a large object is right in front of the camera, there is no coverage of
what is happening behind it. As previously mentioned, having too many cameras
is complicated because of the price and large amounts of data coming from each
of the sensors. The placement to give full coverage is crucial to reduce the chance
of occlusions.

Commercially-available sensors provide an excellent quality-to-price ratio.
However many cheaper and consumer level RGB-D sensors, like the ones used
in this thesis, have limited support and might have reliability issues. It is common
to have some of the products cancelled without prior notice or not receive any help
when the product is difficult to integrate or starts malfunctioning.
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4.2.3 Deep Learning Limitations

Deep learning provides great adaptability compared to some of the probabilistic
methods, but at the same time, it is difficult to guarantee reliable functionality.
Usually, deep learning based approaches can be evaluated using created test cases
and datasets, however, it is hard to analyse analytically or genuinely understand
how the network has learned to solve the task and how internal parameters were
set.

The quality of the system highly relies on the training data and loss functions,
which were provided. It might work correctly in the given conditions, but when
some changes occur, even what might seem non-significant for a human, the sys-
tem can suddenly malfunction without any prior warning. In many cases, this is
due to overfitting. It happened when the training data was not diverse enough to
cover all the possible scenarios where the system will have to operate. It learns
specific features instead of an overall understanding of the objects. Overfitting can
be complicated to recognise by a researcher, as no indications are given during
the training process. Even with validation set having unseen data, a deep learn-
ing network might learn general background features and provide good accuracy.
A significantly different validation set is needed to provide a robust measure of
network performance.

Throughout the work, it was a challenge to create a dataset containing a large
variety of illumination conditions, record the robot in front of different back-
grounds and make sure the data includes as many different robot position config-
urations as possible. Furthermore, it was not straightforward to find good weight
values for the multi-objective loss function, which consists of four loss functions
combined.

4.3 Conclusions
This thesis has contributed to creating an environment-aware robotic manipula-
tor system by combining a collaborative robotic arm with commercially-available
low-cost vision sensors. Algorithms were developed allowing the system to iden-
tify the robot arm in a simple 2D colour image, map the workspace of the robot
and detect obstacles appearing close to the robot. Furthermore, this visual in-
formation was used to control the robot to allow the robot to operate safely in
a dynamic environment by avoiding any of the obstacles in real-time. Applica-
tion of these methods in a real-world setting was proven by the development of
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the robotic electric vehicle charging station capable of autonomously plugging in
and plugging out an electric vehicle parked in front of it. As far as authors are
aware, this has been the first research publication of a robot-based electric vehicle
charging station based on vision-guided robot movements.

The main contributions of the thesis can be summarised as follows:

• The automatic Hand-Eye calibration method for camera-robot systems has
introduced a quick approach to calibrating multiple cameras to the robot
with minimal manual work. It allows for a significantly faster reconfigu-
ration and setup of such systems, while the accuracy achieved matches the
traditional manual calibration methods.

• Modelling the workspace of the robot as an octomap and constructing a
danger map has been proven as a robust method to incorporate point clouds
from multiple 3D cameras and still allow for real-time performance. This
map can be used to plan the robot motions by finding the optimum path
considering the length of the trajectory and the risk of colliding with an
obstacle by using historical observation data.

• The predictive-reflexive robot behaviour model allows for safe robot mo-
tion planning in a dynamic environment with a fail-safe reflexive motion
enabling the robot to move away from unexpected obstacles quickly. Dur-
ing the reflexive movement, a new trajectory is recalculated for the further
safe operation of the robot.

• Using a stereo camera setup in detecting the shape of objects produced from
materials absorbing and dispersing infrared light has been proven to be a vi-
able alternative in situations, where IR based 3D cameras fail. Furthermore,
it is more robust in outdoor operations, where sunlight can cause interfer-
ence. Shape-based detection and pose estimation was used to successfully
find the charging ports of real electric vehicles and use multi-stage motions
to plug-in and plug-out the charging cable to the car. The approach has been
proven to work in a real-life scenario.

• Cascaded convolutional neural networks were successfully applied to robot
detection in the systems as an alternative to Hand-Eye calibration. Instead
of using both colour and depth information from the 3D camera, an input is
limited to just a simple colour image. The robot body in the picture is pre-
cisely identified as well as 3D positions of the robot joints were estimated
within an accuracy of a few centimetres.
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• A multi-objective CNN was created to add more flexibility to the system
and combine the estimation of both the mask of the robot as well as 3D
coordinates of the robot joints. A single training process can be used to op-
timise the neural network for all of the objectives at once instead of training
each of the CNNs separately in the cascaded structure.

• A transfer learning approach has reduced the training time as well as the
amount of the training data needed, while still achieving a comparable ac-
curacy to the fully-trained systems. It allowed us to take a multi-objective
CNN trained on one robot type and adapt it to a new robot type significantly
faster compared to the full-training cycle. Furthermore, a two-stage trans-
fer learning approach was used not only to adjust the neural network but
also to incorporate the detection of multiple robots all at once. Eventually,
the system has been proven to work in detecting robots from three differ-
ent manufacturers with significantly different visual appearance: Universal
Robots, Kuka iiwa LBR and Franka Emika Panda.

Given these results, we believe that the achieved results have proven the ca-
pability and potential of the system. It can act as a suitable platform for further
development of advanced collaborative robot systems, which is taking inspiration
from the understanding of an environment similar to what can be seen in humans
and animals. Furthermore, the next level of safety and collaboration could be
achieved by improving these methods further.

4.4 Future Work
The future work will focus on improving the performance and robustness of the
developed CNN approach, and testing it in real-world applications.

One of the objectives is to analyse the parameters of the multi-objective CNN
to figure out the optimum weights for the loss functions, the input size of the
images and revise the structure of the CNN itself. It would provide a better in-
depth understanding of how CNN is learning and give inspiration to ideas on how
the process could be improved. Weight adjustment would make sure that enough
emphasis is placed on each of the objectives that the CNN is trained on and find
the optimum balance of accuracy between the mask and robot joint coordinate
estimation. The CNN structure could be further optimised in at least two ways.
The first is to reduce the size of the model, so it can train and run faster and use less
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memory on the GPU. The optimisation would be aimed at reducing the number
of parameters; thus, the number or size of the layers in the network. Another
optimisation could be targeted at improving accuracy by changing the structure.
One considered approach of that would be to combine the research conducted in
our lab and apply evolutionary algorithms for these adjustments. However, it is a
very computationally-expensive and time-consuming process. On the other hand,
given a fully automatic method to explore various network configurations, it could
be done autonomously without any manual intervention.

Collecting more diverse training data would allow making the CNN system
significantly more robust. At the moment, all the training data was obtained in
the labs of the following three institutions: University of Oslo, TU Graz and Joan-
neum Research: Robotics Institute. To apply this system for real-world scenar-
ios, a significant amount of training data should be collected in the environments
where the system could be used, such as, but not limited to hospitals and surgery
theatres, robotic charging station, collaborative robot setups, warehouses and fac-
tory floors. A flexible data collection approach has already been developed by
using optical tracking systems (Optitrack) together with the robot self-filtering
algorithms to automatically mark the ground truth for the training datasets dur-
ing the collection process. However, such a system is not easily portable so that
alternative tracking approaches could be considered.

So far, the environment understanding was limited to vision. However, more
senses could be incorporated. These include force sensing, proximity sensing us-
ing ultrasound sensors or laser scanners, incorporation of internal torque sensors,
as well as sound. All of this data provides significant amounts of information in
the biological world. Thus, it can be interesting to add it to our system as well.
We believe that it could allow the robot to react to dangers, which could not be de-
tected visually, but can still cause dangerous situations. For example, if an object,
which is already in contact with the robot, starts exerting high amounts of force,
which could cause damage to the hardware.
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Automatic Calibration of a Robot Manipulator
and Multi 3D Camera System

Justinas Mišeikis1, Kyrre Glette2, Ole Jakob Elle3, Jim Torresen4

Abstract— With 3D sensing becoming cheaper, environment-
aware and visually-guided robot arms capable of safely working
in collaboration with humans will become common. However,
a reliable calibration is needed, both for camera internal
calibration, as well as Eye-to-Hand calibration, to make sure
the whole system functions correctly. We present a framework,
using a novel combination of well proven methods, allowing
a quick automatic calibration for the integration of systems
consisting of the robot and a varying number of 3D cameras by
using a standard checkerboard calibration grid. Our approach
allows a quick camera-to-robot recalibration after any changes
to the setup, for example when cameras or robot have been
repositioned. Modular design of the system ensures flexibility
regarding a number of sensors used as well as different
hardware choices. The framework has been proven to work by
practical experiments to analyze the quality of the calibration
versus the number of positions of the checkerboard used for
each of the calibration procedures.

I. INTRODUCTION
In many practical applications, industrial robots are still

working ”blind” with hard-coded trajectories. This results
in the workspace for robots and humans being strictly
divided in order to avoid any accidents, which, unfortunately,
sometimes still occur. Furthermore, working in a dynamic
environment without a direct connection to other machinery
sharing the same workspace, might prove difficult. It is often
more common to have collision detection systems, which do
not always work as expected, rather than collision prevention
methods [1]. However, environment-aware robots [2] [3] are
becoming more common, both developed in research and
by robot manufacturers themselves, e.g. Baxter by Rethink
Robotics [4].

Low-cost and high-accuracy 3D cameras, also called
RGB-D sensors, like Kinect V1 and V2 [5], are already
available. They are suitable for a precise environment sensing
in the workspace of a robot, providing both color image
and depth information [6]. However, external sensors are
commonly used in fixed positions around the robot and are
normally not allowed to be moved. After any reconfiguration
in the setup, the whole system has to be calibrated, usually
by a skilled engineer. Camera calibration can be divided into
two main stages:

• Internal camera parameters, like lens distortion, focal
length, optical center, and for RGB-D cameras, color
and depth image offsets [7] [5].

1 2 3 4Justinas Mišeikis, Kyrre Glette, Ole Jakob Elle and Jim Torresen
are with the Department of Informatics, University of Oslo, Oslo, Norway
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• External camera parameters: the pose (position and
orientation) of a camera in a reference coordinate frame.
It is commonly called Eye-to-Hand calibration [8] [9].
The Eye-to-Hand calibration, or transformation from the
camera coordinate system to the robot base coordinate
system is shown in Figure 1.

Fig. 1. System Setup with two Kinect V2 depth sensors aimed at the robot
end effector at approximately 45� viewpoints and a Kinect V1 sensor placed
between them facing the robot. In the system, Eye-to-Hand calibration is
represented by the Affine transformation matrix TR

C , which transforms the
coordinate system of each camera to the coordinate system of the robot
base, making it common for the whole setup.

Normally, it is sufficient to perform an internal cam-
era parameter calibration only once per sensor unless the
lens or sensor itself will be changed or modified. Reli-
able calibration methods already exist, which are widely
used [10] [11] [12] [13].

Eye-to-Hand calibration, on the other hand, is more appli-
cation specific and crucial for precise environment sensing
by the robot or vision guided robot control (visual servo-
ing) [14]. Some work has been successful in calibrating
multiple cameras and a robot using a custom-made target
object placed in a common field of view for all the sensors
in the workspace [15]. Another method calibrated multiple
cameras fixed on a rig using structure-of-motion method
to estimate relative positions between the cameras [16]. A
similar approach was used for calibrating a network of Kinect
sensors aimed at robotic inspection of large work-spaces,
where sensors are in fixed positions [17]. Robot arm mounted
camera, also known as Eye-in-Hand, calibration by moving
it to the points of the calibration grid, which is in a fixed
position was also proposed [18] [19]. However, most of the
presented work is either aimed at the very specific setup or
requires a large amount of manual placement of calibration
grids, making it time-consuming.



This paper presents a framework to be used for an au-
tomatic combined internal camera parameter and Eye-to-
Hand calibration by utilizing a robot arm manipulator to
actively move around a standard checkerboard calibration
grid. The framework is using existing and reliable calibration
approaches, but is based on a novel combination of methods
to make the calibration process fully automatic and adaptable
to as few or as many external 3D cameras as needed. Further-
more, an end-effector to the checkerboard offset is estimated,
so a variety of end-effector attachments can be used. It is
a time saving and flexible process without requiring any
additional equipment for preparing the setup, just a slightly
modified A4 size printed checkerboard.

The whole framework is based on the Robot Operating
System (ROS) and making use of the modular design and
available integration for a large amount of robot and sensor
types [20]. Each part of the algorithm is split into a number
of separate modules communicating in between each other
using pre-defined message formats. The benefits of this
approach is the ability to easily modify parts of the process
without affecting the rest of processing as well as to include
additional processing steps if needed. Furthermore, each
framework module can be reused given that the input and
output inter-module message format matches.

This allows the actual hardware, robot and 3D cameras,
to be interchangeable by simply modifying the configuration
file, as long as they have ROS-supported drivers. Only
minimal supervision is required during the whole process.

This paper is organized as follows. We present the sys-
tem setup in Section II. Then, we explain the method in
Section III. We provide experimental results in Section IV,
followed by relevant conclusions and future work in Sec-
tion V.

II. SYSTEM SETUP

The system setup consists of two main hardware elements:
a robot arm manipulator and one or more depth 3D sensors
with a visual camera, in our case Kinect sensors.

With the main goal of achieving an environment-aware
robot arm manipulator, the robot is thought to be in the center
of the setup with sensors observing it from surrounding
angles. Positions of the sensors do not need to be fixed,
however, in case one of them is being repositioned, the Eye-
to-Hand part of the calibration process has to be repeated.

In the described setup, two Kinect V2 depth sensors
were used, observing the robot arm end effector from two
viewpoints, each angled at approximately 45� and one Kinect
V1 facing the robot directly. The setup can be seen in Figure
1. However, the number of sensors is flexible, and only one,
or as many as needed can be used as long as sufficient
computing power is provided.

A. Calibration Checkerboard
A custom end-effector mount to hold a checkerboard, with

an extension to reduce the number of robot self-collisions,
was 3D printed and attached to the end-effector, shown in
Figure 2(a). The checkerboard contains 7 by 5 squares, each

one of 30 mm by 30 mm size, printed on an A4 paper
sheet, which is mounted on hard plexiglass surface to prevent
any deformation. One of the side squares is modified to be
hollow, as shown in Figure 2(b), and is used to identify
correct orientation as described in Section III.

(a) A custom end-effector mount
with a rigid plexiglass base for hold-
ing a checkerboard.

(b) Detected square intersection
points are marked in red and a hol-
low square in the top-left corner, for
orientation detection.

Fig. 2. Checkerboard and a custom robot mount.

B. Robot
The robotic manipulator being used is UR5 from Universal

Robots with 6 degrees of freedom, a working radius of 850
mm and a maximum payload of 5 kg. The repeatability of
the robot movements is 0.1 mm.

C. Sensors
In our research we include the novel low-cost Kinect V2

sensor [5]. It has been shown to achieve a significantly
higher accuracy compared to its predecessor Kinect V1 [13].
Kinect V2 is based on time-of-flight (ToF) approach, using
a different modulation frequency for each camera, thus
allowing multiple ToF cameras to observe the same object
without any interference [12]. For comparison reasons, and
to demonstrate the flexibility of the system, one Kinect V1
sensor is also included in our setup. Table I summarises
technical specifications of Kinect V1 and V2 sensors. Despite
both sensors being named Kinect, they are significantly
different, requiring separate drivers and, as it was mentioned,
are based on different sensing approaches. In general, any 3D
camera, with ROS support, can be used with our system.

TABLE I. Kinect V1 and V2 Technical Specifications.

Kinect V1 Kinect V2
Sensor type Structured Light Time-of-Flight
RGB Cam Resolution 640x480 1920x1080
IR Cam Resolution 320x240 512x424
Refresh Rate 30 Hz 30 Hz
Depth Range 0.4 to 4.5 meters 0.5 to 4.5 meters
Field of View Horizontal 57� 70�
Field of View Vertical 43� 60�

D. Software
The whole system software is based on the Robot Oper-

ating System (ROS), an open-source meta-operating system
running on top of Ubuntu 14.04 [20]. The main advantage of
using ROS is its modular design allowing the algorithm to
be divided into separate smaller modules performing separate
tasks and sharing the results over the network. The workload



Fig. 3. Picture of the setup. A checkerboard with a hollow square to allow
the detection of its orientation is attached to the robot.

in our setup was divided over multiple machines, one for
each of the 3D cameras and a central one coordinating all
the modules and controlling the robot.

Kinect V2 is not officially supported on Linux, however,
open-source drivers including a bridge to ROS were found
to function well, including the GPU utilisation to improve
the processing speed of large amounts of data produced by
sensors [11]. Well tested OpenNI 2 drivers were used to
integrate Kinect V1 into the system.

The modular design allows for interchanging any of the
modules without the need to make any modifications to
the rest of the system. For example, any of the depth
sensors can be exchanged to another model, or another
robotic manipulator can be used, as long as the inter-modular
message format is kept the same. Furthermore, addition of
extra depth sensors to the system only requires adding an
extra message topic for the coordinating module to listen to.

III. METHOD
Our proposed automatic calibration approach consists of a

number of modules working together to achieve the desired
accuracy of calibration. The calibration can be divided into
two main parts:

1) Sensor internal parameter calibration
2) Eye-to-Hand calibration
We first present the general overview of the system func-

tionality and then go into details of each of the processes.

A. Overview of the Whole System Functionality
The structure of the whole calibration framework is shown

in Figure 4. A specific processing is performed by each mod-
ule and the information between modules is exchanged using
custom messages. Instead of having one central unit, each
module publishes messages on defined topics to which other
modules can subscribe to, resulting in an asynchronous direct
peer-to-peer communication. Each message has a time-stamp
to allow synchronization and ignoring out-of-date messages.
Updating or interchanging modules can be done even at
run time as long as the message format is kept identical.
Additional sensors can be added in a similar manner, with
the new sensor’s message topics, which stream IR and RGB
images, added to the configuration file, so that it is seen by
the rest of the system. It has to be made sure that each camera
uses unique message topic names. An overview of the whole
calibration process is presented below. Algorithm 1 describes
a step-by-step process performed for each camera after the
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Fig. 4. The whole framework overview including all the modules and the
sequence of the processes. Drivers are marked in blue, image analysis and
move planning modules are marked in green and actual calibration modules
are marked in yellow. A possibility to add additional 3D cameras to the
system is represented by the objects in dashed lines.

system is launched and 360� initialization movement is
performed.

Algorithm 1 Calibration process for each camera
Initial Eye-to-Hand calibration
Tilting motion to define max angles
Estimate the end-effector attachment offset
Generate the robot movement trajectory
loop

Move the robot to the next position
Detect checkerboard
if detected then

Save images
Calculate the accumulative Eye-to-Hand calibration
Apply this calibration
Recalculate the remaining robot movement trajectory

end if
end loop
All robot movements are finished
Calculate the internal calibration using saved images
Convert saved images using internal calibration
Calculate the full Eye-to-Hand calibration

B. Checkerboard Detection

Existing algorithms included in the OpenCV library were
used for checkerboard detection in both color and depth
data [21] [7]. Real-time performance is achieved with X and
Y coordinates of identified intersection points of squares on
the checkerboard, defined as corners, shown in Figure 2(b),
and depth value obtained from the depth data. Given the
noisy depth data, a normalized value from the surrounding
area of 10 pixels over 5 consecutive frames is taken and
a median value was calculated to reduce the effects of the
sensor noise.

Positions in 3D coordinates of the same checkerboard
corners are simultaneously calculated using the robot encoder
data, corrected with the estimated offset of the checker-



board mounting. Initially, the assumption is made that the
checkerboard center point matches the end-effector center
point. Then tilting motions of the end effector in place
are performed while observing changed positions of the
checkerboard corners. Calculation 3D affine transformation
and error minimization between expected corner positions
and real ones, provides an accurate offset of the end-effector
mount. The end-effector mount has to be rigid. Both the
data from 3D cameras and from robot encoders are fully
synchronised according to the timestamps of when it was
captured to reduce any accuracy issues.

Given the four possible orientations of the checkerboard,
the modified corner square of the checkerboard, seen in the
top left of the checkerboard in Figure 2(b), is detected using
binary thresholding method and the orientation is noted. With
the collected data, the corresponding checkerboard corner
data points can be matched.

C. Sensor Internal Parameter Calibration
RGB-D cameras are calibrated for internal parameters

using the method proposed by Zhang [22] in order to
compensate for the following systematic errors:

1) Color camera lens distortion
2) Infrared (IR) camera lens distortion
3) Reprojection error, or color to depth image offset
4) Depth distortion
Other non-systematic and random errors like amplitude-

related errors or temperature-related errors are not discussed
or analysed in this paper, because standard internal camera
parameter calibration procedure does not compensate for
them, and they are not crucial in current application [5] [6].

D. Eye-to-Hand Calibration
Using the corresponding 3D corner points of the cal-

ibration checkerboard, a 3D Affine transformation matrix
between the 3D camera and the robot end effector is es-
timated [7]. With some likelihood of imprecise detection of
checkerboard corners, the outlier detection based on Random
Sample Consensus (RANSAC) method is being used on the
inputs [23]. The outcome of the estimator is a 3x4 Affine
transformation matrix seen in Equation 1, where R is a 3x3
rotation matrix and t is 3x1 translation vector.

TR
C3

=

⇢
R3x3 t3x1
01x3 1

�
(1)

Using the calculated transformation matrix, the 3D points
detected in 3D camera color image and depth data can be
transformed from the camera coordinate system to the robot’s
base coordinate system.

E. Robot Motion Planning
Robot arm control in Cartesian coordinates is used in

the project, given the relatively simple movements, as well
as limited workspace. Multiple motion planning algorithms
included in the MoveIt! framework [24] were tested. The
RRT-connect approach [25], based on the Rapidly exploring
random tree, was found to be suitable for the task. We used

an implementation from the from the Open Motion Planning
Library (OMPL) [26].

Uncalibrated CalibratedError
Offset

Fig. 5. Reprojection error shown in the color image and depth point cloud
overlay. The offset in the left image is caused by imprecisely defined relative
positions between the color and infrared cameras in the 3D camera. Internal
camera calibration compensates for this error. The result is seen in the image
on the right side, where the offset is reduced.

In order to achieve a high-quality 3D camera internal
calibration, the samples should include the checkerboard po-
sitioned in the majority of the camera’s field of view and for
least at two distances. Furthermore, tilting the checkerboard
at different angles in relation to the camera increases the
calibration accuracy [11]. Knowing the calibration pattern
parameters, tilting motion allows for more accurate mapping
from 3D world coordinates to the 2D image sensor coordi-
nates, based on the projection lines of the known calibration
pattern [22].

In order to simplify the internal calibration, it was decided
to collect all the data at once and then the calibration using
the whole dataset was calculated. However, this meant that
lens distortion was still present during the data collection.
Furthermore, a reprojection error occurs, which is an offset
between the color image and depth data, shown in Figure 5.
These issues caused the Eye-to-Hand transformation to be
imprecise, especially for points closer to the edge of the
camera image, where lens distortion is more significant.

Camera Frame

First Stage Second Stage

Initial Checkerboard 
Position

Fig. 6. Robot movement trajectory as seen in the 3D camera image. It is
split into multiple stages by the positions calculated at increasing distance
from the center point of the image. Movements are done stage-by-stage,
while improving the Eye-to-Hand transformation accuracy at each step. This
figure shows just a two stage example.

A robot movement trajectory was chosen with small
offsets from the starting point. It can be split into multiple
stages by the positions calculated at increasing distance from
the center point of the image. The number of stages depend



on the overlap level of the checkerboard positions in the
camera image, size of the checkerboard, reach-ability of the
robot arm as well as the size of the area covered by the
camera. At each new position, the detected checkerboard
intersection points are accumulated and Eye-to-Hand cali-
bration was recalculated to continually improve the accuracy.
The example two-stage robot movement trajectory is shown
in Figure 6. However, this data is not considered for the final
Eye-to-Hand calibration, because the 3D camera sensor itself
is still not calibrated at this point.

This approach has shown to reduce the robot movement
error and by the time positions close to the image edges are
chosen, the transformation is accurate enough not to exit the
camera’s field of view, where checkerboard corners cannot
be detected anymore.

During the calibration movements, the checkerboard is
tilted by defining changing roll, pitch and yaw of the
end effector. During the initialisation of the calibration,
a checkerboard is turned to face the 3D sensor directly
and then tilted to each direction at 5 degree increments,
both positive and negative rotation direction, while trying
to detect the checkerboard. Once the detection fails, the
tilting is backtracked and the angle is saved as a maximum
allowed tilting. The same process is performed for roll,
pitch and yaw to positive and negative angle limits. Roll
angle is limited to ±45�. This angle can vary significantly
depending on the type of 3D camera as well as lighting
conditions. Reflections caused by the room lights can affect
the checkerboard detection.

At each position, images and detected 3D corner positions
in color and infrared camera images are saved at each pose.
If the desired point is outside the robot workspace, it is auto-
matically identified by the planning algorithm and skipped.
Given the positions are reachable, the same trajectory is
performed with a 20% higher depth offset away from the
camera in order to have data at different distances from the
sensor calibrated, while the checkerboard still appears large
enough in the image to be detected.

Once the planned movement trajectory is completed, inter-
nal 3D camera calibration is performed using the collected
data.

F. Repeated Eye-to-Hand Calibration
After the internal calibration of each 3D camera, the ac-

curacy of the Eye-to-Hand calibration is not precise because
of compensated lens distortion and adjustments to reduce the
reprojection error. The simplified move sequence, without
the tilting, is repeated with the robot moving to previously
visited positions by reusing the same coordinates and just
Eye-to-Hand calibration recalculated. Once this process is
finished, the sensor in the system is fully calibrated.

G. Checkerboard Observation
As mentioned previously, a flexible number of 3D cameras

can be calibrated with the system. Inclusion of the additional
sensor into the system is done by defining a configuration
file containing the topic names the camera is publishing on.

While one 3D camera is being calibrated, any other sensors
included in the system are passively observing the robot and
running the simplified checkerboard detection algorithm. If
the checkerboard is detected, the pose of the checkerboard
and the pose of the robot, which is being streamed on the
network by the robot controlling node, are recorded. In any
subsequent checkerboard detection instances, the position is
compared to the position of the previous detection, and if
the current one is closer to the center of the color image, the
poses are updated in order to have a more reliable starting
position. Once the current calibration of a 3D camera is
completed, the request is sent to the robot to move to the
detected position and start the calibration procedure for the
other sensor.

IV. EXPERIMENTS AND RESULTS

The presented calibration process was successfully per-
formed provided that the checkerboard was detected by the
3D camera to be calibrated. Initially, the robot was placed in
an upside-down ”L” shaped joint configuration and turned
360� to increase the chances of the checkerboard being
detected by the 3D sensors. However, this movement has
to be supervised by a human operator to avoid hitting any
obstacles. In other cases, the robot was repositioned manually
to make sure that the checkerboard was within the field of
view of the camera.

Given a close to autonomous operation of our framework,
we conducted experiments to analyze the number of checker-
board positions recorded versus the achieved calibration
accuracy. As the process for the internal sensor calibration is
identical for each of the 3D cameras, for easier comparison,
the results from one Kinect V2 camera is presented in the
experiments section. Meanwhile, the Eye-to-Hand calibration
results have been acquired using the setup described in
Section II. Results are divided into two sections according to
the calibration type, each one requiring an independent set
of robot moves and data collection:

1) Internal camera calibration
2) Eye-to-Hand calibration

A. Internal Camera Calibration
The first iteration of movements was made in order to

calibrate the 3D camera internally, using the robot trajectory
explained in Figure 6. Because the field of view of the color
camera and the infrared camera in the sensor are different, the
checkerboard was not always visible or successfully detected
in both cameras at the same time. This explains the varying
number of detections in each of the sensor’s cameras, as well
as simultaneously in both, which we refer to as combined.
There were 9 experiments conducted in total. Experiments
1-2 had large overlap in checkerboard positions and tilting,
experiments 3-6 had no overlap anymore and experiments 7-
9, no more tilting. Experiment data is summarized in Table II.

Figure 7 shows the calibration results by analyzing the
average error in pixels of each of the sensor’s cameras and
the reprojection error for each of the experiments. Errors
were calculated using the known geometry and size of the



TABLE II. Experiment data for internal Kinect V2 sensor calibration.

Exp # Color
Frames

IR
Frames

Combined
Frames

Overlap Tilting Time
(sec)

Exp 1 234 215 158 Yes Yes 613
Exp 2 120 109 81 Yes Yes 338
Exp 3 78 72 55 No Yes 218
Exp 4 57 54 45 No Yes 176
Exp 5 44 41 33 No Yes 142
Exp 6 39 35 26 No Yes 128
Exp 7 15 14 14 No No 57
Exp 8 10 9 7 No No 45
Exp 9 5 5 5 No No 36

checkerboard and comparing the calibrated sensor estimation
of the checkerboard dimensions according to the square
intersection points to the known geometry. The higher the
error, the lower the calibration accuracy.

Fig. 7. Calibration accuracy results by showing the errors of internal 3D
camera calibration. Color camera, IR errors define averages of each sensor’s
cameras. Reprojection error defines the average error of the offset in the
images between the color image and the depth information, seen in Figure 5.
It has to be noted that right Y axis for error rates is in log scale.

B. Eye-to-Hand Calibration

TABLE III. Experiment data for Eye-to-Hand calibration.

Exp # Frames
Cam 1

Frames
Cam 2

Frames
Cam 3

Overlap Time (sec)

Exp 1 82 80 71 Yes 470
Exp 2 44 45 39 Yes 243
Exp 3 14 14 11 No 115
Exp 4 9 10 8 No 85
Exp 5 5 6 5 No 60

The second iteration of moves were performed for Eye-
to-Hand calibration, while using the most accurate internal
3D camera calibration mentioned previously. In this part,
tilting was not performed and the calibration checkerboard
was kept at a constant angle, parallel to the each camera’s
image plane. 5 experiments using 3 cameras were conducted
in total, each using a different number of frames, as seen in
Table III. Experiment 1 had a large overlap in checkerboard
positions, in experiment 2 there was a small overlap, while
in the rest there was no overlap and even some gaps between
the positions. Cam 1 and 2 were Kinect V2 sensors, while

Cam 3 was Kinect V1. Time was measured from the start to
the final calibration result of all three cameras.

C. Result Analysis
For the internal calibration, it can be seen that in the first

6 experiments, even with a significantly lower number of
frames used, the error in all of the sensor’s cameras did
not increase much. However, experiments 7 to 9, where the
calibration checkerboard was present only in the part of the
camera’s field of view and was not tilted, show a significant
increase in errors. It can be concluded that the most important
part to achieve good internal calibration accuracy is to
cover the field of view of the camera and perform tilting,
but overlapping same areas with the checkerboard is not
mandatory.

Fig. 8. Eye-to-Hand calibration accuracy results. Overall position error (in
cm) as well as each axis separately are shown by comparing the actual robot
position versus the predicted robot position from the 3D camera sensor.
Dotted lines indicate the number of frames used in each experiment.

Figure 8 shows that the average error rate of Eye-to-Hand
calibration has inverse correlation to the number of frames
used. The larger area of the camera’s field of view is used, the
more accurate calibration is achieved. Looking at the overall
average error, experiment 3 seems to be the most optimal
choice for all three cameras when considering the number
of frames used and accuracy achieved.

As expected, the older Kinect V1 was significantly less
accurate compared to Kinect V2, mainly due to lower
resolution RGB and IR sensors in the camera. The average
error between camera 1 and camera 2, both being Kinect V2,
was almost the same as average errors of each sensor to the
robot. Therefore, calibration of each 3D camera to the robot
is enough for joining the point clouds of two cameras, and
no additional calibration is necessary.

It was also noticed in all five experiments that the Z-axis
has on average 20% larger error compared to both X and
Y-axis. It is likely to be caused by the noisy depth data
from 3D camera, which should be compensated using more
specific methods. On the other hand, it proves that position
estimation in X and Y-axes has even lower error than our
indicated overall error of the calibration.



V. CONCLUSION AND FUTURE WORK
A simple and flexible calibration method for systems

containing a robot and one or more 3D cameras was pre-
sented. It is based on the robot moving a standard calibration
checkerboard and being guided by the information sent from
each of the cameras to cover the largest possible area in the
field of view, to ensure an accurate calibration.

A full calibration, including a sensor internal calibration
together with an Eye-to-Hand calibration can be done, or just
the second part separately, given that the sensor is already
calibrated internally. Modular design ensures that sensors can
be added or removed easily, as well as hardware components
interchanged without any modifications to the algorithm.

According to experiment results, achieving good calibra-
tion requires the robot to cover the majority part of the field
of view of the 3D camera to achieve a good accuracy. Using
our system, a good accuracy calibration of one 3D sensor
taken just out of the box, can be achieved in just a few min-
utes with minimal supervision by the operator. This makes
the system integration and reconfiguration significantly faster
compared to standard manual method, while keeping the
flexibility of varying configurations.

An example application the calibration process was aimed
at the environment-aware collaborative robot arm, where
people or other moving objects can freely and safely operate
in the workspace of the robot without a risk of collision.
However, for a more precise operation where sub-centimeter
accuracy is necessary, a different, more up-close, setup would
be needed as well as a checkerboard containing a finer
structure.

The framework will be further tested with a variety of
physical setups and different 3D cameras and multiple robot
arm types. We plan to open source the code, making it acces-
sible to researchers allowing further testing and development.

Algorithm improvements will include a simultaneous cal-
ibration of multiple cameras provided that the calibration
checkerboard is within the field of view. Furthermore, if only
part of the field of view of the camera will be used in the
operation, it could be defined by the user and instead of
calibrating the whole image area, only the area of interest
would be used.
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Justinas Mišeikis⇤, Kyrre Glette⇤, Ole Jakob Elle⇤† and Jim Torresen⇤
⇤Department of Informatics, University of Oslo, Oslo, Norway

Email: {justinm, kyrrehg, oleje, jimtoer}@ifi.uio.no
†The Intervention Centre, Oslo University Hospital, Oslo, Norway

Abstract—With advancing technologies, robotic manipulators
and visual environment sensors are becoming cheaper and more
widespread. However, robot control can be still a limiting factor
for better adaptation of these technologies. Robotic manipulators
are performing very well in structured workspaces, but do
not adapt well to unexpected changes, like people entering
the workspace. We present a method combining 3D Camera
based workspace mapping, and a predictive and reflexive robot
manipulator trajectory estimation to allow more efficient and
safer operation in dynamic workspaces. In experiments on a
real UR5 robot our method has proven to provide shorter and
smoother trajectories compared to a reactive trajectory planner
in the same conditions. Furthermore, the robot has successfully
avoided any contact by initialising the reflexive movement even
when an obstacle got unexpectedly close to the robot. The main
goal of our work is to make the operation more flexible in
unstructured dynamic workspaces and not just avoid obstacles,
but also adapt when performing collaborative tasks with humans
in the near future.

I. INTRODUCTION

In many practical applications, industrial robot manipulators
are still working ”blind” with hard-coded trajectories. This
results in the workspace for robots and humans being strictly
divided in order to avoid any accidents, which, unfortunately,
sometimes still occur. It is often more common to have
collision detection systems, which do not always work as ex-
pected, rather than collision prevention methods [1]. However,
environment-aware robots [2] [3] are becoming more common,
both developed in research and by robot manufacturers them-
selves (e.g. Baxter by Rethink Robotics) [4].

The theme of shared workspace has been researched for
many years, however it is still a highly relevant research
topic today [5] [6]. Workspace sharing can be classified
as robot-robot and human-robot systems for task sharing,
collaborative or supportive tasks. Normally, in robot-robot
sharing, controllers of all involved robot systems have direct
communication and can coordinate moves easier by knowing
the planned trajectories for all the manipulators. We will be
focusing on human-robot shared workspaces, where sensors
are used to observe the environment and adapt the manipulator
behaviour according to movements in the workspace, normally
caused by human motion.

There have been a number of systems proposed addressing
the issue of robot trajectory planning in shared workspaces.
One system runs a genetic algorithm using fuzzy logic and
defines all obstacles as static while the new trajectory is

found [7]. However, it is not suitable for obstacles moving at
higher velocities. Another work provides an analysis of non-
verbal cues given by humans and robots, and shows that move-
ment understanding plays an important role in the usability of
a system and the human-robot interaction (HRI) [8].

Some of the systems for human-robot interaction assign the
robot arm as a light manipulator, thus, reducing a possible
collision force and then using inertia reduction, passivity and
parametric path planning [9]. However, this method leads to
light collisions, which, ideally, should be avoided.

With camera systems, especially 3D cameras, becoming
more affordable, obstacle detection in the robot workspace
becomes easier. Sophisticated methods based on robot ma-
nipulator modeling and obstacle motion estimation allow a
rapid recalculation of robot trajectories to avoid collision with
moving obstacles [2]. Another system uses multiple Kinect
cameras observing the same workspace from different viewing
points to avoid collisions, but no definite planning approach
was proposed [10]. Furthermore, a system was proposed using
the historical data of obstacle positions in the workspace of
the robot. It avoids the areas which are commonly occluded
by a human and plan movement trajectories around them [11].
However, there is a high risk of a collision if the obstacle
appears right in front of the manipulator and is not modeled
yet. Such situations can occur, when the obstacle was not seen
by the camera before it got too close to the robot, for example
due to an occlusion or a blind spot of the camera.

Most of the presented approaches rely on one method,
commonly a reactive trajectory re-planning to an unexpected
obstacle. We propose a method combining a two layered tra-
jectory planner for a manipulator working in a shared human-
robot workspace. Multiple 3D cameras are used to observe the
workspace from different viewpoints to reduce the chance of
occlusions. At the same time, a danger map of the workspace is
created indicating the areas which are commonly entered by an
obstacle, e.g. person’s arm. The system contains two behaviour
models. Reflexive behaviour immediately reacts to unexpected
obstacles appearing close to the robot. Predictive behaviour
uses the danger map information to predict the probability
of an obstacle entering areas of the manipulator workspace
and avoids it in advance. The most optimum trajectories are
estimated considering the probability of a collision with the
obstacle as well as the distance traveled by the end effector
of the robot. Collision prevention is done not just for the end



effector, but for the whole body of the robot.
One of the possible applications of our proposed method

is a surgery assistive robot in an operating theater, where
simple tasks like holding a probe or handling surgical tools
will be automated. This requires a guaranteed safety with no
unexpected impact with a patient or staff around, as well as
surrounding equipment. In some cases, there might be multiple
robots working in collaboration, for example a robot with a C-
arm mounted fluoroscopy scanner working in parallel. Direct
communication and motion planning are not always possible,
so our proposed method provides an appropriate alternative
solution.

Furthermore, with classification of obstacle types, reflexive
behaviour model can be adapted for collaborative tasks, where
a person can hand over objects to the robot or use it for
support.

This paper is organized as follows. We present the system
setup in Section II. Then, we explain the proposed method
in Section III. We provide experimental results in Section IV,
followed by relevant conclusions and future work in Section V.

II. SYSTEM SETUP

Fig. 1. Overview of our proposed method. Green ovals represent sensing
part, blue rectangles - processing part, yellow hexagons - motion planning
and gray rectangle (dashed borders) - motion execution. Reflexive motion
planning marked as yellow hexagon (dashed borders) overrides the predictive
motion planning when an unexpected obstacle gets close to the robot. There
can be a variable number of 3D cameras included in the system.

A. Hardware

The robotic manipulator being used is UR5 from Universal
Robots with 6 degrees of freedom, a working radius of 850
mm and a maximum payload of 5 kg. The repeatability of the
robot movements is 0.1 mm.

In our research we include a low-cost Kinect V2 sensor [12].
It has been shown to achieve a significantly higher accuracy
compared to its predecessor Kinect V1 [13]. Kinect V2 uses a
time-of-flight (ToF) approach, using a different modulation fre-
quency for each camera, thus, allowing multiple ToF cameras
to observe the same object without any interference [14]. For
short-range sensing, an Intel F200 3D camera was mounted
on the end-effector to detect any obstacles, which are in close
proximity of the end effector [15]. Also one Kinect V1 sensor
is included in our setup. In general, any 3D camera, with ROS
support, can be used with the system.

Fig. 2. Our system setup with overhead Kinect V1, two Kinect V2 cameras
placed at different angles observing the front of the robot and an Intel F200
camera mounted on the end effector of the UR5.

B. Software

The system software runs on the Robot Operating System
(ROS) running on Ubuntu 14.04 [16]. The main advantage of
using ROS is its modular design allowing the algorithm to
be divided into separate smaller modules performing separate
tasks and sharing the results over the network. The workload
in our setup was divided over multiple machines.

Kinect V2 is not officially supported on Ubuntu, however,
open-source drivers including a bridge to ROS were found to
function well, including the GPU utilisation to improve the
processing speed of the large amounts of data produced by
the sensors [17]. Well tested OpenNI 2 drivers were used to
integrate Kinect V1 and Intel F200 into the system.

III. METHOD

A. System Overview

Our system contains a number of processes working both
in series and in parallel as seen in Fig. 1. Below we present
each part of the algorithm in more detail.



B. Calibrating 3D Cameras to the Robot

The first step of the system setup is to place the 3D cameras
around the robot. The goal is to observe the complete robot
workspace and to avoid any occlusions. In our case, two
Kinect V2 cameras facing the robot were placed, angled at
45� relative to the robot base, one Kinect V1 overlooking the
system from the top and the Intel F200 camera mounted on
the end effector of the robot, as shown in Fig. 2. However,
many different combinations can be used and selection should
be made depending on the application.

With fixed camera positions the Eye-To-Hand calibration
can be performed to map all the 3D camera coordinate systems
to match the robot base coordinate system [18] [19]. This
can be done automatically by placing a calibration board on
the robot’s end effector and using the proposed automatic
calibration procedure [20]. It uses the estimated checkerboard
position and robot joint encoder information to guide the robot
movements and cover the field-of-view (FoV) of each of the
cameras as much as possible for an accurate Eye-to-Hand
calibration.

(a) Point cloud (b) Octomap representing the input
point cloud

Fig. 3. Octomap created from the Kinect V2 point cloud data of the robot
scene. Colorscheme represents the distance of objects from the 3D camera.

The robot automatically performs a number of moves until
a precise calibration is achieved. Using the newly calculated
transformation matrix describing the positions of the 3D
cameras relative to the robot, all the point clouds can be
mapped onto a common coordinate frame originating at the
robot base.

C. Merging Point Cloud Data

In order to map the whole workspace of the robot, point
clouds from each of the 3D cameras have to be merged. The
calibration provides a good estimation of the transformation
matrices for accurate merging, but additionally, an Iterative
Closest Point (ICP) method is used for fine alignment of all
the point clouds [21]. The process is performed for each of
the cameras. Once the precise transformation matrices have
been calculated using the ICP method, they are applied for
transformations of all the incoming point clouds. Camera
calibration and the ICP method do not need to be repeated
unless the cameras or the robot base are moved in relation of
each other.
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(a) Reactive Behaviour Planning: When the obstacle is present,
the robot stops and recalculates the path. Occupied workspace
is never crossed.
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(b) Our method: the trajectory fully avoids, but gets close to
the medium risk area in the danger map. If detour is not large,
a safe path is chosen over a risky one.
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(c) Our method: the trajectory crosses the low risk area in the
danger map.
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(d) Our method: Predictive and Reflexive Planning. The obstacle
gets very close to the robot resulting in the reflexive behaviour
being initialised and a new alternative trajectory calculated.

Fig. 4. Comparison of our proposed joint predictive and reflexive trajectory
planning versus a traditional reactive trajectory planning. In danger maps, the
scale of risk is from the lowest risk (light green) to the highest risk (red).

D. Point Cloud Pre-processing

In order to increase the processing speed and filter out un-
wanted noise, a number of pre-processing steps are performed
on the input data from each of the 3D cameras.

The first step is to filter out any points in the point cloud data
that are too far away from the robot workspace. Knowing that
the workspace radius is 850mm from the base of the robot,
any points that are further than 1500mm from the robot base
are removed as they are not important in our application. This
significantly downsizes the point cloud.

Then, any outliers in the point cloud are removed using a
Statistical Outlier Removal algorithm [22]. After noisy data
has been removed, point clouds can be simplified by down-
sampling using a voxel grid filter, which normally reduces the
number of points with a minimal loss of information. The



voxel grid filter performs a smart down-sampling by sub-
diving the space containing point cloud data into a set of
volumetric pixels (voxels) and all the points inside each voxel
are approximated with the coordinates of their centroid.

E. Removing the Robot Model

After merging the point clouds, Eye-To-Hand calibrations
together with the precise model of the robot arm and its current
configuration in space are used to remove the underlying
points of the 3D robotic arm model. This step is necessary
to avoid false positives on self-collision, as some parts of the
robot, seen by the 3D cameras would be interpreted as an
obstacle.

It is done by fitting simple shapes, in this case cylinder
models on known robot links by taking current angles of all
the joint encoders. Cylindrical models are expanded to be
5mm larger than the actual robot links to compensate for any
noisy point cloud measurements. Once the model is fitted, any
points lying inside the cylinder models are removed under
the assumption that the robot itself is represented by these
measurements. In order to reduce the computational costs, the
shape fitting process is re-done only when the robot moves
from the previously fixed position.
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Obstacle

Backtracking avoidance move

Obstacle movement
Initial robot trajectory
Invalidated robot trajectory

Replanned trajectory
Alternative avoidance move

Collision object 
movement estimation

Collision checking areas 
for avoidance moves

Trace of the obstacle’s 
previous positions

Fig. 5. Reflexive Behaviour. The planned robot trajectory (green solid line) is
blocked by a moving obstacle (marked in red). The first option is to backtrack
on the executed trajectory(pink dotted line) until the collision risk is over.
If backtracking still results in a collision, the second option is to use the
alternative avoidance move and move to the direction opposite from where the
obstacle is approaching (dotted orange line). In the meantime, an alternative
collision-free trajectory to the goal position is calculated and executed (blue
dashed line).

F. Mapping

An octomap was chosen as an efficient 3D mapping method
of the robot workspace. It is combined of octrees, which are
hierarchical data structures for spatial subdivision in 3D. Each
node in the octree represents the space contained in a cubic
volume, called a voxel. This volume is recursively subdivided
into eight sub-volumes until a given minimum voxel size is
reached. The minimum voxel size determines the resolution of
the octree. The resolution can be dynamically adjusted, both
for the whole map, or just parts of it, as each octree branch can
be sub-divided into smaller parts [23]. This approach enables
us to use a simple structure to represent occupied, free and

unknown areas in the map. The conversion from the point
cloud into an octomap can be seen in Fig. 3.

Octomaps can be either binary or full. In binary octomaps,
each of their voxels have a binary value, where 1 stands
for occupied and 0 for free space. They are suitable for
immediate reactions because of the quick processing. While
in full octomaps, float values between 1 and 0 are used to
describe the probability of voxels being occupied or free, and
probabilistic functions can be used to adjust them.

G. Danger Area Identification
Any obstacle (e.g. a person entering the workspace of the

robot) visible to 3D cameras at the time of the observation
is recorded in the octomap as an occupied voxel. As long
as the obstacle stays there, the respective voxels will remain
occupied. However, when the obstacle is not present anymore
in a previously occupied voxel, we do not want to mark it
as free immediately. Instead, we introduce a cost function to
produce a slow decay, which represents the probability of how
risky it is for the robot to enter the area.

1) Cost function: The time dependent cost decay function,
shown in Eq. (1), is based on an inverse logarithmic decay to
provide a slow decrease at first with an increasing decay the
longer the area was not occupied anymore. When the voxel is
occupied, its value Cvoxel,t is reset back to 0.999.

Cvoxel,t = Cvoxel,t�1 + ln(Cvoxel,t�1) ⇤ (�t ⇤ ↵) (1)

Parameter ↵ is used to adjust the decay speed and �t defines
the time difference between two calculations, normally deter-
mined by the rate of incoming data frames from the camera.
The cost function ensures that the areas in the workspace
where obstacles are commonly present and their presence is
recurring will be mapped as risky to enter for the robot, and
it will attempt to find alternative trajectories through the safe
areas to reach the next goal position.

H. Robot Motion Planning
Robot motion planning is based on a two-layered structure:

reflexive and predictive behaviour.
1) Reflexive Behavior: For any immediate danger, a reflex-

ive behaviour model is used. Inspired by human behaviour
of how we immediately move our hand away from anything
that is sharp or burning hot, and only then look at the object
and think what to do next. Similarly to this, the robot uses
the simplified binary octomap consisting only of currently ob-
served obstacles. If any obstacle is categorised as an immediate
danger, the reflexive movement is performed. Last couple of
already passed waypoints of the current trajectory are taken
as a new goal position, and if the path is free, the movement
is immediately executed. Otherwise, if moving back down the
previously executed trajectory still results in a collision, an
alternative avoidance move is initialised. The movement vector
is calculated by taking a vector from the end effector of the
robot to the closest point of the obstacle and inverting the
direction. The reflexive behaviour model is explained in Fig.
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Fig. 6. Visualisation of a two dimensional RRT-connect trajectory planning
algorithm. The method is based on growing Rapidly-exploring Random Trees
(marked in thin blue) from the start and goal positions until a connected path
is found (marked in pink and purple). Once one or more successful trajectories
are found, they are optimised and smoothed (green dashed lines) before they
are executed on the robot.

5. The risk of collision is determined by Eq. (2), inspired by
the braking distance calculations [24]:

Drisk(v,Deucl) =
|v2|

�Deucl
(2)

� is a user set parameter, Deucl is the Euclidean distance
between the obstacle and the robot, v is the velocity vector
of the obstacle movement. The safe distance is determined
by a threshold T , which is normally set to 1 and instead the
parameter � is adjusted. If Drisk exceeds the threshold T , a
reflexive motion planning overrides the predictive one.

behaviour =

(
reflexive if |Drisk| � T

predictive otherwise
(3)

2) Predictive Behavior: Independently from the previously
described reflexive behaviour, a predictive re-planning con-
tinuously runs to find the safest and most optimum path
to the next goal position. The full octomap, including the
calculated danger areas is used for prediction. Each octomap
voxel contains the cost (danger) value described in Eq. (1).
The motion planner punishes the trajectories, which place any
part of the robot in the risky areas (voxels containing non-zero
cost). The measure being used for the trajectory evaluation is
the accumulated distance through each of the octomap voxels
and risk levels added as shown in Eq. (4). Ctraj is the total
cost of the trajectory, Dtraj is the Euclidean distance through
the octomap voxel and Cvoxel is from Eq. (1).

Ctraj =
X

voxel

(Dtraj +Dtraj ⇤ Cvoxel) (4)

This way, a longer trajectory through fully safe areas might
be preferred rather than a short and risky one. It has to be
noted, that any trajectory execution of the predictive planner

can be over-ridden by an reflexive behaviour planner whenever
a high risk obstacle is present. These two planners work in
parallel with the reflexive one having higher priority.

Traj 1
Traj 2
Traj 3

0.2 - 0.0

0.5 - 0.2

1.0 - 0.5

No danger
Starting

Point

Fig. 7. Danger map creation test. An object acting as the obstacle was
mounted on the end effector of the robot. Then the three indicated trajectories
were repeatedly executed in the workspace one after another while the danger
map was built up and updated. The average danger cost Cvoxel of each voxel
over the period of the whole experiment is shown with colors red, orange and
green indicating high, average and low risk accordingly. Transparent cubes
show voxels with zero cost, representing areas without danger.

3) Trajectory Planning and Execution: RRT-Connect mo-
tion planner implementation is used for the Cartesian trajectory
planning. It is one of the most efficient planners for the
UR5 manipulator. RRT-Connect stands for Rapidly-exploring
Random Trees (RRTs). The method works by incrementally
building two Rapidly-exploring Random Trees (RRTs) rooted
at the start and the goal configurations. The trees each explore
space around them and also advance towards each other
through the use of a simple greedy heuristic [25].

For the trajectory planner to work successfully, the obstacles
are precisely modeled in the environment. Then, the free
space is defined by calculating all the points, which can be
successfully reached given that no part of the robot collides
with the obstacles. Then, two the RRTs are initialised both,
at the start and goal positions and grown in the free space.
The exploration uses the randomly asssigned direction and
magnitude of vectors, but they are biased towards the goal
position as well as unexplored spaces. If the tree reaches the
goal position, or meets the other tree grown from the opposite
direction, the successful trajectory has been found. In our case,
the exploration is continued until the planning time limit is
reached, so more than one successful trajectory can be found.
When one or more successful trajectories are found, they are
smoothened to avoid choppy robot movements, and a total cost
considering the the distance and danger zone crossings (using
values from Eq. (4)) is calculated. The most efficient path is
executed for the robot to successfully reach the goal position.
A two dimensional example of RRT-Connect algorithm can be
seen in Fig. 6.



(a) Exp. 1: End-effector position during robot
movements between points A and B with reac-
tive behaviour trajectory planning and a static
obstacle. Static obstacle is indicated by the red
zone.

(b) Exp. 2: End-effector position during robot
movements between points A and B with a
reactive behaviour trajectory planning and a
dynamic obstacle. The obstacle was in the areas
marked in red, yellow and green with high,
medium and low frequency respectively.

(c) Exp. 3: End-effector position during robot
movements between points A and B with our
proposed method based on danger maps for
trajectory planning and a dynamic obstacle. The
obstacle was in the areas marked in red, yellow
and green with high, medium and low frequency
respectively.

Fig. 8. Comparison of our proposed method and reactive behaviour by tracking the end-effector trajectories under different conditions. The experiment
was executed using the presented setup containing one UR5 robot and four 3D cameras. Resulting end-effector trajectories show that our method results in
significantly shorter trajectories (compared to a reactive behaviour planning) by taking a calculated risk of crossing part of the danger zone when appropriate
instead of taking a long traversal around the areas where a dynamic obstacle might be present. Actual trajectories were planned in 3D, however, for easier
visualisation only a front view is shown here, where the difference between the presented methods is the most evident.

This method is suitable, because we can add our calculated
cost function to the search space of RRT-connect to punish
traversals passing through the risk areas calculated in Eq. (4).

Motion executions are performed using a new ROS imple-
mentation of a velocity based controller with rapid executions
and smooth joint accelerations making the robot motions even
more human-like. Robot control is done by calculating and
directly sending speed commands to each of the robot joints,
thus reducing the execution start time to 50-70 ms compared
to around 170 ms using the traditional ROS UR5 drivers. The
new controller is usable out-of-the-box and compatible with
traditional MoveIt! trajectory execution [26].

IV. EXPERIMENTS AND RESULTS

To test our method, we split the experiments into two main
parts. First, we evaluate the danger map construction by using
a number of repetitive trajectories of an obstacle moving
through the workspace. Secondly, the full system is evaluated
by using both static and dynamic obstacles in the workspace.
All the experiments were conducted using real hardware: the
UR5 robot manipulator, two Kinect V2, one Kinect V1 and one
Intel F200 3D cameras, as shown in Fig. 2. All the processing
was done in real time two computers working in parallel
connected with 1000 Mbit/s internal network.

A. Parameter Values

Algorithm parameter values were found by trial-and-error
during the development of the presented method. They have
proven to provide good accuracy, while still keeping the
processing time low enough for fast and smooth execution of
the robot movements. One set of parameter values was used in
the current experiments and they are summarised in Table I.

TABLE I. Parameter values used in our experiments.

Parameter Value
Cost Function: ↵ 0.3
Collision Risk Function: � 1.5
Octomap Voxel Size 0.05 meters
Backtracking Move Magnitude 10% of the executed trajectory
Max Robot Joint Speed 50% of the maximum
Max Robot Joint Acceleration 60% of the maximum
Kinect V2 Refresh Rate 15 FPS
Kinect V1 Refresh Rate 15 FPS
Intel F200 Refresh Rate 30 FPS
RRT-Connect: Max Planning Time 1 sec
RRT-Connect: # Planning Attempts 3
RRT-Connect: Orientation Tolerance 0.1 rad
RRT-Connect: Position Tolerance 0.01 meter

B. Danger Map Construction

Danger map creation was tested separately by mounting
a 10 cm by 20 cm object acting as an obstacle on the end
effector of the robot and executing pre-defined trajectories in
the workspace as shown in Fig. 7. The trajectories were close
to a circular shape and executed in a continuous order one after
another. The whole process was repeated 20 times. Trajectory
1 had a radius of 20cm, trajectory 2 had a radius of 32cm and
trajectory 3 had a radius of 46cm. The execution time of each
trajectory was 9.1 sec, 14.69 sec and 21.06 sec respectively.
With the current cost function parameter ↵ set to 0.3, the decay
time of the voxel from occupied to free is 24.48sec.

Throughout the process, the cost values Cvoxel of all the
voxels were tracked and averages calculated. This resulted in
a complete danger zone, which could be sub-divided into three
areas by the average costs representing the severity of possible
collisions. As expected, the outside circle, had the lowest risk
with values ranging between 0.0 and 0.2, the middle circle had



(a) Reactive behaviour: Planned trajectory
when the obstacle is determined as static
object blocking the direct path.

(b) Our method: Planned trajectory while
avoiding the danger zone caused by obsta-
cle occasionally entering the workspace.

(c) Our method: Planned trajectory while
avoiding the danger zone and reflexive be-
haviour initialised by an obstacle (in red).

Fig. 9. Visualisation of the executed movements on the UR5 robot. Octomaps use the data from 3D cameras and different trajectory planning approaches were
compared. Green robot shadow indicates the start position and yellow robot shadow indicates the goal position. Robot shadow trail indicates the trajectory.

a medium risk with values ranging between 0.2 and 0.5 and the
inner circle had the highest average risk with values ranging
between 0.5 and 1.0. The result was as expected, where the
voxels falling in the inner area were occluded by robot’s body
when executing the outer trajectory 3. Results can be seen
in Fig. 7 with all three trajectories marked and cube colors
indicating the different average risk levels.

C. Operation of The Whole System
Operation of the whole system was tested by planning and

executing the trajectory between the two pre-defined points A
and B in the workspace. Our proposed method was compared
against a simple reactive behaviour based on the same RRT-
Connect trajectory planner which is used as a baseline. In
the first experiment the reactive behaviour planner was used
with a static obstacle blocking a direct path between points A
and B. The second experiment the reactive behaviour planner
was used with a dynamic obstacle randomly moving (moved
manually by the operator) into the area blocking a direct path
between points A and B. And in the third experiment, our
proposed method, based on predictive and reflexive behaviour,
was tested by using identical dynamic obstacle randomly
moving into the area blocking a direct path between points
A and B. In total, 15 executions of return A-B-A trajectories
were executed in each of the experiments.

Because the RRT-Connect algorithm is based on random el-
ements and provides different solution every time, the planned
trajectories were different for every movement. In the experi-
ment 1, the reactive behaviour planner successfully traversed
around the static obstacle while keeping a safe margin between
the robot and the obstacle, as seen in Fig. 8(a).

In the experiment 2, the obstacle randomly entered the
indicated workspace with different frequency. Trajectories cre-
ated by the reactive behaviour planner were significantly more
random and spread all around the workspace. It was caused
by some attempts of moving more or less directly between the
two points and then reacting to a blocked path by the dynamic
obstacle. In such cases, the robot stopped and quickly re-
planned the trajectory. However, due to very limited planning
time, the new trajectory was often not optimum and took a

long and unnecessary detour with high safety margins. Longer
allowed re-planning times would make new trajectories more
optimal, however, the whole execution time would be likely
to be even longer. Resulting trajectories of the experiment 2
can be seen in Fig. 8(b).

In the experiment 3, the dynamic obstacle was acting in
an identical manner as in the experiment 2. Our proposed
trajectory planner was constructing a danger map and using
it to plan the trajectories between the points A and B, and
the planned paths were significantly shorter and smoother
compared to the results using the reactive behaviour. Low
risk areas were often crossed with occasional crossings of
the medium risk areas and a few crossings of the high risk
areas. The reflexive behaviour was initialised only in two
instances, both times the robot successfully moving away
from the obstacle and avoiding the collision. On average,
our proposed method provided the smoothest and shortest
trajectories compared to the other two experiments. Resulting
trajectories of the experiment 3 can be seen in Fig. 8(c).

Another evaluation criteria can be trajectory planning, op-
timisation and execution time. Our method demonstrated in
the experiment 3 has over three times faster average trajectory
execution time compared to the reactive behaviour (experiment
2) when the dynamic obstacle was present. The big difference
mainly appears due to multiple stops by the reactive behaviour
planner to replan the motion when the obstacle blocks the
trajectory being executed. Normally it moves in the most direct
free trajectory without considering the historical data, which
in our method is considered by looking at the danger map.
Furthermore, our proposed method is close to 20% quicker
than the experiment 1, where the trajectory planning was per-
formed to avoid the static obstacle. No significant differences
were observed in planning and trajectory optimisation times
between the three experiments, however our proposed method
has the shortest time by a small margin. Timing results of all
three experiments and a comparison against the obstacle-free
direct trajectory can be found in Table II.

Some selected example trajectories of each method with
the full UR5 body visualised are shown in Fig. 9 for easier



TABLE II. Trajectory planning and execution timing results containing aver-
ages and standard deviations of the path planning time, the path optimisation
(smoothing) time and the path execution time. Results are compared against
direct trajectory, which had no obstacles present.

Exp. 1 Exp. 2 Exp. 3 Direct

Planning time (s) 0.0183
±0.0099

0.0217
±0.0095

0.0141
±0.0072

0.0145
±0.0057

Optim. time (s) 0.0178
±0.0102

0.0130
±0.0089

0.0129
±0.0077

0.0006
±0.0002

Execution time (s) 10.6085
±4.0766

26.6663
±14.7546

8.2952
±4.3454

4.994
±0.5421

visualisation of how the execution looks on the real system.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented the predictive and reflexive
trajectory planning method for a robot manipulator based on
a danger map constructed using a multi 3D camera system.
It is designed to function better in the workspaces where
unknown dynamic obstacles are present. In the experiments,
it has proven to be more effective than the traditional reactive
trajectory planner, and still being able to avoid collisions with
unexpected obstacles getting close to the robot body.

Our proposed system contains a combination of many
methods working in parallel, each one of them having a set
of tunable parameters, affecting the performance of the whole
system. In our tests, a trial-and-error method was used to find a
good combination of parameter values. However, in the future
work, we plan to use AI systems, like evolutionary algorithms,
to automatically compute the best parameter value set for
case and make the system even more adaptive to changing
conditions by learning over time.

Additionally, obstacle classification will allow the robot to
react differently depending whether a person is approaching
the robot, or some other object. Also, making a difference
between bare hand or somebody holding a tool, especially a
sharp one, a different size safety zone should be used and the
robot should engage in different behaviour.

For collaborative tasks, the contact between the robot and
human might be beneficial. With modeling and understanding
the behaviour of a person sharing the workspace, joint tasks
for object handover or robot working as a support as well as
directing certain tools to a required area will become possible.
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3D Vision Guided Robotic Charging Station for Electric and
Plug-in Hybrid Vehicles

Justinas Mišeikis1, Matthias Rüther2, Bernhard Walzel3, Mario Hirz3 and Helmut Brunner3

Abstract— Electric vehicles (EVs) and plug-in hybrid
vehicles (PHEVs) are rapidly gaining popularity on our
roads. Besides a comparatively high purchasing price,
the main two problems limiting their use are the short
driving range and inconvenient charging process. In this
paper we address the latter by presenting an automatic
robot-based charging station with 3D vision guidance for
plugging and unplugging the charger. First of all, the
whole system concept consisting of a 3D vision system,
an UR10 robot and a charging station is presented.
Then we show the shape-based matching methods used
to successfully identify and get the exact pose of the
charging port. The same approach is used to calibrate
the camera-robot system by using just known structure
of the connector plug and no additional markers. Finally,
a three-step robot motion planning procedure for plug-
in is presented and functionality is demonstrated in a
series of successful experiments.

I. INTRODUCTION

Nowadays it is common to see electric vehicles
and plug-in hybrids on our roads. Worldwide plug-
in vehicle sales in 2016 were 773600 units, 42%
higher compared to 2015 [1]. For example Norway
plans to rule out sales of any combustion engine cars
by 2025 [4]. However, a new problem being faced
by EV and PHEV drivers is having an accessible,
fast and convenient battery charging, especially when
traveling longer distances. It is a common problem of
fast chargers being idly occupied after the car is fully
charged if the owner does not return to the vehicle.
For example, Tesla has added an additional idle fee
to discourage drivers leaving their cars at the chargers
for longer than necessary [7]. A solution to avoid this
problem and to enable a comfortable fast charging
would be an automated robot-based charging system
combined with automated car parking.

A. Charging Ports and Cables

Worldwide, there are many types of EV and PHEV
charging ports, as well as different charging port
placement locations on the vehicle. Each one of them
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of Oslo, Oslo, Norwayjustinm@ifi.uio.no

2Matthias Rüther is with Graz University of Technology,
Institute for Computer Graphics and Vision, Graz, Austria
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3Bernhard Walzel, Mario Hirz and Helmut Brunner are with
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has benefits and detriments, and car manufacturers
have not decided on a common standard yet. This
introduces an additional inconvenience of finding the
correct type of charger, or having to carry a number
of bulky adapters. As long as there is no standard, it
would be more convenient to let the charging station
detect the correct port type and adapt accordingly.

Another issue is the current weight and stiffness of
a quick charging cable. For example, the weight of
a CCS-Type 2 charging cable rated for the power up
to 200 kW is 2.26 kg/m and outer diameter of 32
mm. With longer cable lengths, this becomes difficult
for people to handle, but would not be an issue for
a robot [6]. Cooled charging cables can help to solve
this problem without increasing the cable diameter, but
these are not yet standard [17].

B. Existing Automated EV Charging Methods
Automatic charging solutions have been researched

both in academic and industrial environments. Volks-
wagen has presented an e-smartConnect system, where
a Kuka LBR-iiwa robot automatically plugs in the
vehicle after it autonomously parks in a specific target
area (allowing for less than 20 cm by 20 cm error). It
is also limited to one charging port type [8].

Tesla has demonstrated a concept of a snake-like
robot automatically plugging in their EV, however, no
technical details on the charging port localisation or
robot operation were revealed [9].

The Dortmund Technical University has presented
a prototype of the automatic charging system called
ALanE. It is based on a robot arm capable of auto-
matically plugging and unplugging a standard energy
supply to an electric vehicle. The system is controlled
via smartphone. However, full capabilities and flexi-
bility of this concept system are not clear [3].

The NRG-X concept presents itself as a fully auto-
matic charging solution. It can be adapted to any EV
or PHEV and is capable of fast charging. Furthermore,
it has a tolerance for inaccurate parking positions. The
NRG-X system is based on combination of conductive
and inductive charging on the under-body of the
vehicle, thus an adapter for the vehicle is necessary.
Furthermore, in the current concept configuration the
charging power is limited to 22 kW [5], which re-
sults in over 7 times longer charging compared to
170 kW charging [22] and perspective 350kW [11].



Comparisons of the time taken to charge a vehicle
using different charging systems is shown in Figure 1.

Fig. 1. Driving distance and charging time comparison of different
charging systems [22].

C. Related Research
Automated charging has been well researched, es-

pecially for mobile robots. Typically, there is a custom
made charging station, which is localized by the
robot either using a direct communication or using
computer vision based methods. These methods are
normally based on having special markers on the
charging station, which are localised in order for
the robot to correctly align itself and approach the
station. Removing markers would impede the opera-
tion [12] [19] [18] [14].

Another concept developed specifically for the de-
tection of charging ports on EVs was based on adding
an array of RFID tags on the car. Reading RFID
signals allows to find the exact position and orientation
of the charging port and plug it in automatically [16].
However, this still requires modification to the vehicle
and would not support non-adapted cars.

Fig. 2. CAD model of the robotic charging station concept.

D. Method Presented in This Work
We present a conductive robot-based automated

charging method for EVs and PHEVs, which does
not require any modifications to existing vehicles.
First of all, we present a quick eye-to-hand calibration
procedure to calibrate the vision sensor and the robot
to work in the same coordinate system. It estimates
both, the placement of the vision sensor in relation

to the robot base as well as between the end-effector
and the plug. Then we use shape-based matching and
triangulation to locate and identify the charging port of
the car and guide the robot, holding a charging cable,
to precisely plug in the charger. Once the car is fully
charged, the robot will automatically unplug from the
vehicle, which will be ready to be driven away. The
visualisation of the concept robotic charging station is
shown in Figure 2.

This paper is organized as follows. We explain the
proposed method in Section II. Then we provide our
test setup, experiments and results in Section III, fol-
lowed by conclusions and future work in Section IV.

II. METHOD
A. Detection of the Charging Port

A majority of the car charging ports are manufac-
tured from texture-less black plastic material, making
it difficult to obtain good features in the camera image.
Similarly, the measurements made using time-of-flight
cameras, which use the projection of infrared (IR)
light, are noisy and inaccurate due to IR absorption
by the material. As an alternative solution, a stereo-
camera setup was used as the vision sensor.

Fig. 3. Input images, simplified template models and automatically
created shape-based templates for matching. Type 2 socket is shown
in column a), type 1 socket in b) and type 2 connector plug is shown
in c). Green circles define the area of interest for the model creation
and the red outline line defines the created shape model.

The first step in the detection procedure is to find
the location of the charging port in stereo images
using shape-based template matching. Models were
created for two types of the charging ports as well
as the power plug connector, later to be used for
eye-to-hand calibration. Figure 3 shows the camera
images and simplified model images, which are used
to automatically generate shape-based templates later
to be used for matching. Template matching was
performed using a Halcon Machine Vision software,
which has proven to perform well in given conditions
of low-contrast input images [2]. Matching results in a
2D Affine transformation matrix defining the template
location in the image.

By taking x and y coordinates of the correspond-
ing object points in images from each of the stereo



cameras, the depth information defined by z-axis can
be calculated. The vision sensor in our setup has both
stereo cameras fixed in relation to each other looking
slightly inwards, with rotation around Y (vertical) axis.
Solving Eq. 1 provides the real-world coordinates X ,
Y and Z of a point seen by the stereo cameras. Inputs
(x1, y1) and (x2, y2) are the point coordinates in camera
1 and camera 2 respectively. Variable f is the focal
length of the camera and b defines a baseline (dis-
tance) between the stereo cameras. Rotation between
the cameras around Y -axis is defined by q .

Z0 =
b

tan(q)

Z =
b⇤ f

x1 � x2 +
f⇤b
Z0

X =
x1 ⇤Z

f

Y =
y1 ⇤Z

f

(1)

After the charging port is found in the input im-
ages, stereo triangulation is used to obtain 3D real-
world coordinates of the port position, providing 5
to 7 reference points depending on the charging port
type. Using the points, a perspective transformation is
calculated using the least squares fit method to obtain
the exact position and orientation of the charging port
in relation to the vision sensor. Least squares fit for
finding the orientation optimises for 3 unknowns (A, B
and C), which later are mapped to roll, pitch and yaw
angles. The least square error function is defined in
Eq. 2, where x, y and z are coordinates of the reference
points.

e(A,B,C) = Â(Ax+By+C� z)2 (2)

Then, the error function is differentiated and set to
zero, as shown in Eq. 3.

∂e
∂A

= Â2(Ax+By+C� z)x = 0

∂e
∂B

= Â2(Ax+By+C� z)y = 0

∂e
∂C

= Â2(Ax+By+C� z) = 0

(3)

The resulting linear equations with 3 unknowns are
solved to get the orientation of the object. This can
also be seen as 3D plane fitting to the given points.

B. Marker-less Eye-to-Hand Calibration
In order to operate the vision sensor and the robot

in the same coordinate system, eye-to-hand calibration
is necessary. The eye-to-hand calibration estimates
the transformation between the vision sensor and the
robot base. Using this transformation, the position

of any object detected by the vision sensor can be
recalculated into the coordinate system of the robot,
allowing the robot to move to, or avoid that location.

Normally, a well structured object, like a checker-
board of known size and structure is used in the
calibration process. However, it requires mounting it
on the end-effector of the robot and can still result
in additional offsets. We use the known structure of
the connector plug and previously presented shape-
based template matching with orientation estimation
to obtain the precise pose. Eye-to-hand calibration
is based on an automatic calibration procedure for
3D camera-robot systems, which uses the calibration
method proposed by Tsai et al [15] [21].

The result of the eye-to-hand calibration are two
transformation matrices. The first one defines the
position of the vision sensor in relation to the robot
base and the second one defines the position of the
end point of the connector plug in relation to the end-
effector of the robot.

The marker-less eye-to-hand calibration can be ben-
eficial if the robot is placed on a moving platform,
so the relative position between the vision sensor and
the robot can change. Furthermore, it would benefit in
cases when the robot has interchangeable end-effector
attachments with different connector plugs. In both
of these cases, recalibration procedure could be done
automatically without any reconfiguration.

C. Robot Motion Planning
Given the limited workspace and all the movements

being defined by camera measurements, robot control
in Cartesian coordinates was used. The MoveIt! frame-
work, containing multiple motion planning algorithms,
was used for the initial testing [20]. The best perfor-
mance in the defined case was demonstrated by the
RRT-connect algorithm, which is based on the rapidly
exploring random trees [13].

In order to get smoother motion execution and more
human-like motions, a velocity based controller was
used instead of the standard one provided in ROS.
Better performance is achieved by calculating and
directly sending speed commands to each of the robot
joints, thus reducing the execution start time to 50�70
ms compared to around 170 ms using the official ROS
UR10 drivers [10].

D. Plugging-In Procedure
After the pose of the charging port is calculated, the

coordinate system is assigned with the origin placed
at the center of the plug and Z-axis looking outwards.
Similarly, the coordinate system is assigned to the
connector plug, which is held by the robot. The goal
of the plug-in procedure is to perfectly align connector
plug with the charging port, so the last movement
is simply along one axis. In order to achieve that, a



three-step procedure was used, visualised in Figure 4.
Firstly, the robot moves the plug at high velocity to the
approach position, which is within a 0.1 meter radius
from the charging port. The second step is to reduce
the velocity to 10% of the maximum robot joint speed
and move to the final alignment position. In this pose,
the connector plug and the charging port are fully
aligned by their Z-axis and just a few millimeters away
from the contact point. The last step is to move at just
2% of the maximum speed along Z-axis and perform
the plug-in motion. During this move, the forces and
torques exerted on the end effector of the robot are
monitored. In case the forces exceed a given threshold,
the system is halted to prevent any damage.

Fig. 4. Three step plug-in procedure plan. Firstly, the robot
moves the connector plug to the Approach Position, which lies
approximately 0.1 meter away from the charging port. The second
move aligns the Z-axes of the charging port and the plug, and gets
the plug just a few millimeters away from the port. The final plug-in
movement performs the plugging in motion along Z-axis.

E. Unplugging
After the vehicle is charged fully or to the desired

battery level, the robot has to disconnect the charger.
Under the assumption that there were no position
changes during the charging process, the unplugging
procedure was simplified to follow the recorded way-
points of the plug-in procedure in the inverse order.
First, the robot gets back to the approach position
and then returns to the stand-by position, where it is
docked while waiting for the next task. The stand-by
position ensures an unobstructed view of the parked
vehicle for the vision sensor.

III. EXPERIMENTS AND RESULTS
A. Experiment Setup

At the current stage, the testing was limited to
the lab environment. The experimental setup consists
of an UR10 robot arm, a vision sensor containing
stereo cameras and a charging port holder with inter-
changeable charging ports. The charging port holder
has variable height, position and angle to simulate
various imperfect parking positions and differences in
charging port locations on the vehicle. Two types of
the charging ports, Type 1 and 2, have been used, as
previously seen in Figure 3.

The connector plug is attached to the end-effector
of the robot using a custom 3D printed attachment,
shown in Figure 5. The charging cable is also attached

Fig. 5. Custom 3D printed connector plug holder attached to the
end-effector of the UR10 robot.

to simulate realistic weight exerted on the robot during
the operation. The whole experimental setup is shown
in Figure 6.

The final goal was to locate the charging port using
the vision sensor and estimate its pose. Then, the pose
is transformed into the coordinate system of the robot
and the end point of the connector plug is aligned
and plugged in to the charging port. After a brief
pause to simulate the charging process, the unplugging
movement is performed and the robot moves back to
the stand-by position.

Results of each part of the process are discussed
separately and followed by the final evaluation of the
whole system.

Fig. 6. The whole experiment setup. On the left the charging port
holder can be seen. The robot is holding the connector plug, and
the vision sensor made up of two stereo cameras is seen on the
right hand side.

B. Template Matching
Template matching for Type 1 and Type 2 charging

ports as well as the connector plug (Type 2) has
worked well for various illumination and angles up
to 45� relative to the viewing angle of the camera.
The matching confidence score for good alignment
was over 95%. The recognition speed on the full
camera image was varying between 300ms and 800ms.
By narrowing down the search area, for example by
identifying the darker than average regions in the
image, the recognition speed can be reduced to under
150ms. The results can be seen in Figure 7.

The limit for the successful recognition under low
illumination or overexposure was when the edges of
the socket or plug structure are still visible. The



connector plug was made out of more reflective plas-
tic, resulting in a few cases when reflections caused
the accuracy issues regarding the rotation. However,
these issues were observed very rarely under specific
viewing angles, and matching accuracy dropped below
90%, so these cases could be easily identified.

Fig. 7. Results of the template matching. A high variety of
angles and lighting conditions were tested. Viewing angles up to
45� resulted in successful detection with accuracy dropping beyond
that. Row 1: Type 2 connector plug. Row 2: Type 1 socket. Row
3: Type 2 socket.

C. Eye-to-Hand Calibration
In the given configuration, the structure of the

connector plug was used as a marker for eye-to-
hand calibration. During the calibration process it
was turned to face the vision sensor, while during
the normal operation it faces away from the camera.
Furthermore, the outer ring of the plug is angled, so
the pins of the plug had to be used as reference points
to get the accurate calibration.

The end point of the connector plug was rotated
around each of the axis as well as moved to different
locations within the field-of-view of the vision sensor.
In total, 26 poses were recorded and used until the
calibration converged. Additionally, 3 instances were
discarded because of the incorrect template matching
result. The average translation error within the work-
ing space was reduced to 1.5mm, which was sufficient
for our application at this stage. Possibly, having
more poses would reduce the positional error even
further. With the eye-to-hand calibration completed,
coordinate frames for the camera position and the end
point of the connector plug can be added to the model,
as shown in Figure 8.

D. Finding Charging Port Pose and Robot Movements
As the final evaluation, we used the whole process

pipeline and analysed whether the plug-in motion was
successful or not.

There were 10 runs executed in total using Type 2
connectors. For the first 5 runs the charging port was

Fig. 8. Eye-to-hand calibration results. Visualisation of the
assigned coordinate frames to the vision sensor, the end-effector
of the robot and the end point of the connector plug. Resulting
point cloud is overlayed onto the visualisation of the robot model.

angled at 10� in relation to the vision sensor, and for
the remaining 5 runs, the angle was increased to 30�.

The robot successfully connected the plug 8 out
of 10 times. Both failures occurred by missing the
rotation of the plug, which were determined by the
misalignment of the guidance slot on the charging
port. However, the safety stop automatically initialised
in both of the cases ensuring that the robot stopped
before causing any damage.

TABLE I
SUMMARY OF THE PLUG-IN MOTION EXPERIMENTS WITH

CHARGING PORT PLACED AT TWO DIFFERENT ANGLES

Exp Charging Port Angle 10� Charging Port Angle 30�
1 Success Success: Misalignment
2 Success: Misalignment Failed: Missed rotation
3 Success Success
4 Failed: Missed rotation Success: Misalignment
5 Success: Misalignment Success: Misalignment

However, even when the plug was successfully in-
serted in the charging port, there were some alignment
issues. In 5 out of 8 successful runs, the plug was not
fully inserted into the charging port. It was caused by
a small angular offset varying between 2� and 5�. The
contact was still made, so the charging process would
be successful, however, there was additional strain due
to imperfect alignment. The misalignment occurred
more frequently during the experiments, where the
charging port was placed at 30� angle. The results
are summarised in Table I.

As expected, the unplugging process was successful
during all the runs. It simply follows already executed
trajectory in the inverse order, meaning that as long
as the position of the charging port did not change
during the time it was plugged in, there should be no
issues with the unplugging process.

IV. CONCLUSIONS AND FUTURE WORK
We have presented a vision-guided and robot-based

automatic EV and PHEV charging station. The goal is
to allow automated conductive fast charging of electric
and hybrid vehicles and avoid the issue of a charged
car taking up the space when it is not necessary.



The presented approach is a combination of mul-
tiple methods. First of all, the shape-based template
matching is used to identify the charging port type and
use the information from stereo cameras to precisely
estimate its position and orientation. The same method
is used in the marker-less eye-to-hand calibration,
which results in the transformation matrices to be used
to convert the position of the charging port from the
coordinate system of the vision sensor to the robot.
Then, the robot, holding a connector plug, is used
to approach and finally plug in the charger cable
into the EV or PHEV. Having a precisely estimated
orientation is a big challenge and observation of the
forces exerted on the end-effector of the robot are
necessary to identify any possible misalignment, and
stop or readjust if needed. Our approach has proven to
work in the lab conditions under indoor illumination
and using a custom made charging port holder.

Adding a force sensor to the robot would allow the
robot to operate using the impedance controller based
on force measurements and adjust it during the plug-
in procedure according to the strains observed on the
end effector. This would likely to be a solution for the
observed cases with misalignment issues.

The project will be continued by improving the
connector plug detection accuracy and automating the
marker-less calibration procedure, where the robot
would perform calibration movements automatically.

Furthermore, current tests were performed under
the assumption that the charging port lid or cap was
already opened. A linear actuator is already included
in the setup, however, it was not used in current
experiments. Future work includes finding the charger
lid, identifying it’s opening mechanism and using the
robot to open and close it for the charging process.
This would also require identification of the vehicle
model to indicate the correct parking position and
localise the approximate position of the charging port.

With the test electric vehicle to be delivered in the
near future for testing purposes, the system will be
evaluated on the real EV in the garage setup and
outdoor tests. Communication between the vehicle and
the charging station is also under development and
this will enable the combination of the robot-based
charging system with autonomous parking functions.
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Robot Localisation and 3D Position Estimation Using a Free-Moving
Camera and Cascaded Convolutional Neural Networks

Justinas Mišeikis1, Patrick Knöbelreiter2, Inka Brijacak3, Saeed Yahyanejad4, Kyrre Glette5, Ole Jakob Elle6,
Jim Torresen7

Abstract— Many works in collaborative robotics and human-
robot interaction focuses on identifying and predicting human
behaviour while considering the information about the robot
itself as given. This can be the case when sensors and the
robot are calibrated in relation to each other and often the
reconfiguration of the system is not possible, or extra manual
work is required. We present a deep learning based approach
to remove the constraint of having the need for the robot and
the vision sensor to be fixed and calibrated in relation to each
other. The system learns the visual cues of the robot body
and is able to localise it, as well as estimate the position of
robot joints in 3D space by just using a 2D color image. The
method uses a cascaded convolutional neural network, and we
present the structure of the network, describe our own collected
dataset, explain the network training and achieved results. A
fully trained system shows promising results in providing an
accurate mask of where the robot is located and a good estimate
of its joints positions in 3D. The accuracy is not good enough
for visual servoing applications yet, however, it can be sufficient
for general safety and some collaborative tasks not requiring
very high precision. The main benefit of our method is the
possibility of the vision sensor to move freely. This allows it
to be mounted on moving objects, for example, a body of the
person or a mobile robot working in the same environment as
the robots are operating in.

I. INTRODUCTION
Robotic manipulators are becoming cheaper resulting in

new application fields outside the traditional industrial en-
vironment. It is more common to see robots in hospitals,
warehouses and households. These environments result in
robots having to share the workspace with people and
even perform collaborative tasks. The concept of a shared
workspace has been an active research area for many years,
which is still highly relevant today [1] [2]. Furthermore,
with the appearance of Industry 4.0, the need toward the
environment and safety-aware robots is growing [3].

Collaborative robots, like Baxter and Sawyer, are ad-
vertised to be fully safe around people, however, it com-
monly means that they have sophisticated collision detection
systems [4]. Ideally, collisions should be avoided at all,
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especially in sensitive environments like hospitals. Collision
avoidance can be achieved by adding vision sensors.

Vision sensors observe the environment and indicate the
areas which are unobstructed and safe to operate in, and
are used to plan the robot movements accordingly. However,
there are issues with this approach. Sensors have to be fixed
on the robot itself or fixed in relation to the robot body.
A precise Hand-Eye calibration is then performed to allow
the sensors and the robot to operate in the same coordinate
system. However, then the setup takes up more space and
any unexpected disturbances or repositioning of the sensor
can mean that the calibration has to be repeated. Despite
automated calibration procedures, the process can still be
cumbersome and time consuming [5]. Another option would
be to fix the vision sensor on the robot body itself, commonly
on the end-effector of the robot. This can be an effective
method for collision avoidance for the end-effector of the
robot, however, the field-of-view is normally limited and a
full robot body collision check is rarely possible [6].

There has been a significant amount of work towards
robot autonomy and self-localisation. However, robot self-
awareness is normally limited to navigation, especially
for mobile robots, or self-collision avoidance for robot
arms or humanoid robots, where the robot model is
known [7] [8] [9] [10].

Visual-based robot manipulator tracking has been exten-
sively researched as well. End-effector being the main point
of focus with the aim of conducting robot control based
on visual servoing [11] [12]. Furthermore, it has proven to
be an effective method for adaptive redundant robot control
in Cartesian space [13]. Image-based tracking of 7-DoF
robot arm showed promising results with dynamic parameter
tuning as well [14]. Interesting work was presented, where
authors are using particle swarm optimisation approach for
fuzzy sliding mode control to track the end-effector of the
robot manipulator [15]. Despite achieving good accuracy,
most of these methods used prior knowledge or fixed setups
for the particular use case. Changing the setup would result
in the need to tune the algorithm for it to function accurately
given the new conditions. Furthermore, commonly it was just
the end-effector of the robot that was tracked instead of the
whole robot body.

When looking at the field of human-robot interaction, a
significant amount of work has been done on the design
of the systems and workspaces allowing to monitor the
human presence in close proximity to the robot and detect
any irregularities [16] [17] [18]. Another work is focusing



Fig. 1. Samples from a collected robot dataset. Each row of images represents different robot type in the following order: UR3, UR5 and UR10. The
dataset was created using a varying background to provide more robustness.

on the best approaches to safeguard the workspace of the
robots [19].

When looking at the motion planning and behaviour
prediction topics, most of the focus has been on modelling
the human motions [20]. A heatmap of the workspace could
be constructed to allow the robot to predict where dynamic
obstacles are most likely to enter and have an additional
reflexive behaviour override for unexpected cases [21].

However, the majority of existing research has a robot
model and control architectures well defined and fine-tuned.
This means that the hardware setups are usually fixed and
all the sensors have to be attached at the defined locations
and calibrated specifically for the use case.

Our current research focuses on adding the flexibility on
the robot identification side and allowing more unrestricted
setups. For example, having a free-moving vision sensor as
a part of the robotic system aimed at the robot safety or
human-robot collaboration use case. We address this issue
by removing the need for fixed setups. Instead of having a
known transformation matrix between the coordinate frames
of the sensor and the robot base, we teach the system
to identify the robot body in a color image provided by
the vision sensor. Our method uses convolutional neural
networks (CNNs), which learn visual cues allowing it to
understand the environment [22]. The system identifies the
robot body in the color image of the vision sensor, and depth
information normally provided by 3D cameras is not needed
for the recognition task anymore. Furthermore, the system
estimates the robot body configuration and 3D coordinates
of each joint of the robot.

The vision sensor can be placed anywhere around the robot
or even used as a wearable device by the robot operator. This
approach can prove very useful in a cluttered environment
where one or many robots are located, such as a factory floor
or automated surgery room. Such environments can have a
limited space for fixed camera setups or line-of-sight can
be blocked by people or other machinery operating in close
proximity. Having multiple free-moving cameras is one of
the robust solutions ensuring the workspace is constantly
observed. An operator or a visitor can have a wearable

camera which observes the surroundings and indicates the
positions of all the robots in the vicinity. A warning system
or even an emergency stop option can be incorporated for
the situations when the robot gets too close to the person to
ensure a fully-safe operation.

Systems using our approach can also be useful in robot-
robot interaction cases, where a mobile robot is operating
in the same environment as robotic manipulators. It should
avoid getting too close to other robots and avoid possible
collisions. Even given a fully known environment, our system
can prove useful if navigation or localisation algorithm fails
to get an accurate position estimate, the vision sensor on
the mobile robot can indicate positions where other robots
are located. It can be useful for robot-to-robot interaction
tasks. For example, if a mobile robot is bringing tools or
objects that a robot arm needs to grasp, the mobile robot
could localise itself in relation to the robot manipulator.

This paper is organized as follows. We present the system
setup and dataset collection in Section II. Then, we explain
the proposed method and CNN architecture in Section III.
We provide experimental results in Section V, followed by
relevant conclusions and future work in Section VI.

(a) Color Image (b) Ground truth model of the robot
mask

Fig. 2. Example image of the dataset containing an UR3 robot.

II. SYSTEM SETUP AND DATASET COLLECTION
In our experiments, we use three types of robot arms

produced by Universal Robots: UR3, UR5 and UR10. All
three robots have a similar appearance, but different size
and payload capabilities. A Kinect V2 camera was used



as a 3D vision sensor providing both color image and
depth information, needed to create the dataset containing
ground truth data [23]. The final, fully-trained system only
needs the color image. The whole system was based on
a combination of the Robot Operating System (ROS) and
Theano framework [24].

Input Image Intermediate: Robot Mask Robot 3D Joint Coordinate 
Estimation

Fig. 3. Process described in regards to inputs and outputs of the system. A
simple color image of the robot body is provided as an input to the system.
The first CNN estimates the mask containing the robot body and this result
is overlayed with the color image and used as an input to the second CNN.
The second CNN provides an estimate of the joint coordinates of the robot
in 3D. Each robot joint is visualised with a circle of a different color.

Deep learning requires a large amount of diverse training
data to ensure efficient and robust learning. Given a limited
availability of datasets for such applications, it was decided
to create a dataset for this purpose. Access to the robots was
obtained in three institutions: TU Graz, Joanneum Research
and the University of Oslo.

In order to obtain a precise ground truth data, a Kinect
V2 camera was placed at a number of positions overlooking
the robot. At each position, a precise Hand-Eye calibration
was performed by placing a marker on the end-effector of
the robot and using both color and depth image for the
calibration process [25]. Having a precise coordinate system
transformation from the camera to the robot base allows us
to know precisely where the robot is located in the camera
image.

TABLE I. Dataset summary describing the number of samples collected
for each type of the robot. In total 9 recordings were made, 3 for each type
of the robot.

Recording Robot Type Number of Samples
Rec 1 UR3 211
Rec 2 UR3 252
Rec 3 UR3 463
Rec 4 UR5 252
Rec 5 UR5 756
Rec 6 UR5 1512
Rec 7 UR10 112
Rec 8 UR10 278
Rec 9 UR10 514

We used the MoveIt! package [26] to obtain ground truth
data by using a robot self-filtering algorithm. At each time
instance, the robot joints encoder information is combined
with a simplified robot model, which is taken from the
Unified Robot Description Format (URDF) file [27], to
generate a precise estimation of the current robot pose in
3D space and a robot body mask as a 2D image. It can be
used to find the robot in both, color and depth image.

Robot movements were pre-programmed in joints coor-
dinate system to move in as many different configurations

as possible without hitting an obstacle or self-collision oc-
curring. Each of the robot joints is moved through the full
range of motion in combination with other joints as well.
The step size of the joint movements is varied between the
datasets resulting in a different number of samples in each.
This method ensured that the robot body will be observed
from many angles by the vision sensor. After each movement
was performed, a trigger signal was sent to record camera
images, joint coordinates, Cartesian coordinates of each joint
and ground-truth model of the robot position. The number of
samples per dataset varied from 112 to 1512. In total nine
datasets were collected, three for each type of the robot,
summarized in Table I. Example images from the collected
dataset can be seen in Figure 1. Datasets with the UR5 robot
were the most extensive given the access to the robot at the
lab of the main author. An example of color and ground truth
images can be seen in Figure 2.

All the collected datasets were used for the training
process, resulting in 926 samples for UR3, 2520 samples for
UR5 and 904 samples for UR10. The datasets were split into
training and test set by randomly assigning 80% and 20% of
the images accordingly. All of the images have the resolution
of 512 ⇥ 424 pixels and are rectified using an internal
camera calibration to remove the lens distortion. Higher
resolution, 960⇥ 540 pixels color images were recorded as
well, however, in practice, we scaled and cropped images to
have the same resolution for all the types: color, depth and
ground truth mask to avoid any scaling issues.

III. METHOD

Our method is based on a two-level cascaded CNN,
where one CNN is used for the classification task in fore-
ground/background detection of the robot body in the image,
and the second CNN is used for landmark detection of
the robot joint positions in 3D coordinates. The process in
regards to the input and output images is shown in Figure 3.

The principle of CNN is to have an image as an input,
which is passed to the network. Normally, CNN contains a
number of hidden layers, which lead to the output, which
is also given during the training process, defined as ground
truth. In the hidden layers, the network is capable of learning
a number of filters, which help to achieve the desired result,
thus minimising the error between the output of the network
and provided ground truth result. The learning process is
done by initialising random weights, getting the output,
comparing it to the desired result and then adjusting the
weights in the hidden layers during the back-propagation
process in order to achieve better accuracy.

For the robot body classification, our CNN consists of
four convolutional layers with 32 filters each and varying
dilation was used as well as the last convolutional layer con-
taining just one filter. The details about the architecture are
illustrated in Figure 4(a). The loss function was specifically
designed to take into consideration the rather small area of
the foreground object in the input image. In most of the cases,
the area of the robot body in the input image was 6� 17%
of the whole image. Without this adjustment, in some cases,
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(a) CNN architecture for the robot mask classification. The network consists of 5 convolutional layers with varying dilation. Input is a color image and
output is a mask image defining the body of the robot.
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(b) CNN architecture for the robot joint coordinate estimation. The network consists of 3 convolutional layers, 2 pooling layers and a fully connected layer
in the end. Input is an overlayed color image with a robot foreground mask and output is 3D coordinates of the robot joints in the coordinate system of
the vision sensor.

Fig. 4. Cascaded CNN architecture for the robot position estimation using non-fixed camera.

the network classifying all the pixels as background could
still achieve the accuracy of over 90%, which is conceptually
wrong. Calculation of the foreground weight wfg is shown
in Equation 1. It is based on the inverse probability of the
foreground and background classes, where Y 2 {fg, bg}.

wfg =
1

P(Y = fg)
(1)

Similarly, the background weight wbg is calculated using
Equation 2.

wbg =
1

P(Y = bg)
(2)

The loss function is calculated by first getting loss per
pixel and then using it to calculate loss of the whole image.
A normalisation factor N , which is a number of pixels in the
image, allows us to keep the learning rate fixed, independent
of the image size.

Loss function for one pixel ln is defined in Equation 3,
where iest is P(Y = fg), (1 � iest) is P(Y = bg) and igt
is the ground truth value from the mask image.

ln(Inest, I
n
gt) =� wfgiest log (igt)

� wbg(1� iest) log (1� igt)
(3)

The result is then used to calculate normalised loss for the
whole image Lmask using Equation 4.

Lmask(Iest, Igt) =
1

N
X

n

ln(iest, igt) (4)

We formulate the joint coordinate estimation as a re-
gression task using the second CNN. The network consists
of three dilated convolutional layers with 32, 64 and 128
filters respectively, two max-pooling layers in between and
a fully connected layer in the end. Details of the network
architecture can be seen in Figure 4(b).

Loss function Lcoords is based on Euclidean distance
calculations between estimated and ground truth values as
defined in Equation 5, where Nj is the number of joints,
Ji defines ground truth position of each joint and Ei is the
estimated position of each joint by CNN.

Lcoords =
1

Nj

NjX

i=1

kJi � Eik2 (5)

In this work we decided not to use any prior robot model
information to keep the system more adaptable to other robot
models in the future, meaning that a raw CNN output is used
to evaluate the accuracy of the results without any additional
post-processing.

IV. CNN TRAINING
There are two main possibilities on how to train the

cascaded CNN. The first option is to train the whole network



(a) Results: evaluation of the CNN trained for the
robot body classification, mask accuracy over a
number of iterations for all three robots using val-
idation sets. It can be seen that UR5 outperformed
UR3 and UR10.

(b) Results: evaluation of the CNN trained for 3D
coordinate estimation of the robot joint positions
using input based on ground truth mask data.

(c) Results: evaluation of the CNN trained for 3D
coordinate estimation of the robot joint positions
using the full system.

Fig. 5. Evaluation of our method based on accuracy over a number of training iterations.

end-to-end and observe the middle layer of the mask. How-
ever, this might not result in the output that is expected and
is unlikely to reach the desired mask accuracy. In this work,
we train each of the CNNs separately optimising for the best
result at each stage. This approach provides the flexibility
of using just a part of the system, for example, if only a
mask for the robot body is needed. When running the full
cascade, the output of the first CNN is used to mask a color
input image and use it as an input for the second CNN. The
training has been done on each type of the robot separately,
however, by observing intermediate-level feature maps, we
have noticed very similar features for all of the robot models.

The training of the classification CNN took slightly more
than 2 days on a regular nVidia GeForce 1080 GTX graphics
card for all the datasets. The data was selected in a random
order to avoid any biases and split in mini-batches of 128
images each for input to avoid overloading memory of the
GPU. The learning rate was gradually decreasing, starting
at 0.001 and reducing to 0.000001 throughout the learning
process. It took 5000 epochs for the network to converge.
The input size was half of the original image size: 256⇥212
pixels. The pixel intensity values were converted to float and
normalised to lay between 0 and 1. Additionally, pixel values
of the ground truth image are clipped to avoid division by
zero in cases when the estimated mask fits the ground truth
perfectly.

Training of the coordinate estimation CNN was signif-
icantly faster, taking under 7 hours, also converging after
5000 epochs. The learning rate was adjusted during the
training, starting at 0.03 down to 0.0001, and momentum
was increased over epochs from 0.9 to 0.999.

V. RESULTS
For evaluation, we use test sets and analyze outputs of the

trained systems against the ground truth data and calculate
the accuracy of the system. For the robot body classification,
the accuracy is defined by comparing how many pixels in the
CNN output mask image match the ground truth mask. For
the robot joint coordinates estimation, the error is defined

Fig. 6. An example result of the UR3 robot body mask classification
including input, ground truth, raw and thresholded CNN output images.
It can be seen that the mask fit corresponds well with the ground truth.
The only drawback is that the fit is not as sharp as the ground truth image.
However, no unwanted artefacts or false positives are present.

by the Euclidean distance between the estimated coordinates
and ground truth in all three dimensions, averaged over all
joints of the robot.

First, the results are presented for each of the CNNs
separately and then of the whole system altogether. Results
are analysed separately for the three types of robots.

A. Evaluation of the Robot Classification Task

First, we present the results of the robot classification
task for each type of the robot. Accuracy is defined by
the number of correctly classified pixels in the mask im-
age. Classification of UR5 reached the accuracy of 98, 1%
and outperformed UR3 and UR10 with 93, 1% and 92, 8%
respectively. The accuracy results over the training iterations
can be seen in Figure 5(a). An example mask estimation is
shown in Figure 6.



Fig. 7. Estimated robot joint position coordinates marked on the images taken from the dataset. Due to difficulty in visualising 3D coordinates on printed
figures, the estimated joint coordinates were mapped back into 2D images. Each row represents UR3, UR5 and UR10 robots respectively.

B. Evaluation of the Robot Joint Coordinate Estimation
In order to analyse the coordinate estimation, first, we

use the overlay images based ground truth mask data for
the input. As expected, CNN trained on UR5 data provided
the most accurate estimation with the average position error
of 2, 0cm, while UR3 had the error of 2, 5cm and UR10 -
3, 2cm. The coordinate estimation results over the training
iterations can be seen in Figure 5(b).

C. Evaluation of the Full System
For the full system evaluation, the process is the com-

bination of the previous two methods joined together: the
resulting output image of the robot mask classification is
used to overlay the color image and passed as an input for the
robot joint coordinate estimation. It is imperfect compared
to the ground truth data, so worse results were expected
compared to the previous test. For the full system, the final
coordinate estimation error increased to 2, 4cm for UR5,
2, 6cm for UR3 and 3, 9cm for UR10. Results can be directly
compared with the previous Section V-B.

The final results are summarised in Table II and the
estimated coordinates by the full system marked over the
dataset images can be seen in Figure 7. Because it is difficult
to show 3D estimations on 2D figures, the visualisation of
estimation is done by mapping the estimated 3D coordinates
back onto input images.

VI. CONCLUSIONS AND FUTURE WORK
In this work, we have addressed robots for collabora-

tion and human-robot interaction tasks. We have found

TABLE II. Experiment Results Summary

UR3 UR5 UR10
Mask Accuracy, % 93, 1% 98, 1% 92, 8%
Coordinates Error (separate) 2, 5cm 2, 02cm 3, 21cm
Coordinates Error (full system) 2, 57cm 2, 42cm 3, 89cm

an alternative solution for Hand-Eye calibration and added
the flexibility of placing the camera at arbitrary position
observing the robot workspace, while still being able to
identify the robot in the image and estimate its position.

Our system uses a cascaded convolutional neural network
to achieve the goal. For training and testing purposes, we
have collected a number of datasets using a line of robots
produced by Universal Robots: UR3, UR5 and UR10. This
allowed us to precisely train the CNN and achieve the
accuracy in robot body classification of up to 98% on the
test set and 3D joint coordinate estimation with an error
of less than 3cm. Furthermore, we have shown that the
accuracy directly correlates with the training duration and a
number of collected samples. This result is still not accurate
enough for applications like visual servoing, but it can be
good enough for some collaboration tasks as well as safety
alerts in cases where a person does not have to work in a
very close proximity to the robot.

Some example applications would be a small body-
mounted camera for doctors working in robotised operating
rooms or visitors on the factory floor. It would also be useful
in robot-robot interaction cases, when a mobile robot is
operating in the same areas as the robot arms, either in order



to avoid each other, or support the operations by bringing
objects, which would be handled by robot manipulators. The
system would be trained to identify all the robots existing in
the specific environment, and the person would be warned
by a visual or audible alert in cases where he gets within
the reachable distance of the robot. Furthermore, if the robot
gets too close to the person, an emergency stop could be
initiated.

For the human-robot collaboration tasks, hand tracking of
a person can be achieved using devices like Leap Motion
or skeleton tracking to get an estimate of the relative hand
positions to the robot. This makes it possible to achieve the
tasks like tool handover between the person and the robot,
completing joint tasks or even hand-gesture control, while
avoiding any unwanted physical contact between the two.

Further work includes expanding our method to new types
of robots by using transfer learning from pre-trained CNN.
This could allow achieving good accuracy with a limited
number of training samples. Furthermore, we will add state-
of-the-art skeleton tracking and human motion prediction to
perform collaborative human-robot tasks and evaluate the
performance compared to the cases of having fixed camera-
robot setups.
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Abstract— The field of collaborative robotics and human-
robot interaction often focuses on the prediction of human
behaviour, while assuming the information about the robot
setup and configuration being known. This is often the case with
fixed setups, which have all the sensors fixed and calibrated in
relation to the rest of the system. However, it becomes a limiting
factor when the system needs to be reconfigured or moved. We
present a deep learning approach, which aims to solve this
issue. Our method learns to identify and precisely localise the
robot in 2D camera images, so having a fixed setup is no longer
a requirement and a camera can be moved. In addition, our
approach identifies the robot type and estimates the 3D position
of the robot base in the camera image as well as 3D positions
of each of the robot joints. Learning is done by using a multi-
objective convolutional neural network with four previously
mentioned objectives simultaneously using a combined loss
function. The multi-objective approach makes the system more
flexible and efficient by reusing some of the same features and
diversifying for each objective in lower layers. A fully trained
system shows promising results in providing an accurate mask
of where the robot is located and an estimate of its base and
joint positions in 3D. We compare the results to our previous
approach of using cascaded convolutional neural networks.

I. INTRODUCTION

With the tendency of robotic hardware becoming cheaper
and more powerful, robots are entering our everyday envi-
ronments. Household robots like vacuum cleaners do not
surprise people anymore. Even faster robot adoption hap-
pens in hospitals, warehouses and factories. An important
reason for this is advancements in environment perception
capabilities. Instead of fencing off the robots, the concept of
Industry 4.0 is aimed at having a new era of collaborative
robots, which are safe to operate in shared workspaces with
humans [1]. The concept of a shared workspace has been
an active research area for many years, which is still highly
relevant today [2] [3]. The industry is catching up to research
with robotic platforms like Baxter and Sawyer, which are
known to be fully safe to operate around humans. However,
they are still at a stage, where collision detection is the main
safety system [4]. But we are looking at more sensitive envi-
ronments, for example, hospitals, where collision detection
is not good enough and full avoidance is needed.
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One of the most common methods to observe the en-
vironment is by using vision sensors. In this application,
3D cameras observe the workspace and indicate the areas,
which are free of obstructions and are safe to operate in
as well as obstacles, which should be avoided. Given this
information, a robot can find the safest path to reach its goal.
However, normally these sensors are fixed either in relation
to the robot or in the environment. In order to function in
the same coordinate frame and provide accurate information
to the robotic system, Hand-Eye calibration is performed. It
works well as long as the setup of the sensors and the robot
base stays static. If any of them are moved, intentionally or
accidentally, the calibration has to be repeated in order for
the sensors to work with the necessary precision. Despite
some automatic calibration procedures, the process can still
be time-consuming, and the system has to be halted until this
issue is resolved [5].

One way to make the environment aware robots is to use
long-term environment observation. Such approaches have
been used in the development of robot autonomy and self-
localisation tasks. This is commonly developed as navigation
algorithms for mobile robot platforms to find their way
around in the environment and avoid any static or dynamic
obstacles on the way. Typically, robot model and dynamics
are typically known [6] [7] [8] [9].

Visual-based robot manipulator tracking has been exten-
sively researched as well. End-effector being the main point
of focus with the aim of conducting robot control based
on visual servoing [10] [11]. Furthermore, it has proven to
be an effective method for adaptive redundant robot control
in Cartesian space [12]. Image-based tracking of 7-DoF
robot arm showed promising results with dynamic parameter
tuning as well [13]. In another project, authors use particle
swarm optimisation method for fuzzy sliding mode control
to track the end-effector of the robot manipulator [14].
Furthermore, robotic arms were combined with deep learning
approaches to learn direct motor commands by using visual
inputs. They were based on reinforcement learning and by
trying thousands of grasps reaching impressive results of
adaptive grasping approaches. However, that required many
hours of training while using real hardware [15] [16] [17].

One thing that majority of discussed systems have in
common is that prior knowledge of the robotic platforms
is given or the setups in regards to hardware are fixed.
Any changes to the setup would require re-calibration or
at least fine-tuning the algorithms to achieve the same level
of performance. Furthermore, common obstacle avoidance
algorithms for robotic arms are focusing on the end-effector



Fig. 1. Samples from a collected robot dataset. Each row of images represents different robot type in the following order: UR3, UR5 and UR10. The
dataset was created using a varying background to provide more robustness.

instead of the whole robot body.
Having non-fixed setup allows easier camera placement in

cluttered environments with multiple robots, like a factory
floor or automated surgery room. Normally, there is limited
space and equipment might have to be shifted around quite
frequently. This results in limited line-of-sight or people
standing in front of the sensor. Having a multi-camera setup
can add the needed redundancy, or using a wearable camera
would provide a viewpoint of the operator. On a factory floor,
such a camera-based system can give an indication of all the
robots located around the person wearing it. A warning or
even an emergency stop option can be incorporated into the
system for the situations when the robot gets too close to the
person within its field of view to ensure a safe operation.

A similar approach could be also used in robot-robot
interaction cases, where similar or heterogeneous robots are
working in the same environment. Even without having
direct communication channels, robots can avoid collisions
with each other. On the other hand, this can be used as a
redundant navigation system, given the map of the main
robots is known, the mobile platform can re-localise itself
according to their detected positions. Collaborative tasks
would be targeted also, where robots have to hand over tools
or work together. Having an active communication channel
is not always reliable, so being able to identify robot arms
in the environment and their configuration using on-board
camera can allow to solve these problems. Provided high
enough processing power, swarm robotics could benefit from
such systems, where each individual is making independent
decisions without any centralised system.

Our current research targets this problem by trying to add
flexibility to the robot identification and having easily ad-
justable setups. One goal is to have a free moving camera and
remove the need for Hand-Eye calibration. Instead of hav-
ing a known transformation matrix between the coordinate
frames of the sensor and the robot base, we teach the system
to identify the robot body in a 2D color image provided by

the vision sensor. This would allow having cameras placed
on moving objects, for example, wearable ones or placed on
other robots moving in the environment. Our method uses
convolutional neural networks (CNNs), which learn visual
cues allowing it to understand the environment [18]. The
system identifies the robot body in the color image, and depth
information normally provided by 3D cameras is not needed
for the recognition task anymore. Furthermore, the system
estimates the robot body configuration and 3D coordinates
of each joint of the robot.

Current work is an extension and improvement of our
previously proposed method to use cascaded CNNs (C-CNN)
in order to solve this problem [19]. The advantage of using
multi-objective CNN is the ability to train the network on
multiple tasks simultaneously while re-using the same fea-
tures instead of having to re-learn some of them when using
C-CNNs. Similar multi-objective CNN approaches have been
used for detecting facial landmarks, face recognition and
localisation as well as orientation [20] [21]. Other similar
approaches can be done to optimise the training of the
network on two GPUs, each one following each branch [22].
Also, mid-layer parameter transfer between two identical
networks, but each one having different sets of objective
labels has proven to be effective [23].

This paper is organized as follows. We present the system
setup and dataset collection in Section II. Then, we explain
the proposed method and CNN architecture in Section III and
the training procedure in Section IV. We provide experimen-
tal results in Section V, followed by relevant conclusions and
future work in Section VI.

II. SYSTEM SETUP AND DATASET COLLECTION

Deep learning typically requires large amounts of diverse
training data for robust learning. However, this is an issue
for industrial robotics applications, because there are close
to none existing public datasets with well-marked ground
truth data. Thus, in order to get reliable training data, a new



(a) Color image from the dataset
used as an input.

(b) Ground truth model of the robot
mask.

(c) Ground truth data of the robot
base 3D position in relation to the
camera marked on the input image.

(d) Ground truth data of the 3D
position of robot joints marked on
the input image.

Fig. 2. Example image of the dataset and ground truth examples of the
UR3 robot.

dataset was created specifically for the presented application.
The whole range of Universal Robots: UR3, UR5 and UR10,
were used at three institutions: TU Graz, Joanneum Research
and the University of Oslo. All three robots share similar
visual appearance, but differ significantly in size, reach and
payload capabilities.

As a vision sensor, a Kinect V2 camera is used [24].
It provides both color image and depth information. Depth
images are only used for the creation of the ground truth
data, while the whole following recognition process is using
just a color image as an input.

For each recording, in order to have a precise ground
truth data, Kinect was placed at arbitrary position observing
the workspace of the robot. At each position, a Hand-Eye
calibration was performed by placing a marker on the end-
effector of the robot and using both color and depth image
for the calibration process [25]. This provides an accurate
coordinate frame transformation between the camera and the
base of the robot, with an error below 0.52 cm for all the
datasets.

TABLE I. Dataset summary describing a number of samples collected for
each type of the robot. In total 9 recordings were made, 3 for each type of
robot.

Recording Robot Type Number of Samples
Rec 1 UR3 211
Rec 2 UR3 252
Rec 3 UR3 463
Rec 4 UR5 252
Rec 5 UR5 756
Rec 6 UR5 1512
Rec 7 UR10 112
Rec 8 UR10 278
Rec 9 UR10 514

Once the transformation is known, a mask defining the
location of the robot in the camera image can be calculated.
It is done by utilising the encoder information from each
joint of the robot and using a simplified model of the

robot. The robot is represented using basic cylindrical and
spherical shapes in 3D space according to its model and
then mapped onto a virtual 2D image representing the sight
of the camera. Thresholding this image results in a robot
body mask representation in the camera image. The MoveIt!
package was used to implement this method [26].

The robot should be observed from all the different angles
and in a high variety of joint angle configurations to achieve
good robustness. Movements for the data collection were
programmed to provide a high diversity of viewpoints and
robot body configurations. Each robot joint is moved through
the full range of motion in combination with other joints as
well. The step size of the joint movements is varied between
the datasets resulting in a different number of samples in
each. After each movement, a trigger signal is used to save
the data. At each instance, camera images, joint coordinates,
Cartesian coordinates of each joint and ground-truth robot
mask images were saved. The number of samples per dataset
varied from 112 to 1512. The variation was caused by differ-
ent types and resolutions of programmed robot movements
during the data collection. In total 9 datasets were collected,
3 for each type of the robot, summarized in Table I. Example
images from the collected dataset are shown in Figure 1.
Datasets with UR5 robot were the most extensive given the
access to the robot at the lab of the main author. An example
of color and ground truth of robot mask, base position and
joint positions can be seen in Figure 2.

Recorded images have 512⇥424 pixel resolution and they
are all rectified to compensate for lens distortion. Internal
camera calibration was used to ensure that both color and
depth information have a good overlap, avoiding any offsets.
Random sampling was used to divide the final dataset into
the training set and the test set by ratios of 80% and 20%
of all the images respectively.

III. METHOD

Our approach is based on a multi-objective CNN structure.
This approach allows us to get multiple outputs of different
types by having just one input. It is achieved by having a
number of convolutional layers, which are common for the
whole system and then branching out the structure for each of
the objectives. The whole system is trained simultaneously,
meaning that the features in common layers are reused.

In our case, we train for four objectives:
• Robot mask in the image
• Robot type
• 3D Robot base position in relation to the camera
• 3D Position of the robot joints
The structure of the CNN is shown in Figure 3. It consists

of the two main branches. The first one learns a classification
task of finding the robot in the input image. It results in a
robot mask defining the location of the robot. The second
branch is for the regression tasks of finding the 3D robot base
coordinates in relation to the camera and the 3D coordinates
of each of the robot joints. In addition, on the same branch,
the classification of the robot type is done.
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Fig. 3. Multi-objective CNN structure. Input is a simple 2D color image and the network is trained for four outputs: robot mask, 3D coordinates of robot
joints, 3D coordinates of robot base position and robot type. There are two main branches of the CNN. The first one is aimed to learn the features leading
to an accurate robot mask mainly consisting of dilated convolutional layers. It is marked by red solid arrows. The second branch, marked in blue dashed
arrows, consists of a number of max pooling and dilated convolutional layers with fully connected layers at the end. The goal is to predict coordinates as
a regression task as well as classify the robot type. Additionally, there is a branch starting from the 4th convolutional layer of robot mask task to the end
of the blue branch using summing of fully connected layers, marked in dotted green arrows. It adds the information of features well defining the visual
representation of the robot to the other tasks further improving the results. The whole CNN is trained for all four outputs simultaneously using a common
loss function.

In addition, there is the second branch from the 4th
convolutional layer towards the robot mask, which connects
to the second branch. Given the idea that robot body parts
are learned quite well for the robot mask classification task,
this additional input provides the essential information for
identifying the location of the robot joints. Fully connected
layers, which are summed, are believed to filter the important
visual cues and assist for the coordinate regression tasks.

A. Loss Functions

Loss functions are used to determine the quality of train-
ing. Given we have four objectives, we first describe loss
functions for each one. Because the network is trained for
all of the objectives simultaneously, finally we combine all
four loss function into one used for the actual training.

The loss function for the robot mask was designed to
adjust for a small area the foreground object takes up in the
input image. In our datasets, the area taken up by the robot
body in the input image was varying between 6�17% of the
whole image. If the loss function does not compensate for
this, the CNN could classify all the pixels as background
and still achieve the accuracy of 83 to 94%, which is
conceptually wrong. To prevent this, the foreground weight
wfg is calculated, as described in Equation 1. It is based
on the inverse probability of the foreground and background
classes, where Y 2 {fg, bg}.

wfg =
1

P(Y = fg)
(1)

The background weight wbg is calculated in Equation 2.

wbg =
1

P(Y = bg)
(2)

The robot mask loss function is calculated in two steps.
First, a per-pixel loss ln is calculated in Equation 3, where
iest is P(Y = fg), (1 � iest) is P(Y = bg) and igt is the
ground truth value from the mask image.

ln(Inest, I
n
gt) =� wfgiest log (igt)

� wbg(1� iest) log (1� igt)
(3)

Then, it is used as an input to calculate normalised loss
for the whole image Lmask in Equation 4. A normalisation
factor N , which is a number of pixels in the image, allows
us to keep the learning rate fixed, despite the variance of the
input image size.

Lmask(Iest, Igt) =
1

N
X

n

ln(iest, igt) (4)

Loss functions for both robot base coordinates and the
coordinates of the robot joints are formulated as regres-
sion tasks. Both of them use Euclidean distance between
estimated and ground truth values. Loss function for the
3D coordinates of robot joints LJcoords is described in
Equation 5, where Nj is the number of joints, Ji defines
ground truth position of each joint and Ei is the estimated
position of each joint by the CNN.

LJcoords =
1

Nj

NjX

i=1

kJi � Eik2 (5)

Similarly, the loss function for the coordinates of the robot
base LBcoords is shown in Equation 6. Bxyz is the ground
truth position of the robot base in 3D and Exyz is the
estimated 3D position of the robot base. These positions are
relative to the camera. Considering the goal of detecting the
position of the robotic manipulator, estimating just Cartesian
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Fig. 4. Evaluation of our method by testing the trained system on the test dataset.

coordinates is sufficient. If necessary, the angles of each joint
in relation to the robot base could be calculated by using
coordinate positions.

LBcoords =
��Bxyz � Exyz

��
2

(6)

The loss function to identify the robot type was defined
as a categorical cross-entropy problem. It is commonly used
for multi-class classification problems. Ltype is calculated in
Equation 7, where p is the ground truth labels, q are the
predicted labels and c 2 R, where R are all the available
types of robots in the dataset.

Ltype = �
X

c

p(c) log q(c) (7)

The final loss function Lfinal is a weighted combination
of all four previously described functions. The larger the
weight W , the higher the emphasis on the correct prediction
of the corresponding value. And the weights should be
selected to have a good overall performance of the system.
The calculation of Lfinal is described in Equation 8.

Lfinal =WmaskLmask +WJcoordsLJcoords

+WBcoordsLBcoords +WtypeLtype
(8)

In order to keep the CNN easily adaptable to other types
of robots in the future, no prior information about the robot
model is incorporated in the system. The raw CNN output
is used to evaluate the accuracy of the results.

IV. CNN TRAINING

Training of the multi-objective CNN is done for all four
objectives at the same time. One possibility to adjust the
quality of results is to adjust the weights given to the loss
functions of each of the objectives when defining the final
loss function of the system. In our case, the weight values
were hand-selected using trial and error during the testing
phase. Selected weight values were the following:

• Wmask: 1.0
• WJcoords: 1.5
• WBcoords: 1.5
• Wtype: 0.3

The training is done on the training set, including images
of all three types of robots simultaneously. In total 926
samples for UR3, 2520 samples for UR5 and 904 samples
for UR10 were used

In order to speed up the process and have reasonably
sized mini-batches, the input size of the images was reduced
by half from the original dimensions, down to 256 ⇥ 212
pixels. The pixel intensity values of the input images were
normalised to the range between 0 and 1. Furthermore,
pixel values of the ground truth images are clipped to avoid
division by zero in cases when the estimated mask fits
the ground truth perfectly. In order to avoid any training
biases, the data were randomly shuffled and split into mini-
batches of 64 images each, fully utilising the memory of the
GPU. The learning rate was set to 0.001 at the beginning
of the training and then gradually decreased to 0.000001
as the training progressed. The CNN converged after 8000
iterations. It took 60 hours to train the system using a regular
NVIDIA GeForce 1080 GTX graphics card.

V. RESULTS

The evaluation was done by testing our network on the
test set and comparing the output against the ground truth
data. The robot mask accuracy is defined by comparing a
number of pixels in the CNN output image that match the
ground truth mask. For the robot joint and base coordinates,
Euclidean distance between the CNN estimated results and
ground truth results was calculated. Robot type accuracy was
computed by counting the percentage of correct classification
instances. We compare the results against our previously
presented C-CNN approach [19].

Robot mask classification achieved an accuracy of 98%,
which is almost 3% improvement compared to our previous
method, as seen in Figure 4(a). A significant amount of this
error comes from failing to estimate sharp corners in the
mask image because CNN outputs slightly blurry mask com-
pared to ground truth. It is likely that some post-processing
would allow even further improvement by increasing the
sharpness of the mask.

The overall error of the 3D position of robot joints was
3.16 cm, which is a slight improvement compared to the
error of 3.32 cm in our previous work. If we analyse each



Fig. 5. Estimated robot joint position coordinates marked on the images taken from the dataset. Due to difficulty in visualising 3D coordinates on printed
figures, the estimated joint coordinates were mapped back into 2D images. Green crosses indicate the ground truth position, red circles indicate predicted
positions of joints and magenta circles indicate the predicted position for the robot base.

joint separately, we can see the tendency of the joints closest
to the robot base having a smaller average error, as well as
smaller scatter, compared to the joints closer to the end-
effector. Results are showing that in Figure 4(b). It can be
explained by analysing the reachability from the base of each
of the joint. The end effector has the largest range of motion,
and it reduces for the joints closer to the robot base. This
means the range of possible positions varies significantly, and
estimation is more difficult in the larger range of possible
positions. However, the error difference is minor.

TABLE II. Summary of the results on the test set of a Multi-Objective
CNN with a comparison to our previous work using C-CNN.

Measure Current Work Previous Work
Mask Accuracy, % 98% 94.6%
Robot Type Accuracy, % 98.3% —
Joint Pos Error (Mean) 3.16cm 3.32cm
Base Pos Error (Mean) 2.74cm 2.97cm

The estimation of the position of the robot base in relation
to the camera had an average error of 2.74 cm. Once again,
this is lower compared to C-CNN approach, where the same
estimation error was 2.97 cm. Robot type classification made
just a few wrong decisions resulting in 98.3% accuracy. The
forward propagation time (detection speed) of the neural
network was on average 15 ms for one image, making it
suitable for real-time applications.

The final results are summarised in Table II, and the
estimated coordinates by the full system marked over the
dataset images can be seen in Figure 5. Because it is difficult
to show 3D estimations on 2D figures, the visualisation of
estimation is done by mapping the estimated 3D coordinates

back onto input images.
Both in the current multi-objective CNN approach and

the C-CNN method, we used exactly the same datasets for
training and testing, so the results can be compared directly.
Given the lack of similar work, no suitable benchmark was
found to allowing a direct comparison of achieved results.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a solution for detecting
a robot manipulator and estimating the positions of its
joints in a 2D camera image. A camera can be placed in
arbitrary positions overlooking the robot workspace and the
method successfully localizes the robot without the need for
any additional setup or Hand-Eye calibration. This provides
more flexible and quickly reconfigurable environment aware
robotic setups for tasks like human-robot or robot-robot
interaction. We have used three types of robots produced
by Universal Robot for training and testing of the system:
UR3, UR5 and UR10.

Our system uses a multi-objective convolutional neural
network approach to achieve the goal. It optimises the system
for four objectives simultaneously provides the mask of an
area where the robot is present in the camera image, its base
position in relation to the camera, 3D positions of the joints
of the robot as well as the type of the robot, respectively
the 3D joint position error was less than 3.16 cm, the robot
mask accuracy was 98% and the robot type was successfully
recognised in over 98.3% of cases. These results are an
improvement of our previously presented C-CNN approach,
both in accuracy and flexibility of the system.



Given current results, the continuation of work will be to
apply this method in more complex environments containing
multiple robots and people working in the same workspace.
Self-occlusions were present in the tested datasets and some
minor occlusions of other objects, however, more evaluation
is needed using cases like people or other machinery passing
by between the camera and the robot blocking the view.

This work has multiple possible applications. One would
be the safety aspect of identifying robots in robotised en-
vironments like factory floors, warehouses or automated
surgery rooms where an operator has a wearable camera
detecting robots in the field of view. Another application
would be for robot-robot interaction. With swarm robotics,
both homogeneous and heterogeneous, and different sizes,
direct communication between them is not always reliable.
Our approach would allow the robots to observe and track
each other using small cameras and identify the intentions
of other robots in the surroundings.

For the human-robot collaboration tasks, a person tracking
can be achieved using devices like Leap Motion or skeleton
tracking to estimate of the relative hand positions to the
robot. This can be used for tool handover between the person
and the robot, working towards a common goal or even
hand-gesture control, while avoiding any unwanted physical
contact between the two.

In the future, we plan to test the system with more types
of the robots by using transfer learning on pre-trained CNN.
In this case, the dataset needed to teach to identify a new
robot type should be significantly reduced compared to the
current setup. Adding human skeleton tracking would move
the work closer to the real-world human-robot interaction
tasks. The system will be tested in some use case scenarios to
identify the robustness in less controlled environments with
more illumination changes and changing setups.
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Transfer Learning for Unseen Robot Detection and Joint Estimation on
a Multi-Objective Convolutional Neural Network

Justinas Mišeikis1, Inka Brijacak2, Saeed Yahyanejad3, Kyrre Glette4, Ole Jakob Elle5, Jim Torresen6

Abstract— A significant problem of using deep learning
techniques is the limited amount of data available for training.
There are some datasets available for the popular problems like
item recognition and classification or self-driving cars, however,
it is very limited for the industrial robotics field. In previous
work, we have trained a multi-objective Convolutional Neural
Network (CNN) to identify the robot body in the image and
estimate 3D positions of the joints by using just a 2D image,
but it was limited to a range of robots produced by Universal
Robots (UR). In this work, we extend our method to work with
a new robot arm - Kuka LBR iiwa, which has a significantly
different appearance and an additional joint. However, instead
of collecting large datasets once again, we collect a number of
smaller datasets containing a few hundred frames each and use
transfer learning techniques on the CNN trained on UR robots
to adapt it to a new robot having different shapes and visual
features. We have proven that transfer learning is not only
applicable in this field, but it requires smaller well-prepared
training datasets, trains significantly faster and reaches similar
accuracy compared to the original method, even improving it
on some aspects.

I. INTRODUCTION
Industrial robotics has been associated with structured and

well-defined environments for many years and robot arms
have achieved great performance in areas like manufactur-
ing. It comprises of hard-coded repetitive motions, where a
machine can do a better job compared to a person in terms
of no fatigue, precision and non-stop operation. However,
with developing hardware, computing power and advancing
algorithms, the same systems are becoming more adaptive.
Nowadays, instead of fencing off the robots, environment
understanding and adaptive behaviour is a part of the Industry
4.0 concept, where robots and people can share the same
workspace and collaborate [1].

There are numerous approaches to sense the environment:
laser scanners, stereo vision, RGB-D cameras, camera arrays,
ultrasound sensors, motion capture systems. Each one has its
own pros and cons, often either needing additional markers
or calibrated devices or having a high price-tag. Very often
there is still a significant amount of work needed to set up
a new robustly working system.

Inspiration of the environment understanding comes from
biology - how animals and especially humans are able to
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understand the environment. We are capable of learning
what objects are, how they move, their functionality and the
way we should interact with them by looking at example
situations. Furthermore, after we know how it works in some
situation, it is very likely that next time we see similar
conditions, we will be able to find parallels between the
two and figure out how we should act by simply using our
previously gained knowledge. That is the motivation of the
transfer learning method, which uses a previous well-trained
neural network and adjusts it to new conditions using limited
amount of training data and significantly shorter training time
compared to the full training of the neural network.

Transfer learning has been used in a variety of fields. In
many cases, the whole or part of the CNN trained on Ima-
geNet is taken as a base network and then adjusted to a spe-
cific application [2]. This has been proven to work for mid-
level image representations in object classification, using the
pre-trained network on natural images to adapt for medical
image recognition and even emotion recognition [3] [4] [5].
Another interesting application of transfer learning is to use
a fully trained network on night-time satellite imagery of
poverty areas and adapt it to recognise poverty areas from
daytime satellite imagery [6]. Furthermore, detailed analyses
of the transfer learning approaches were made with surveys
of the techniques used and various CNN structures [7] [8].

The proof that generalised visual features can be trans-
ferred to new systems has motivated to use it to extend
our previous work of recognising the robot and estimating
its 3D position of the joints by using a simple 2D color
camera image [9]. Instead of using ImageNet or any other
well known pre-trained network, we take our previously fully
trained multi-objective CNN on Universal Robots and use it
to adapt to a new Kuka LBR iiwa robot arm. Additionally,
the new dataset adds new unseen backgrounds making the
network even more robust.

The main goal of identifying the robot in a 2D camera
image is to remove the need for fully calibrated camera-
robot systems allowing for more dynamic environments,
while still ensuring safe operations. It is crucial for shared
workspaces between humans and robots. There are many
good methods of real-time dynamic obstacle and people
avoidance, but most of them require a fully-calibrated robot-
camera system [10] [11]. Despite some efficient Hand-Eye
calibration methods, it is still a cumbersome process when
the operation of the robot has to be halted until the calibration
is completed [12]. Furthermore, it can simplify the task
of having mobile robots moving around the floor without
any special markings. By identifying other fixed robots it



Fig. 1. Samples from the collected robot datasets. It consists of a line of Universal Robots (silver-blue) as well as Kuka LBR iiwa (silver-orange). The
data was collected with a variety of backgrounds and light conditions to provide more robustness.

can both avoid possible collisions and localise itself to
known fixed-base robots. By identifying other robots and
knowing their exact position, the setup could be expanded
to prediction of the behaviour of other machinery in the
surrounding environment without having the direct commu-
nication channel between them. This would be a very useful
approach in swarm robotic applications.

This paper is organized as follows. We present the system
setup and dataset collection in Section II. Then, we explain
the proposed method and CNN structure and configuration in
Section III and the transfer learning procedure in Section IV.
We provide experiments and results in Section V, followed
by relevant conclusions and future work in Section VI.

II. SYSTEM SETUP AND DATASET COLLECTION

Training a deep learning network typically requires a large
amount of diverse training data. The main problem lies in the
necessity to have precise ground-truth information, which is
given as a correct answer.

Our setup consisted of a vision sensor, in this case, a
Kinect V2 camera, placed in arbitrary positions overlooking
the robot and perform Hand-Eye calibration at each of the
positions [13]. The calibration is done by placing a known
marker on the end-effector of the robot and performing a
number of movements until the calibration accuracy reaches
the necessary precision. The result is a coordinate frame
transformation between the camera and the robot base [14].

Given a precise coordinate frame transformation, the robot
model is used together with the live information from its joint
encoder readings to create a simplified mesh model defining
the robot shape. Then it is transformed to the coordinate
frame of the camera and depth image estimated from the
viewpoints of the camera. The result is a precise mask of the
robot body in the camera image, which can be overlayed with
a color image and used as a ground truth data for teaching the
CNN. The main benefit is that this process is fully automated
by using ROS with MoveIt! package [15]. The robot model
is taken from the Unified Robot Description Format (URDF)
files provided by the robot manufacturers [16].

In our experiments, we use an already trained multi-
objective CNN from the previous project [9], which was
trained from scratch on three robot models from Universal
Robots: UR3, UR5 and UR10. In order to test the capabilities
of transfer learning, new datasets using Kuka LBR iiwa
were used. For comparison reasons, relatively large datasets,
summarised in Table I, were collected for all the robots.
These datasets consist of multiple recordings, each one with
the camera placed at different angles and distances relative
to the robot as well as having various backgrounds.

TABLE I. Dataset summary describing a number of samples collected for
each type of the robot.

Robot Type Number of Datasets Total Number of
Samples

Universal Robots 9 4350
Kuka LBR iiwa 14 1837

Robot movements included a large variety of joint config-
urations resulting in many viewpoints of the robot. Further-
more, lighting conditions were varied for each of the record-
ings to allow for more robustness regarding the brightness
and reflections.

The new datasets with the Kuka robot also included more
dynamic background with people moving around and even
another Kuka robot placed further away and not being used
in experiments. Furthermore, in some cases, the robot went
out of bounds of the color image. In total, 9 datasets of
Universal Robots and 14 datasets of Kuka robot were used.
Each recording had different camera placement, changing
distance between the robot and the camera, varying lighting
conditions and new background. During each of the record-
ings, the robot was moving to give a large variety of joint
configurations in the dataset.

At the completion of each movement, a trigger signal was
sent in order to save the color image, depth model, cartesian
and joint coordinates of each of the robot joint and ground-
truth mask model of the robot. All this information was later
used to train the neural network. However, depth information
was used only for training, while the recognition part of the



(a) Color image from the dataset
used as an input.

(b) Ground truth model of the robot
mask.

(c) Ground truth data of the robot
base 3D position.

(d) Ground truth data of the 3D
position of robot joints.

Fig. 2. Dataset, mask and ground truth value examples of the Kuka LBR
iiwa robot.

system relies only on the color camera image as an input.
In order to normalise the input data, internal camera

calibration was used to ensure a perfect overlap between
color and depth images. All the input images are also
rectified and have the resolution of 512⇥424 pixels. Testing
and validation sets were divided by the ratios of 80% and
20% respectively based on random sampling.

III. CNN STRUCTURE AND CONFIGURATION
The base of a multi-objective CNN is taken from previous

work, where it was trained on a line of robots made by
Universal Robot [9]. The network simultaneously optimises
for multiple heterogeneous outputs by using just a single
image as an input.

The network in this paper is trained on four objectives:
• Robot mask in the image
• Robot type
• 3D Robot base position in relation to the camera
• 3D Position of the robot joints
The structure of the CNN is shown in Figure 3. The

network shares a number of common convolutional layers
and then branches for more objective-specific optimisation.
Having a single training process, it means that the features
in common layers are reused.

A. Loss Functions
Loss functions are used to evaluate the training progress

and the achieved accuracy compared to the ground truth data.
Our system optimises for four objectives simultaneously,
resulting in four loss functions, which are later combined into
one for the training process. First, each of the loss functions
will be described separately followed by the explanation of
how they are all connected into one.

The robot body takes up a relatively small area in the
whole image. The area taken up by the robot body in UR
datasets is between 6 � 17% and for Kuka datasets, it is

between 8 � 18% of the whole image. Given a standard
pixel classification loss function, there would be cases when
an accuracy of over 82% can be reached by classifying the
whole image as a background. That is conceptually wrong,
so the loss function was adjusted by using the foreground
weight wfg , which is calculated in Equation 1. It is based
on the inverse probability of the foreground and background
classes, where Y 2 {fg, bg}.

wfg =
1

P(Y = fg)
(1)

The background weight wbg is calculated in Equation 2.

wbg =
1

P(Y = bg)
(2)

The loss function for the robot mask is defined by two
steps. First, a per-pixel loss ln is calculated in Equation 3,
where iest is P(Y = fg), (1 � iest) is P(Y = bg) and igt
is the ground truth value from the mask image.

ln(Inest, I
n
gt) =� wfgiest log (igt)

� wbg(1� iest) log (1� igt)
(3)

This is followed by a normalised loss calculation for the
whole image Lmask in Equation 4. A normalisation factor
N , which is the number of pixels in the image, allows us to
keep the same learning parameters independent of the input
image size.

Lmask(Iest, Igt) =
1

N
X

n

ln(iest, igt) (4)

3D coordinates of the robot base and robot joints are
defined as regression tasks. The loss function is based on
the Euclidean distance between the estimated values and the
ground truth values. For the robot joints estimation, the loss
function LJcoords is described in Equation 5, where Nj is
the number of joints, Ji is the ground truth position of each
joint and Ei is the estimated values by the neural network.

LJcoords =
1

Nj

NjX

i=1

kJi � Eik2 (5)

The loss function for the coordinates of the robot base
LBcoords is calculated in Equation 6. Bxyz is the ground
truth position of the robot base in 3D, and Exyz is the
estimated 3D position of the robot base. These positions are
relative to the coordinate frame of the camera.

LBcoords =
��Bxyz � Exyz

��
2

(6)

Classification of the robot type Ltype is defined as a cate-
gorical cross-entropy problem with multiple classes. Ltype is
calculated in Equation 7, where p is the ground truth labels,
q are the predicted labels and c 2 R, where R contains all
the available types of robots in the dataset.

Ltype = �
X

c

p(c) log q(c) (7)
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Fig. 3. Structure of the multi-objective CNN. Input is a 2D color image resulting in four outputs: robot mask, 3D coordinates of robot joints, 3D coordinates
of the robot base and the robot type. The network uses part of common convolutional layers and then branches off for objective-specific training. Fully-
connected (FC) layers, marked by blue area, are the ones being adjusted during the transfer learning process to adapt to the new robot model. Convolutional
layers learn generalised visual features of the image, so their parameters stay frozen during the transfer learning. This allows for quicker adaptation with a
limited number of input images compared to the full training process. The whole CNN is trained for all four outputs simultaneously using a common loss
function. Differently colored arrows represent connections of different branches in multi-objective CNN, each one focused for a certain type of output.

For the training of the multi-objective CNN and optimisa-
tion for all four objectives, a single loss function is needed.
This was achieved by combining the previously defined loss
functions into Lfinal by having a weight element for each
of the losses, as shown in Equation 8. The larger the weight
W , the higher the impact on the corresponding value.

Lfinal =WmaskLmask +WJcoordsLJcoords

+WBcoordsLBcoords +WtypeLtype
(8)

IV. TRANSFER LEARNING AND TRAINING

The benefit of transfer learning technique is that the
parameters contained in so-called frozen layers are copied
from the previously trained network, while only part of layers
is trained during the process. This speeds up the training
process and requires smaller training datasets compared to
the full CNN training. In this work, most of the convolutional
layers had the parameters transferred and frozen with all the
fully connected layers and only the two last convolutional
layers for robot mask estimation being trained to adapt for
specific variation in visual features. They contain more robot-
specific visual features, while the first layers learn more
general visual features, which are more adaptable for any
robot type. The exact setup is explained in Figure 3. By a
layer being frozen it means that after the parameter transfer,
they are fixed and not adjusted at all during the training.

Weights for the loss function are kept identical to the ones
in previous work given good results and ability to compare
the results of the works directly. Selected weight values were
the following:

• Wmask: 1.0
• WJcoords: 1.5
• WBcoords: 1.5
• Wtype: 0.3

One important difference between the UR robots and the
Kuka robot is the number of joints. Universal Robot line has
6 joints, while Kuka has 7 joints. This difference changes
the number of outputs for the 3D position estimation of
robot joints. However, because the fully connected layers,
as well as output layers, are trained, it can be adjusted to
accommodate estimation of an extra joint.

Training was done by using datasets of different sizes con-
taining the Kuka robot. Mini-batches were created in order
to make the most out of the available GPU memory and all
the data was randomly shuffled to reduce the biases. Before
starting any training, parameters for the frozen layers were
transferred from the old model fully-trained on UR datasets.
This ensured that each training had an identical configuration
in the beginning. The number of training samples varied by
the experiment and the input size of the images was reduced
by half from the original dimensions, down to 256 ⇥ 212
pixels. The pixel intensity values of the input images were
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Fig. 4. Evaluation of the transfer learning method using the test dataset in various categories.

normalised to the range between 0 and 1. The learning rate
was set to 0.001 at the start of the training and then gradually
decreased towards 0.000001 as the training progressed.

V. EXPERIMENTS AND RESULTS

A number of experiments were carried out in order to
determine the effectiveness of the transfer learning process.
In order to find the optimum amount of training samples
needed for transfer learning, each experiment consisted of a
training set with different size, all randomly sampled from
the Kuka dataset. The testing set was identical for all the
experiments.

TABLE II. Summary of the Transfer Learning results (using 312 samples
for training) on the test set of Kuka LBR iiwa robot with a comparison of
a Multi-Objective CNN with just Universal Robots.

Measure Full Training Transfer Learning
Mask Accuracy, % 98% 97.3%
Robot Type Accuracy, % 98.3% —
Joint Pos Error (Median) 2.46cm 2.87cm
Base Pos Error (Median) 2.13cm 2.02cm
Training Time (hours) 60 hours 2 hours

The evaluation was done using a testing set by comparing
the output against the ground truth data. The robot mask
accuracy is defined by counting the number of pixels in the
CNN output image that match the ground truth mask. For the
robot joint and base coordinates, Euclidean distance between
the CNN estimated results and ground truth results was cal-
culated. We compare the results of transfer learning method
trained on the Kuka robot against our previously presented
multi-objective CNN fully trained for UR robots [9]. Results
are summarised in Table II.

Compared to a fully trained system, the transfer learning
results matched closely. As seen in Figure 4(a), the error
in estimating 3D positions of robot joints was 2.87 cm
compared to 2.46 cm in a fully trained system, while the
robot mask accuracy difference was just 0.7% with 97.3%
for transfer learning method and 98% in a fully trained CNN.
Robot base position estimation was actually more accurate in
transfer learning method with an error of 2.02 cm compared
to 2.13 cm. Resulting positions of robot base and joints

Fig. 5. Estimated robot joint position coordinates marked on the images
taken from the dataset. Due to difficulty in visualising 3D coordinates on
printed figures, the estimated joint coordinates were mapped back into 2D
images. Green crosses indicate the ground truth position, red circles indicate
predicted positions of joints and magenta circles indicate the predicted
position for the robot base. In some cases, even when a part of the robot
is out of bounds, positions of visible joints as well as the unseen joint are
predicted with centimeter accuracy.

mapped onto 2D and marked on the example dataset images
are shown in Figure 5. The system was adapted for just one
type of the new robot, so we did not evaluate the accuracy
of robot type detection. The system adapted to an additional
robot joint in the transfer learning method. There can be
seen an increase in the error for Joint 3, and that could be
partly caused by a different structure of the robot, as seen in
Figure 4(b).

However, the main benefit of the transfer learning method
can be seen in training time. By looking at the Figure 4(c),
where loss calculation and training time is shown against the
number of samples used for training, it can be clearly seen
that the optimum result is around 300 training samples. To be



specific, it was the experiment, where 312 training samples
were used. It took a bit under 2 hours of training and the
resulting loss was 0.15. Having more samples, the loss got
down to 0.14, but it took significantly more time to train.
An interesting point was that by using the whole training
dataset, the loss increased back to 0.15 and took around 16
hours of training. The forward propagation time per sample
averaged to 13.5 ms. All the training and testing was done
on Nvidia Geforce GTX 1080 Ti graphics card.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a transfer learning ap-

proach to adapt a previously trained multi-objective CNN to
new types of robots. In general, the system identifies and
localises the robot arm and estimates its base and joints’
positions in 3D. This allows a camera to be placed in any
position and moved around without having to re-calibrate
the camera-robot system with Hand-Eye calibration. In this
work, we have shown that by taking a fully trained system,
a significantly less training data is needed to adapt it for new
robot models, which have a different shape, appearance and
even more degrees of freedom.

The results have shown that accuracy achieved by using
transfer learning closely matches the results of the fully
trained system and can even improve in some cases. This
means that the system is able to adapt and learn to recognise
new robots with having just limited amount of training
data. Similarly to what we do when learning new skills and
practising them afterwards.

This work can be useful in dynamic environments where
it is difficult to predict where robots, sensors and people
are located, but operational safety has to be established.
By expanding this method to numerous robots, and other
equipment, fixed setups and calibration can be discarded.
Unfortunately, the accuracy is still in centimetre level, and
it is not applicable for precision tasks. However, in many
adaptive human-robot and robot-robot interaction tasks, gen-
eral obstacle avoidance and collaboration movements could
be made possible.

Given a precise robot body detection, another possible
application could be self-inspection for the robot to detect
any unknown and unexpected damage. Similar to new robots
are added using transfer learning, typical damages could be
taught to the system and identified by the robot scanning
itself, observing its own reflection or having another robot
to scan it. This can be very useful in environments, like
disaster areas, where robots have to work autonomously for
long periods of time, or when internal sensors give unusual
readings and hull should be inspected.

For future work, we plan to implement more robots as well
as having robots on mobile platforms in the system. Instead
of training on one new robot model, transfer learning will
be used to expand the CNN to work with a line of robots,
including the originally trained ones. Previously mentioned
robot self-inspection is also of high interest, as well as adding
collaborative tasks with people by tracking their movements
using the latest skeleton tracking methods. Furthermore,

more types of cameras will be tested and transition from
one camera to another analysed.
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Two-Stage Transfer Learning for Heterogeneous Robot Detection and
3D Joint Position Estimation in a 2D Camera Image Using CNN

Justinas Mišeikis1, Inka Brijačak2, Saeed Yahyanejad3, Kyrre Glette4, Ole Jakob Elle5, Jim Torresen6

Abstract— Collaborative robots are becoming more common
on factory floors as well as regular environments, however,
their safety still is not a fully solved issue. Collision detection
does not always perform as expected and collision avoidance is
still an active research area. Collision avoidance works well for
fixed robot-camera setups, however, if they are shifted around,
Eye-to-Hand calibration becomes invalid making it difficult
to accurately run many of the existing collision avoidance
algorithms. We approach the problem by presenting a stand-
alone system capable of detecting the robot and estimating
its position, including individual joints, by using a simple 2D
colour image as an input, where no Eye-to-Hand calibration
is needed. As an extension of previous work, a two-stage
transfer learning approach is used to re-train a multi-objective
convolutional neural network (CNN) to allow it to be used with
heterogeneous robot arms. Our method is capable of detecting
the robot in real-time and new robot types can be added
by having significantly smaller training datasets compared to
the requirements of a fully trained network. We present data
collection approach, the structure of the multi-objective CNN,
the two-stage transfer learning training and test results by using
real robots from Universal Robots, Kuka, and Franka Emika.
Eventually, we analyse possible application areas of our method
together with the possible improvements.

I. INTRODUCTION

Collaborative robots are gaining popularity as an advanced
version of traditional industrial robots. Not only they are
capable of reliably performing high-precision complex move-
ments repetitively without any fatigue or rest, but they are
also claimed to be safe to operate around humans. Instead
of fully separating them from people (e.g., using fences
or light curtains), they are capable of sharing the same
workspace with humans given the sophisticated collision
detection systems. However, these systems do not always
work as expected and might exert excess forces before
stopping [1]. Furthermore, in some situations, like a robot
located in a surgery theatre, collisions are not acceptable,
and full collision avoidance should be implemented. This
coincides with the goals of the Industry 4.0 concept [2].

A crucial part for the obstacle avoidance is getting
real-time measurements of the workspace and environment
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2 3 Inka Brijačak and Saeed Yahyanejad are with the Joanneum Research
- Robotics, Klagenfurt am Wörthersee, Austria

4 6Kyrre Glette and Jim Torresen also have affiliation with RITMO,
University of Oslo

5Ole Jakob Elle has his main affiliation with The Intervention Centre,
Oslo University Hospital, Oslo, Norway oelle@ous-hf.no

1 4 6 {justinm,kyrrehg,jimtoer}@ifi.uio.no
2 Inka.Brijacak@joanneum.at
3 Saeed.Yahyanejad@joanneum.at

around the robot. Such sensing can be done using a variety
of sensors: laser scanners, mono and stereo vision, RGB-D
cameras, ultrasound sensors and motion capture systems.

(a) UR3, UR5, UR10 (b) KUKA LBR iiwa (c) Franka Emika Panda

Fig. 1. Robot manipulators used in our experiments.

Even with advanced sensing systems, the problem still
stands in the requirement of having a reliable calibration
between the sensors and the robot - so-called Eye-to-Hand
calibration [3]. Such a calibration maps the coordinate frames
of the robot and vision sensors into a common coordinate
frame. As a result, the position of an obstacle detected
by one of the sensors can be easily calculated in point
of view of the robot, and the necessary action is taken
to avoid it. There are reliable and even automatic ways
of performing Eye-to-Hand calibration, however, if any of
the sensors is unexpectedly moved in relation to the robot,
and unaccounted for, the calibration becomes invalid and
the system might malfunction [4]. This can be an issue in
dynamic environments like a surgery theatre, where there
is a lot of human movement, as well as the equipment
is constantly shifted around. Similar works and research
on dynamic obstacle avoidance for robot arms normally
require a fully-calibrated robot-camera system, which can
be a challenge in non-static configuration setups [5] [6].

We have shown that the transfer learning approach can be
used to adapt the system trained to recognise and estimate the
position of the robot base and joints from one robot model to
a new unseen one by having a limited amount of data [7] [8].
We base our work on a previously trained multi-objective
CNN on Universal Robots (UR) and extend our work in
the following manner. Instead of adapting the network to the
new robot type, we adjust the CNN to incorporate new robot
types, while still being able to recognise previously trained
robots. Eventually, the proposed system is capable of identi-
fying 5 different robots. Furthermore, with the help of motion
capture system tracking the camera, we collected a complex
training datasets with the camera being moved around in an
unconstrained manner, obtaining a variety of viewing angles
of the robots in front of complex backgrounds. A more
thorough analysis also shows the impact of the accuracy



depending on the distance between the camera and the robot.
This paper is organized as follows. First, we provide an

overview of related work in Section II. We present the system
setup and dataset collection in Section III. Then, we explain
the proposed method and CNN structure and configuration in
Section IV and the transfer learning procedure in Section V.
We provide experiments and results in Section VI, followed
by relevant conclusions and future work in Section VII.

II. RELATED WORK

With the recent deep learning revolution in computer
vision, especially for classification tasks, like ImageNet, it
has been proven that it is possible to learn to identify objects
in difficult environments and conditions [9].

In order to train a deep learning network, large amounts
of training data are needed with precisely marked ground
truth data. Collecting such training datasets can be a time-
consuming task. However, transfer learning approach is
useful when a fully trained system exists for one type of
the problem and can be adapted for different datasets by
adjusting some of the parameters of the network while
keeping other parameters fixed [9]. This has been proven
to work for mid-level image representations in object clas-
sification, using the pre-trained network on natural images
to adapt for medical image recognition and even emotion
recognition [10] [11] [12]. Another interesting application
of transfer learning is to use a fully trained network on
night-time satellite imagery of poverty areas and adapt it to
recognise poverty areas from daytime satellite imagery [13].
Furthermore, detailed analyses of the transfer learning ap-
proaches were made with surveys of the techniques used
and various CNN structures [14] [15].

Moreover, CNN based work in the field of human pose
estimation in 2D [16], known as OpenPose, allowed further
improvements on 3D human pose estimation with the help
of a depth sensor [17]. The accuracy for a human keypoint
in 3D is around 11cm, mainly due to the inaccuracy of the
depth sensor which grows with distance from the sensor.

On the other hand, many purely geometrical techniques
have been employed to determine the position and orientation
of an object from a single image by using some prior
knowledge about the target object [18] [19]. In general,
with these methods, they try to find patterns and features
such as edges and corners which match the expected model
and accordingly estimate the position and orientation. Some
other researchers exploited the existence of a 3D model
such as a CAD model [20] [21] to increase the accuracy
of the estimation. Although the precision of their method
is higher compared to our CNN-based method, they mainly
suffer from a major drawback: they can only perform with
solid and rigid objects which clearly does not apply to robot
manipulators. Another problem is the necessity of having
a 3D model available beforehand, which in our method is
substituted with the training procedure. However, our method
performs more robustly in case of deviation from the model
in case of physical damages or attached end-effectors, and it

can also use the image colour information which is normally
missing in a 3D model.

III. SYSTEM SETUP AND DATASET COLLECTION
Deep learning networks are capable of robustly recognis-

ing objects in complex backgrounds, but in order to achieve
good performance, a large amount of precisely marked and
diverse training data is needed. Considering the setup of
three heterogeneous robotic manipulators, a system had to
be set up to generate training data with accurate ground
truth data marked automatically, given that manual ground
truth generation for such datasets would take up a significant
amount of time and effort.

Our setup consists of the following three robot types:
• Universal Robots: UR3, UR5, UR10, 6 DoF, Figure 1(a)
• KUKA LBR iiwa - 7 R800, 7 DoF, Figure 1(b)
• Franka Emika - Panda, 7 DoF, Figure 1(c)

Fig. 2. Setup with the Optitrack Motion Capture System

This two-stage transfer learning work, as the basis, uses al-
ready trained multi-objective CNN [7], which was trained on
datasets containing all three robot models from UR. Datasets
containing KUKA LBR iiwa were previously collected for
our one-stage transfer learning project [8]. All these datasets
were collected using Kinect V2 sensor with necessary Eye-
to-Hand calibration [22] every time position of the camera
changed relative to the robot-base in order to achieve a high
variety of backgrounds.

TABLE I. Dataset summary describing a number of samples collected for
each type of the robot.

Robot Type Number of Datasets Total Number of
Samples

Universal Robots 9 4350
Kuka LBR iiwa 14 1837
Franka Panda 5 2513

Table I summarizes all datasets collected for each robot
with their number of recordings where they differ by camera
placement relative to the robot, illumination, background.

New datasets containing Franka Emika Panda robot were
recorded with free-moving Intel RealSense R200 RGB-D
camera instead of Kinect V2. Since Eye-to-Hand calibra-
tion is only valid for the fixed camera setups, we could
not use this method for the camera to robot coordinates-
transformation measurements. Instead of performing Eye-to-
Hand calibration, we have placed Optitrack (Motion Capture
System) [23] markers over the moving camera and around
the base of the robot in order to bring both systems into one
coordinate frame of Optitrack (Figure 2). Since Optitrack’s
marker (Rigid-Body or Rig) origin is not exactly aligned with



Fig. 3. Samples from the collected robot datasets. Robots used are Universal Robots (silver-blue), Kuka LBR iiwa (silver-orange) and Franka Emika -
Panda (white-black). A variety of robot configurations, camera movements and angles as well as lighting conditions were used. In some cases, even other
robots in the background were present.

the camera’s optical frame origin, extrinsic calibration was
performed as described in [24] by observing and detecting
one additional rig, that was fixed in the Optitrack frame, with
our RGB camera from multiple positions. Example frames
taken from the whole dataset can be seen in Figure 3.

Once all the transformations are connected in one co-
ordinate system, a precise robot mask that is separating a
robot body from the background when overlaying a colour
image, used as a ground truth for teaching the CNN, can
be calculated. It is done automatically by using ROS with
MoveIt package [25]. The robot model, taken from the Robot
Description Format (URDF) files and mesh files provided by
the robot manufacturers, is updated with the live information
from robot’s joints encoder readings to create robot shape in
real-time [26]. This shape is transformed to depth camera’s
coordinate frame and mask image is constructed.

In order to ensure the robustness of the system, robot
movements were programmed so that each robot joint is
moved through the full range of motion in combination
with other joints taking into account self-collision and table
collision avoidance. Also, a trigger signal is used to save the
data after each robot movement. With each trigger, we save
camera colour images, robot joints and Cartesian coordinates,
as well as ground-truth robot mask images. Moreover, to
ensure a perfect overlap between colour and depth images,
internal extrinsic camera calibration was used. All the input
images are also rectified and have the resolution of 480⇥360
pixels. Testing and validation sets were divided by the ratios
of 80% and 20% respectively based on random sampling.

IV. CNN STRUCTURE AND CONFIGURATION

The structure of a multi-objective CNN is identical to
previous work, where it was trained on UR robots [7]. The
network trains for multiple outputs simultaneously by taking
a single 2D colour image as an input. The network in this

paper is trained on four objectives: Robot mask, Robot type,
3D Robot base position and 3D Position of the robot joints.

The network has multiple branches, with some of the
convolutional layers shared and then branched off to optimise
specifically for each of the objectives. The structure of the
multi-objective CNN can be seen in Figure 4.

A. Loss Functions

The loss function is needed to define the quality of training
and drive the CNN towards achieving better results. Given
four different outputs of the network, four loss functions need
to be defined and eventually combined in a single one for
the training process. Firstly, we describe each one of them
and then explain how they are connected together.

Normally, the robot body takes up a rather small area in
the whole image. For UR datasets, the area of the robot
body is between 6 � 17%, for Kuka datasets, it is between
8�18% and for Franka Panda, it is between 5�22%. Given
a standard approach for the pixel classification loss function,
an accuracy of over 78% could be reached by classifying the
whole image as background. This is conceptually wrong, so
the loss function is adapted by calculating the foreground
weight wfg as defined in Equation 1. It is based on the
inverse probability of the foreground and background classes,
where Z 2 {fg, bg}.

wfg =
1

P(Z = fg)
(1)

The background weight wbg is calculated in Equation 2.

wbg =
1

P(Z = bg)
(2)

Definition of the loss function for the robot mask is
done in two steps. First, a per-pixel loss ln is calculated in
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Fig. 4. The multi-objective CNN with a two-stage transfer learning. The CNN is optimising simultaneously for four objectives at the same time: robot
mask, 3D coordinates of robot joints, 3D coordinates of the robot base and the robot type. The network is taught in two stages using the transfer learning
approach. In stage 1, the parameters for all the layers, besides the final ones marked in blue are frozen and the system is trained until there is no more
improvement. Afterwards, in stage 2, the parameters marked in red, as well as all the stage 1 layers, are adjusted during the training. This approach allows
faster training compared to the full training, while still reaching good accuracy.

Equation 3, where iest is P(Y = fg), (1�iest) is P(Y = bg)
and igt is the ground truth value from the mask image.

ln(Inest, I
n
gt) =� wfgigt log (iest)

� wbg(1� igt) log (1� iest)
(3)

Then, a normalised loss calculation is done for the whole
image Lmask in Equation 4. In order to keep the same
learning parameters independent of the input image size, a
normalisation factor N is used, which is a number of pixels
in the image.

Lmask(Iest, Igt) =
1

N
X

n

ln(iest, igt) (4)

Estimation of the 3D coordinates of the robot base and
robot joints are defined as a regression problem instead
of classification. Loss function uses the Euclidean distance
between the ground truth and estimated values by the CNN.
For the robot joints estimation, the loss function LJcoords is
described in Equation 5, where Nj is the number of joints,
Ji is the ground truth position of each joint and Ei is the
estimated values by the neural network.

LJcoords =
1

Nj

NjX

i=1

kJi � Eik2 (5)

The loss function for the coordinates of the robot base
LBcoords is calculated in Equation 6. Bxyz is the ground
truth position of the robot base in 3D, and Exyz is the
estimated 3D position of the robot base. These positions are
relative to the coordinate frame of the camera.

LBcoords =
��Bxyz � Exyz

��
2

(6)

A multi-class categorical cross-entropy approach is used
to identify the robot type Ltype. Ltype is calculated in
Equation 7, where p is the ground truth labels, q are the
predicted labels and c 2 R, where R contains all the available
types of robots in the dataset.

Ltype = �
X

c

p(c) log q(c) (7)

Eventually, all four previously defined loss functions are
combined into a single loss function to be used in the training
of the multi-objective CNN. The final loss function Lfinal

is calculated as a weighted sum of all the loss functions, as
shown in Equation 8. The larger the weight W , the higher
the impact on the corresponding value.

Lfinal =WmaskLmask +WJcoordsLJcoords

+WBcoordsLBcoords +WtypeLtype
(8)

V. TRAINING USING TRANSFER LEARNING

A common approach to training such a system would
be to train the whole system using full datasets of all the
robots. However, this would take a significant amount of
computation and time. Overall, the goal of this work is to
analyse the possibility of having a pre-trained system and
expand it to include more robot types while having a limited
amount of training data and time.

Transfer learning allows us to use a fully trained system
for one robot type and then adjust it to include the newly
provided training data. This is done by freezing the parame-
ters in some of the layers while adjusting the remaining ones.
Given this partial adjustment, the training time and amount
of training data required can be significantly reduced.
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(c) Errors for 3D position estimation of robot
joints depending on the camera distance from the
robot. Results are grouped by the robot type. Error
and distance have close to linear correlation, but
Franka Panda has higher error compared to the
other robots. This is due to the robot body, which
gives low contrast compared to the background.

Fig. 5. Evaluation of the two-stage transfer learning method using the test dataset in various categories.

The system was fully trained using UR robots with Kuka
and Franka Panda robots added using the transfer learning
approach. One crucial difference is that UR robots have 6
joints, while Kuka and Franka Panda are 7 joint robots. In
general, it has been found that first convolutional layers tend
to learn general visual features, while further layers figure
out specific visual cues of the objects. Both, UR and Kuka
robots have bright coloured joint covers, while the rest of
the robot is silver, however, Franka Panda is mainly black
and white, as seen in Figure 1.

Due to these differences, a two-stage transfer learning
approach was taken up, as shown in Figure 4. In the first
step, just the final layers of the multi-objective CNN are
trained. This allows the network to adjust the dense layers
to select the best-learned features for the robot recognition
using currently learned visual cues. Only a small part of
the CNN is adjusted, so the learning process is fast, and it
re-learns robot classification and position estimation using
current convolutional layer parameters.

However, after some point the learning process saturates
and no more improvements are observed, defined by the
reduction of loss. At this stage, the second part of the CNN
is unlocked, allowing to modify parameters for the additional
convolutional layers. This results in modifications of the
visual cues that are learned as well as adjusting the final
dense layers. The training speed is slower compared to the
first stage of learning, but the loss is reduced even further.

In order to add the new robot types using the transfer
learning approach, the new training dataset has to include
both, the robot that the network was originally trained on,
as well as the new robot(s) that should be recognised.

Weights for the loss function are adjusted to give more
impact to identifying mask and robot type compared to
our previous work. Selected weight values, based on trial
and error from a number of experiments, were as follows:
Wmask: 1.2, WJcoords: 1.2, WBcoords: 1.2 and Wtype: 0.6.

The number of training samples varied by the experiment
and the input size of the images was scaled down and
cropped to 256 ⇥ 212 pixels for all the datasets. The pixel

intensity values of the input images were normalised to the
range between 0 and 1. The learning rate was set to 0.001 at
the start of the training and then gradually decreased towards
0.000001 as the training progressed.

VI. EXPERIMENTS AND RESULTS

The main goal of the experiments was to evaluate the
capability of including new robot types by using the two-
stage transfer learning method while using a multi-objective
CNN fully trained on UR robots as a starting point.

Fig. 6. Visualisation of the output from the presented multi-objective CNN
trained using a two-stage transfer learning approach. Each column represents
each robot type in the following order: Kuka, UR and Franka Panda. The
first row shows the estimated 3D joint position (red circles) against the
ground truth position (green crosses). The second row shows the estimated
mask of the robot and the third row shows the estimated robot base position.

Each of the experiments was conducted by taking a
different size transfer learning dataset using a randomised
sample selection to maximise the diversity of the data. The
maximum amount of data was limited by the Kuka robot
dataset to ensure the same amount of samples in each test
for each of the robot types.

The system was evaluated using a testing set by comparing
the output against the ground truth data. The robot mask
accuracy is defined by counting the number of pixels in the



CNN output image that match the ground truth mask. For
the robot joint and base coordinates, the Euclidean distance
between the CNN estimated results and ground truth results
was calculated. We compare the results between each of the
robot type in a number of categories. Results are summarised
in Table II and visualisation of estimations plotted on top of
the testing set samples can be seen in Figure 6.

TABLE II. Summary of the Transfer Learning results (using 500 samples
of each robot type for training) on the test set.

Measure UR Kuka Franka Panda
Mask Accuracy, % 97.0% 97.7% 94.3%
Robot Type Accuracy, % 97.5% 100% 96.1%
Joint Pos Error (Median) 3.12cm 3.30cm 3.64cm
Base Pos Error (Median) 2.42cm 2.36cm 3.01cm

All of the robots had joint 3D position estimation error
under 3.64cm, with the base position estimation error under
3cm. The mask accuracy estimation exceeded 97% for UR
and Kuka robots, while for Franka Panda it was a bit lower
at 94.3%. Robot type was recognised correctly in all of
the cases for Kuka robot, while UR and Franka Panda
recognition were 97.5% and 96.1% respectively. Overall,
it was noticed that given the distinct features, the CNN
performed the best on Kuka robot, while low contrast Franka
Panda robot had the worst results, but not far behind.

Considering overall performance of the two-stage transfer
learning, as shown in Figure 5(a), for the multi-objective
CNN, it can be seen that the loss function stops improving
when having datasets of size between 500 and 750 training
samples for each of the robot type, which corresponds to 7 to
10 hours of training time. Increasing the number of training
samples beyond 750 does not improve the learning process,
but significantly increases the training time.

Compared to the previously presented work in [7], the
detection accuracy of the current two-stage transfer learning
approach achieved similar accuracy in a joint position error
of 2.46cm vs 3.12cm and slightly worse accuracy for the
robot mask estimation: 97% vs 98% in the previous work.
The full training time of the multi-objective CNN for UR
robots took 60 hours vs 10 hours in the current work.

The performance of each training stage of transfer learning
is shown in Figure 5(b). Stage 1, with parameters in final
CNN layers being adjusted, saturates after 6000 iterations.
Afterwards, further layers are unlocked switching to Stage
2 and the loss function reduces even further settling down
between 10000� 12000 iterations.

Furthermore, we analyse the impact of the joint and base
position estimation depending on the distance between the
camera and the robot, visualised in Figure 5(c). There is
close to a linear relationship between the distance between
the robot and the accuracy of the 3D position estimation
of the robot joints. Interestingly, at a very close distance of
1.2 meters, Franka Panda robot shows worse performance
compared to 1.5 meter distance.

The detection time or forward-propagation of the multi-
objective CNN was measured to be 19�23ms per frame on
a nVidia GTX 1080 Ti graphics card.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a two-stage transfer
learning approach, which allows to re-train a previously
trained multi-objective CNN to include numerous new robot
types using a limited amount of training data. This approach
reduces the time spent on collecting datasets with ground
truth data, as well as the training time of the network itself.
Furthermore, a concept of a multi-objective CNN capable
of identifying heterogeneous robots, classifying their types
and estimating 3D positions of their joints and base was
proven. A simple 2D colour image was used as an input
and Kuka and Franka Panda robots were mounted with two-
finger grippers on the end-effector, which were not taken into
account by the CNN. The network successfully estimated the
position of the robot as the was no end-effector present. If
the TCP of the end-effector would be required, it could be
calculated by adding the necessary CAD model or offset
information to the estimated position of the end-effector.

With the detection time of under 23ms, the system has
proven to be capable of working in real-time. At the current
stage, a powerful GPU is needed to run it, however, a goal of
optimising it for smaller mobile systems could be pursued. In
this case, it could be implemented in small wearable cameras
to be used both, for mobile robots or for human operators
working in a robotised environments and used as a safety
system, which can detect possible collisions without having
any direct communication between the devices. The outcome
could be a valuable measure for various safety applications in
Human-Robot Interaction scenarios, where we need to know
the position of the human and robot and their individual
joints respective to each other.

The achieved robot joint position estimation is not accurate
enough for visual servoing operations, but future work can
focus on accuracy improvements. We believe that by using
higher resolution images, multi-sensor detection and tracking
in time series, the accuracy of our system could be improved.
Furthermore, an analysis of the impact on the detection
accuracy depending on the weight selection of loss functions
and layer selection for the transfer learning will be done.
With the current results, a high-level control is still possible
for human-robot and robot-robot interaction.

Additionally, with the given robot mask detection in a 2D
image, some robot self-inspection could be done to detect
any damage, especially for autonomous robots operating in
remote or disaster areas, where people do not have access
to, for example for planetary exploration rovers.
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