
DNA barcoding of tuberous Orchidoideae: A resource for identification of orchids used in Salep 1 

 2 

Abdolbaset Ghorbani1,2, Barbara Gravendeel3,4, Sugirthini Selliah5, Shahin Zarré6, Hugo de Boer1,3,5,* 3 

 4 

1 Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236, 5 

Sweden 6 

2 Traditional Medicine & Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 7 

Iran 8 

3 Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands 9 

4 University of Applied Sciences Leiden, Leiden, The Netherlands 10 

5 The Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, 0318 Oslo, Norway 11 

6 Department of Plant Sciences, University of Tehran, Iran 12 

* Corresponding author: Hugo de Boer, Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, 0318 13 

Oslo, Norway. Email: hugo.deboer@nhm.uio.no 14 

 15 

Word count: 4286; Tables 3, Figures 3. 16 

 17 

Keywords: CITES; Molecular identification; Overharvesting; Orchid conservation; Plant DNA barcoding; Wildlife 18 

Trade. 19 

 20 



Abstract 21 

Tubers of terrestrial orchids are harvested and traded from the eastern Mediterranean to the Caspian Sea for the 22 

traditional product Salep. Over-exploitation of wild populations and increased middle-class prosperity have escalated 23 

prices for Salep, causing overharvesting, depletion of native populations and providing an incentive to expand 24 

harvesting to untapped areas in Iran. Limited morphological distinctiveness among traded Salep tubers renders species 25 

identification impossible, making it difficult to establish which species are targeted and affected the most. In this study, 26 

a reference database of 490 nrITS, trnL-F spacer and matK sequences of 133 taxa was used to identify 150 individual 27 

tubers from 31 batches purchased in 12 cities in Iran to assess species diversity in commerce. The sequence reference 28 

database consisted of 211 nrITS, 158 trnL-F, and 121 matK sequences, including 238 new sequences from collections 29 

made for this study. The markers enabled unambiguous species identification with tree-based methods for nrITS in 67% 30 

of the tested tubers, 58% for trnL-F and 59% for matK. Species in the genera Orchis (34%), Anacamptis (27%) and 31 

Dactylorhiza (19%) were the most common in Salep. Our study shows that all tuberous orchid species in this area are 32 

threatened by this trade, and further stresses the urgency of controlling illegal harvesting and cross-border trade of Salep 33 

tubers. 34 

 35 



Introduction 36 

 37 

Tuberous terrestrial orchids have long been used as medicine and dietary supplements in different parts of the world 38 

(Bulpitt 2005; Bulpitt et al. 2007; Hossain 2011; Chinsamy et al. 2011). In the eastern Mediterranean, Asia Minor and 39 

the Middle East, tubers of different orchid species are collected indiscriminately from the wild and are traded for 40 

production of Salep tuber powder (Kasparek & Grimm 1999; Ece Tamer et al. 2006; Sandal Erzurumlu & Doran 2011; 41 

Ghorbani et al. 2014a; Kreziou et al. 2015). Harvested tubers are washed in water, boiled in either water or milk, sun-42 

dried and traded as dried tubers (Kasparek & Grimm 1999). The tubers are ground into a powder and used in preparing 43 

a hot beverage known as Salep or Salepi and also in ice cream production (Sezik 2002a; Ece Tamer et al. 2006; Starin 44 

2012). Salep drink was once common in Europe (Landerer 1850), but is now consumed mainly in Turkey and Greece 45 

(Bulpitt 2005; Ece Tamer et al. 2006; Starin 2012). It is estimated that as much as 30 tons of orchid tubers are harvested 46 

annually in Turkey, which requires the destruction of 30-120 million orchid plants (Kasparek & Grimm 1999; Sezik 47 

2006). Increasing popularity of Salep has increased the demand for Salep tubers, which in turn has led to further 48 

overharvesting of wild orchid populations (Sezik 2002b; Kreziou et al. 2015). Scarcity of wild orchids in Turkey has 49 

forced traders to tap into new sources in adjacent countries (Ghorbani et al. 2014b). In Iran, where orchid tubers are 50 

traditionally hardly consumed, an orchid boom is underway in which an estimated 5.5-6.1 million orchids are harvested 51 

annually for export to Turkey (Ghorbani et al. 2014a).  Conservation concerns have made orchid tuber collection illegal 52 

in Greece, Turkey and Iran, but collection bans are poorly enforced (Ghorbani et al. 2014b; Kreziou et al. 2015). All 53 

orchid species are included by the Convention on International Trade of Endangered Species of Fauna and Flora 54 

(CITES) on Appendices I or II (CITES 2014), which means that international trade of these species and derived 55 

products is regulated. Most of the Salep tuber trade from Iran to Turkey takes place without CITES permits, and tubers 56 

are often mislabeled as low-value nuts or other products to circumvent taxes and permit requirements (Kasparek & 57 

Grimm 1999; Ghorbani et al. 2014b; Kreziou et al. 2015). This large-scale, yet poorly visible trade makes it difficult to 58 

ascertain which species are targeted and in what quantities. Morphology-based approaches for identification are 59 

insufficient and cannot even accurately distinguish dried tubers from different genera. Other methods for salep 60 

identification, such as GCMS, HPLC, gravimetric, absorbance and rheological analyses, all indicate that identification 61 

to species level is not possible using only chemical analyses (Dogan et al. 2007; Tekinşen & Güner 2010; Babbar & 62 

Singh 2016). Adequate monitoring would enable identification of priority species for conservation measures such as 63 

curbing overexploitation, and targeting high-value species for cultivation.  64 



DNA barcoding provides an accurate and reliable alternative to morphology-based identification of biological 65 

material (Hebert et al. 2003). As a method it can be used to identify and discern species at any developmental or 66 

processing stage from which DNA can be extracted (Hebert et al. 2003; Hajibabaei et al. 2007), and even from the 67 

minute amounts such as those found in dung (Hibert et al. 2013), pollen (Richardson et al. 2015), degraded herbarium 68 

vouchers (Särkinen et al. 2012), permafrost preserved subfossils (van Geel et al. 2008), and ancient sediment cores 69 

(Williams et al. 2000; Posadzki et al. 2012). Plant DNA barcoding has been applied in many fields, for example 70 

molecular systematics (Liu et al. 2011; van Velzen et al. 2012), biodiversity inventories (Aubriot et al. 2013; Thompson 71 

& Newmaster 2014), wildlife forensics (Deguilloux et al. 2002; Ogden et al. 2009), bio-piracy control (Parveen et al. 72 

2012), and authentication of herbal products (Kool et al. 2012; Coghlan et al. 2012; Newmaster et al. 2013; de Boer et 73 

al. 2014; Vassou et al. 2015).  74 

Several genetic regions have been proposed as standard barcodes for land plants, the ideal barcode being both 75 

easily amplifiable and efficiently retrievable from any of the 300,000+ species of plants (Kress et al. 2005; Fazekas et 76 

al. 2008). Most studies now employ a tiered multilocus approach, which is based on the use of a common, easily 77 

amplified and aligned region such as rbcL, rpoC1, trnL or trnL-F spacer that can act as a scaffold on which to place 78 

data from a more variable noncoding region such as matK, trnH-psbA, nrITS, or nrITS2. Most species (approximately 79 

75-85%) can be identified using such an approach, and the subsequent addition of surrogate regions can increase 80 

barcoding success to over 90% in some floras (Ebihara et al. 2010; Burgess et al. 2011; de Vere et al. 2012; Kuzmina et 81 

al. 2012; Liu et al. 2015). In Orchidaceae, several plastid and nuclear molecular markers including rbcL, psaB, psbC-82 

trnS, rpl16, matK, ycf1, trnH-psbA, trnH-trnK, trnL-F and nrITS have been applied for phylogenetic analysis (Cameron 83 

2004; Xiang et al. 2011; Parveen et al. 2012; Inda et al. 2012; Kim et al. 2014). These studies suggest that a multi-locus 84 

combination of coding and non-coding regions with different evolutionary rates is necessary for effective identification 85 

of species in Orchidaceae.  86 

This study tests the hypothesis that molecular identification using DNA barcoding can be used for 87 

identification of orchid species comprising boiled and dried tuber samples traded in the main export market hubs in 88 

Iran. We address the following research questions: 1) Can DNA be extracted, amplified and sequenced from boiled and 89 

dried Salep tubers? 2) What marker or markers are optimal for the identification of Salep tubers traded in the markets of 90 

Iran? 3) What genera and species are most common among the tubers included in our sampling? 4) Can the most 91 

common traded species be used to predict the main source areas of orchid tubers exported to Turkey? The aim was to 92 

test and establish a DNA barcoding protocol to identify dried orchid tubers from markets and to show the potential of 93 

this technique to curb illegal trade of CITES listed orchid tubers. 94 



 95 

 96 

Methods 97 

 98 

Collection of reference and market material 99 

Flora Iranica vol. 126 (Renz 1978), Flora of Iran vol. 57 (Shahsavari 2008) and Orchids of Europe, North Africa and the 100 

Middle East (Delforge 2006) were used to estimate that a total of 47 orchid species occur in Iran, including 32 species 101 

with tuberous roots that could potentially be targeted for Salep collection. During fieldwork in 2013-2014, a total of 127 102 

herbarium vouchers representing 30 species and subspecies of orchids were collected from natural populations in 103 

different parts of Iran (Suppl. 1). Vouchers were identified (Renz 1978; Delforge 2006; Shahsavari 2008) and deposited 104 

at the herbarium of Tehran University (TUH). Sequences generated from these vouchers (Suppl. 1) as well as selected 105 

vouchered sequences from NCBI GenBank were used to construct a DNA barcode reference library (Suppl. 2). 106 

Markets in 12 cities and towns in Iran (Tehran, Kermanshah, Sanandaj, Tabriz, Urmia, Mahabad, Shahindezh, 107 

Kashan, Ardabil, Aq-Emam, Marave-Tappe and Kalaleh) were visited and 31 batch samples of unidentified Salep 108 

tubers containing 15-50 tubers each were purchased. Figure 1 shows the distribution of orchids in Iran at genus level 109 

based on indexed vouchers from TUH and W, plus the location of the 12 main Salep markets. Per sample, tubers were 110 

subsequently categorized based on shape and size, and a total of 150 random tubers were selected as query tubers for 111 

DNA barcoding. Salep tubers in trade are hard to identify, although palmate Dactylorhiza tubers differ from those of 112 

other tuberous genera (Figure 2). 113 

 114 

DNA extraction, amplification and sequencing 115 

For reference samples, total genomic DNA was extracted from silica-gel dried leaf material using a modified CTAB 116 

protocol (Doyle & Doyle 1987). The query tubers were ground into powder using liquid nitrogen, and subsequently 117 

DNA was extracted using a STE-CTAB protocol (Shepherd & McLay 2011). The STE-CTAB protocol was necessary 118 

to reduce gel formation due to the high glucomannan content of tubers. A gelatinous layer, which was formed after 119 

adding CTAB buffer, caused difficulties in extraction procedures and low DNA yields. Extracted DNA was purified 120 

using a GE Illustra GFXTM PCR DNA and Gel Band Purification kit following the manufacturer’s protocol (GE 121 

Healthcare, Buckinghamshire, UK). 122 

Three barcode regions, nrITS (ITS1-5.8S-ITS2), trnL-F spacer and matK were amplified by a standard 123 

polymerase chain reaction (PCR). The nrITS (ITS1-5.8S-ITS2) region was amplified using the following primers: 124 



17SE_F (5’-ATGGTCCGGTGAAGTGTTC-3’), 26SE_R (5’-CCCGGTTCGCTCGCCGTTAC-3’), 5.8I-1_R (5’-125 

GTTGCCGAGAGTCGT-3’) and 5.8I-2_F (5’-GCCTGGGCGTCACGC-3’) (Sun et al. 1994). The trnL-F spacer was 126 

amplified using the following primers:  C_F (5’-CGAAATCGGTAGACGCTACG-3’), C2_F (5’-127 

GGATAGGTGCAGAGACTCAAT-3’) and F_R (5’-ATTTGAACTGGTGACACGAG-3’) (Taberlet et al. 1991; 128 

Bellstedt et al. 2001). MatK was amplified using the following four primers: 19_F (5’-129 

CGTTCTGACCATATTGCACTATG-3’) and 881R (5-TMTTCATCAGAATAAGAGT-3) (Gravendeel et al. 2001); 130 

F2_F (5’-CTAATACCCCATCCCATCCAT-3’) (Steele & Vilgalys 1994) and R1_R (5’-131 

CATTTTTCATTGCACACGRC-3’) (Kocyan et al. 2004). PCR amplification was performed in a 50 µl reaction 132 

volume containing 5 µl reaction buffer IV (10x), 5 µl MgCl2 (25mM), 1 µl dNTP (10 µM), 0.25 µl Taq-polymerase (5 133 

U/µl), 05 µl BSA, 1 µl of each primer (10 mM) and 1 to 4 µl of template DNA. The PCR protocols of 95°C 3 min., 134 

(95°C 20 s., 55°C 1 min., 72°C 2 min.) x 35, 72°C 10 min., 8°C ∞ for nrITS, 95°C 3 min., (95°C 15 s., 55°C 50 s., 135 

72°C 4 min.) x 35, 72°C 8 min., 8°C ∞ for trnL-F spacer and 95°C 3 min., (95°C 34 s., 59°C 45 s., 72°C 1 min.) x 35, 136 

72°C 7 min., 8°C ∞ for matK were applied. Sanger sequencing was performed by Macrogen Europe Inc. (Amsterdam, 137 

the Netherlands) on an ABI3730XL automated sequencer (Applied Biosystems). Primers used for PCR amplification 138 

were also used for sequencing reactions. 139 

 140 

Reference database preparation 141 

The reference database was compiled from a total of 490 source sequences of 133 taxa, including both voucher 142 

specimens collected from the field including 85 nrITS sequences (19 species), 90 trnL-F (26 species), 63 matK (20 143 

species) and publicly available DNA sequences from NCBI GenBank including 126 nrITS sequences (102 species), 68 144 

trnL-F (56 species) and 58 matK (55 species) (Table 1). All sequences were downloaded from the listed tuberous 145 

genera in the tribe Orchideae (Orchidaceae), including synonymous genera and/or species: Anacamptis Rich., 146 

Cephalanthera Rich., Chamorchis Rich., Dactylorhiza Neck. ex Nevski (including Coeloglossum Hartm.), Gennaria 147 

Parl., Gymnadenia R.Br., Himanthoglossum W.D.J.Koch (incl. Barlia Parl. and Comperia K.Koch), Neotinea Rchb.f., 148 

Neottia Guett. (incl. Listera R.Br.), Neottianthe Schltr., Ophrys L., Orchis L. (incl. Aceras R.Br.), Serapias L. 149 

Limodorum Boehm., Platanthera Rich., and Steveniella Schltr. Representative accessions were included for non-150 

tuberous genera and tuberous species occurring close to the study area: Corallorhiza trifida Châtel, Epipactis 151 

helleborine (L.) Crantz, Goodyera repens (L.) R.Br., Habenaria macroceratitis Willd., Herminium monorchis (L.) 152 

R.Br., Pecteilis gigantea (Sm.) Raf., Peristylus densus (Lindl.) Santapau & Kapadia, Pseudorchis albida (L.) Á.Löve & 153 

D.Löve, Satyrium bicorne (L.) Thunb., Spiranthes aestivalis (Poir.) Rich., Spiranthes spiralis (L.) Chevall. and Zeuxine 154 



strateumatica (L.) Schltr (Suppl. 2). Where there were more than two accessions per marker per species, only two 155 

accessions were selected, giving priority to those accessions with associated vouchers plus optimal read length and 156 

quality. Representative accessions of Brownleea parvflora Harv. ex Lindl., Disa uniflora P.J.Bergius and Disperis 157 

lindleyana Rchb.f. were selected as outgroups based on Inda et al. (2012).  158 

 159 

Data analysis 160 

Contigs were assembled and edited in SeqTrace (Stucky 2012). All sequences including reference sequences and query 161 

tuber sequences were aligned using MUSCLE (Edgar 2004) as implemented in Aliview v. 1.15 aligner (Larsson 2014). 162 

Final manual inspections were performed and adjustments were done if necessary. Sequences generated for this study 163 

were submitted to NCBI GenBank (Suppl. 1, Suppl. 3).  164 

Bayesian inference (BI) and maximum likelihood (ML) analysis were performed for each marker separately 165 

and on concatenated datasets, using RAxML-HPC v.8 (Stamatakis 2014) and MrBayes v.3.2.2 (Ronquist et al. 2012) on 166 

CIPRES Science Gateway v.3.3 (Miller et al. 2010) and the high performance computing facility available at University 167 

of Oslo, Lifeportal (https://lifeportal.uio.no/root). Gaps were treated as missing data. 168 

For Bayesian analyses, the model GTR + G was selected for all datasets. Two independent runs with sixteen 169 

MCMC chains were simultaneously performed for 20 million rearrangements initiated with a random starting tree, and 170 

sampling one tree every 1000 generations, except for matK. For matK, we performed eight MCMC chains and a total of 171 

10 million generations using the default heating temperature. Convergence of runs with default parameters was assessed 172 

on preliminary analyses. Where convergence did not occur, the heating parameter was adjusted to reach a convergence. 173 

Convergence of runs was assessed using Tracer v. 1.6 (Rambaut et al. 2014). Twenty-five percent of trees were 174 

discarded as burn-in, and the remaining trees were used to generate a consensus tree with Bayesian posterior 175 

probabilities (PP) values. Only PP values over 0.95 were considered and included for each marker and concatenated 176 

topologies. The number of trees retained for each analysis is presented in Table 2.  177 

For maximum likelihood analyses with RAxML, the model GTR + G was selected for all datasets, and a rapid 178 

bootstrap analysis with 1000 trees was conducted. Single marker trees were compared for incongruence prior to 179 

concatenation. Datasets were concatenated using Geneious v. 6.1.8 (Kearse et al. 2012). Multiple GenBank reference 180 

sequences for a single species were merged in order to obtain one consensus species sequence (cf. Suppl. 2). The unlink 181 

option was used to estimate the parameters for each partition. 182 

The BI and ML phylogenetic trees were used to identify the query tubers (Suppl. 4-11). The tubers were 183 

considered successfully identified to species level when they were monophyletically clustered with related individuals 184 



of the same species. When tubers were clustered with individuals of different species of the same genus, only a genus 185 

level identification was assigned (Suppl. 12). 186 

Sequence similarity search using Basic Local Alignment Search Tool (BLAST) (Altschul et al. 1990) is often 187 

used in DNA barcoding (Little & Stevenson 2007; Sass et al. 2007; Kool et al. 2012; de Boer et al. 2014). BLAST+ 188 

(Camacho et al. 2009) features implemented in NCBI BLAST were used to query unknown tuber sequences against the 189 

compiled reference database. All top hits less than 15 points lower than the max score were considered for 190 

identification: if the retained top hits (max score -15 points) included only a single species then a species level 191 

identification was estimated; if the retained top hits (max score -15 points) included multiple species in the same genus 192 

then a genus level identification was estimated; if the retained top hits (max score -15 points) included multiple species 193 

in different genera then a family level identification was estimated (Suppl. 12). 194 

Final consensus identifications were made based on the results from all markers and methods, BLAST, ML, 195 

and BI (Suppl. 12). Species level identification was assigned if all markers with species level identifications yielded the 196 

same species identification. Genus level identification was assigned if identifications resulted in multiple species of the 197 

same genus. 198 

 199 

 200 

Results and discussion 201 

 202 

Amplification and sequencing success 203 

Sequencing success rates were different for reference samples and market tuber samples. For the reference leaf samples 204 

(L), sequencing success was 67% (85 samples) for nrITS, 71% (90) for the trnL-F spacer and 47% (63) for matK (Table 205 

2). Out of the 127 samples, all three markers could be sequenced for 34 samples, solely nrITS for 29, solely trnL-F 206 

spacer for 14 and solely matK for 7. For tuber samples (T), sequencing success was 69% for nrITS (104 samples), 63% 207 

for the trnL-F spacer (94) and 19% for matK (28) (Table 2). Out of 150 tuber samples, all three markers could be 208 

sequenced for 8 samples, solely nrITS for 53, solely trnL-F spacer for 29, and none for matK only. In general, low 209 

sequencing success might be due to degraded DNA as a result of boiling and drying the tubers during processing. 210 

Sequencing success for nrITS might be affected by fungal contamination during the drying process and orchid 211 

mycorrhizal associations producing a mix of plant and fungal nrITS sequences. MatK had the lowest amplification 212 

success, and it has been shown that this locus cannot be amplified with 'universal' orchid primers due to the presence of 213 



alternative translation initiation codons in orchids (Barthet et al. 2015), and therefore requires 'case by case' 214 

optimization for each genus. 215 

 216 

 217 

Species identifications 218 

The similarity-based approach using BLAST using nrITS marker data identified 59 out of 104 tuber samples (57%) to 219 

genus level and 45 (43%) to species level. Using trnL-F spacer, 61 out of 94 tuber samples (65%) were identified to 220 

genus level and 33 (35%) to species level. Using matK, 11 out of 28 tuber samples (39%) were identified to genus and 221 

17 (61%) to species level. The consensus of the BLAST identification of the three markers resulted in genus level 222 

identification in 93 samples (62%) and species level in 57 samples (38%) (Table 3; Suppl. 12).  223 

The tree-based approach using RAxML maximum likelihood using nrITS marker data identified 34 out of 104 224 

tubers (33%) to genus level and 70 (67%) to species level (Suppl. 4, Suppl. 12). Using trnL-F spacer, 39 out of 94 225 

samples (42%) were identified to genus level and 55 (58%) to species level (Suppl. 5, 12). Using matK, 12 out of 28 226 

tuber samples (43%) were identified to genus and 16 (57%) to species level (Suppl. 6, 12). Concatenated data identified 227 

87 samples (58%) to genus level and 63 (42%) to species level (Suppl. 7, 12). The ML consensus identification of the 228 

three markers identified 60 samples (40%) to genus level and 90 samples (60%) to species level (Table 3; Suppl. 12). 229 

The tree-based approach using MrBayes Bayesian inference using nrITS marker data identified 33 out of 104 230 

tubers (32%) to genus level and 71 (68%) to species level (Suppl. 8, 12). Using trnL-F spacer, 39 out of 94 samples 231 

(42%) were identified to genus level and 55 (58%) to species level (Suppl. 9, 12). Using matK, 9 out of 28 tuber 232 

samples (32%) were identified to genus and 19 (68%) to species level (Suppl. 10, 12). Concatenated data identified 48 233 

samples (32%) to genus level and 102 (68%) to species level (Suppl. 11, 12). The BI consensus identification of the 234 

three markers identified 53 samples (35%) to genus level 97 samples (65%) to species level (Table 3; Suppl. 12). 235 

The final identification that combines consensus identification results of ML, BI and BLAST approaches 236 

produced an identification of 49 tubers (32.7%) to the genus level and 101 (67.3%) to the species level (Suppl. 12). 237 

 238 

Species composition of Salep 239 

Similarity-based identifications using BLAST showed that Orchis (51 samples), Anacamptis (40 samples), Dactylorhiza 240 

(29 samples), Ophrys (18 samples) and Himantoglossum (11 samples) and Steveniella (1 sample) were constituents of 241 

the studied Salep samples from Iran (Suppl. 12). Orchis simia Lam. and O. mascula (L.) L. were the main Orchis 242 

species in Salep. Anacamptis pyramidalis (L.) Rich., A. coriophora (L.) R.M.Bateman, Pridgeon & M.W.Chase  and A. 243 



palustris (Jacq.) R.M.Bateman, Pridgeon & M.W.Chase were the main Anacamptis species. Dactylorhiza umbrosa 244 

(Kar. & Kir.) Nevski was the only identified Dactylorhiza species. However, 24 out of 29 Dactylorhiza samples were 245 

identified only to genus level. It is known that Dactylorhiza has a dynamic system of hybridization and allopolyploidy 246 

formation (Hedrén et al. 2001, 2008). These allopolyploids show no clear genetic differentiations despite phenotypic 247 

differences (Balao et al. 2015) and it is therefore difficult to identify these samples to species level using the applied 248 

markers. Similarly, Ophrys was found to be one of the constituents of Salep but discerning the species used as Salep 249 

with the BLAST similarity search was not possible. Species delimitation in closely related taxa of the genus Ophrys has 250 

been challenging because of continuous introgression and absence of complete lineage sorting (Devey et al. 2008). 251 

Tree-based identifications using ML and BI showed similar results: Orchis (51 samples for ML and 52 for BI), 252 

Anacamptis (40 ML; 39 BI), Dactylorhiza (29 ML; 29 BI), Ophrys (18 ML; 18 BI), Himantoglossum (11 ML; 11 BI) 253 

and Steveniella (1 ML; 1 BI) were the constituents of Salep (Suppl. 12). Anacamptis species in Salep samples are A. 254 

palustris, A. morio (L.) R.M.Bateman, Pridgeon & M.W.Chase, A. pyramidalis and A. coriophora. Orchis species 255 

contributing to Salep are O. mascula, O. militaris L. and O. simia. It was not possible to identify Ophrys and 256 

Dactylorhiza samples to species level using the applied markers.  257 

Figure 3 shows the species composition of studied Salep tubers based on final consensus identifications 258 

including all markers and methods (Suppl. 12). The phylogenetic relationships among genera is based on Inda et al. 259 

(2012). Based on final identification results the genera Orchis (51 samples), Anacamptis (40 samples), Dactylorhiza (29 260 

samples), Ophrys (18 samples), Himantoglossum (11 samples) and Steveniella (1 sample) are the main the constituents 261 

of studied Salep samples. All tuberous orchid species are used for Salep with a preference for species in the genera 262 

Orchis, Anacamptis and Dactylorhiza. 263 

 264 

Generic composition of tubers per geographic origin 265 

The analyzed tubers can be geographically categorized into three zones of origin: a western zone (Ardabil, Eastern and 266 

Western Azarbaijan, Kurdistan and Kermanshah provinces), a northern zone (Golestan) and a central zone (Tehran and 267 

Esfahan). Sixty-five tubers originate from the western zone, and these include 26 tubers (38%) of Anacamptis, 22 tubers 268 

(32%) of Dactylorhiza and 11 tubers (16%) of Himantoglossum. The generic composition of the 66 tubers from the 269 

northern zone is different, and these include 42 tubers (64%) of Orchis and 15 tubers (23%) of Ophrys. The 15 tubers 270 

from the central zone are mainly Anacamptis (8 samples, 53%) and Dactylorhiza (5 samples, 33%). Although 271 

distribution and abundance of orchids in Iran is poorly documented, the results show that Dactylorhiza tubers, that trade 272 

at a lower value in the market, are harvested in the western and central zones, whereas high-value Orchis tubers are 273 



most commonly collected in the northern zone. Kasparek and Grimm (1999) report the presence of Iranian Salep in 274 

eastern Turkey in the 1990s, and Ghorbani et al. (2014a; b) writes that orchid tuber collection in western Iran has a 275 

longer history than in the north and east of Iran, where a recent boom is escalating harvesting and trade. The results 276 

could indicate that the resources for superior quality Salep tubers from Orchis species have been depleted in the western 277 

zone, and that Salep collection is now targeting the more inferior quality Dactylorhiza tubers. In the northern zone 278 

Orchis tubers are still readily available, but as natural populations dwindle collectors will target other genera. 279 

 280 

 281 

Conclusions 282 

This study has produced a resource of 238 reference sequences and 226 tuber sequences that can be used for 283 

identification of Orchidaceae species in the poorly documented Salep trade in Turkey, Greece and Albania. It also 284 

shows that genomic DNA of sufficient quality can be extracted and sequenced from highly processed Salep tubers. 285 

However, extraction of DNA is accompanied with some difficulties as a result of gel formation due to the high 286 

glucomannan content in the tubers. Post-harvest storage time of the tubers and boiling time during processing may also 287 

affect the quality of extracted DNA. Among the applied markers, nrITS and trnL-F spacer were easier to amplify and 288 

sequence than matK and these markers also show a higher discriminatory power for most of the genera. However, 289 

Dactylorhiza and Ophrys, that are known for allopolyploidy and hybridization, are challenging for barcoding using the 290 

applied markers, and a high-throughput sequencing gene capture approach would probably yield the right read depth for 291 

phasing of alleles and accurate species identification (Weitemier et al. 2014; Schmickl et al. 2015). The results also 292 

show that the genera most affected by Salep harvesting are Orchis, Anacamptis, Dactylorhiza and Ophrys. Geographic 293 

clustering of Salep tubers show clear differences in generic composition per zone with significant implications for 294 

harvesting pressure and resource depletion. Dactylorhiza and Anacamptis are more abundant as Salep tubers from the 295 

western zone, whereas Orchis and Ophrys are more abundant as Salep tubers from the northern zone. Himantoglossum 296 

was only present in Salep from the western zone. The results expose the overharvested species in each region that 297 

should be targeted for tailored conservation activities, and confirms the finding by Ghorbani et al. (2014a) that 298 

overharvesting of superior value Orchis tubers in western parts has led Salep middlemen and traders to tap into new 299 

areas in northern parts of the country. Conservation measures should be implemented in western, central and northern 300 

Iran to protect wild orchid populations from immediate threats due to unsustainable over-exploitation and to prevent 301 

their disappearance before many of them have even been studied properly. 302 

 303 
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Data Accessibility 480 

The concatenated sequence matrix of all reference and tubers species, as well as resulting BI and ML phylogenetic trees 481 

(Suppl. 4-11) are deposited in Dryad, http://dx.doi.org/10.5061/dryad.qb36g. 482 
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Tables and Figures 484 

Figure 1. Distribution of Salep genera in Iran and location of main markets. Shaded areas show the three zones of 485 

origin: western, central and northern zones. 486 

Figure 2. Tuber samples of different morphology purchased from the markets. A. Samples of Orchis/Anacamptis type 487 

tubers. B. Samples of Dactylorhiza type tubers. 488 

Figure 3. Identifications of screened Iranian Salep tubers. A. Shaded genera occur in Iran. Phylogeny adapted from 489 

Inda et al. 2012. B. Proportion of identified genera. C. Filled circles represent the number of tubers identified to a 490 

particular species. 491 
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 Table 1. Species and samples per genus in sequence reference library. 511 

  Identification Reference Resource 
GenBank Field collections 

Genus # Samples # Species # Samples # Species 
Anacamptis 6 5 17 3 
Brownleea 1 1 NA NA 
Cephalantera 3 3 10 5 
Chamorchis 1 1 NA NA 
Corallorhiza 1 1 NA NA 
Dactylorhiza 20 18 17 3 
Disa 1 1 NA NA 
Disperis 1 1 NA NA 
Epipactis 1 1 7 2 
Gennaria 1 1 NA NA 
Goodyera 1 1 NA NA 
Gymnadenia  8 7 NA NA 
Habenaria 1 1 NA NA 
Herminium 1 1 NA NA 
Himantoglossum 10 10 7 2 
Limodorum NA NA 2 1 
Neotinea 5 4 NA NA 
Neottia 3 3 3 1 
Neottianthe 3 2 NA NA 
Ophrys 41 23 35 4 
Orchis 8 7 21 4 
Pecteilis 1 1 NA NA 
Peristylus 1 1 NA NA 
Platanthera 2 2 5 2 
Pseudorchis 1 1 NA NA 
Satyrium 1 1 NA NA 
Serapias 8 7 NA NA 
Spiranthes 2 2 NA NA 
Steveniella 1 1 3 1 
Zeuxine 1 1 NA NA 
 512 



Table 2. Sequence matrix and Bayesian analysis data. 513 

Markers 
No. of sequences   

Reference (R) Leaf (L)  Tuber (T) Total  

nrITS 126 85 104 315 
trnL-F 68 90 94 252 
matK 58 63 28 149 

Concatenated  138 135 150 423 
 514 

Markers 
Alignment matrix Bayesian analysis 

Seq length incl. gaps 
(bp) 

Min/max length without 
gaps (bp) No. trees retained 

nrITS 822 209/722 30 002 
trnL-F 1663 287/1032 30 002 
matK 1173 365/1105 15 002 

Concatenated  3658 209/2677 30 002 
 515 



Table 3. Molecular identification of Salep tuber to species and genus level. 516 
 517 
  Samples for which sequences were obtained 
  ITS trnL-F matK Concatenated Consensus 
Sequenced  
samples 

104   94   28   150   150   

  Similarity (BLAST) identification 
Species 45 43% 33 35% 17 61% - - 57 38% 
Genus 59 57% 61 65% 11 39% - - 93 62% 
  Maximum likelihood (RAxML) identification 
Species 70 67% 55 59% 16 57% 63 42% 90 60% 
Genus 34 33% 39 41% 12 43% 87 58% 60 40% 
  Bayesian inference (MrBayes) identification 
Species 71 68% 55 59% 19 68% 102 68% 97 65% 
Genus 33 32% 39 41% 9 32% 48 32% 53 35% 
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