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Abstract

The kinematics below the strongest possible periodic water waves on in-
termediate depth, for wave periods T

√

g/h = 8.75 and 11.7 (g acceleration
of gravity, h water depth), is measured by PIV. The largest possible waves far
away from the wave maker have a height of H/h ≃ 0.49 and a fluid velocity
up to 0.5

√
gh for these periods. Moderately breaking waves measured close

to the wave maker have a turbulent surface region riding on top of a smooth
flow with horizontal fluid velocity of 0.62

√
gh at maximum, and wave height

up to H/h = 0.63. Strongly breaking waves have thicker turbulent surface
region, smaller maximum height (H/h = 0.56) and horizontal fluid velocity
of 0.72

√
gh at maximum. Measurement of the flow below 72 breaking wave

crests illustrate the range and variation of the elevation and kinematics. Ex-
periments are compared to fully nonlinear and second order theories, where
the former is valid for regular nonbreaking waves, and the latter gives con-
servative predictions for the very strong waves. Secondary streaming in the
bottom boundary layer below the waves is measured.

Keywords:

1. Introduction

Development of wind farms in the offshore environment has made the
subject of wave kinematics on finite and shallow water depth highly relevant.
An example is the wind turbines on Sheringham Shoal north of Norfolk UK,
where the water depth varies between 12 and 24 m. A large wind farm
on Dogger Bank in the southern part of the North Sea is currently being
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planned. The very large area of 17 000 km2 has a depth between 15 and 36
m. The longest waves that are of concern, also with the strongest energy
density, have a period of about T = 12 seconds according to information
from industry. This means that the longest nondimensional wave period is
in the range T

√

g/h ∼ 11–8 on Sheringham Shoal and T
√

g/h ∼ 10–6 on
Dogger Bank, corresponding to an intermediate range of the water waves on
finite depth (h water depth, g acceleration of gravity). Several theories and
analyses of waves on finite depth are available. The questions we address
in the present experimental paper – not easily addressed by a theoretical
approach – include:

1) How are the velocities in the strongest possible water waves on finite
depth?

2) How do weak and strong breaking alter the velocities?

Measurements of the wave height (H) of waves on finite, constant depth,
in field observations, at coral reefs or other shallow locations at sea, as well
as in laboratory experiments, show that this is H/h = 0.55 at maximum [1].
The nonlinearity of the waves recorded in the field is commonly characterized
by the parameter Fc = (H/h)1/2(T

√

g/h)5/2 [2]. The Ursell parameter may
alternatively be used, see below. The maximum possible wave height is less
than 0.55 in the regime where the waves are not characterized as shallow
water waves, depending on the value of Fc. For example, the largest pos-
sible wave height is H/h ≃ 0.49 for Fc ∼ 150 − 300, according to Nelson
[1, figure 1]. This maximum height is relevant to the present experiments.
Regular waves interacting with a reef of steep face and a weak, gradually de-
creasing reef-top slope, have a maximum value of H/h that decreases when
Fc decreases [3]. Random wave heights that show initial Rayleigh distribu-
tion, transform during shoaling and breaking in the surf zone, resulting in
wave height distributions that become nearly Rayleigh in the shallow water,
a process that is characterized by some energy loss [4].

We note that a careful wave generation process may give larger wave
heights than observed in the field and the vast majority of existing wave tank
experiments. The important point is to postpone the inception of breaking.
Zhang and Schäffer [5] used a stream function formulation to numerically
generate periodic waves of heights H/h = 0.6 for Fc = 340 (T

√

g/h = 11.4)

and H/h = 0.55 for Fc = 175 (T
√

g/h = 8.9). These elevations are 10-
15 % larger than the results summarized in [1,2]. Moreover, the results by
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Zhang and Schäffer are larger than what we have been able to generate in the
present experiments for the similar wave periods. Yang et al. [6] employed
second-order potential theory to calculate the far field waves with successful
comparison to experiments, obtaining a similar maximum wave amplitude as
Zhang and Schäffer [5]. A rapid, fully nonlinear-dispersive potential theory
formulation in three dimensions, including wave generation, may be used to
calculate nonbreaking waves on finite or variable water depth [7,8].

The kinematics in steep periodic (regular) waves on finite water depth has
been calculated recently using the method and code by Fenton [9]. Arguing
that kinematics of the theoretically steepest waves of perfect symmetrical
shape is not of practical relevance, calculations of the very large waves were
avoided because of slow convergence properties of the method in this range
[10]. This statement is correct, as the waves observed in the field do break
and thus become limited in height. This saturation of the wave height is
a key-point in the measurements we present in this paper and is further
discussed below. Moreover, we perform numerical calculations using Fenton’s
method [9] with excellent correspondence to the (few) regular waves that are
measured.

While the maximum wave height and propagation speed of waves on fi-
nite and shallow depth are extensively documented [1,11], see also further
discussion in Section 1.1 below, there are gaps in the knowledge regarding
the wave-induced kinematics. Attempts to obtain finite depth wave kinemat-
ics by hydrogen bubble method and hotfilm technique have been very little
conclusive, particularly right below the water surface where also the fluid ve-
locities are the strongest [12]. Waves that are strongly affected by breaking
exhibit velocity fields that differ from waves that are regular. Weakly break-
ing waves, waves that may be characterized as extreme, or waves that are
very high or break violently require very advanced computational strategies,
see e.g. Iafrati [13]. The detailed effect of the breaking process and the result-
ing saturation invites for an experimental investigation of the wave-induced
kinematics on finite water depth. The waves that are radiated away as well
as the local wave breaking close to the wave maker are in the present exper-
iments measured by Particle Image Velocimetry (PIV) with complementary
elevation measurements by wave gauges. The present velocity field measure-
ments complement previous measurements of wave kinematics on deep water
[14,15].

The paper is organized as follows. Following the Introduction, Section
2 describes the experimental set-up, wave motion and kinematics measure-
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ments far from the wave maker. Section 3 describes velocity fields in waves
with moderate and strong breaking. Section 4 describes the jet induced by
bottom boundary layer streaming. Summary and conclusions are given in
the final Section 5.

1.1. Field observations of waves of maximum height, breaking on finite water

depth and three-dimensional effects

Before proceeding to the description of the kinematics experiments, a
more detailed discussion of waves of maximum height and wave breaking on
finite, constant water depth is given. In Nelson [1], a field measurement at
John Brewer Reef was described, among others, obtaining wave measure-
ments in four positions on the shallow horizontal reef at distances of 27 m,
71 m, 120 m and 170 m from the reef edge. The water depth was in the range
1-3 m, depending on the tide. The results in Nelson [1, figure 8] show that
the ratio H/h between the wave height and water depth could be up to 1 at
the poles 1 and 2, and up to 0.8 at the pole number 3. The observed wave
height at the most inward measurement pole number 4 was up to H/h ≃ 0.5
for Fc ≃ 160. The observed wave height was somewhat less than 0.5 for
the larger Fc ≃ 300. Nelson wrote in his paper that only two among the 72
measured events were marginally above his empirical curve of the maximum
wave height, given by (H/h)max = Fc/(22 + 1.82Fc), which tends to 0.55h
when Fc becomes large. For the intermediate wave range of moderate Fc, the
maximum wave height was smaller than 0.55h.

A field measurement of breaking wind generated waves on finite, constant
depth, undertaken by Babanin et al. [16], had a strongest wave record mea-
sured in 20 m/s wind, with peak frequency of 0.36Hz and a significant wave
height of Hs = 0.41h. Besides investigating breaking properties and breaking
thresholds, the up-crossing and down-crossing wave heights of the individual
waves were recorded. Only 1.4 percent of these wave heights exceeded the
0.55h height limit; all those waves were breaking, as documented by video
recordings. In their conclusions, Babanin et al. [16] wrote that waves of
height 0.44h and higher always break, whereas waves with height less than
0.44h may undergo random breaking and may either break or not.

The wave breaking observed in field experiments with and without the
effect of wind may be caused by three-dimensional instabilities such as horse-
shoe instabilities, see McLean [17]. The class I and II instabilities of periodic
waves on finite water depth were further calculated by Fructus et al. [18] find-
ing that class II (horse shoe) instability dominates and leads to breaking of
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Stokes waves of wave slope ak exceeding 0.13, for kh = 1 (a wave amplitude).
This means that the horse shoe instability is present in wide wave fields when
the wave height 2a = H exceeds 0.26h (for kh = 1), relevant to the wave
slope and water depth in the present experiments. Time simulations of wave
growth beyond the instability threshold exhibit a local wave height of up to
0.45h right before breaking, for kh = 1 (Kristiansen et al. [19, figure 10a]). A
stability analysis of class I and II instability of Stokes waves in shallow water
with kh < 0.5 was performed by Kharif and Francius [20]. Class I and II
instabilities are not observed in the present narrow tank experiments, where
also measurements are performed at a limited distance from the wave maker.

The apparent conflict between the limiting height of waves on finite con-
stant depth and the maximum solitary wave amplitude of 0.83h has been
discussed in a paper by Massel [21]. His theoretical results for 2nd-, 3rd- and
4th-order approximations of cnoidal theory estimate a higher wave amplitude
than Nelson’s emprical formula. Massel also investigated the effect of a higher
harmonic wave generation on the maximum height of the far field waves. In
one example he obtained a second harmonic wave amplitude of up to 50 per
cent of the first harmonic wave amplitude. In the present experiments we
observe free higher harmonic wave components in the far field waves that are
up to about 10 percent of the mother wave amplitude, however. Comparison
between theoretical predictions of (H/h)max to experimental observations of
the same quantity in Massel [21, figure 6], shows 0.55 as the maximum for
both theory and experiment. In that paper it was noted that the theoretical
estimate of the experimental wave height could differ by more than 20 per
cent.

In the present investigation the wave maker performs a sinusoidal oscilla-
tion (linear wave maker theory). The amplitude is gradually increased. We
observe that the maximum wave height in the far field grows according to
the amplitude of the wave maker, up to the level where breaking sets in.
For stronger wave maker amplitude, the far field wave amplitude reduces,
because of the breaking. With a wave generation where the wave breaking
can be postponed, e.g. adding a second harmonic motion of the wave maker,
the maximum far field wave amplitude can be somewhat enhanced, such as
in Zhang and Schäffer [5] and Yang et al. [6]. They were able to numerically
generate periodic waves of height H/h = 0.6, similar to (about) the maxi-
mum wave height that Massel [21] indicated using estimates from potential
theory, giving a far field amplitude that is 10-15 per cent higher than in field
observations, e.g. Nelson [1] and Babanin et al. [16].
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In the experiments detailed below we shall measure waves of maximum
height in accordance with the observations in the field experiments reported
by Nelson [1] and Babanin et al. [16]. The kinematics of the waves we measure
is thus relevant to the waves observed in the field measurements. We calculate
periodic waves of perfect symmetry using the method by Fenton [9]. Twenty
terms are used giving good convergence. We have also computed waves of
higher amplitude than what we are able to obtain in the experiments. An
alternative accurate calculation procedure of the perfect symmetrical periodic
waves is the method developed by Longuet-Higgins [23].

2. Experiments

2.1. Laboratory set-up

The experiments are performed in a 25 m long, 0.5 m wide wave tank in
the Hydrodynamics Laboratory at University of Oslo. The water depth is 0.2
m. Waves generated by a vertical piston at one end of the tank are recorded
long before any reflection appears from the beach at the other end of the
tank. Particle Image Velocimetry (PIV) is used to capture the wave-induced
fluid velocities as well as the position of the wave surface. In order to get
a sharp image of the surface elevation, the camera has a weak tilt upwards;
Field Of View (FOV) of trapesoidal shape extending 0.206 m in the vertical
has upper side 0.21 m long and lower side 0.198 m long. The resolution is
1024 by 1024 pixels.

The number of frames per second is 1500 for nonbreaking waves and
200 for breaking waves; 6000 frames are recorded in each series. The time
interval between the images is determined by an optimal accuracy of the
PIV-analysis.

PIV recordings are taken at positions 6.93 m, 4.43 m and 2.08 m from
the wave maker. Ultra sound probes are used for additional measurement of
the surface excursion.

2.2. Waves far from the wave maker

Periodic waves of largest possible elevation propagating along a fluid layer
on a horizontal bottom are studied. The waves are characterized by the wave
period T and wave height H, where the latter is measured by the trough-
to-crest height. The water depth h is measured when there are no waves.
Two slightly different wave periods, T

√

g/h = 8.75 and 11.7, in a range
corresponding to the longest waves that are relevant for offshore wind energy
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applications, are considered. Waves of these periods have maximum height
far away from the generation site of H/h ≃ 0.49, see Nelson [1, figure 1] and
is also obtained in the present experiments.

Experiments where the wave paddle amplitude is gradually increased from
small to large excursion, beyond the level where wave breaking starts, have
been studied. Wave generation that covers the range from weak to strong
breaking is reported here. Incipient wave breaking occurs about one wave
length away from the wave maker. The breaking point moves towards the
wave maker according to the increased strength of the wave generation. The
waves radiating out reach a saturation of the wave height corresponding to a
maximum value. Still stronger wave maker amplitude reduces the elevation
of the far field wave train, because of the stronger breaking close to the
wave maker. The wave breaking process and the finite excursion of the wave
maker generate additional short higher harmonic waves riding on top of the
dominant motion. The short waves arrive at the recording position later than
the main wave (figure 1). We note that the velocity color plots in figures 1-2
are composed by measurements from several repeated experiments, causing
small discontinuities (and white lines) to appear in the plots.

2.3. Regular wave

The elevation history of the wave train for wave period T
√

g/h = 8.75
recorded at position 4.43 m from the wave maker is illustrated in figure 1a.
The wave maker amplitude is ξ0/h = 0.267. The first three wave crests of
the wave train occur at 4.65, 5.9 and 7.15 seconds, respectively. The crests
are observed before the higher harmonic waves appear. The third relatively
symmetrical crest has a trough-to-crest height of H/h = 0.44 and crest-to-
trough height of 0.43. The average wave height of 0.435 is 13 per cent smaller
than the maximum possible wave height of 0.49 for this wave period.

The horizontal particle velocity below the third wave crest is up to u/
√
gh =

0.363 (below crest) (figure 2a) (6.4 sec. < t < 7.6 sec.). The horizontal ve-
locity at the surface level, at the troughs before and after the crest, is down
to u/

√
gh = −0.171 and −0.174, respectively. Calculations using Fenton’s

method [9] for periodic waves with T
√

g/h = 8.75 and H/h = 0.435 give
u/

√
gh = 0.365 below crest and u/

√
gh = −0.135 at trough. Except for the

latter theoretical value, which is somewhat less negative than in measure-
ment, the theoretical computations fit very well to the experimental, regular
wave (figure 2b). A number of 20 terms are retained in the calculations using
Fenton’s method.
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A notable difference between the experimental (figure 2a) and theoret-
ical wave (figure 2b) is the increased velocity close to the sea bottom, for
−0.996 < y/h < −0.95, where a forward moving jet is superposed on the
wave-induced velocity, see further discussion in Section 4 below.

2.4. Waves of maximum height

The nonlinearity of the wave making, including the weak or strong break-
ing taking place about one wavelength away from the wave maker, as well as
the finite excursion of the wave maker, generate free higher harmonic waves
riding on top of the dominant wave motion. The higher harmonic amplitudes
become saturated if the nonlinearity is strong enough, Grue [22].

The higher harmonic waves add to the total wave height and become
present in the elevation measurements from the fourth wave crest at 8.5
seconds and onwards, at the recording position at 4.43 m, for the wave of
period T

√

g/h = 8.75 (figure 1a). For the longer wave, with T
√

g/h =
11.7, recorded at 6.93 m, the second harmonic waves propagate at about the
same speed as the main wave, arriving about simultaneously at the recording
position (figure 1b). The resulting maximum wave height of H/h = 0.49 for
T
√

g/h = 8.75 and H/h = 0.48 for T
√

g/h = 11.7 correspond very well to
previous laboratory measurements and field observations.

The nonlinearity parameter of these waves are Fc = (H/h)1/2(T
√

g/h)5/2 =

159 for T
√

g/h = 8.75 and H/h = 0.49, and Fc = 324 for T
√

g/h =
11.7 and H/h = 0.48, see Nelson [1, figure 1]. Alternatively, the ratio
between nonlinearity and dispersion is evaluated by the Ursell parameter,
Ur = (H/h)/(kh)2 = 0.795 and Ur = 1.50 for the two waves, respectively.

2.4.1. Wave with T
√

g/h = 8.75

The trough-to-crest heights of the eight wave crests of period T
√

g/h =
8.75, from 8 to 17.5 seconds in figure 1a, have a maximum of H/h = 0.49,
average value of H̄/h = 0.47 and a standard deviation of 3 per cent. The
measured horizontal velocity below wave crests 4 to 11 is u/

√
gh = 0.499

at maximum (figure 2c). This is 33 per cent higher than the velocity below
wave crest number three (figure 2a). The horizontal velocity below wave
crests 4 to 11 in figure 1a have an average value of u/

√
gh = 0.481 and

standard deviation of 4.7 %. The horizontal fluid velocities at the troughs
(at the surface level) preceeding crests 4 to 11 have an average value of
u/

√
gh = −0.140 (standard deviation of 4.6 per cent) and is comparable to

the theoretical value of −0.135 in the periodic theoretical wave, but is slightly
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weaker than the nondimensional velocity of −0.171 at the trough preceeding
the third wave crest.

Horizontal velocity profiles at 40 subsequent time steps with ∆t
√

g/h =
0.1821 further illustrate the stronger kinematics below the crest of wave
10 (figure 3a). Computation of the similar velocity profiles using Fenton’s
method with H/h = 0.49 and T

√

g/h = 8.75 as input illustrate that the the-
oretical wave has velocity u/

√
gh up to 0.42 at crest which is 16 % smaller

than in the experimental wave. The higher harmonic waves that are present
in the experimental waves are obviously responsible for the increased velocity
at crest, as well as the increase in wave height, taking place from wave crest
number 4 in this measurement series (see figure 1a). The effect of the higher
harmonic waves on the u-velocity is also apparent close to the surface, see
figure 3a, plot i.

The velocity field below y/h = −0.4 experiences only very minor change
due to the higher harmonic waves. The fluid velocity well above the boundary
layer at the bottom oscillates between −0.13 < u/

√
gh < 0.16. Regarding

the vertical velocity, the higher harmonic waves exhibit very small effect and
are hardly observed in the results (figure 4).

Waves 4 to 11 (8 to 17.5 seconds) show, very close to the bottom (−0.996 <
y/h < −0.95) a forward moving jet superposed on the wave-induced velocity
field (figure 3a, plots iii-iv). This motion, also present below wave crest 3,
has now reached a steady state, see further discussion in Section 4 below.

2.4.2. Wave with T
√

g/h = 11.7

The wave train with T
√

g/h = 11.7 in figure 1b shows a maximum height
of H/h = 0.48, average height of H̄/h = 0.47 and a standard deviation of
1.6 per cent, for the crests recorded from 8 to 25 seconds. The measured
kinematics below wave crest number 11 is representative for these waves and
shows that the horizontal velocity slightly exceeds u/

√
gh = 0.4 at maximum

(figures 2c, 3c). Computation of this wave with H/h = 0.48 shows about
similar velocities. Note that the computational crest and trough appear at
higher values (ymax/h = 0.37, ymin/h = −0.12) than in experiment (ymax/h =
0.31, ymin/h = −0.17). The difference in level above the mean water line
enhances the kinematics in the computation, in the top part of the wave. We
have therefore made another computation where the reference depth (h∗)
is increased by 5 % and height and period accordingly reduced to H/h∗ =
0.466 and T

√

g/h∗ = 11.4, respectively, giving u
√
gh∗ = 0.37 (maximum),

ymax/h
∗ = 0.35 and ymin/h

∗ = −0.12. Although we have sought the position
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along the wave tank where the trough-to-crest height is the largest for this
train, the comparison between experiment and calculation illustrates that
the higher harmonic waves reduce the crests and increase the troughs, in the
experimental wave train with period T

√

g/h = 11.7.

2.5. Comparison to second order theory

Second order wave theory is extensively used in engineering analysis of
offshore structures on finite and infinite water depth. Second order irregular
wave theory is relatively easy to implement, easy to use in practice and rapid.
The relevance of second order irregular wave theory in obtaining the elevation
and kinematics of strong waves on finite water depth may be of interest.

The first and second order velocity potentials of Stokes waves on finite
water depth give the following horizontal velocities

u
(1)
I =

gkA

ω

cosh k(y + h)

cosh kh
cosχ, u

(2)
I =

3ωkA2 cosh 2k(y + h)

4 sinh4 kh
cos 2χ, (1)

where χ = kx − ωt + phase, ω2 = gk tanh kh and (x, y) are horizontal and
vertical coordinates with y = 0 at the water level at rest.

For the conditions in the present experiments with height 2A/h = 0.49

and period T
√

g/h = 8.75 we obtain u
(1)
I + u

(2)
I = 0.52

√
gh at crest; the

similar value is −0.16
√
gh at trough, see figure 3f.

For the wave with T
√

g/h = 11.7 (and 2A/h = 0.49) we obtain u
(1)
I +

u
(2)
I = 0.54

√
gh at crest and −0.09

√
gh at trough.

It is evident that the second order theory is only moderately conservative
for the surface velocities of the shorter experimental wave (figure 3a). It
becomes quite conservative for the longer wave as well as near the bottom
(figure 3a,c).

We note that irregular waves observed in field experiments, such as the
wind waves in the investigation by Babanin et al. [16], have a maximum wave
height of 0.55h and that waves of height exceeding 0.44h all break, see Section
1.1 of the paper. A possible method to estimate the kinematics in irregular
waves is to let the amplitude A in (1) be non-constant, where the second
order contribution and the wave induced velocity field can be obtained as in
Trulsen et al. [23, eqs. (49)-(52)]. An example of the excellent performance
of this theory can be found in Trulsen et al. [24, figure 1].
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3. Motion close to the wave maker

In this section we discuss three series of wave measurements, each in-
cluding 24 wave crests. The waves are recorded close to the wave maker
at position 2.08 m, for period T

√

g/h = 8.75. Wave maker amplitudes of
ξ0/h = 0.288, 0.329 and 0.370 are stronger than for the waves discussed in
the previous sections, with ξ0/h = 0.267. The wave motion exhibits moder-
ate and strong breaking and is visible in the form of a band corresponding
to a turbulent region between the wave surface and a region below where the
flow is smooth. The band with breaking turbulent flow is indicated by light
color and the region with smooth flow by dark color, see figure 5. The wave
induced velocities are obtained in the region with smooth flow. We have not
been able to obtain velocities in the turbulent region. The boundary between
the laminar (smooth flow) and turbulent regions in figure 5 is determined by
where it has been possible to obtain convergent velocity vectors.

3.1. Waves with moderate breaking

Consider the weakest wave series in figure 5c (ξ0/h = 0.288). The trough-
to-crest height has a maximum of H/h = 0.63, average height of H̄/h = 0.58
and a standard deviation of 4.7 %. The elevation and velocities recorded
through one of the wave periods of this series (4.7 to 5.9 seconds) exhibit
a relatively symmetrical appearance, see figure 6a,b. The elevation (black
line) and velocities (color plots) are both obtained from the images of the
flow used for the subsequent PIV-analysis where the white gap indicates the
region where wave breaking and turbulent motion are taking place.

The horizontal velocities (figure 6a) are quite similar to the largest far field
wave shown in figure 2c, with the important exception, that the u-velocity
right below the breaking region, right below the wave crest, is u/

√
gh = 0.6

at maximum. This is 20 per cent higher than in the wave in figure 2c. The
vertical velocities (figure 6b) are somewhat smaller than in the largest far
field wave (figure 4b).

The horizontal velocity profiles below the 24 crests in the series show that
u/

√
gh = 0.62 at maximum, see figure 6c. The standard deviation, indicated

in the figure, shows that the maximum velocity of u/
√
gh ≃ 0.62 occurs in

only a few among the 24 measured velocity profiles. The majority of the
velocity profiles exhibit u/

√
gh ≃ 0.5 ± 0.05 in the top of the smooth flow,

right below crest. For y/h < 0.2, the velocity profile (at maximum) is quite
similar to the velocity profile of the far field wave (at maximum)
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Besides the turbulent region right below the surface, the breaking intro-
duces perturbations and sends air bubbles into the flow in the smooth region.
The higher harmonic oscillations are illustrated in the velocity profiles at time
intervals ∆t

√

g/h = 1.75 (figure 8a).

3.2. Waves with strong breaking

The wave motion for wave making amplitude of ξ0/h = 0.370 exhibits a
reduced height, with H/h = 0.56 at maximum. Averaging over all crests,
the mean height is 0.51 with a standard deviation of 3.7 %. Elevation and
u-velocities for time frames 11 s< t <12.2 s (figure 7a) and 8.5 s< t <9.6
s (figure 7b) show that the velocites below crest are larger and wave profile
more asymmetrical. Further, the white band between the elevation (black
line) and the smooth region is thicker for the strongly breaking waves. The
white band indicating the turbulent region of the flow appears asymmet-
rically along the wave, where its main extension is behind the wave crest.
Attempts to estimate the velocity of the front and back faces of the turbu-
lent region indicate that these are smaller than the wave velocity, although
measurements are inaccurate.

The velocity profiles below the 24 crests show that u/
√
gh = 0.72 at

maximum (figure 7c). The figure shows that u
√
gh increases from 0.25 at

the average water level (y = 0) to 0.72 at y/h = 0.18 indicating a very strong
velocity gradient in this flow. It is evident that the very strong increase in
the velocity above the mean water level is compensated by a corresponding
reduction in the velocity below y = 0. The ensemble of the 24 velocity profiles
indicates that u/

√
gh = 0.6±0.05 is a typical picture of the velocity maxima

of several crests (figure 7c).
For the somewhat weaker excitation with wave paddle amplitude of ξ0/h =

0.329 the horizontal velocity in the corresponding ensemble of 24 crests is up
to u/

√
gh = 0.65 (figure 7d). This somewhat weaker generation and break-

ing wave motion exhibit less strong velocity gradient in the upper part of
the velocity profile compared to the stronger case in figure 7c. The velocities
below the mean water level are less reduced, moreover. The ensemble of the
24 velocity profiles indicates that u/

√
gh = 0.35± 0.07 is a typical picture of

the velocity maxima of several crests (figure 7d).
The breaking wave motion of the strong wave shown in figure 7a, for

11 s< t <12.2 s, introduces strong perturbations to the smooth flow, as
visualised by the velocity profiles in the front and back face, in the upper
part of the wave, for consecutive times with ∆t

√

g/h = 1.75, see figure 8c.
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The stronger breaking wave (figure 7b) measured for time 8.5 s< t <9.6 s
shows even stronger wiggles, particularly in the back face of the wave. The
velocity profiles show very strong vertical oscillations both in time and along
the vertical, see figure 8c.

4. Bottom boundary layer streaming

The recordings of the wave train at 4.43 m (and 6.93 m) exhibit a forward
moving jet very close to the bottom. This jet is superposed on the wave-
induced velocity field and is driven in the form of a streaming outside the
oscillatory bottom boundary layer. The jet appers in the wave train shown
in figure 1a from wave 3 and onwards and occurs for −0.996 < y/h < −0.95.
The u-velocity at y/h = −0.95 becomes, after an initial transiental be-
haviour, u/

√
gh ≃ 0.015 + 0.145 cos(ωt + phase), while at y/h = −0.996

the velocity is higher, with an incremental velocity of ∆u/
√
gh ≃ 0.028 +

0.028 cos(ωt + phase) (figure 9). Measurement of the latter has been ob-
tained in close-up recordings with FOVs of 25 mm by 25 mm width and
height, at the tank bottom, corresponding to a vertical (and horizontal range)
of −1 < y/h < −0.9875. The average value of the incremental velocity
is explained by the streaming induced by the oscillatory boundary layer
at the fluid bottom. The boundary layer thickness in this experiment is
√

2ω/ν/h ≃ 0.002 (T
√

g/h = 8.75). According to Longuet-Higgins [23] the
streaming velocity outside the boundary layer is ū = (5/4)U2

0/c where U0 is
the velocity amplitude of the oscillatory wave-induced fluid velocity outside
the boundary layer and c = ω/k denotes wave speed. With U0/c0 = 0.145
(from figure 3a) we obtain ū = (5/4)U2

0/c ≃ 0.028 which agrees with the
measurements.

5. Summary and conclusions

In this paper we have addressed two questions: 1) How are the velocities
in the strongest possible water waves on finite depth? 2) How do weak and
strong breaking alter the velocities?

We have assumed for the waves we study that the bottom is horizontal.
The story may be different for a tilted bottom.

An important dimension is that wave breaking limits the wave height,
which in nondimensional terms is up to 0.55, according to observations in the
field and in wave tank experiments. In the intermediate depth range that we
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have investigated here, for two nondimensional wave periods, T
√

g/h = 8.75
and 11.7 (T period, g acceleration of gravity, h water depth), the maximum
wave height is H/h ≃ 0.49 and is in accordance with results from several
field and laboratory measurements summarized by Nelson [1, figure 1]. The
nondimensional periods in the present experiments were chosen because of
the relevance to offshore wind turbine applications in finite water depth.

The periodic wave train far away from the wave maker reaches a steady
state where small higher harmonic free waves – generated by combination
of breaking or local steepening about one wave length away from the wave
maker, as well as by the finite excursion of the wave maker – ride on top of
the dominant wave motion. It is assumed that this scenario is representative
for the real waves on the ocean. As for the main wave, the higher harmonic
waves become saturated in amplitude [22]. It is evident that the higher
harmonic waves alter the crest and trough levels as well as the kinematics of
the wave field. For the wave train with T

√

g/h = 8.75 and H/h = 0.49 we
find that the horizontal fluid is u/

√
gh = 0.5 at maximum. This is 16 per

cent higher than fully nonlinear calculations by Fenton’s method [9] for the
same wave, assuming periodic waves without any parasittic effects – we have
used 20 terms in Fenton’s method in these calculations. In the leading part of
this wave train, before the higher harmonic waves arrive at the measurement
position, we have an almost perfect match between the experimental wave
and the calculations (T

√

g/h = 8.75, H/h = 0.435).

For the other wave train (T
√

g/h = 11.7, H/h = 0.48) the horizontal
velocity is up to u/

√
gh = 0.4 in the experiments. Nonlinear calculations

give about the same kinematics; the nominal crest and trough values are
somewhat larger in the theoretical wave compared to experiment. Results
for the experimental velocity profiles throughout the wave periods are given.

It is noted that waves of greater height than found here – our maximum
waves correspond to findings in several data sets [1] – may be obtained by
a special, careful wave generation, giving H/h = 0.55 for T

√

g/h = 8.9

and H/h = 0.6 for T
√

g/h = 11.4 [5]. We also note, that by careful wave
generation, the higher harmonic waves in very strong waves may be removed
[6].

Moderately and strongly breaking waves were investigated at a position
corresponding to 10 water depths away from the wave maker. Waves with
moderate breaking attain a maximum wave height of H/h = 0.63. Eleva-
tion and fluid velocities are relatively symmetrical about the wave crests. A
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turbulent region rides on top of the smooth flow where the horizontal fluid
velocity is u/

√
gh = 0.62 at maximum. The majority of the velocity pro-

files below 24 wave crests exhibit u/
√
gh ≃ 0.5± 0.05 in the top part of the

smooth flow, right below crest. The wave breaking generates higher harmonic
oscillations of the flow in the smooth region and sends air bubbles into this
region.

Waves with strong breaking show a maximum wave height of 0.56. The
elevation is forward leaning and the fluid velocities as well as the turbulent
region of the flow appears asymmetrically about the crest. An ensemble
of 24 velocity profiles indicates that u/

√
gh = 0.6 ± 0.05 is typical of the

velocity maxima of several crests, and that the horizontal velocity maximum
is u/

√
gh = 0.72 in one of the waves. Another ensemble of 24 velocity profiles,

with somewhat weaker generation, still with strong breaking, indicates that
u/

√
gh = 0.35 ± 0.07 is typical of the velocity maxima of several crests,

and that the horizontal velocity maximum is u/
√
gh = 0.65 in one of the

waves. The waves with strong breaking exhibit very strong velocity gradient
in the upper part of the smooth flow, below the turbulent region. The very
strong increase in the velocity above mean water level is compensated by a
reduction in the velocity below this level. The strong breaking introduces
strong perturbations to the fluid velocities, particularly in the back face of
the wave.

Regarding computation of the experimental waves there are several op-
tions. While the breaking waves may be difficult to compute, the nonbreaking
waves far away from the generation site – in the present experiments with
a periodic generation – are best computed by fully nonlinear theory, where
Fenton’s [9] program is a clear option. Input to the periodic wave calculations
should be the maximum wave height according to Nelson [1, figure 1]. The
periodic calculations do not include the effect of the small higher harmonic
waves that typically are present in the maximum experimental waves. We
have not tested out Stokes fifth order theory. Second order theory may be
relevant for engineering applications, particularly for irregular wave calcula-
tions. We find here that second order Stokes wave theory gives conservative
estimates of the fluid velocities in the present periodic very large waves.

The present PIV measurements show velocities in the laminar boundary
layer – driven by the periodic wave-induced bottom velocity – corresponding
to a streaming outside the boundary layer, in the form of a forward pointing
jet, with an average velocity corresponding to laminar boundary layer theory.
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Figure Captions

Figure 1.
Elevation η/h and horizontal velocity u/

√
gh (color scale) by PIV. a) at

4.43 m for T
√

g/h = 8.75, wave maker amplitude ξ0/h = 0.267 and 2 s< t <

17.7 s. b) at 6.93 m for T
√

g/h = 11.7, wave maker amplitude ξ0/h = 0.360
and 4.2 s< t < 25 s.

Figure 2.
Elevation η/h and horizontal velocity u/

√
gh (isolines/color scale) by

PIV. a) Same as Figure 1a, for 6.5 s< t < 7.75 s, b) Computation (Fen-
ton’s method) of wave in a), c) Same as Figure 1a, for 15.25 s< t < 16.5 s,
d) Same as Figure 1b, for 20.9 s< t < 22.3s.

Figure 3.
Velocity profiles u/

√
gh vs. y/h. a) Experimental wave in Figure 2c),

∆t
√

g/h = 0.1821 (upper front (i), upper back (ii), lower front (iii), lower
back (iv)). b) Computation wave in a). c) Experimental wave in Figure 2d),
∆t

√

g/h = 0.2430 (upper front (i), upper back (ii), lower front (iii), lower

back (iv)). d) Computation of wave in c), with H/h = 0.48, T
√

g/h = 11.7.

e) Computation of wave in c), with H/h∗ = 0.466, T
√

g/h∗ = 11.4. f)
Velocity profiles at crest and trough by second order theory, 2A/h = 0.49.
T
√

g/h = 8.75 (thick dots), T
√

g/h = 11.7 (line).
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Figure 4.
Vertical velocity v/

√
gh (isolines/color scale) by PIV at 4.43 m. T

√

g/h =
8.75. a) 6.5 s< t < 7.75 s, b) 15.25 s< t < 16.5 s.

Figure 5.
PIV recordings of breaking waves at 2.08 m. T

√

g/h = 8.75. 24 crests
in each series. Smooth flow (dark). Breaking turbulent flow (light). Wave
maker amplitude: a) ξ0/h = 0.3697, b) ξ0/h = 0.3287, c) ξ0/h = 0.2876.

Figure 6.
Elevation and u/

√
gh (a) and v/

√
gh (b) (color scale) for crest number

three in figure 5a (4.7 s< t < 5.95 s). Moderately breaking wave. c) Ensemble
average (thick line) and standard deviation (thin lines) of all velocity profiles
u/

√
gh vs. y/h below the 24 crests in figure 5c.

Figure 7.
Same as figure 6a but for strongly breaking wave series. a) crest 8 figure

5a (11 s< t < 12.25 s), b) crest 6 in figure 5a (8.6 s< t < 9.75 s). c) same
as figure 6c but for series in Figure 5a. d) same as figure 6c but for series in
Figure 5b.

Figure 8.
Horizontal velocity profiles at time intervals ∆t

√

g/h = 1.75. (i) front,
(ii) back. Wave in a) Figure 6a. b) Figure 7a. c) Figure 7b.

Figure 9.
u/

√
gh at y/h = −0.96 (- - -) and y/h = −0.996 (—-) vs. time at the

bottom, below the waves in figure 1a.
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Figure 1: Elevation η/h and horizontal velocity u/

√
gh (color scale) by PIV. a) at 4.43 m

for T
√

g/h = 8.75, wave maker amplitude ξ0/h = 0.267 and 2 s< t < 17.7 s. b) at 6.93 m

for T
√

g/h = 11.7, wave maker amplitude ξ0/h = 0.360 and 4.2 s< t < 25 s.
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Figure 2: Elevation η/h and horizontal velocity u/
√
gh (isolines/color scale) by PIV. a)

Same as Figure 1a, for 6.5 s< t < 7.75 s, b) Computation (Fenton’s method) of wave in
a), c) Same as Figure 1a, for 15.25 s< t < 16.5 s, d) Same as Figure 1b, for 20.9 s< t <
22.3s.

23



−0.2 0 0.2 0.4

−0.2

0

0.2

0.4

−0.2 0 0.2 0.4
−1

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4

−0.2

0

0.2

0.4

−0.2 0 0.2 0.4
−1

−0.8

−0.6

−0.4

a)

i ii

iii iv

y
h

y
h

y
h

y
h

u/
√
gh u/

√
gh

u/
√
gh u/

√
gh

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

b)

y
h

u/
√
gh

24



−0.2 0 0.2 0.4

−0.2

0

0.2

0.4

−0.2 0 0.2 0.4
−1

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4

−0.2

0

0.2

0.4

−0.2 0 0.2 0.4
−1

−0.8

−0.6

−0.4

c)

i ii

iii iv

y
h

y
h

y
h

y
h

u/
√
gh u/

√
gh

u/
√
gh u/

√
gh

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

d)

y
h

u/
√
gh

25



−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

e)

y
h∗

u/
√
gh∗

−0.2 0 0.2 0.4 0.6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

f)

y
h

u/
√
gh

Figure 3: Velocity profiles u/
√
gh vs. y/h. a) Experimental wave in Figure 2c), ∆t

√

g/h =
0.1821 (upper front (i), upper back (ii), lower front (iii), lower back (iv)). b) Computation
wave in a). c) Experimental wave in Figure 2d), ∆t

√

g/h = 0.2430 (upper front (i), upper
back (ii), lower front (iii), lower back (iv)). d) Computation of wave in c), withH/h = 0.48,
T
√

g/h = 11.7. e) Computation of wave in c), with H/h∗ = 0.466, T
√

g/h∗ = 11.4. f)

Velocity profiles at crest and trough by second order theory, 2A/h = 0.49. T
√

g/h = 8.75

(thick dots), T
√

g/h = 11.7 (line).
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Figure 4: Vertical velocity v/
√
gh (isolines/color scale) by PIV at 4.43 m. T

√

g/h = 8.75.
a) 6.5 s< t < 7.75 s, b) 15.25 s< t < 16.5 s.
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Figure 6: Elevation and u/
√
gh (a) and v/

√
gh (b) (color scale) for crest number three

in figure 5a (4.7 s< t < 5.95 s). Moderately breaking wave. c) Ensemble average (thick
line) and standard deviation (thin lines) of all velocity profiles u/

√
gh vs. y/h below the

24 crests in figure 5c.

30



 

 

11 11.2 11.4 11.6 11.8 12 12.2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

8.6 8.8 9 9.2 9.4 9.6
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

a)

b)

y
h

y
h

time (sec.)

time (sec.)31



0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

c)

d)

y
h

y
h

u/
√
gh

u/
√
gh
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Figure 8: Horizontal velocity profiles at time intervals ∆t
√

g/h = 1.75. (i) front, (ii) back.
Wave in a) Figure 6a. b) Figure 7a. c) Figure 7b.
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