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Abstract: 

Dengue, a viral infection transmitted between people by mosquitoes, is today one of 

the most rapidly spreading diseases in the world. Here, we report the analyses 

covering 11 years (2005–2015) from the city of Guangzhou in southern China. Using 

the first eight years of data to develop an ecological-based model for the dengue 

system, we reliably predict the following three years of dengue dynamics – years with 

exceptionally extensive dengue outbreaks. We demonstrate that climate conditions, 

through the effects of rainfall and temperature on mosquito abundance and dengue 

transmission rate, play key roles in explaining the temporal dynamics of dengue 

incidence in the human population. Our study thus contributes to a better 

understanding of dengue dynamics and provides a predictive tool for preventive 

dengue-reduction strategies. 
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Significance Statement: 

Dengue is a vector-borne infectious disease threatening human health on a global 

scale. Due to climate change, globalization and other factors, dengue has increasingly 

spread to new countries and over larger areas, from tropical to temperate zones. In this 

study, we found that climate has both direct effects on dengue incidence and indirect 

effects mediated by mosquito density, as mosquitoes are the vectors of dengue. The 

quantitative results derived from this study may be helpful towards advancing our 

understanding of how climate influences vector-borne diseases, and prove useful for 

the control and prevention of dengue fever.   
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Main Text: 

Dengue is one of the most rapidly spreading diseases in the world (1), including 

within the Guangdong province of southern China (2). During the last 50 years, the 

incidence of dengue has increased 30-fold with increasing geographic expansion to 

new countries (1). In 2010, an estimated 390 million dengue infections occurred, 

of which around 96 million showed symptoms (3). Dengue outbreaks in China were 

previously thought to be imported and initiated by people travelling to China from 

dengue-endemic areas elsewhere (4); however, recent studies suggest that dengue may 

now be endemic to China as well (2). The epidemiological triangle of both dengue 

fever and dengue hemorrhagic fever, which is the more serious form of dengue, 

includes hosts (humans), pathogens (one or more of five dengue virus serotypes) 

(5), and mosquito vectors (Aedes albopictus and Aedes aegypti) with their ecological 

interactions (6). The dengue outbreaks are qualitatively known to be strongly 

influenced by temperature (7), humidity, rainfall and socio-economic factors like 

urbanization (8). However, a full understanding of the quantitative nature of such 

effects is largely lacking. With this paper we provide such a quantitative 

understanding of dengue dynamics. 

 

In 2014, an extensive dengue outbreak hit China, with 47,127 dengue cases 

diagnosed, a new record since 1986 (9). Since the 1990s, dengue epidemics have 

gradually spread from Guangdong, Hainan and Guangxi provinces (9). We present 

here a time-series analysis of dengue dynamics, using dengue surveillance data for the 

years 2005−2015 from Guangzhou, the largest city in Guangdong and the city with 

the most dengue cases in China. We split the main analysis by using the first eight 

years to develop a model, and the three remaining years to test that model, as these 

latter years encompass exceptionally extensive dengue outbreaks. 

 

Monthly human dengue incidence data (number of diagnosed cases) were obtained 

from the China National Notifiable Disease Surveillance System (10) (Fig. 1). 

Monthly surveillance data of Ae. albopictus density, the only dengue vector species in 

Guangzhou, were obtained from local Centers for Disease Control and Prevention 

(CDC) (11) (see Method part). We considered both indices of larval and adult 

densities. Temperature and precipitation data were obtained from the China 

Meteorological Data Sharing Service System (http://cdc.cma.gov.cn). We considered 

several alternative monthly temperature (oC) and precipitation indices in the 

subsequent analyses, including mean temperature, monthly average of daily minimum 

temperature, monthly average of daily maximum temperature, cumulative 

precipitation (mm), and number of days with rainfall. 

 

We first explored the direct and indirect effects of temperature and precipitation on 

dengue outbreaks for all years from 2005−2015 using a Structural Equation Model 

(SEM) (12). The SEM results suggest significant direct, positive effects of 

temperature and precipitation on dengue incidence as well as indirect, positive effects 

of both variables through vector density (Fig. 2). Model diagnostics suggest that the 

http://cdc.cma.gov.cn/
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SEM was robust: the Normalized χ2-test (i.e. model χ2 divided by the degrees of 

freedom) = 0.149, root mean square error of approximation < 0.001, and comparative 

fit index = 1 (12). However, due to the presence of many zeros in the data (zero-

inflation), and the inability of the SEM to capture nonlinear effects, some caution in 

the interpretation of these results is needed. Nevertheless, this analysis serves as a 

good stepping stone for the full time-series model development using Generalized 

Additive Models (GAMs) (13) and zero-inflated GAMs (ZIGAMs) (14).  

 

The generic model formulas for vector and dengue, respectively, are given by 

equations 1 and 2: 

 

Eq. 1: ln⁡(𝑉𝑡 + 1) = 𝑎0 + 𝑓1(ln⁡(𝑉𝑡−1 + 1)) + 𝑓2(𝑇𝑡−1) + 𝑓3(𝑃𝑡−1) + 𝜀𝑡 

 

Eq. 2: ⁡𝐷𝑡 = I(𝑏0 + 𝑔1(ln⁡(𝐷𝑡−1 + 1)) + 𝑔2(𝑉𝑡−1) + 𝑔3(𝑇𝑡−1) + 𝑔4(𝑃𝑡−1)) ∙ 

exp⁡(𝑏1 + 𝑔5(ln⁡(𝐷𝑡−1 + 1)) + 𝑔6(𝑉𝑡−1) + 𝑔7(𝑇𝑡−1) + 𝑔8(𝑃𝑡−1) + 𝛿𝑡) 

 

Here, 𝑉𝑡 and 𝐷𝑡 indicate, respectively, monthly vector density and dengue incidence in 

month t. 𝑇𝑡−1  and 𝑃𝑡−1  indicate temperature and precipitation for month t-1. The 

parameters⁡𝑎0, 𝑏0 and 𝑏1 are intercepts. The functions f1, f2, f3, g1,..., and g8 are either 

smooth (natural cubic splines) or linear functions. By optimizing model selection 

criteria that quantified the trade-off between model fit and parsimony (see Tables S1 

and S2), the temperature, precipitation and vector indices to include in the models and 

the functional forms (linear or smooth) were chosen. Vector dynamics were analyzed 

with a GAM fitted on ln⁡(𝑉𝑡 + 1) transformed data. The dengue data (but not the 

vector data) were zero-inflated (Fig. 1, Fig. S1). Hence, dengue incidence dynamics 

were analyzed with a ZIGAM that consisted of a binomial and a lognormal part. The 

function I(.) in Eq. 2 represents a Bernoulli variable that is either 0 (absent) or 1 

(present), whose probability of success is given by the predictor expression enclosed 

within the parentheses, on the logit scale. The same predictor variables enter into the 2 

sub-models of the ZIGAM, although with potentially different functional forms. 

 

Results of ZIGAM analyses for the first eight years (2005−2012) suggested that 

dengue incidence was best predicted as positive smooth functions of dengue incidence 

in the previous month, adult mosquito density, monthly average of daily maximum 

temperature and number of days with rainfall (Fig. 3 and Table S2). We found that 

adult mosquito (i.e., vector) density was best predicted as linear effects of adult 

mosquito density in the previous month and number of days with rainfall (Table 1, 

Table S1). 

 

We then used the selected GAM for climate effects on adult mosquito density (Table 

1) and the selected ZIGAM for adult mosquito and climate effects on dengue (Fig. 3) 

to make one-month-ahead predictions for 2013−2015. We found that the selected 

models were indeed able to predict the high peaks in dengue cases for these years 

(Fig. 4), although with broad prediction bands. The two highest mosquito peaks, 
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in years 2007 and 2014, were not predictable from the model. The 2014 mosquito 

peak in Guangzhou has recently been associated with the seasonal distribution of 

precipitation, the daily temperature range and non-additive effects of 

temperature and precipitation (15), pointing to more complex species-

environment relationships than accommodated by our model. As our focus was 

on prediction, we intendedly restricted model complexity to reduce the risk of 

overfitting. 

 

Finally, we repeated model selection, using the whole dataset from 2005 to 2015 

(Tables S1 and S2). The same variables were selected in these models and their 

estimated effects were similar, indicating that the same biological processes were 

driving the dynamics in the peak years from 2013 to 2015 as in the earlier period (Fig. 

5, Table 1). No additional factors, e.g. related to dengue possibly becoming endemic 

and potentially occurring earlier in the season (2, 4), were thus needed to explain 

these peaks in dengue incidence. 

 

This final ZIGAM of dengue dynamics shows that previous-month dengue incidence 

has positive effects on outbreak risk (i.e., on the probability of the incidence being 

larger than zero, Fig. 5A) and outbreak intensity (i.e., on ln(incidence), given that 

incidence is larger than zero, Fig. 5E). Adult mosquito density mainly seems to affect 

outbreak intensity, but only after having reached a threshold of around 1−1.5 units on 

the mosquito index scale (monthly averaged Ae. albopictus captured per trap per 

night) (Fig. 5F). Temperature has significantly positive effects on both outbreak risk 

and intensity (Fig. 5C, G), with some indications of leveling off at high temperatures 

(Fig. 5G). Precipitation has a non-significant positive association with outbreak risk 

(Fig. 5D) and a significant, approximately linear, and positive association with 

outbreak intensity (Fig. 5H). 

 

The positive association between temperature and dengue incidence in our study is 

similar to e.g. Taiwan (16, 17) which is at the same latitude as Guangzhou. Our 

findings show that this association is mainly related to direct effects of temperature on 

dengue transmission rate. Mechanisms for such direct effects include, for example, 

temperature effects on the biting rate of mosquitoes (18), incubation period of 

pathogens (19), and human exposure to mosquitoes (e.g., by influencing the time 

spent outdoors or with open windows). In contrast, GAM results show no significant 

association of the temperature variables considered with mosquito population 

dynamics. The temperature-mosquito association suggested by the SEM likely reflects 

the mosquitoes’ seasonal cycle, with higher abundances in summer, as this model 

analyzes the total abundance rather than the change in abundance from one month to 

the next. 

 

Our results show that precipitation influences dengue incidence both through direct 

effects on transmission rate (e.g., through effects on mosquito biting rate (18)), and 

indirect effects through mosquito population dynamics. Since Ae. albopictus breed in 
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small pools of water, rainfall could result in an increase of breeding sites (20). We 

found the number of days with rainfall to be a better predictor than the monthly 

cumulative precipitation, which suggests that the underlying mechanism may be 

related to the maintenance of humid conditions over time. These findings complement 

a recent study showing a positive association between interannual variability in 

dengue incidence and surface water area (21). Together, our studies show that changes 

in breeding area of Ae. albopictus are important drivers of dengue dynamics at both 

monthly and yearly time scales. However, while precipitation appears to be a key 

driver of the shorter-term changes (this study), urban landscape features, such as 

recently constructed artificial lakes in Guangzhou, appear to be key drivers of longer-

term trends (21). 

 

As in other dengue epidemic areas (11, 22, 23) we find a strong link between dengue 

incidence and density of Aedes mosquitoes, the vectors of dengue. These findings 

support the utility of vector population control through, e.g., pesticides, Wolbachia 

bacteria-infection of mosquitoes or habitat measures, for reducing the intensity of 

dengue outbreaks (24, 25). Interestingly, such control efforts may be the reason why 

mosquito density was lower in 2015 than we had predicted based on climate 

conditions, and why dengue incidence was lower than predicted for three months 

during the build-up phase of the outbreak that year.  

 

Our study builds on previous research that link dengue and vector dynamics to 

climate variables (26, 27) and climate change (28), and extends these by quantifying 

relationships based on state-of-the-art statistical analysis of multi-year time-series. 

Our findings strongly suggest that climate conditions drive the outbreaks of dengue in 

Guangzhou. However, our modeling approaches have some limitations, such as the 

low number of years with very high dengue incidence during the study period (2013 

and 2014). We did not consider potentially relevant local factors, such as population 

movements, the occurrence of household water tanks, vegetation cover, and distance 

to rivers or other water bodies. Further, while our results point to climate factors 

associated with increased risk of dengue transmission and outbreaks, human 

activities and their impact on local ecology may be more important than climate 

factors in driving the long-term trends (29-31). Moreover, the role of climate is 

likely to vary among locations, and even over time in the same location (32). 

However, the quantitative results derived from this study may be helpful towards 

advancing our understanding of how climate influences vector-borne diseases, and 

prove useful for the control and prevention of dengue fever. 
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Methods 

Dengue incidence data  

Daily records of human dengue cases from 2005 to 2015 were obtained from the 

China National Notifiable Disease Surveillance System. All human dengue cases 

were diagnosed according to the diagnostic criteria for Dengue Fever (WS216–

2008) enacted by Chinese Ministry of Health (11, 33). The information of 

individual dengue cases included whether they were local or imported (local cases 

were defined as dengue cases where infection most likely occurred due to local 

transmission as there was no documentation of travel to dengue-endemic foreign 

regions; imported cases were those where infection most likely occurred outside of 

China). Human dengue incidence data were aggregated per month (denoted as 𝐷𝑡) and 

matched to monthly surveillance data of adult mosquito population density. 

 

Vector density data 

We considered both the adult mosquito density (denoted as 𝑉𝑡
𝑎) and the larval density 

(denoted as 𝑉𝑡
𝑙). Adult mosquitoes (Aedes albopictus) were sampled by light traps. 

Larval density was measured by the Breteau index, which is defined as the number of 

positive containers per 100 houses inspected (34). Both adult density and larval 

density combined the information on mosquito density sampled in residential area 

households (> 50 households sampled per month), parks, construction sites and other 

urban areas.  

 

Climate variables in the models 

We considered several different monthly temperature and precipitation variables for 

model selection. The temperature variables (°C) included average temperature 

(denoted as 𝑇𝑡−1
𝑎 ), average of daily lowest temperature (denoted as 𝑇𝑡−1

𝑙 ) and average 

of daily highest temperature (denoted as 𝑇𝑡−1
ℎ ). Precipitation variables included 

accumulated precipitation (mm, denoted as 𝑃𝑡−1), and number of days with rainfall 

(days, denoted as 𝑃𝑡−1
𝑑 ). We modeled the effects of climate variables on dengue 

incidence with t = 1 month time lag in order to be consistent with the survival time of 

Ae. albopictus under field conditions: 50% of the population has been found to 

survive ≥ 10 days and 5% to survive ≥ 40 days; the time for Aedes albopictus 

transmission of dengue may be less than 40 days (35, 36). 

 

Statistical modeling 

Structural Equation Modeling: rational, model construction and selection 

Structural Equation Modeling (SEM) estimates the structural correlation among the 

variables (37, 38). SEM was used to analyze the structural linear correlation (as 

shown in Fig. 2) between temperature (average maximum temperature), precipitation 

(number of days with rainfall), vector density (monthly averaged mosquitoes captured 

per trap per night) and dengue incidence (ln transformed). The effects of temperature 

and precipitation on dengue were divided into direct effects and effects mediated by 

vector density. At the same time, the correlation between the variables of temperature 

and precipitation was assessed in the model. A dummy variable YEAR2014 (year 
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2014 = 1, other years = 0) was added into the SEM model as a control variable, 

because the large outbreak of dengue in year 2014 (39) otherwise hindered 

convergence and adding the dummy control variable was preferred from model 

selection. 

 

Generalized Additive Model of vector dynamics 

The ‘mgcv’ package (version 1.7-29) of R was used for Generalized Additive Model 

(GAM) analyses (40). Because the different temperature and precipitation variables 

were strongly correlated, we considered all combinations of the alternative 

temperature, precipitation and vector density variables (but no more than one variable 

for each factor in the model). To account for density-dependence we included ln(1 + 

density) in the previous month as a predictor variable in the model. We also compared 

linear and nonlinear model formulations, by letting the covariate effects in Eq. 1 to 

either be linear or smooth (natural cubic splines with a maximum of three degrees of 

freedom). As selection criterion we used the generalized cross validation criterion 

(GCV). A model with lower GCV has more predictive power and was hence selected 

(Table S1). To evaluate an additional conservative criterion, we used genuine cross 

validation. Specifically, we removed one “test” year at a time, fitted the model on the 

remaining dataset, made predictions for the test year, repeated this for all years, and 

calculated log-scale root-mean-square prediction error (i.e., the square root of the sum 

of squared differences ln(observed density + 1) – ln(predicted density + 1)). Deviance 

residuals from the final modes were checked for temporal autocorrelation using 

autocorrelation and partial autocorrelation functions. 

 

ZIGAM of dengue dynamics 

Histograms of dengue incidence clearly showed zero inflation problems (Fig. S1). 

The ‘COZIGAM’ package (version 2.0-4) of R was used for Constrained and 

Unconstrained Zero-Inflated Generalized Additive Models (14). The constrained 

(CoZIGAM) and the unconstrained (UnZIGAM) models differ in that CoZIGAM 

constrains the fitted values of the binomial part of the model to be proportional to the 

fitted values of the lognormal part (on the linear scales of the predictors). As model 

selection criterion we used an approximation of the log of the marginal likelihood 

(logE), which is related to the Bayesian Information Criterion. Models with higher 

logE are preferred. As response variable, only the incidence of locally infected dengue 

cases was considered. For the autoregressive term, ln(1 + incidence) in the previous 

month, both local and imported dengue cases were considered. 

 

The maximum degrees of freedom for the smooth terms was set to three in the model 

selection. By inspecting the model providing the highest logE for the first eight years 

(Table S2), we found that the effect of average maximum temperature was not 

biologically interpretable (Fig. S2). Most likely this reflects overfitting, and hence we 

modified the model by reducing the maximum degrees of freedom for this term to 

two. This rendered an interpretable temperature effect (Fig. 3). The logE of this model 

(-60.515) remained a better fit than those of other candidate models from Table S2. 
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Hence, this model was used for predictions. 

 

Predictions of dengue incidence for 2013 to 2015 

The selected vector and dengue models based on data from 2005 to 2012 were used to 

calculate one-month-ahead predictions for 2013 to 2015. Predictions of mosquito 

density and dengue incidence for month t were calculated based on observed 

temperature, precipitation, dengue incidence and mosquito density in month t-1. The 

predicted mosquito density for month t was used as input in the prediction of dengue 

for month t. 

 

Uncertainty estimation 

Prediction bands were calculated using bootstrap, as follows: For vector dynamics, we 

used a wild bootstrap approach (41). The residuals from the model for the reduced 

dataset (2005−2012) were first rescaled to have the same variance as estimated by the 

model. We did this by multiplying the residuals with the square root of the scale factor 

estimated from the model divided by the variance of the residuals. Ten thousand 

bootstrap datasets of the same size as the original reduced dataset were generated by 

adding to the fitted values their corresponding (rescaled) residuals, with the sign of 

the residuals randomly flipped. Specifically, each residual was multiplied by a random 

variable that equaled 1 or -1 with equal probability, before being added back to the 

fitted values. A bootstrap distribution for vector density predictions was generated by 

refitting the vector model on each bootstrap dataset and using these refitted models to 

make predictions for the whole period (2005−2015). 

For dengue dynamics we generated 10,000 bootstrap datasets in a two-step approach. 

In the first step, we sampled with replacement the rescaled residuals from the 

lognormal part of the ZIGAM and added them back to the fitted values. In the second 

step, each data point was multiplied by 0 or 1, with probability p being the fitted value 

from the binomial part of the ZIGAM. We then refitted the ZIGAM with the bootstrap 

data. Finally, we used these refitted ZIGAMs and the bootstrap time-series of 

mosquito density to generate a bootstrap distribution of dengue incidence for the 

whole period. 

The 0.025 [0.05] and 0.975 [0.95] quantiles from this distribution delineate the 95 % 

[90 %] prediction limits. 
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Table 1. Final model for adult mosquito density. Model coefficients ± standard errors. All 

terms are statistically significant at p < 0.01. 
 

Model formula 
Deviance 

explained 

Using the first eight years of data 2005−2012 

ln⁡(V
t
a + 1) = −0.040 + 0.58[𝑠. 𝑒. 0.072]⁡ln⁡(𝑉

𝑡−1
𝑎 + 1) + 0.021[𝑠. 𝑒. 0.0041]⁡𝑃𝑡−1

𝑑 + 𝜀𝑡 64.4% 

Using the whole dataset 2005−2015 

ln⁡(V
t
a + 1) = −0.048 + 0.64[𝑠. 𝑒. 0.057]⁡ln⁡(𝑉

𝑡−1
𝑎 + 1) + 0.019[𝑠. 𝑒. 0.0032]⁡𝑃𝑡−1

𝑑 + 𝜀𝑡 67.0% 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Spatiotemporal dynamics of dengue in mainland China from the beginning of 2005 to 

the end of 2015. A. Geographical distribution of dengue incidence in China. Radiuses of 

circles indicate incidence of dengue. Red circles represent dengue in Guangzhou, black circles 

other cities in Guangdong province, and grey circles other provinces. B. Monthly time series 

of dengue incidence in Guangzhou. C. Monthly time series of adult population density of the 

dengue vector Ae. albopictus. D. Monthly time series of average maximum temperature in 

Guangzhou. E. Monthly time series of number of days with rainfall in Guangzhou. 
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Fig. 2. Structural Equation Model analysis revealed direct and indirect climate effects on 

dengue incidence in Guangzhou from 2005 to 2015. Arrows with numbers indicate ecological 

effects and standardized coefficients. Temperature and precipitation are correlated (correlation 

coefficient = 0.39). Asterisks indicate statistically significant pathways (p < 0.05). 

 

 

 

 

 

 

 
Fig. 3. Analysis of potentially nonlinear influences on dengue incidence in Guangzhou based 

on data from years 2005−2012, i.e., excluding the 3 last years of data. To account for zero-

inflation, a separate binomial sub-model quantifies predictor effects on outbreak risk (logit 

scale probability of incidence > 0, upper row) and a log-normal sub-model quantifies 

predictor effects on outbreak intensity when an outbreak occurs (ln(incidence), lower row).  
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Fig. 4. Observations and one-month-ahead predictions. A. Adult mosquito density. B. Dengue 

incidence. The vertical lines separate the years 2005−2012 from the years 2013−2015 over 

which out-of-sample predictions were made. 
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Fig. 5. Analysis of potentially nonlinear influences on dengue incidence in Guangzhou based 

on data from all years 2005−2015. To account for zero-inflation, a separate binomial sub-

model quantifies predictor effects on outbreak risk (logit scale probability of incidence > 0, 

upper row) and a log-normal sub-model quantifies predictor effects on outbreak intensity 

when an outbreak occurs (ln(incidence), lower row). 
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Table S1. The model selection results for adult mosquito density.  

The top five models were selected based on minimizing the GCV criteria. We also list genuine 

CV calculated by leaving one year out at a time. 

Model formula GCV 
CV leaving one  

year out 

Using the first eight years of data 2005−2012 

Linear Model   

ln⁡(Vt
a + 1) = a0 + a1ln⁡(Vt−1

a + 1) + a2Pt−1
d + εt 0.046   0.218* 

ln⁡(Vt
a + 1) = a0 + a1ln⁡(Vt−1

a + 1) + a2Tt−1
a + a3Pt−1

d + εt 0.047 0.226 

ln⁡(Vt
a + 1) = a0 + a1ln⁡(Vt−1

a + 1) + a2Tt−1
l + a3Pt−1

d + εt 0.047 0.227 

ln⁡(Vt
a + 1) = a0 + a1ln⁡(Vt−1

a + 1) + a2Tt−1
h + a3Pt−1

d + εt 0.047 0.226 

ln⁡(Vt
a + 1) = a0 + a1ln⁡(Vt−1

a + 1) + a2Tt−1
l + εt 0.058 0.248 

Nonlinear Model   

ln⁡(Vt
a + 1) = a0 + f1(ln⁡(Vt−1

a + 1)) + f2(Pt−1
d ) + εt 0.046 0.223 

ln⁡(Vt
a + 1) = a0 + f1(ln⁡(Vt−1

a + 1)) + f2(Tt−1
a ) + f3(Pt−1

d ) + εt 0.046 0.234 

ln⁡(Vt
a + 1) = a0 + f1(ln⁡(Vt−1

a + 1)) + f2(Tt−1
h ) + f3(Pt−1

d ) + εt 0.046 0.233 

ln⁡(Vt
a + 1) = a0 + f1(ln⁡(Vt−1

a + 1)) + f2(Tt−1
l ) + f3(Pt−1

d ) + εt 0.046 0.234 

ln⁡(Vt
a + 1) = a0 + f1(ln⁡(Vt−1

a + 1)) + f2(Pt−1) + εt 0.056 0.238 

Using the whole dataset 2005−2015 

Linear Model   

ln⁡(Vt
a + 1) = a0 + a1ln⁡(Vt−1

a + 1) + a2Pt−1
d + εt 0.043   0.210* 

ln⁡(Vt
a + 1) = a0 + a1ln⁡(Vt−1

a + 1) + a2Tt−1
l + a3Pt−1

d + εt 0.043 0.214 

ln⁡(Vt
a + 1) = a0 + a1ln⁡(Vt−1

a + 1) + a2Tt−1
a + a3Pt−1

d + εt 0.043 0.214 

ln⁡(Vt
a + 1) = a0 + a1ln⁡(Vt−1

a + 1) + a2Tt−1
h + a3Pt−1

d + εt 0.043 0.214 

ln⁡(Vt
a + 1) = a0 + a1ln⁡(Vt−1

a + 1) + a2Pt−1 + εt 0.052 0.231 

Nonlinear Model   

ln⁡(Vt
a + 1) = a0 + f1(ln⁡(Vt−1

a + 1)) + f2(Pt−1
d ) + εt 0.042 0.213 

ln⁡(Vt
a + 1) = a0 + f1(ln⁡(Vt−1

a + 1)) + f2(Tt−1
h ) + f3(Pt−1

d ) + εt 0.043 0.219 

ln⁡(Vt
a + 1) = a0 + f1(ln⁡(Vt−1

a + 1)) + f2(Tt−1
l ) + f3(Pt−1

d ) + εt 0.043 0.218 

ln⁡(Vt
a + 1) = a0 + f1(ln⁡(Vt−1

a + 1)) + f2(Tt−1
a ) + f3(Pt−1

d ) + εt 0.043 0.219 

ln⁡(Vt
a + 1) = a0 + f1(ln⁡(Vt−1

a + 1)) + f2(Pt−1) + εt ) 0.048 0.224 

* The model used for predictions, which is also the model formulation selected by using the 

whole dataset.  
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Table S2. Model selection results (log of marginal likelihood, logE) for dengue incidence.  

Models with higher logE are preferred. Unconstrained ZIGAMs (UnZIGAM) consistently 

give higher logE than constrained ZIGAMs (CoZIGAM).  
Simplified model formula  

(see Eq. 2 for full formulation)  
2005−2012 2005−2015 

 CoZIGAM ZIGAM CoZIGAM ZIGAM 

𝐷𝑡 = 𝑏0 + 𝑔1(𝐷𝑡−1) + 𝑔2(𝑉𝑡
𝑎) + 𝑔3(𝑇𝑡−1

ℎ ) + 𝑔4(𝑃𝑡−1
𝑑 ) + 𝜀𝑡 -137.4 -54.9* -134.1 -92.0* 

𝐷𝑡 = 𝑏0 + 𝑔1(𝐷𝑡−1) + 𝑔2(𝑉𝑡
𝑎) + 𝑔3(𝑇𝑡−1

ℎ ) + 𝑔4(𝑃𝑡−1) + 𝜀𝑡 -105.0 -62.3 -129.7 -100.4 

𝐷𝑡 = 𝑏0 + 𝑔1(𝐷𝑡−1) + 𝑔2(𝑉𝑡
𝑎) + 𝑔3(𝑇𝑡−1

ℎ ) + 𝜀𝑡 -82.9 -63.7 -127.4 -115.5 

𝐷𝑡 = 𝑏0 + 𝑔1(𝐷𝑡−1) + 𝑔2(𝑉𝑡
𝑎) + 𝑔3(𝑇𝑡−1

𝑎 ) + 𝑔4(𝑃𝑡−1
𝑑 ) + 𝜀𝑡 -80.5 -63.8 -140.1 -94.2 

𝐷𝑡 = 𝑏0 + 𝑔1(𝐷𝑡−1) + 𝑔2(𝑉𝑡
𝑎) + 𝑔3(𝑇𝑡−1

𝑙 ) + 𝑔4(𝑃𝑡−1
𝑑 ) + 𝜀𝑡 -80.2 -64.4 -136.9 -95.5 

𝐷𝑡 = 𝑏0 + 𝑔1(𝐷𝑡−1) + 𝑔2(𝑉𝑡
𝑎) + 𝑔3(𝑇𝑡−1

𝑎 ) + 𝑔4(𝑃𝑡−1) + 𝜀𝑡 -80.6 -65.2 -128.3 -109.5 

𝐷𝑡 = 𝑏0 + 𝑔1(𝐷𝑡−1) + 𝑔2(𝑉𝑡
𝑎) + 𝑔3(𝑇𝑡−1

𝑙 ) + 𝑔4(𝑃𝑡−1) + 𝜀𝑡 -80.3 -65.7 -127.7 -100.9 

𝐷𝑡 = 𝑏0 + 𝑔1(𝐷𝑡−1) + 𝑔2(𝑉𝑡
𝑎) + 𝑔3(𝑇𝑡−1

𝑎 ) + 𝜀𝑡 -79.7 -66.3 -126.6 -113.5 

𝐷𝑡 = 𝑏0 + 𝑔1(𝐷𝑡−1) + 𝑔2(𝑉𝑡
𝑎) + 𝑔3(𝑇𝑡−1

𝑙 ) + 𝜀𝑡 -79.4 -67.2 -125.8 -116.3 

𝐷𝑡 = 𝑏0 + 𝑔1(𝐷𝑡−1) + 𝑔2(𝑇𝑡−1
𝑎 ) + 𝑔3(𝑃𝑡−1

𝑑 ) + 𝜀𝑡 -86.1 -68.1 -128.8 -97.7 

𝐷𝑡 = 𝑏0 + 𝑔1(𝐷𝑡−1) + 𝑔2(𝑇𝑡−1
𝑙 ) + 𝑔3(𝑃𝑡−1

𝑑 ) + 𝜀𝑡 -85.0 -68.3 -137.9 -98.35 

𝐷𝑡 = 𝑏0 + 𝑔1(𝐷𝑡−1) + 𝑔2(𝑇𝑡−1
ℎ ) + 𝑔3(𝑃𝑡−1) + 𝜀𝑡 -105.1 -69.1 -136.2 -103.5 

𝐷𝑡 = 𝑏0 + 𝑔1(𝐷𝑡−1) + 𝑔2(𝑇𝑡−1
𝑙 ) + 𝑔3(𝑃𝑡−1) + 𝜀𝑡 -104.3 -69.7 -132.3 -103.4 

𝐷𝑡 = 𝑏0 + 𝑔1(𝐷𝑡−1) + 𝑔2(𝑇𝑡−1
𝑎 ) + 𝑔3(𝑃𝑡−1) + 𝜀𝑡 -104.7 -69.8 -133.7 -103.5 

𝐷𝑡 = 𝑏0 + 𝑔1(𝐷𝑡−1) + 𝑔2(𝑉𝑡
𝑎) + 𝑔3(𝑃𝑡−1

𝑑 ) + 𝜀𝑡 -91.4 -70.0 -145.1 -114.6 

𝐷𝑡 = 𝑏0 + 𝑔1(𝐷𝑡−1) + 𝑔2(𝑉𝑡
𝑎) + 𝑔3(𝑃𝑡−1) + 𝜀𝑡 -88.2 -72.6 -139.4 -110.8 

𝐷𝑡 = 𝑏0 + 𝑔1(𝐷𝑡−1) + 𝑔2(𝑉𝑡
𝑎) + 𝜀𝑡 -92.0 -74.6 -150.7 -117.5 

𝐷𝑡 = 𝑏0 + 𝑔1(𝐷𝑡−1) + 𝑔2(𝑃𝑡−1
𝑑 ) + 𝜀𝑡 -95.7 -76.2 -162.5 -119.1 

𝐷𝑡 = 𝑏0 + 𝑔1(𝐷𝑡−1) + 𝑔2(𝑃𝑡−1) + 𝜀𝑡 -98.9 -80.1 -149.9 -125.7 

𝐷𝑡 = 𝑏0 + 𝑔1(𝐷𝑡−1) + 𝜀𝑡 -107.1 -85.7 -- -133.5 

-- Model did not converge.  

*The model used for predictions, which is also the model formulation selected by using the 

whole dataset. 
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Fig. S1. Test of zero-inflation. Histogram plots of monthly mosquito density and dengue 

incidence data.  
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Fig. S2. The initially selected ZIGAM of dengue incidence based on data from 2005 1 

to 2012. The effect of average maximum temperature in panel G is likely over fitted. 2 
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