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1 Introduction

1.1 Motivation

A major trigger of floods and landslides in Norway is intense and/or prolonged

rainfall in large river systems particularly in combination with snow melt.

Norwegian Water Resources and Energy directorate (NVE) has estimated the

average annual cost of flood damage in Norway per 2009 to be about 200 million

NOK (e23.3 million). Damages on the Norwegian transport network are in the

order of 100 million NOK/year (e11.7 million/year) (Bjordal & Helle, 2011;

Br̊athen, 2008). Over-design of infrastructure can represent unnecessary expenses,

whereas under-design can lead to losses associated with damage and in the worst

case, loss of life. Estimates of extreme precipitation are frequently used in flood

estimation and are decisive for planning and design of important infrastructure,

such as reservoir dams, water control systems, urban runoff and transport lines.

Hence the accuracy of extreme precipitation estimates is crucial both in terms of

economy and safety.

The relationship between extreme precipitation and floods and landslides in

Norway has been studied in several papers (Sandersen et al., 1996; Førland et al.,

2007; Jaedicke et al., 2008; Nadim et al., 2009; Hanssen-Bauer et al., 2009; NVE,

2011). Rainfall over several consecutive days can result in floods over larger areas,

and snowmelt during spring is often a major contributor. Such floods are usually

seen in large-scale catchments in Norway, many of them which are located in the

southeast, and often cause great damages to infrastructure, agriculture, and

private property. In a worst case scenario, large-scale floods can lead to dam

failure and hence enormous damages and possible loss of lives. Heavy rainfall over

shorter durations, commonly associated with a severe thunderstorm, can trigger

rapid flooding, or flash floods. This often occurs during summer. In urban areas

where natural drainage system is lacking and the man-made system is insufficient,
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such rapid flooding is referred to as urban flooding. According to Doswell et al.

(1996) flash floods are a result of high to extremely high rainfall rates from

convective events, whereas river floods are associated with rainfall events over days

and perhaps months. Common consequences of flash floods include damages to

buildings, infrastructure and the disruption of traffic flow. A more indirect effect of

extreme precipitation is different types of landslides, which in turn can lead to

closure of transport lines and/or disturbances in telecommunications, power, and

water supply to local communities. Sandersen et al. (1996) and Nadim et al.

(2009), among others, state that debris flows in Norway are often triggered at

times of heavy rainfall, causing high soil saturations and positive pore pressures.

In a global perspective, there are several sectors that are or can be negatively

affected by climate extremes, including precipitation extremes. Seneviratne et al.

(2012) mention transportation, infrastructure, water, tourism, agriculture, food

security, forestry, and health. In Europe, flooding is the most frequent natural

disaster (EEA, 2008; Seneviratne et al., 2012), and economic losses from floods

have increased considerably over previous decades (Lugeri et al., 2010). According

to Barredo (2009) a larger exposure of people and economic assets, explained by

socioeconomic development, urbanization, and construction in flood-prone areas, is

probably the major cause of increasing economic losses.

An accumulating body of scientific evidence show that global temperatures are

rising due to anthropogenic emissions of greenhouse gases (IPCC, 2013). According

to the well-established Clausius-Clapeyron relationship, this temperature rise

allows for an increased moisture content in the atmosphere, and hence more

precipitation. The latest report from the Intergovernmental Panel on Climate

Change (IPCC) states that precipitation has increased since 1901 in mid-latitude

land areas of the Northern Hemisphere. In Norway, observations show that the

frequency of moderate to strong precipitation has generally increased in the recent

decades (Hanssen-Bauer et al., 2009; Dyrrdal et al., 2012).
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Fig. 1 from Dyrrdal et al. (2012) shows mainly positive trends in the frequency of

precipitation events exceeding 10 mm/day, during the period 1957-2010.

Trend
neg.sign.

neg.notsign.

pos.notsign.

pos.sign.

Figure 1: Trend in number of daily

precipitation events exceeding 10 mm,

for the period 1957-2010. Blue indicates

positive trends, red indicates negative

trends (dark color = statistically

significant at the 95% confidence level,

light color = not significant). The

figure is retrieved from Dyrrdal et al.

(2012), Fig.S4.

The observed tendency is expected to continue into the future. As illustrated in

Fig. 2 from Seneviratne et al. (2012), extreme precipitation events over most of the

mid-latitude land masses will very likely become more intense and more frequent

by the end of this century (IPCC, 2013). According to Hisdal et al. (2006);

Hanssen-Bauer et al. (2009); Wilson et al. (2010), the intensity of rainfall-induced

floods is expected to increase and higher temperatures probably lead to a shift

towards earlier spring floods and increased probability for floods during late

autumn and winter. Due to these observed and projected changes, existing design

criteria for infrastructure should be revised.
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Figure 2: ”Projected annual and seasonal changes in three indices for daily precipitation

(Pr) for 2081-2100 with respect to 1980-1999, based on 17 GCMs contributing to the

CMIP3. Left column: wet-day intensity; middle column: percentage of days with

precipitation above the 95% quantile of daily wet day precipitation for that day of

the year, calculated from the 1961-1990 reference period; right column: fraction of

days with precipitation higher than 10 mm. The changes are computed for the annual

time scale (top row) and two seasons (DJF, middle row, and JJA, bottom row) as the

fractions/percentages in the 2081-2100 period (based on simulations under emission

scenario SRES A2) minus the fractions/percentages of the 1980-1999 period (from

corresponding simulations for the 20th century). Changes in wet-day intensity ans in

the fraction of days with Pr ¿ 10 mm are expressed in units of standard deviations,

derived from detrended per year annual or seasonal estimates, respectively, from the

three 20-year periods 1980-1999, 2046-2065, and 2081-2100 pooled together. Changes

in percentages of days with precipitation above the 95% quantile are given directly as

differences in percentage points. Color shading is only applied for areas where at least

66% (i.e., 12 out of 17) of the GCMs agree on the sign of the change; stippling is applied

for regions where at least 90% (i.e., 16 out of 17) of the GCMs agree on the sign of

the change.“. The figure and the caption are adapted from Seneviratne et al. (2012),

Fig.3-6. GCM = General Circulation Model, CMIP3 = the third ”Coupled Model

Intercomparison Project“ ANN = annual, DJF = December-January-February season,

JJA = June-July-August season.
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Extreme precipitation estimates are typically obtained through the fitting of data

points to the tail of a theoretical probability distribution, or an extreme value

distribution. Due to the lack of observations of extreme events, data transfer or

regional frequency analysis (RFA) (e.g. Hosking & Wallis, 1993; Overeem et al.,

2009; Svensson & Jones, 2010b) is commonly applied to increase the precision of

rainfall frequency estimates by pooling of data from several sites. Further details

on extreme value theory and RFA are provided in Section 2.1.1. For design

purposes there is a constant demand for multi spatial- and temporal scale

estimates. The lack of sub-daily precipitation measurements often makes it more

appropriate to rely on the scaling of daily precipitation. Paulat et al. (2008) and

Wüest et al. (2010) took advantage of temporal information from weather radar to

disaggregate precipitation into a gridded hourly dataset for Germany and

Switzerland, respectively. A similar approach was taken by Vormoor & Skaugen

(2013) to disaggregate daily precipitation into 3-hourly precipitation in Norway, as

further described in Section 3.3.2. Radar and gridded datasets are also valuable for

studying the integrated precipitation over a catchment, important in e.g. flood

estimation (see Section 2.1.2).

In recent years, studies of extreme precipitation have become numerous and

advanced statistical tools have evolved. Rapid advances in computer science give

tremendous opportunities and facilitate simulation-based techniques such as the

popular Markov Chain Monte Carlo (MCMC) (Gilks et al., 1996), which again has

led to an increase in the use of Bayesian methods (e.g. Box & Tiao, 2011). The

technical development also encourage the modeling of multivariate extremes or

spatial modeling of univariate extremes that can be achieved through statistical

tools such as copulas, max-stable random fields, and latent variable approaches

(Davison et al., 2012, see Section 2.1.3). The latter is commonly applied within a

hierarchical modeling framework. According to Zhang & Singh (2007) the

advantage of the copula method is that no assumption is needed for the rainfall
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variables to be independent or Gaussian or have the same type of marginal

distributions. They examined how four Archimedean copulas represented the

dependency between total depth, duration, and peak intensity of hourly

precipitation in Louisiana, USA, and found that copula-based distributions fit the

observations better than a bivariate normal distribution. Kao & Govindaraju

(2007) adopted the same procedure in a large region in Indiana, USA, using hourly

precipitation data of 50-55 year lengths from 53 rain gauges. They argue that the

method can be translated to other geographical areas. Grimaldi & Serinaldi (2006)

tested several three-dimensional copula models on half-hourly extreme

precipitation at 10 rain gauges in Italy, showing it is possible to estimate, in a

probabilistic way, peak and total depth values to be used in design hyetograph

analysis. Smith & Stephenson (2009) applied an extension of the Gaussian

max-stable process to model annual maximum rainfall from five sites in

South-West England, and used a pairwise likelihood within a Bayesian analysis to

estimate the model parameters. Cooley et al. (2007) were the first to apply a

Bayesian Hierarchical Model (BHM), as an alternative to RFA, to estimate the

parameters of an extreme value distribution of daily precipitation in Colorado, US.

Similar to an RFA analysis, a BHM pools the data but uses a geostatistical

approach to more naturally model the datas spatial nature (Cooley, 2009). Sang &

Gelfand (2009) applied a BHM to study extreme precipitation events from a

gridded dataset in the Cape Floristic Region of South Africa, while Sang &

Gelfand (2010) used an extended version of the same model, including a Gaussian

spatial copula model, to study annual maximum rainfall in South Africa. Ghosh &

Mallick (2011) proposed a spatio-temporal BHM to model extreme precipitation

events in the US.

Climate information on local scales is an important requirement in many climate

change impact applications. This thesis contributes to such applications through

the development of new methods for estimating precipitation design values; for

current climate conditions on different temporal scales, and for catchments and at
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any point in mainland-Norway, via high-resolution maps. Additionally, the author

makes a first necessary effort towards estimating design values for future climate

conditions, through the evaluation of the most recent climate model experiments.

1.2 Aims and objectives

The aim of this thesis is to improve estimated values of extreme precipitation for

design purposes in Norway. This is done through the development of new methods

for estimating extreme precipitation for both daily and sub-daily durations, and

for points and catchments. Specifically, the author aims to create maps of return

levels on a fine-scale grid, covering entire mainland-Norway. An assessment of the

quality of sub-daily precipitation extremes in regional climate model simulations is

also of interest. A secondary aim is to increase the knowledge of the spatial

distribution of extreme precipitation in Norway.

Specific objectives include:

1. Develop a new methodology for estimating extreme areal precipitation in

catchments in Norway, based on updated data and modern statistical

methods. Compare new methodology to the existing methodology at the

Norwegian Meteorological institute (MET Norway). Return periods of 500

and 1000 years are of main interest here.

2. Develop a method for estimating extreme sub-daily precipitation at any

point in Norway. Create fine-scale maps of sub-daily return levels. Return

periods from 5 to 200 years are of main interest here.

3. Evaluate extreme sub-daily precipitation from the most recent regional

climate model simulations over Norway.

The thesis work consists of three scientific papers (in Appendix) addressing the

above-mentioned research questions; two which have been peer-reviewed and
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accepted for publication (Paper I and Paper II), and one that was submitted in

March 2015 (Paper III). Objective 1 was addressed in paper I (Dyrrdal et al.,

2014a), objective 2 was addressed in Paper II (Dyrrdal et al., 2014b), and objective

3 was addressed in Paper III (Dyrrdal & Stordal, 2015).

The remaining part of the thesis is organized as follows: The scientific background

and methods are presented in Section 2, where the author elaborates on the theory

and relevant earlier work. Section 3 describes the datasets applied and the regional

setting, and in Section 4 the findings in the three papers are summarized and

discussed. The work is brought together into a general perspective and

contributions to the national climate services are assessed. Finally, Section 5

provides conclusions and indications of future research.
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2 Methodology

This chapter provides an introduction to the scientific theory and methods further

pursued in the three papers. An overview of the state-of-the-art on the research

field is also given, including studies that represent important background for this

thesis.

2.1 Precipitation frequency estimation

The purpose of precipitation frequency estimation is to analyze past measurements

in order to estimate future occurrence probabilities. Studying extremes is

challenging simply because of its very nature; few occurrences. This means the

records of extremes are short and large uncertainties are introduced when

extrapolating to longer return periods. Methods for precipitation frequency

estimation at a point include statistical extreme value theory, as well as increasing

the amount of data through spatial data pooling or lowering the threshold for what

is considered extreme (Svensson & Jones, 2010b). Different countries choose

different statistical distributions, fitting techniques, and input data. But according

to Svensson & Jones (2010b) most countries use some way of incorporating

information from nearby sites when estimating precipitation frequencies. This

borrowing of strength across measuring sites is referred to as regionalization.

Sources of uncertainty in frequency analysis include choice of analytical approach

and statistical model, and estimation of model parameters (WMO, 2009a). The

problem that often arises with meteorological series is the limited amount of

measurements, both spatially and temporally, which complicates the selection of

statistical model and the estimation of its parameters.

Extreme value theory provides a framework to model the tail of probability

distributions, enabling extrapolation of extremes. The two most common extreme
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value distributions include the Generalized Extreme Value (GEV) distribution

(Fisher & Tippett, 1928; Jenkinson, 1955), and the Generalized Pareto (GP)

distribution (Pickands, 1975; Cooley et al., 2007). The GEV model makes use of

the statistical behavior of Mn = max{X1, . . . , Xn}, where X1 . . . , Xn are

independent and identically distributed random variables. The extremal types

theorem states that the normalized distribution of Mn converges to a GEV

distribution G(x) as n → ∞ (Fisher & Tippett, 1928; Jenkinson, 1955). Therefore,

the GEV distribution is commonly used to model block maxima such as the annual

maxima. This approach is popular due to its simple structure and relatively low

demand of data. An attractive property of the GEV distribution is max-stability

(Coles, 2001), meaning that the component-wise maximum of n independent

random variables from the distribution has that same distribution. If the complete

data series is available, extreme value theory states that exceedences over a

sufficiently high threshold approximately follows a GP distribution. Due to limited

data, particularly on sub-daily scales, and difficulties associated with threshold

selection, GEV is chosen as the primary estimation model in the current thesis.

The precipitation amount of an extreme event is often computed as T-years return

levels. A return level is defined as the precipitation amount that is exceeded by the

annual maximum in any particular year with probability 1
T
, or in other words, the

amount that on average occurs every T years (Coles, 2001). The average interval

between each occurrence is referred to as return period T, or recurrence interval;

hence the longer the return period, the more extreme. In the dam safety

regulations for Norway (NVE, 2011) it is stated that dams, depending on the

danger potential, should handle a design inflow with a 500-1000 year return period,

and in some cases the Probable Maximum Precipitation (PMP). PMP is defined as

the greatest accumulation of precipitation for a given duration meteorologically

possible for a design watershed or a given storm area at a particular location at a

particular time of year (WMO, 2009b), and represents a return period of infinity.

The concept of PMP has been criticised by hydrologists as it assumes a physical
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upper bound of precipitation amount, while extreme value theory indicates that

this bound does not necessarily exist. E.g. Papalexiou & Koutsoyiannis (2006)

found no evidence for an upper bound of dew point or precipitation when

estimating PMP at four stations in the Netherlands and one in Greece, using the

moisture maximization method. They also found that the method gives highly

uncertain estimates and is very sensitive to the available data. Authorities for

roads, railways, and urban planning are more concerned with sub-daily intense

precipitation with return periods of 5 to 200 years. Estimation of events with low

probability or long return period is challenging as only few obervations of such

extremes are available, thus extrapolation is necessary.

2.1.1 Generalized Extreme Value (GEV) distribution

The current study has mainly applied the GEV distribution, which describe the

three possible types of extreme value distributions for block maxima of any

variable, regardless of the underlying distribution (Coles, 2001). Many studies have

shown that the GEV distribution fits well to extreme point precipitation, including

Bonnin et al. (2006) (United States), Alila (1999) (Canada) and Kyselý & Picek

(2007) (Check Republic). Alexandersson et al. (2001) found that GEV fits very

well to a combined data set of about 2300 observations of daily precipitation from

a reasonably homogeneous area on the border of Norway and Sweden. They also

showed that GEV is superior to the simpler two-parameter Gumbel distribution.

Coles & Tawn (1996) claim the GEV distribution to be valid also for areal

precipitation. Overeem et al. (2010) demonstrated that GEV can be fitted to areal

precipitation series from weather radar in the Netherlands, although the

convergence to a GEV distribution is slower than for point precipitation and the

need for long time series is even more crucial.

The three-parameter GEV distribution is of the form
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G(x) = exp{−[1 + ξ(
x− μ

σ
)]−

1
ξ } (1)

where μ is location, σ is scale, and ξ is shape. Depending on ξ, the GEV

distribution converges into one of three types (defined according to the convention

used in Coles (2001)); Type I/Gumbel/EV1 (ξ = 0), Type II/Fréchet/EV2(ξ > 0),

and Type III/Weibull/EV3(ξ < 0).

Over the years GEV has become an established and widely used model in extreme

value statistics, and a large variety of analysis tools are developed.

One drawback with the GEV model is the assumed stationarity, which is usually

not accurate for climate data. There exists extensions to the GEV method that

deal with non-stationarity in terms of systematic changes in time such as trends,

shifts or seasonality (Coles, 2001; Renard et al., 2013; Cheng et al., 2014). Past

changes in precipitation amount in Norway are not spatially homogeneous and

vary with time period (Hanssen-Bauer et al., 2009; Alfnes & Førland, 2006).

Detecting robust trends in extremes of relatively short records is problematic, thus

the stationary GEV model is used in this study. The assumption of independence

is fairly well met when dealing with large blocks such as annual maxima. We must

keep in mind, though, that the GEV is an asymptotic model which provides no

information on the distribution of the underlying population.

Throughout this work the author has applied Maximum Likelihood Estimation

(MLE) (Smith, 1985; Coles, 2001), along with Bayesian inference in Paper II, to

estimate the three GEV parameters. MLE chooses the model that gives the

highest probability to the observed data, through a likelihood function. To

evaluate the extreme value model, one usually compares to the empirical

distribution of the observations. Other frequently used parameter estimation

methods include the method of moments (Pearson, 1894; Madsen et al., n.d.),

L-moments (Hosking, 1990), and probability weighted moments (Hosking et al.,

1985), but also Bayesian methods have arrived in the recent years (e.g. Coles &
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Tawn, 1996; Cooley et al., 2007; Gaetan & Grigoletto, 2007; Sang & Gelfand,

2009).

The shape parameter, ξ, is difficult to estimate and is highly sensitive to outliers,

but is also the parameter of greatest importance for long return periods. Fig. 3

shows return levels and probability density functions for a fictitious site, where the

blue long-stippled curve represents a positive ξ, the green short-stippled curve

represents ξ = 0, while the red solid curve represents a negative ξ. For ξ > 0 (blue

curve) the precipitation amount can reach infinity. This is also true for ξ = 0

(green curve), although at a slower rate. For ξ < 0 (red curve) precipitation

amounts approaches an upper limit as return periods become large.

Return period [years] 

Re
tu

rn
 le

ve
l [

m
m

] 

GEV Type I, ξ = 0 
GEV Type II, ξ > 0 
GEV Type III, ξ < 0 
 

5 10 20 50 100 200 500 1000 
x 

De
ns

ity
 

GEV Type I, ξ = 0 
GEV Type II, ξ > 0 
GEV Type III, ξ < 0 
 

0 1 2 3 4 

 

Figure 3: Example of return level plot (left) and probability density functions (right) for

the three GEV distributions.

Many studies claim that extreme daily precipitation at a point follows a GEV

Type II distribution (ξ > 0) (Wilks, 1993; Koutsoyiannis & Baloutsos, 2000; Katz

et al., 2002; Coles et al., 2003; Coles & Pericchi, 2003; Koutsoyiannis, 2004a;

Serinaldi & Kilsby, 2014). This distribution also represents the lowest risk for

engineering structures as design values are higher than for GEV Type I and Type

III. Koutsoyiannis (2004b) indicated a ξ value of 0.15 as appropriate for daily

precipitation in mid-latitude areas of the Northern Hemisphere, and Wilson &

Toumi (2005) suggest a universal ξ of around 0.10. Further, Papalexiou &

Koutsoyiannis (2013) found that ξ is strongly affected by record length and when
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corrected for this, the parameter varies within a narrow range which values depend

on geographical location. Veneziano et al. (2009) suggest that a constraint on ξ

using theoretical arguments is necessary. One alternative to avoid unreasonable ξ

values, due to limited data and/or inaccurate estimation methods, is proposed by

Martins & Stedinger (2000). They modified the GEV likelihood function to include

a Bayesian prior distribution on ξ, and steer its value into a realistic range.

Another approach is to use the Gumbel distribution, which sets ξ to zero. This can

be dangerous, as it most likely underestimates precipitation return levels in many

parts of the world, and can have serious implications for important infrastructure

that rely on such estimates.

When employing the GEV model on single data series, the uncertainty of the

estimates can be relatively large (see Section 2.1.1). Regional frequency analysis

(RFA) (e.g. Hosking & Wallis, 1993; Overeem et al., 2009) is commonly used to

increase the accuracy of estimates, as stated in Section 1, by combining

observations from nearby rain gauges within a region and assuming regionally

homogeneous parameters. In ungauged catchments, a data transfer scheme is often

applied to transfer information from a nearby and hydrologically similar site

(Kjeldsen & Jones, 2010). Such a proceedure can significantly increase the data

basis if a suitable site exists. The most common RFA approach is referred to as

the index-flood method, which identifies a homogeneous region by e.g. assuming a

constant ξ parameter and dispersion coefficient σ
μ
over the region of interest

(Gellens, 2002; Fowler & Kilsby, 2003; Overeem et al., 2009). In a second step an

index variable is defined and used to scale the data and obtain a common

frequency distribution (Svensson & Jones, 2010b). Limitations associated with

RFA include a border effect when regions are defined, and inter-site dependence

which is found to increase the variance of the estimator (e.g. Matalas & Langbein,

1962; Stedinger, 1983; Hosking & Wallis, 1988). To deal with the issue of inter-site

correlation Wang et al. (2014) incorporated spatial dependence into an index-flood

model and showed significantly increased accuracy in return level estimates in
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Switzerland, compared to the L-moment method. In orographic regions, like

Norway, RFA can be particularly challenging due to the large spatial variation of

precipitation and the difficulty in defining homogenious regions (e.g. Førland &

Kristoffersen, 1989).

2.1.2 Areal extremes

Areal precipitation is often of greater interest than point precipitation, however

challenges arise because areal precipitation is not directly measurable and varies

non-uniformly in space. Skaugen et al. (1996) states that the areal precipitation

will be a sum of variables, partially from the parent distribution and partially from

the distribution of its extremes. Many studies confirm that precipitation spatial

variability should be taken into account when estimating areal precipitation (Obled

et al., 1994; Arnaud et al., 2002; Schuurmans & Bierkens, 2006), however, little

attention has been given the examination of the extreme value distribution for

precipitation over catchments. Although initially meant for weather forecasting,

radar has become a unique tool for studying the distribution of areal precipitation,

its relationship to point precipitation and for estimation of extremes (e.g. Durrans

et al., 2002). The Netherlands is a leading country in the use of weather radar in

extreme precipitation analyses; Overeem et al. (2009) and Overeem et al. (2010)

studied the GEV parameters of areal precipitation in the Netherlands using radar,

showing that μ increases and ξ decreases with increasing area. In Norway,

accumulated precipitation from radar exists for the last few years, but is as per

today of limited accuracy mainly due to a considerably rougher terrain compared

to the Netherlands.

To convert extreme precipitation values in a point to represent a larger area, areal

reduction factors (ARF) (NERC, 1975; Bell, 1976) are traditionally used. ARFs

attempt to empirically describe the spatial correlation structure of precipitation

through the ratio between area-averaged precipitation intensity and the point
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precipitation intensity for a certain duration and return period, as follows

ARF (D, T,A) =
I(D, T,A)

I(D, T, 0)
(2)

where D is duration, T is years, A is area size, and I is intensity. Two traditional

empirical methods for deriving ARFs are described in Bell (1976); the

”storm-centered“ approach where the region over which the areal precipitation is

estimated differs from storm to storm, and the ”fixed-area“ approach where this

region is fixed. Storm-centered ARFs are computed from the ratio between the

maximum areal precipitation for a given duration and region and the maximum

point precipitation for the same duration and within the same region, using

individual precipitation events. Storm-centered methods are mainly applied for

estimating PMP (Omolayo, 1993). Fixed-area ARFs are computed from the ratio

between the mean annual maximum areal precipitation for a given duration and

region and the mean annual maximum point precipitation for the same duration

and for a number of points within the same region. According to e.g. Svensson &

Jones (2010a) ARFs are found to vary with predominant weather type, season,

return period and estimation method.

Observation-based and model-based gridded products on high temporal and spatial

resolutions have evolved over the recent years. Amongst them are the national

datasets described in Tveito et al. (2005) (Norway), Brunetti et al. (2012) (North

Eastern Italy), Paulat et al. (2008) (Germany) and Wüest et al. (2010)

(Switzerland). On European scales E-OBS (Haylock et al., 2008) is frequently

used, and on global scales one can mention Saha et al. (2010) (NOAA/NCEP),

Rienecker et al. (2011) (NASA), and the widely used ERA-interim (Dee et al.,

2011) (ECMWF). Isotta et al. (2015) indicate regional model-based assimilation as

a promising technique for representing extreme events. The above-mentioned

gridded datasets provide the opportunity to study areal precipitation without the

use of ARFs, as attempted in Paper I (see Section 4). Here areal precipitation is

extracted from an interpolated dataset of daily precipitation, and an extreme value
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analysis is performed directly on the areal time series.

2.1.3 Spatial extremes

Extreme precipitation in regions with varied topography, like Norway, exhibits

large spatial variations. As well as being exposed to several types of weather

systems depending on region, topography strongly controls the rainfall distribution

on local scales. This orographic effect tends to give a general increase in mean

precipitation with elevation, but over very high mountains the precipitation may

increase up to a certain height and then decrease (e.g. Smith, 1979). The spatial

complexity of precipitation in Norway is far from captured by a relatively sparse

station network, and the short observational series is not representative for a

realistic range of extremes. Furthermore, precipitation is a non-stationary variable

in time. This calls for spatial modeling of extremes to form spatially continuous

maps of e.g. return levels, where we can extract the return level of interest for any

point, represented by grid cells.

A number of advanced analysis tools for spatial extremes has evolved

internationally in the recent years. They include ”copula“ (Nelsen, 1999;

Gudendorf & Segers, 2010), spatial ”max-stable processes“ (de Haan & Ferreira,

2006), and ”latent variable“ models (Banerjee et al., 2004). Copula means ”link“

and is a multivariate probability distribution that, by using separate marginal and

joint dependence models, can describe complicated dependence structures.

Max-stable models basically extends multivariate extreme value theory to an

infinite dimension (Smith & Stephenson, 2009). Max-stable models are important

in applications as they appear as limiting distributions for the maximum of a large

collection of appropriately normalized independent random variables. The GEV

distribution is the only univariate distribution that is max-stable.

A latent variable can be understood as a factor that must exist and must affect the

value of the observed variable, but which cannot be directly measured. According
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to Davison et al. (2012), a latent variable approach is able to model the marginal

behavior of precipitation, such as return levels, while copulas and max-stable

models are necessary to capture the joint distribution of extremes. This is further

explained in Section 4.1 and in Paper II, where a latent variable approach is

applied within a Bayesian Hierarchical Model (BHM) to estimate return levels of

hourly precipitation (see Section 4). The modeling in a BHM involves multiple

layers or sub-models: The data layer, where observations are dealt with, the

process layer, where covariates are introduced, and the prior layer, where Bayesian

priors are assigned to the model parameters. The latter means that all uncertain

quantities are considered as random parameters, with prior probability

distributions that are updated through information from data and Bayes’ theorem

(Tebaldi et al., 2004). Bayes’ theorem describes the probability of event A given

event B, and is written as follows

p(A | B) =
p(B | A) p(A)

p(B)
(3)

This formulation is very useful in modeling systems with a complicated manner of

interactions such as hierarchical models. Bayesian methods enables

straightforwards incorporation of latent variables and estimation of the relevant

quantities with associated uncertainty.

2.1.4 Current method for precipitation frequency estimation in

Norway

Today, MET Norway apply the method described in Førland (1983, 1984b, 1992);

Førland & Kristoffersen (1989) to estimate extreme precipitation in points and

catchments. The method, here referred to as SB-gf (station-based growth factor

method), was developed from the UK Flood Studies Report (NERC, 1975), where

a comprehensive statistical analysis was performed on a large rainfall dataset.

Empirical growth factors were developed, describing precipitation with a T year
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return period (MT) as a function of M5 (precipitation with a 5 year return

period), also called the index value. The ratio MT/M5 is referred to as growth

factor. M5 for a ”representative point“ within the area is estimated by the

Gumbel-method (Gumbel, 2004), a GEV distribution with a shape parameter (ξ)

equal to zero. MT is computed as follows:

MT = M5eC(ln(T−0.5)−1.5) (4)

The factor C is determined empirically and varies geographically as a function of

M5. Values defined for Scotland and Northern Ireland were found suitable for

Norwegian conditions (Førland, 1987).

In SB-gf, growth factors are used along with standardized ARFs to convert point

values to areal values. The implementation of growth factors from the UK (NERC,

1975) at MET Norway more than 30 years ago was motivated by its relatively

simple execution at the time and the extensive statistical analysis on a substantial

dataset. SB-gf include several subjective measures, and since computer

performance has improved along with observational datasets in Norway, SB-gf may

not be the optimal approach today. In addition, growth factors were originally

developed for point precipitation and the application on areal precipitation might

violate the statistical assumptions on which they were based.

Return levels for sub-daily durations are estimated using empirically-derived

scaling factors on MT obtained from the above procedure (Førland, 1987, 1992).

2.2 Future climate scenarios

To investigate probable future changes in climate variables the best available tool

is climate model simulations. Output from coarse-resolution general circulation

models (GCMs), also known as global climate models, are fitted to regional or

local scales through one of two downscaling methods; dynamical downscaling
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through regional climate models (RCM) or empirical statistical downscaling (ESD)

(Flato et al., 2013).

RCMs typically have a horizontal resolution of about 10-50 km (as opposed to

100-250 km in GCMs), and give a better representation of mountains, coastlines,

and small scale physical and dynamical processes. They use atmospheric driving

data derived from GCM simulations or analyses of observations (reanalysis) (Di

Luca et al., 2013), referred to as lateral boundary conditions (LBCs).

Reanalysis-driven simulations are a common reference when evaluating the RCM

performance through a comparison to observations. Dickinson et al. (1989) and

Giorgi (1990) were the first to use RCMs for climate applications, and now such

models are widely employed. Xue et al. (2014) performed a review of the RCM

downscaling abilities. They found that significant improvement can be achieved by

properly adjusting convective parameterizations for the dynamic region and

resolution used. Factors they found crucial include adequate LBCs and proper

domain setting, convective schemes, land surface parameterizations, initializations,

and numerical schemes.

Flato et al. (2013) state that there is high confidence that downscaling improves

the simulation of spatial climate details in regions with highly variable topography,

and for mesoscale phenomena and extremes. RCMs simulate moderate

precipitation events well, and can accurately capture the spatial and temporal

characteristics of intense daily precipitation events. However, they tend to

overestimate the precipitation frequency and underestimate the intensity of heavy

precipitation (Fowler et al., 2007; Boberg et al., 2009; Kjellström et al., 2010;

Crétat et al., 2014). According to Giorgi & Marinucci (1996) and Laprise et al.

(1998) the choice of RCM resolution can modulate the effects of physical forcings

and parameterization.

Christensen et al. (1998) showed that very high resolutions are required for the

mountain chains in Norway and Sweden to be sufficiently well resolved and give a
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realistic simulation of the surface hydrology. High-resolution RCMs have been

shown to contribute realistic details by the representation of fine-scale surface

forcings and resolving some mesoscale processes (Racherla et al., 2012). They have

been found to improve daily precipitation extremes relative to GCMs, and there is

evidence that they also improve sub-daily values (e.g. Maraun et al., 2010; Tripathi

& Dominguez, 2013). Heikkilä et al. (2010) found that high resolution is important

in complex terrains, and that both orographic precipitation and extremes in

Norway were largely improved in a 10-km resolution model compared to a 30-km

resolution version of the same model.

The Intergovernmental Panel on Climate Change (IPCC) published a Special

Report on Extremes (SREX) in 2012 (Seneviratne et al., 2012; IPCC, 2012). They

state that it is likely that the frequency of heavy precipitation will increase in the

21st century over many areas of the globe. In the most recent IPCC Report on

Climate Change (IPCC, 2013) they go further in stating that extreme precipitation

events over most of the mid-latitude land masses will very likely become more

intense and more frequent by the end of this century. However, the general

conclusions of the IPCC is that climate models continue to perform less well for

precipitation than for temperature, much due to the difficulty in simulating clouds.

IPCC (2013) further claims that models may underestimate the projected increase

in future extreme precipitation. Despite the challenges in simulating extreme

precipitation, new RCM simulations on improved spatial and temporal resolutions

are produced.

To account for the uncertainty in RCM simulations that arise from different model

formulations and setups, it is now common to analyze results from several RCMs

run on the same domain and with the same resolution. Such multi-RCM matrix is

referred to as an ensemble (e.g Druyan et al., 2010; Mearns et al., 2012; Kim et al.,

2013). Xue et al. (2014) claim that a careful selection of ensemble members with

high dynamic downscaling ability is crucial.
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Since the process of convection occurs on very small scales, climate models with

their relatively coarse resolution have not been able to resolve convection explicitly,

but rely on parameterization schemes. Such schemes commonly lead to

misrepresentation of the diurnal cycle of convective precipitation, underestimation

of dry days and overestimation of low-precipitation event frequency, and the

underestimation of hourly precipitation intensities (Prein et al., 2015). To meet

these issues, climate models have over the past few years developed a new group of

high-resolution models referred to as convective-permitting climate models

(Kendon et al., 2012; Ban et al., 2014; Prein et al., 2015).
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3 Study region and data

In addition to the statistical tools presented in Section 2, different types of data

was utilized to obtain the objectives in Section 1.2. The study region and datasets

used in the analyses are presented in the following section.

3.1 Precipitation climate in Norway

The precipitation climate in Norway varies spatially and is highly affected by the

complex topography. As seen in Fig. 4, there is a strong west-east gradient in

mean annual precipitation, with decreasing amounts as we move eastwards across

the mountain range. Precipitation types in Norway falls in three categories:

frontal, orographic and convective (Roe, 2005). Most of the precipitation is frontal,

caused by large-scale cyclone activity in the North Atlantic (Heikkilä et al., 2010).

Frontal or stratiform precipitation systems extend over a horizontal area on the

order of ∼100 km, while the vertical velocity of the updraft is only on the order of

∼10 cm/s. In contrast, convective precipitation systems are associated with strong

latent-heat-driven vertical motion on the order of ∼10 m/s on horizontal scales of

a few kilometres (e.g. Houze, 1993; IPCC, 2001). Convection arises from thermal

stratification of the atmosphere when it becomes unstable or conditionally unstable

(e.g. Andrews, 2010; Wallace & Hobbs, 2006), thus the vertical profiles of

temperature and moisture play key roles. Atmospheric instability typically forms

from heating at the surface, cooling in upper levels, or advection of different air

masses at different heights. In many cases, convective and stratiform precipitation

interact or occur together. Orographic precipitation can be separated into three

independent mechanisms according to Smith (1979); Large-scale upslope

precipitation caused by vertical lifting of air as it passes over rising terrain,

small-scale enhancement or redistribution of precipitation over small hills, or

formation of convective clouds in a conditionally unstable airmass due to solar
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heating of the mountain slope. Orographic and frontal precipitation dominate the

climate along the western coast of the country which receives most precipitation in

autumn and winter. The broad mountain range to the east strongly controls the

precipitation with the highest amounts occurring near or slightly upwind of the

steepest surface slope (Nordø & GJortnæs, 1966; Andersen, 1972). While for more

narrow mountain ranges in Norway the maximum precipitation falls at the

mountain top or on the lee side (Andersen, 1972).

Although the western coast receives the largest amounts of total annual

precipitation, typically exceeding 2000 mm/year, hourly precipitation levels are not

very high. Finnmark in the far north and Østlandet in the southeast are somewhat

sheltered from the large frontal systems which mainly come from the west, thus

the total annual precipitation is relatively low. In these regions, however, intense

precipitation is dominated by convective summer showers, generating high

sub-daily rainfall amounts particularly in the warmer south. As a consequence of

the above-mentioned features, there are important differences in the spatial

structure of daily and hourly precipitation extremes in Norway. Daily extremes are

higher in western regions of South-Norway where frontal precipitation dominates

and annual maxima usually occur in autumn. Shorter-duration extremes

associated with convective events dominate along the southern coast, and annual

maxima usually occur in summer.
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Figure 4: Left: Topography from a 100 m resolution demographic model. Middle:

Meteorological stations measuring daily (blue) and hourly (red) precipitation. Right:

Mean annual precipitation for the period 1957-2012.

3.2 Observations

The meteorological network measuring daily precipitation in Norway consists of

more than 550 stations per January 2015, around 200 of which also measure hourly

precipitation (see Fig. 4). The number of stations has varied substantially over the

years, resulting in relatively few long observational series. The spatial distribution

of stations is somewhat inhomogeneous, as a large number of the stations are

located in lower elevations in southern parts of the country.

Three types of rain gauges are used to measure precipitation in Norway. Regular

stations operate with a simple bucket that is emptied manually by an observer,

and the total emptied amount is usually registered once a day. Automated stations

have either tipping bucket or weight pluviometer, with a temporal resolution down
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to 1 minute. The first tipping bucket stations were established in the spring of

1967 and the first weight pluviometer stations in December 1991. All

measurements are quality-controlled prior to being made public according to a free

data policy at MET Norway

(http://met.no/English/Data Policy and Data Services/).

3.3 Gridded datasets

3.3.1 Daily precipitation

MET Norway produces gridded datasets of daily temperature and precipitation for

the period 1957-present, with a 1x1 km2 resolution (Tveito et al., 2005; Mohr,

2009; Jansson et al., 2007). Temperature grids are based on measurements at over

200 locations interpolated through residual kriging, where the deterministic

component is described by terrain and geographic position. Daily (06-06 UTC)

precipitation results from an interpolation of all available precipitation

measurements, using Triangulated Irregular Networks (TINs). Prior to the

interpolation, measurements are adjusted for systematic gauge undercatch due to

aerodynamic effects and wetting, according to Førland et al. (1996). A

precipitation TIN based on measured precipitation and an elevation TIN based on

the altitude at the meteorological stations are created. Furthermore, a terrain

adjustment is performed on the precipitation grid based on the assumption that

precipitation increases by 10% per 100 m up to 1000 m above sea level (masl) and

5% above that (Førland, 1979, 1984a). Two versions of the precipitation grid exist;

one where observations are corrected for systematic gauge undercatch due to

aerodynamic effects and wetting (Førland et al., 1996) (used in Paper III), and one

without this correction (used in Paper I). The gridded datasets are used

operationally in e.g. flood forecasting and to create snow maps in Norway (Engeset

et al., 2004a,b).
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Uncertainties associated with the daily gridded datasets are mainly related to the

interpolation procedure, which in areas with rough topography is particularly

challenging. Additionally, precipitation enhancement with elevation and correction

for gauge undercatch are based on a simple models known to be highly inaccurate

in some cases. For instance, Engeset et al. (2004b); Saloranta (2012) found that

the vertical precipitation gradient is exaggerated, leading to overestimation in high

elevations and underestimation in some lowly elevated areas. In regions with a

limited amount of stations (mountains and northern regions), the influence of

single stations is large and may cause biases in the grid-based results.

3.3.2 3-hourly precipitation

Vormoor & Skaugen (2013) estimated 3-hour precipitation on a similar grid as

described above, for the period September 1957 to December 2010. They

disaggregated the daily precipitation values into 3-hourly values, taking the diurnal

cycle of precipitation from a 0.1◦-resolution hourly hindcast described in Reistad

et al. (2011). The hindcast was generated from dynamical downscaling of 1)

ERA-40 atmospheric reanalysis (1957-2002) (Uppala et al., 2005) and 2)

operational analyses from The European Centre for Medium-Range Weather

Forecasts (ECMWF) (Haakenstad et al., 2012). The downscaling was performed

using a hydrostatic numerical weather prediction (NWP) model, the

High-Resolution Limited-Area Model (HIRLAM) version 6.4.2 (Undén et al.,

2002), with 0.1◦ horizontal resolution and 40 vertical levels. Evaluation of the

3-hour precipitation grid suggests it should be favored over alternative datasets,

although deviations from observations can be relatively large.
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3.4 Fine-scale RCM precipitation

The most recent ensemble of regionally downscaled climate simulations are

produced within CORDEX (COordinated Regional climate Downscaling

EXperiment) (Giorgi et al., 2009), which aim is to provide downscaled climate

information for improved regional adaptation and impact assessment.

EURO-CORDEX (Jacob et al., 2014) is the European branch of the project, with

29 participating groups. RCM simulations are conducted on two spatial scales;

0.44◦ (EUR-44) and 0.11◦ (EUR-11), the latter corresponding to about 12 km. The

EUR-11 dataset include simulations for the following periods: 1989-2008 (hindcast,

driven by ERA-interim reanalysis (Dee et al., 2011)), 1951-2005 (control run,

driven by a GCM), 2006-2100 (scenario run, driven by a GCM). Data are stored at

every 3 hours, which represents an increase in temporal resolution compared to

most RCM simulations. Thus, EUR-11 provides the first large ensemble of

modeled precipitation on a relatively fine spatial and temporal scale. Fine-scale

simulations are advantageous in areas of complex topography, like Norway

(Heikkilä et al., 2010).

Paper III presents an evaluation of both 3-hourly and daily precipitation from the

following EUR-11 RCM simulations for the hindcast period 1989-2008: RACMO

2.2, HIRHAM 5, RCA 4, RegCM 4.2, WRF 3.3.1 (two different configurations),

and CCLM 4.8.17.

An issue associated with all gridded datasets is areal smoothing, which especially

affects extremes. E.g. Wibig et al. (2014) and Isotta et al. (2014) state that areal

averaging increases the number of wet days and moderate precipitation amounts,

but decreases the highest daily precipitation amounts. Isotta et al. (2015) also

found that two European regional reanalyses underestimate the frequency of heavy

precipitation. The degree of smoothing depends on station density, the spatial

correlation of extremes (related to the horizontal extension of the precipitation

events), and obviously on the grid resolution. To evaluate climate model output,
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one usually relies on station observations, reanalyses datasets or interpolated

datasets, such as those described in Section 3.3 above. Climate model output is

regarded as ”true“ areal averages (Chen & Knutson, 2008; Hofstra et al., 2010),

but the misrepresentation of areal average in the evaluation dataset should be

assessed. Haylock et al. (2008) argue that one of the main reasons affecting the

behaviour of extremes in gridded data is related to the interpolation methodology.

According to Hofstra et al. (2010) this misrepresentation in interpolated datasets is

due to variable station density and often sparse station network, and includes the

following effects: 1. Exaggerated variance in the case of several stations within the

same grid cell, 2. Over-smoothing of variance in the case of large distances

between stations, 3. Extremes are more affected than the mean (also found in

Gervais et al. (2014)). In the gridded datasets of Section 3.3 the effects are not

uniform in space, but the two latter effects are most prominent. Station

observations can be converted to areal averages by means of ARFs (see

Section 2.1.2), as done in e.g. Tripathi & Dominguez (2013).
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4 Presentation of findings

The research described in this thesis is presented in three papers. Paper I, entitled

”Estimating extreme areal precipitation in Norway from a gridded dataset” was

accepted for publication in Hydrological Sciences Journal in May 2014, and

published online in July 2014. Paper II, entitled ”Bayesian hierarchical modeling

of extreme hourly precipitation in Norway” was accepted for publication in

Environmetrics in July 2014, and published online in August 2014. Paper III,

entitled ”Evaluation of fine-scale extreme precipitation from EURO-CORDEX

RCM simulations over Norway” was submitted for peer-review in International

Journal of Climatology in March 2015.

All three papers focus on extreme precipitation over the mainland Norway, on

different spatial and temporal scales as described below:

• Paper I: 1x1 km2 - any area of interest, daily

• Paper II: 1x1 km2, hourly

• Paper III: 0.11◦, 3-hourly and daily

The first two papers deal with past and present climate, with the aim of producing

return level estimates using a combination of measured precipitation at

meteorological stations and statistical tools. The third paper deals with

projections of future climate from regional climate models, and is mainly an

evaluation of the performance of these models to simulate short-duration

precipitation on a relatively fine spatial scale. The GEV distribution fitted to

annual maxima to estimate return levels is applied in all three papers.

The motivation and research approach in each paper is briefly introduced below,

along with main findings and implications for national climate services.
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4.1 Estimating point and areal precipitation extremes

MET Norway is responsible for providing return level estimates in Norway, mainly

for use in flood estimation, dam safety, and transport infrastructure design. This

requires methods for estimating both point (station or grid cell) and areal

(catchment) precipitation design values. The current methods in Norway

(Section 2.1.4) was developed more than 30 years ago (e.g. Førland &

Kristoffersen, 1989), and there is a need for new methodology based on updated

data and statistical tools.

Areal precipitation extremes are estimated in Paper I, where we make use of

already existing gridded products at MET Norway, specifically daily precipitation

from 1957-present on a 1x1 km2 grid (see Section 3.3). We extract the integrated

precipitation over a catchment and fit a GEV distribution to the areal time series,

in order to compute return levels for the specific catchment. Obvious advantages of

this method is avoiding the use of rather uncertain ARFs, and obtaining a measure

of estimate uncertainty. Fig. 5 presents the procedures of the current method,

referred to as SB-gf, and the proposed method GB-GEV. Return level estimates

from the two methods were compared in Fig. 6, showing that GB-GEV estimates

are generally lower than SB-gf estimates, but lie within a 25% deviation in most

catchments. The accuracy of the GB-GEV estimates is obviously determined by

the quality of the gridded dataset used as input, and will consequently gain by the

constant improvement of these (Section 2.1.2). The problem of smoothing, which

affects the extremes in particular, is likely to be reduced in future datasets, for

instance through regional model-based assimilation tools (e.g. Isotta et al., 2015).

For daily time scales, the rather simple procedure described in Paper I contributes

to a more efficient and objective estimation of catchment return levels in Norway.

The study is to our knowledge unique as to apply the GEV distribution on areal

precipitation, besides Overeem et al. (2010) who fit GEV to areal radar

precipitation. The author recognizes, however, that the methodological advances
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brought forward in Paper I are mainly associated with application, rather than

statistics. From a meteorological perspective, Paper I contributes to the

understanding of the spatial distribution of extremes in Norway and the underlying

mechanisms, and represent a first step towards a model for the GEV shape

parameter as further elaborated in the next section.
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Figure 5: Flowchart of the existing (SB-gf; 2.1.4) and proposed method (GB-GEV;

Paper I) for estimating extreme areal precipitation.
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Figure 6: Percentage difference in M100 (circle), M500 (triangle), and M1000 (square)

between SB-gf and GB-GEV estimates at 17 Norwegian catchments. Grey background

indicates catchments with large difference in annual precipitation used in the two

methods.
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The BHM model presented in Paper II is a type of latent variable approach, which

we believe is among the best methods to estimate the spatial distribution of

marginal properties, such as return levels. This is supported by both Davison et al.

(2012) and Apputhurai & Stephenson (2013), and means that while our model is

able to capture climatological information at a given site, the total precipitation at

this site at a specific time (the weather) would most likely be underestimated.

This is because one assumes that, conditioned on the underlying process, extremes

will arise independently at different sites (Davison et al., 2012). Such assumption

is clearly not realistic for adjacent locations. We create fine-scale return level maps

for hourly precipitation in Norway through fitting the GEV distribution to

observational series of hourly precipitation, and link the GEV parameters to

geographical and meteorological variables (covariates). Next, the model spatially

interpolates the GEV parameters via their relationship to covariates on a 1x1 km2

grid. A Gaussian field is used to allow for local adaptivity and accommodate for

over-dispersion. In other words, the covariates account for the deterministic

component, while the Gaussian field accounts for the spatial random effect (the

stochastic component). If the link between observations and the covariates is weak,

the model will borrow strength from a nearby site and the random effect will be

large. A Bayesian Model Averaging (BMA) approach evaluates all possible

combinations of covariates and constructs a weighted average (derived from the

posterior probabilities) over all of them. Thus, directly assessing model uncertainty

which has long been a shortcoming in return level estimation in Norway.

Estimation of model parameters is easily performed via Markov Chain Monte

Carlo (MCMC). The model, hereby referred to as the BMA model, is freely

available as an R-package on

http://cran.r-project.org/web/packages/spatial.gev.bma.

Out of sample assessments show that our model is able to reproduce the

heterogeneity in observed return levels. In Fig. 7 the 20-year return level estimated

by the BMA model is compared to direct station MLE estimates, revealing strong
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agreement. Amongst the eight covariates tested (four geographical and four

meteorological), mean summer precipitation and temperature, along with latitude,

longitude, mean annual precipitation and elevation feature the highest inclusion

probabilities in the model for the GEV μ parameter.
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Figure 7: Scatterplot of modeled M20 for hourly precipitation at the 69 locations

estimated by the BMA approach versus a local MLE fit to observations. Axis labels are

in mm.

To our knowledge, this is the first attempt to produce such fine-scale return level

maps of hourly precipitation in Norway and also the first use of a BHM in an area

of such large spatial variability in precipitation. The paper thus represents the

state-of-the-art in the field of spatial modeling of extreme precipitation. Of similar

studies the author can mention Geirsson et al. (2015) who recently modeled

annual maximum 24-hour precipitation in Iceland, implementing stochastic partial

differential equations (SPDE) to spatially model GEV μ and σ. They did however

not make use of BMA. The return level maps created in Paper II have a wide

range of applications, and the model is flexible in terms of region, type of
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covariates, and variable of interest. Please note that the statistical methodology

and technical developments presented in Paper II was mainly lead by the second

author.

The two methods in Paper I and Paper II fulfill many requirements of climate

services in Norway, with regards to precipitation design values. They provide

objective and spatially coherent estimates and substitute outdated statistical tools

and data. The BMA model represents one of the most novel approaches within

spatial modeling of extremes, and is a promising tool for further advancement and

increased accuracy of Norwegian design values. To withstand the expected increase

in extreme precipitation frequency and intensity, however, it would be necessary to

incorporate a climate change factor into the design values. This subject is

addressed in Paper III, and summarized in Section 4.3.

4.2 The GEV shape parameter in Norway

Throughout the work on Paper I, we discovered some interesting features when

applying extreme value theory in such a spatially varying precipitation climate.

Thus, a large part of the paper deals with an analysis of the value and spatial

distribution of the GEV shape parameter, ξ, in Norway. We show that this

important, but hard to estimate, parameter varies across Norway according to

dominating precipitation systems.

Unlike several studies suggesting a positive and near-constant ξ value over larger

regions (e.g. Koutsoyiannis, 2004b; Veneziano et al., 2009; Wilson & Toumi, 2005),

we find that ξ is generally positive in the southeast and negative in the southwest

of Norway. One explanation to this particular pattern might be a larger range of

precipitation amounts in the southeast due to the exposure of mixed-type

precipitation systems, while in the southwest extremes are usually produced by

frontal systems. We also show, as found in Papalexiou & Koutsoyiannis (2013),

that ξ tends to narrow its range as the record length increases. Since parameter
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estimation methods can give unreasonable ξ values, we propose to restrict the

parameter according to empirical evidence, for instance through the frequency

distribution shown in Fig. 8. One possible solution would be to implement a

Bayesian prior distribution specifically for Norway according to the empirical

values, similar to (Martins & Stedinger, 2000, see Section 2.1.1). The restriction

requires a more extensive analysis of the ξ point value in different parts of the

country, and also how this value changes with increasing catchment size. Such

analysis was beyond the scope of our paper.

obs
gridobs mean(sd): 0.03(0.14)

grid mean(sd): 0.02(0.12)

−0
.1 0.
1

0 
− 

0.
05

Figure 8: Frequency distribution of ξ estimated from observations (dark grey) and the

daily gridded dataset (Section 3.3.1) (light grey). Red interval indicates the mean.

Due to the limited number of sub-daily observations, only a few studies on ξ on

such shorter duration precipitation exist. However, similar to a decrease with

increasing area (e.g. Overeem et al., 2010), ξ is likely to decrease with increasing

duration. This is confirmed in e.g. Overeem et al. (2010) and Van de Vyver (2012).

In Paper II ξ and the two other GEV parameters are modeled through their

relationship to gridded covariates, as described in the section below. The resulting
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return levels are compared to return levels estimated from three modified versions

of the model, including one that prescribes ξ to a value of 0.15 for the entire

country. The three models that allow ξ to vary appear to offer estimates that are

more consistent across Norway, but no covariate seem to capture the spatial

distribution of ξ in a satisfactory manner leading to considerable uncertainty in its

estimates. The most influential covariates, however, are latitude and longitude.

The actual values of ξ are reasonable with a posterior mean of ξ 0.11, although

with a substantially wide 95% confidence interval of -0.65 to 0.87.

Although paper III focuses on seasonal maxima to evaluate the extremes in RCM

simulations (see Section 4.3), return level estimates are briefly assessed. Experience

from analyses in Paper I inspired the use of a Bayesian prior on ξ, and the

modified MLE-approach of Martins & Stedinger (2000) mentioned above was

adopted to estimate return levels from simulations and observations.

4.3 Fine-scale RCM simulations of summer precipitation

extremes

Future climate change, with likely implications for Norway being increased

precipitation (see Section 1.1), require preventative actions in the planning and

design of infrastructure. Climate model simulations give essential information in

the design process of infrastructure built to last several decades into the future.

One way to account for possible future changes in design values is in Norway

referred to as ”climate factors“, and is defined as the factor we need to multiply

current design values with to get an estimate of future design values. This

procedure does not require bias correction of climate model simulations, as the

simulated change between historical periods and future periods is utilized. Climate

factors can be used directly on estimates provided by the methods in Paper I and

Paper II. To obtain more accurate precipitation amounts for future climate,

however, bias correction to match the observed precipitation statistics would be
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required. As the initial step towards analyzing possible future changes in sub-daily

extremes in Norway, we have in Paper III evaluated 3-hourly and daily summer

precipitation from seven different simulations over the mainland-Norway, included

in the EUR-11 ensemble described in Section 3.4. The limitation to summer season

relates to the availability of sub-daily observations and is justified in Section 3.1,

stating that the highest short-duration extremes usually occur in summer. The

success of covariates related to summer temperature and precipitation in the BMA

model (Section 4.1; Paper II) also confirms this statement. Still, the

representativeness of this study is somewhat biased towards regions dominated by

extreme short-duration summer precipitation. Although a few studies have

analyzed the EUR-11 dataset, including Kotlarski et al. (2014) who evaluated daily

temperature and precipitation over Europe, the sub-daily simulations have not yet

been given the same attention.

Our focus in Paper III was on extreme summer precipitation in terms of seasonal

maxima, quantiles and return levels, but we also analyzed the frequency of wet

events and total summer precipitation. We compared EUR-11 simulations to two

types of datasets; The daily and 3-hourly observation-based gridded data described

in Section 3.3, and measurements at 19 meteorological stations around the country

(see Fig. 4). We find slightly different results depending on reference dataset and

temporal scale, but most models are able to reproduce the spatial distribution and

extreme values relatively well. Fig. 9 is a quantile-quantile plot of 3-hourly summer

precipitation from 19 observational sites (x-axis) and the nearest EUR-11 grid

cells. The seven simulations are noted by their institute or community of origin.

Lower quantiles are well represented, and some simulations are able to reach close

to the highest observed quantiles.
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Figure 9: The 0.25, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, and 0.99 quantiles for 3-hr summer

precipitation at 19 stations and the seven EUR-11 RCMs

Regarding wet day frequency all models show a positive bias, and an overall

positive bias is also seen for 3-hour events. This overestimation is a common issue

in regional climate models. We identify two models with larger deviances

compared to the reference data and the other models, one giving low precipitation

intensities (KNMI), while the other largely overestimates the frequency of wet

events and hence total summer precipitation (DHMZ). In addition to model

deficiencies in terms of poor representation of convection and orographic

enhancement, possible causes of detected biases might involve incompatible

properties between model and reference data. This includes different or missing

adjustment for gauge undercatch between the datasets.

We find it likely that the high spatial resolution of 0.11◦ improves the simulations

of extreme precipitation in Norway, especially in areas of orographic enhancement

as shown by (e.g. Heikkilä et al., 2010). In addition to reproducing more accurate

precipitation values, the increased spatial resolution is beneficial as a tool for local

climate adaptation. Although the study does not bring forward any

methodological advanced in terms of evaluation or statistical tools, we believe to

be the first to evaluate 3-hourly precipitation over Norway from the EUR-11
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ensemble. The results thus represents an important feedback to the RCM

community on the ability of their models to reproduce extreme precipitation levels,

as well as the possibility and requirements for implementing these simulated levels

into national climate services.
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5 Conclusions and future perspectives

Results in the current thesis contributes to the understanding of extreme

precipitation in Norway, in terms of mechanisms, spatial distribution and level of

design values. The main contribution, however, is towards the methodology for

estimating such design values in Norway. New statistical methods for estimating

daily precipitation extremes over catchments, and hourly extremes in any point on

a fine-scale map have been developed. These methods can easily be implemented

as part of the national climate service provided by MET Norway, as requirements

of accurate design values on smaller spatial and temporal scales becomes

increasingly important. In the light of climate change, expected future design

values must be explored. The last part of the thesis therefore concentrates on

assessing the most recent climate model simulations in terms of their ability to

reproduce observed precipitation levels in Norway. The work in this thesis has had

a large focus on requirements from practitioners and end-users, thus the

applicability of results are crucial.

This thesis has demonstrated the complex spatial structure of extreme

precipitation in Norway, which is shown to differ between temporal scales. In

contrast to more orographically homogeneous countries like The Netherlands,

where advanced radar products allow for good quality areal precipitation

assessments, we still need to rely on derived products from in situ observations. In

Paper I we make use of an observation-based gridded dataset to fulfill the demand

for more objective and efficient estimation of design values for areal precipitation.

GB-GEV can easily be applied to other gridded products, for instance projections

of future precipitation. The GEV shape parameter had a key role in Paper I, as it

varies across Norway according to the type of precipitation systems that produce

extremes in different regions. Our results contradict with several studies of the

shape parameter over larger spatial scales, claiming that the parameter should be

(nearly) constant and strictly positive. The author realizes however, as also shown
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in our paper, that the estimation of the shape parameter is affected by record

length and the the range of values narrows with longer time series. Consequently,

the shape parameter should be restricted according to empirical evidence.

On sub-daily scales observations are limited and practitioners in Norway have

relied on empirical-statistical relationships to derive sub-daily design values from

daily precipitation. As hourly time series have become longer and more numerous,

the possibility to model spatial extremes arises. In Paper II we successfully apply a

Bayesian Hierarchical Model to reproduce return levels of hourly precipitation in

Norway, through the use of relevant covariates on a fine-scale grid and Bayesian

Model Averaging. Effective covariates seem to be variables describing convective

conditions, such as summer temperature and precipitation, in addition to mean

annual precipitation and geographical variables (latitude, longitude, and elevation).

This paper represents the state-of-the-art within spatial modeling of extremes.

Adjusting design values based on historic and current climate information

according to expected future changes is crucial, thus as an important first step

towards producing precipitation return level maps for future climate in Norway,

the state-of-the-art within climate model simulations from EURO-CORDEX have

been evaluated in Paper III. These can now provide precipitation values on

relatively fine spatial and temporal scales, more specifically 0.11◦ horizontal

resolution and 3-hourly temporal resolution. The simulations are to a large degree

able to reproduce precipitation extremes on daily and sub-daily scales over

Norway. Biases are relatively small, with a few exceptions. Bias correction is

probably necessary in a next step, but our results are promising in the aspects of

using EUR-11 simulations to assess possible future changes in extreme

precipitation.

The research presented herein represents first attempts at addressing extreme

precipitation design values by use of the GEV distribution in Norway on a detailed

level. Nevertheless, many tasks remain for implementation and future analyses
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that can challenge or strengthen our findings. In particular, we would like to

explore recent developments on non-stationary GEV methods, study the effect of

topography on the extreme value distribution, and possibly separate extremes

coming from different weather types. As mentioned in Section 2.1.1 and in Paper I,

the author would like to restrict the shape parameter through a Bayesian prior

distribution. One possible approach would be to create an empirical distribution

using good-quality observational data, either for the country as a whole, or

regional distributions. Ideally, a separation between stratiform and convective

extremes should be made. A new and improved gridded dataset for daily

precipitation is currently being developed at MET Norway, covering the same

period 1957-present. The new dataset is created by spatial interpolation based on

Bayesian methods, and information is propagated from the coarser to the finer

scales by means of an iterative Optimal Interpolation (OI) procedure (Lussana &

Tveito, 2014, not published). Similar datasets on sub-daily scales, and combination

datasets based on observations, radar, reanalysis and numerical models are also

planned for. Since GEV-GB depend strongly on input data, it is likely that using

these coming datasets will improve the estimates of areal extreme precipitation.

For extreme precipitation estimates at a point there is a need for regionalization,

possibly through pooling of data over homogeneous regions. The BMA-model

would be a good contribution for such a task, providing knowledge on the spatial

distribution of the GEV parameters. Although we are pleased with the

performance of the BMA model for our purposes, a number of improvements

concerning algorithm and scientific basis are suggested in Paper II. To better

address the different weather regimes, it may be useful to split the country into

regions and perhaps seasons. Covariates that more appropriately describe the

spatial distribution of hourly extremes can be implemented, and the limiting

assumption of stationarity in the covariates should be addressed by letting

regression coefficients vary in space. A comparison of BMA model estimates and

direct GEV estimates on grid precipitation for different durations would be an

44



interesting exercise. Ultimately, the goal is to implement the BMA-model into the

operational services at MET Norway.

Suitable bias-correction methods for selected EUR-11 simulations, according to the

results in Paper III, should be developed in order to analyze changes in

precipitation design values between the historical control run and projections of

future climate. A thorough examination of possible changes in 3-hourly

precipitation extremes in Norway are yet not available, and would answer to an

important demand. However, firstly we would like to perform a similar evaluation

as in Paper III using the new gridded datasets for daily precipitation and

disaggregated 3-hour values. For a better comparison and more robust conclusions

it would be useful to include assessments on the quantitative levels of uncertainty

associates with each dataset. When available, high-resolution

convection-permitting ensemble simulations for Norway should be investigated.

The field of extreme precipitation has evolved substantially over the past few

years, and the author believes that increased national research efforts would be

worthwhile, especially from a climate change adaptation perspective.
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Wüest, M, Frei, C, Altenhoff, A, Hagen, M, Litschi, M, & Schär, C., 2010. A

gridded hourly precipitation dataset for Switzerland using rain-gauge analysis

and radar-based dissaggregation. International Journal of Climatology, 30(12),

1764–1775.

Xue, Y, Janjic, Z, Dudhia, J, Vasic, R, & De Sales, F., 2014. A review on regional

dynamical downscaling in intraseasonal to seasonal simulation/prediction and

major factors that affect downscaling ability. Atmospheric Research, 147-148,

68–85.

Zhang, L, & Singh, V P., 2007. Bivariate rainfall frequency distributions using

Archimedean copulas. Journal of Hydrology, 332(1-2), 93–109.

64



Appendix

Paper I
Dyrrdal, A V, Skaugen, T, Stordal, F, & Førland, E J., 2014a.

Estimating Extreme Areal Precipitation in Norway from a Gridded

Dataset. Hydrological Sciences Journal, Aug.

DOI:10.1080/02626667.2014.947289





Acc
ep

ted
 M

an
us

cri
pt

Publisher: Taylor & Francis & IAHS Press 

Journal: Hydrological Sciences Journal 

DOI: 10.1080/02626667.2014.947289 

Estimating extreme areal precipitation in Norway from a gridded 
dataset 

Anita Verpe Dyrrdal 2,1  , Thomas Skaugen 3  , Frode Stordal 2  , Eirik J. Førland1  

1 The Norwegian Meteorological Institute, Box 43 Blindern, 0313 Oslo, Norway. 
2 University of Oslo, Department of Geosciences, Box 1047 Blindern, 0316 Oslo, Norway 
3 Norwegian Water Resources and Energy Directorate, Box 509 Majorstua, 0301 Oslo, Norway
Anita.Dyrrdal@met.no 

Abstract To obtain estimates of extreme areal precipitation in Norway, the Norwegian
Meteorological Institute currently applies a statistical method that combines measured point
precipitation, empirical growth factors, and areal reduction factors. We here suggest performing 
statistical analysis directly on areal 24-hour precipitation from a gridded dataset covering the period
from 1957 to the present. Grid-based methods provide increased objectivity and consistency, and
enables estimation in ungauged catchments. The proposed method fits the Generalized Extreme
Value (GEV) distribution to areal precipitation series in order to estimate precipitation return levels 
required for design values for flooding and dam safety. The study includes an investigation of the
spatial variation of extreme precipitation in Norway, reflected through the GEV shape parameter. Our
results suggest that this parameter varies spatially according to dominating precipitation systems and, 
most probably, to the degree of orographic enhancement.

Key words extreme precipitation; Norway; areal precipitation; GEV; precipitation; gridded data

Estimation des précipitations extrême sur le territoire Norvégien à
partir de données représentées sur grille

Résumé A l’heure actuelle, pour obtenir une estimation de la répartition en surface des précipitations 
extrêmes sur le territoire Norvégien, l’institut météorologique en Norvège utilise une méthode 
statistique basée sur la combinaison de la mesure locale, d’un facteur de croissance empirique et
d’une méthode d’abattement des pluies de surface. Nous proposons, ici, une nouvelle méthode basée 
sur une analyse statistique appliquée non pas sur la la mesure locale mais plutôt sur les données de
précipitations journalières représentées sur une grille et couvrant la période allant de 1957 jusqu’à
nos jours. L’utilisation de ces dernières a montré un potentiel croissant ces dernières années et
permettent, en particulier, l’estimation des précipitations pour des bassins non jaugés. La méthode
que nous proposons applique la loi des extrêmes généralises directement aux précipitations
surfaciques pour en déduire, par la suite, les temps de retour des événements pluvieux en question. 
Ces derniers sont nécessaires pour la plus part des études d’impacts hydrologiques et des ouvrages de
protections contre les crues tels que les barrages. La méthode proposée a été appliquée sur les
précipitations extrêmes dérivées a partir de données représentées sur une grille régulière couvrant le 
territoire Norvégien. Nous avons étudié, en particulier, la distribution spatiale du paramètre de forme
de la loi des extrêmes généralisées. Les résultats montrent que ce paramètre varie dans l’espace en
fonction des systèmes précipitant dominants et que les barrières orographiques tels que les
montagnes jouent aussi un rôle déterminant.
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1 INTRODUCTION 
Estimates of extreme precipitation are decisive for planning and design of important 
infrastructure, such as reservoir dams, water control systems, urban runoff and transport lines. 
The accuracy of extreme precipitation estimates is therefore crucial in both economic and safety 
aspects. Extreme precipitation in regions with varied topography, like Norway, is caused by 
convective small-scale systems as well as larger scale frontal systems, subject to orographic 
enhancement (Roe 2005). The relatively sparse station network also adds to the complexity. 
Estimates of extreme precipitation are usually presented as values with low frequency or long 
return periods. For dam design and flood estimation in Norway, the probable maximum 
precipitation (PMP) is applied along with the 500 or 1000 year return levels, depending on the 
danger potential (NVE 2011). Authorities for roads, railways, and urban planning are more 
concerned with short-term and intense precipitation with return periods of 5 to 200 years. For 
design purposes there is a constant demand for higher temporal resolution, still the lack of sub-
daily precipitation measurements often makes it more appropriate to rely on the scaling of daily 
precipitation. 

For most purposes, there is a need for integrated precipitation over an area, introducing 
a number of challenges because precipitation is associated with large spatial variability. As 
stated by Skaugen et al. (1996), extreme areal precipitation will be a sum of variables, partially 
from the parent distribution and partially from the distribution of its extremes. Skaugen et al. 
(1996) also describes how the central limit theorem applies when the point process is spatially 
independent, implying that the distribution of areal precipitation converges to a Gaussian as the 
area increases and spatial correlation is reduced. Simultaneously, the extremes of the same 
distribution will converge to one of three types of the Generalized Extreme Value (GEV) 
distribution. In the current study we explore the spatial distribution of extreme precipitation in 
points and areas in Norway, and present a method for estimating extreme areal precipitation in 
Norwegian catchments. 

According to Hanssen-Bauer et al. (2009) an increase in annual precipitation is observed 
in the entire country throughout the last century, particularly since the end of the 1970s. 
Further, the frequency and intensity of extreme precipitation events are projected to increase 
(Hanssen-Bauer et al. 2009, Seneviratne et al. 2012). The intensity of rainfall-induced flood are 
thus expected to increase and higher temperatures probably lead to a shift towards earlier spring 
floods and increased possibility for floods during late autumn and winter (Hisdal et al. 2006, 
Hanssen-Bauer et al. 2009, Wilson et al. 2010). Due to these observed and projected changes, 
existing design criteria for infrastructure should be revised. Svensson and Jones (2010) found 
that there is no obvious preferred method for estimating extreme areal precipitation, but that 
most countries use some kind of regionalization to transfer information from one location to 
another. 

The Norwegian Meteorological Institute (MET Norway) has a national responsibility for 
providing estimates of extreme areal precipitation estimates in Norway. The present approach 
(Førland and Kristoffersen 1989, Førland 1992) is a modified version of a method developed by 
the National Environment Research Council (NERC) in Great Britain in 1975 (NERC 1975). 
The method is based on point measurements at meteorological stations and use empirical 
growth factors to derive estimates of longer return periods. The method is here referred to as the 
station-based growth factor method (SB-gf). Estimation is time-consuming as it implies several 
manual steps, including subjective measures which influences the result significantly. The latter 
also leads to a lack of consistency. 
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We therefore propose a new method for estimating extreme areal precipitation statistics 
based on daily precipitation interpolated on a 1x1 km2 grid (Tveito et al. 2005, Jansson et al. 
2007, Mohr 2009) and the GEV distribution. The proposed method is hereby referred to as the 
grid-based GEV method (GB-GEV). An immediate benefit of GEV over growth factors is the 
possibility for a direct uncertainty measure in terms of confidence intervals. Fine-scale grids 
have the advantage of providing spatially continuous datasets and a simplified basis for 
estimates in ungauged catchments. Additionally, downscaled climate projections exist on a 
similar grid, which enables estimation of extreme precipitation for future climate conditions. To 
our knowledge, we are the first to use finescale grids directly in the estimation of areal 
precipitation return levels. In Section 2 we describe the development of the alternative method, 
including an investigation of the GEV shape parameter in Norway. Section 3 provides results 
from the method comparison and a discussion, followed by conclusions in Section 4. 

2 FROM STATION-BASED TO GRID-BASED ESTIMATES 
In this section we briefly describe the existing station-based method for estimating extreme
areal precipitation, and then show the basic principles of the proposed grid-based method. The
two methods, SB-gf and GB-GEV, are presented in Fig. 1 and terminologies are further
explained in the text.

2.1 SB-gf 
In the UK Flood Studies Report (NERC 1975) a comprehensive statistical analysis was 
performed on a large rainfall dataset. Empirical growth factors were developed, describing 
precipitation with a T year return period (MT) as a function of M5 (precipitation with a 5 year 
return period), also called the index value. The ratio MT/M5 is referred to as growth factor. M5 
for a ‘representative point” within the area is estimated by the Gumbel-method (Gumbel 2004), 
equivalent to fitting a GEV type I distribution, and MT is computed in the following way 

M T = M5 (1) 

The factor C is determined empirically as a function of M5, and varies geographically.
Analyses performed by Førland (1987) suggest that values defined for Scotland and Northern
Ireland are suitable for Norwegian conditions. For 24-hour precipitation with M5 between 25 
and 350 mm, C may be approximated by

C ∼ 0.3584 − 0.0473ln(M5) (2) 

Growth factors are used along with standardized areal reduction factors (ARF) (NERC 1975, 
Bell 1976), converting point values to areal values, and together they constitute the method we
here call SB-gf.

The implementation of growth factors from the UK (NERC 1975) at MET Norway more 
than 30 years ago was motivated by its relatively simple execution at the time, the large 
amounts of data, and the extensive statistical analysis behind. Because computer power has 
increased considerably, the use of empirical growth factors may not be the optimal approach 
today. In addition, growth factors were originally developed for point precipitation and 
applying it on areal precipitation might violate the statistical assumptions on which it was 
based.  

We want to improve the methodology for estimating extreme areal precipitation by 
moving from point precipitation from meteorological stations (station-based) to areal 
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precipitation from the gridded dataset (grid-based), and from growth factors to the GEV 
distribution. As areal time series are applied directly, ARFs then become redundant. 

2.2 Precipitation grid
Estimates of daily precipitation for the Norwegian mainland are available at MET Norway for
the period 1957 until today (www.seNorge.no). These are obtained from observations at
approximately 400 precipitation stations, interpolated on a 1x1 km2 grid (Tveito et al. 2005,
Jansson et al. 2007, Mohr 2009). The operational period of the different precipitation stations 
vary, so does the collection of measurements applied in the interpolation from day to day.
Triangulated irregular networks (TINs) are applied in the interpolation; an elevation TIN based
on the altitude at the meteorological stations and a precipitation TIN based on measured
precipitation. A terrain adjustment is performed, assuming that precipitation increases by 10% 
per 100 m up to 1000 meters above sea level (m a.s.l.) and by 5% per 100 m above that. The
gridded dataset is used operationally in e.g. flood forecasting in Norway.

Uncertainties associated with the gridded dataset are mainly related to the interpolation 
procedure, which in areas with rough topography is particularly challenging. Precipitation
enhancement with elevation is based on a simple model known to be highly inaccurate in some
cases. For instance, Engeset et al. (2004) and Saloranta (2012) found that the vertical
precipitation gradient is exaggerated, leading to overestimation in high elevations and 
underestimation in some low elevated areas. In regions with a limited amount of stations 
(mountains and northern regions), the influence of single stations is large and may cause biases
in the grid-based results.

2.3 The GEV distribution
The GEV distribution, introduced by Jenkinson (1955), describes the three possible types of
extreme value distributions for block maxima of any variable (Coles 2001). The distribution of
the block maxima converges to a GEV distribution G(x) as the record length approaches
infinity. The three-parameter GEV distribution is of the form

G(x) = exp{−(1 + ξ( )  } (3) 

where μ is location, σ is scale, and ξ is shape. Depending on ξ, the GEV distribution converges 
into one of three types (defined according to the convention used in Coles (2001)); Type 
I/Gumbel/EV1 (ξ = 0), Type II/Fréchet/EV2(ξ > 0), and Type III/Weibull/EV3(ξ < 0). 
Over the years GEV has become an established and widely used model in extreme value 
statistics, and a large variety of analysis tools are developed. Coles & Tawn (1996) claim the 
GEV distribution to be valid also for areal precipitation. 

Large uncertainty is associated with the estimation of the GEV ξ parameter, representing 
a challenge when fitting the GEV model. The uncertainty increases for short time series which 
is often the case with meteorological variables. The complex topography and climate in Norway 
also introduce inhomogeneities and a mixture of precipitation processes in different parts of the 
country further complicates the estimation of ξ. Still, ξ is essential in extrapolating to longer 
return periods important for design. The challenge associated with the estimation of ξ motivates 
a more thorough analysis of the nature and spatial distribution of this parameter in Norway. 
Here we refer to ξ for point and areal precipitation as ξp and ξa, respectively. 

2.4 The GEV parameter ξp in Norway 
According to several studies, extreme 24-hour precipitation at a point follows a Type II 
distribution (heavy upper tail; ξp >0) (Wilks 1993, Koutsoyiannis and Baloutsos 2000, Katz et 
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al. 2002, Coles et al. 2003, Coles and Pericchi 2003, Koutsoyiannis 2004a). This distribution 
also represents the lowest risk for engineering structures as design values are higher than for 
Type I and Type III. Wilson and Toumi (2005) give evidence for a universal ξp and are 
supported by Veneziano et al. (2009) who suggest a near-universal ξp only depending on 
duration. Koutsoyiannis (2004b) studied ξp using several methods of estimation, and a ξp of 
0.15 is indicated as appropriate for mid-latitude areas of the Northern Hemisphere. Wilson and 
Toumi (2005) found a mean ξp estimate of 0.10 when fitting a GEV distribution to long daily 
precipitation records from the UK. Veneziano et al. (2009) suggest that a constraint on ξp using 
theoretical arguments is necessary. 

To study the spatial distribution of ξp in Norway, we use the method of “maximum
likelihood estimation” (MLE) (Prescott and Walden 1980). Figure 2(a) presents estimates of ξp
in single 1x1 km2 grid-cells for the period 1957–2012. We performed the same analysis using 
the method of “weighted least squares” (WLS) (Koutsoyiannis 2004b), with weights equal to 
the empirical quantiles. This method grants higher importance to the largest values, and was
shown by Koutsoyiannis (2004b) to be a better fit to empirical values. The spatial distribution
of WLS estimates is similar to that of MLE estimates, thus not shown here. Negative ξp are seen
mostly in coastal areas, while continental parts are dominated by positive values, showing the
same spatial pattern seen in the actual observations. In Fig. 3 the empirical distribution from the
gridded dataset and observations at 569 sites (cf. Fig. 6) is shown, revealing a near Gaussian 
distribution of ξp with a mean of 0.020.03. The Gaussian distribution of ξp is in accordance with
previous findings by e.g. Papalexiou and Koutsoyiannis (2013).

We further assess the regional variability of ξp, by selecting 18 series with more than 
100 years of measurements (cf. Fig. 6) and apply Pearson’s Chi-square test (Pearson 1900) with 
α-level of 0.05 to test spatial homogeneity between ξp at paired sites. ξp for 6 sites in the
continental Southeast and 6 sites in the Southwest shows no significant variation within the 
separate regions. As we combine the 12 sites, in addition to 6 sites in other parts of the country,
significant inhomogeneity is evident, suggesting that a constant and strictly positive ξp is not
appropriate for Norway.

It is essential to realize that GEV and other mathematical distributions are simply
models that are supposed to mimic the main features of nature. The complexity of nature and its 
measurements, however, introduces a number of reasons why our observational series and
associated estimates do not strictly follow the theoretical framework of e.g. the GEV model. In
addition to sampling effects related to short time series and uncertainty associated with non-
accurate estimation methods, some of the deviance between observations and theory might be
explained by the different processes producing extreme precipitation in Norway. Comparing 
Fig. 2(a) and (c) reveals that negative ξp estimates are mostly found in areas characterized by
higher annual precipitation. In these areas the largest daily precipitation values are mainly
produced by stratiform systems in the prevailing westerlies, and the precipitation intensity is
enhanced by orographic effects across the Norwegian mountain range. A possible explanation
for negative values of ξp may be the rather uniform exposure of precipitation types, and that
orographic enhancement modifies the extreme value distribution. Some clues on the latter can 
be obtained from literature. Blumen (1990) and Yu and Cheng (2013) found that the extent and
degree of orographic enhancement depends closely on local topographic geometry, and Yu and
Cheng (2008, 2013) found that there are complicated microphysical interactions between the
orographic part and the background precipitation from the low pressure system. In addition, Yu
and Cheng (2013) suggest that the magnitude of orographic enhancement is not proportional to 
the background precipitation alone, but to the product of the background precipitation and the 
wind speed of the oncoming flow. According to Caroletti and Barstad (2010) precipitation in 
western Norway is dominated by forced uplift, and they show that for stations at some distance
from the coast the background precipitation is much smaller than orographic precipitation
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during extreme events. It follows that orographic effects influence the distribution of extreme 
precipitation in these areas. Furthermore, since the mountain range responsible for the forced 
uplift is static, it is not unreasonable to assume a limit for the orographic effects and hence an 
upper bound (negative ξp) for extreme precipitation. In most areas with positive ξp, however, 
orographic effects are minimal and high-intensity precipitation may occur during frontal 
systems from the Southeast-East sector, and during heavy convective summer showers. These 
regions thus experience a wider range of precipitation amounts as they are heavier exposed to 
mixed-type precipitation systems; isolated convective showers, stratiform frontal systems or 
embedded convective cells within frontal systems. 

In Fig. 4 we further analyse the relationship between ξp and the normal (averaged over
the period 1961–1990) annual precipitation (PN), which can be seen as a proxy for the type of
dominating precipitation processes. The above statement that ξp decreases with increasing PN is
confirmed, and a linear regression shows that this relationship becomes stronger for longer
record lengths. For record lengths exceeding 80 and 100 years the fitted slopes are statistically
significant at the 0.001 level.

Papalexiou and Koutsoyiannis (2013) also found that ξp estimates depend on the record 
length, and show a tendency to higher ξp for longer series. To investigate a possible dependence
in Norway we estimate ξp at the 569 observation sites, using both MLE and WLS, and plot the 
result against record length (Fig. 5). We divided the 569 series into different lengths to increase
the number of series, and computed the median, 5th and 95th quantiles for all lengths for which
at least 5 series were available. We find a weak non-significant positive trend in ξp with record
length. The variability is strongly reduced and ξp estimates seem to converge towards a slightly
positive value. WLS estimates are somewhat higher than MLE estimates for all record lengths, 
and has a wider range of values as mentioned above. 62% of WLS estimates are positive, while 
only 57% of MLE estimates are positive. However, the difference between estimates at single
sites seems random, and since WLE does not change the general picture we choose to stay with 
MLE as our estimation method throughout this study.

2.5 The GEV parameter ξa in Norway 
As mentioned earlier, areal precipitation has a different frequency distribution than point
precipitation, also with regards to extremes. The distribution of extreme areal precipitation is 
not well studied, mostly because areal precipitation is not a directly measurable variable. As a
result of reduced spatial correlation with increasing area, we have that the parent distribution 
converges towards a Gaussian due to the central limit theorem. Simultaneously, we expect the 
extremes of the same distribution to converge towards a GEV type I (ξa = 0), which is the 
domain of attraction of a Gaussian upper tail. This is in accordance with Leadbetter et al. 
(1980) who state that “if Xn is an independent and identically distributed (i.i.d.) (standard)
normal sequence of random variables, then the asymptotic distribution of Mn = max(X1, ...., Xn) 
is of Type I”. 

Overeem et al. (2010) studied ξa from weather radar in the Netherlands. Goodness of fit 
tests were used to show that the GEV distribution fits adequately to areal precipitation data, 
although the convergence is slower and the need for longer data series is even more crucial.
Overeem et al. (2010) found that ξa decreases with increasing area, moving from a GEV Type
II towards a GEV Type I, and suggest that this may be attributed to the nature of spatial 
dependence of precipitation. In the current section we investigate the behavior of ξa in Norway
using the gridded dataset.

We argued in the previous section that the range of extremes, and thus the ξp parameter, 
varies according to dominating precipitation systems and orographic effects. Another aspect for 
areal precipitation is that different processes and degree of spatial correlation will create a 
different population of extremes depending on the size of the catchment. For further analysis we 
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selected 17 catchments in Norway, varying in size from 105 to 5693 km2. The catchments were
selected according to availability of SB-gf estimates and to represent different parts of the 
country. They are presented in Table 1 and in Fig. 6. 

If the extremes converge towards a GEV Type I in larger areas, ξa would be smaller than 
ξp in areas where ξp is positive, and vice versa. This is however not seen in Fig. 7, where we 
plot the mean ξp against ξa in the catchments. But we note a small tendency to larger differences 
(deviation from the diagonal) in larger catchments. 

To minimize the effects of inhomogeneity, we select two areas; Southeast and 
Southwest (cf. Fig. 2) that are relatively homogeneous in terms of ξp. Positive ξp values
dominate the Southeast, while negative dominate the Southwest. Within the areas we select 25
points and estimate ξa for increasingly larger areas around the points. Figure 8 reveals a scale-
break around 1500 km2 in both areas, and a second scale-break around 6000 km2 in the
Southeast. These can probably be attributed to the geographical extent of different precipitation
systems that produce extremes in the two areas, and confirm that we are dealing with a mixture
of different extreme value distributions that complicates our study. The two scale-breaks in the 
Southeast indicate that a greater variety of precipitation types occur here, as suggested in
Section 2.4, and that these precipitation types produce extremes from different distributions.
After the last scale-break we note that ξa decreases, reflecting the reduced spatial correlation as 
the area increases. In accordance with Overeem et al. (2010), extremes converge from a GEV
type II towards a GEV Type I distribution in the Southeast. In the Southwest, however, the
Type III distribution is further strengthened. The latter may indicate that in areas of negative ξp
the assumptions for the central limit theorem, such as the observations being i.i.d., are not met.
A reason for this might be that orographic enhancements have a non-linear and spatially
intermittent effect, and hence contaminate the extreme value distribution. These findings have
to be considered preliminary, and due to the strong gradients in the Norwegian precipitation 
climate along with possible misrepresentation of spatial correlation in the gridded dataset, a
more thorough investigation of ξa is necessary.

2.6 GB-GEV 
Our analyses indicate a connection between relevant precipitation indices and the spatial 
distribution of the GEV ξ parameter in Norway. We recognize, however, that further work is 
needed to present a model for ξa according to empirical evidence. As a result, we here choose to 
estimate ξa directly. The proposed method, GB-GEV, thus includes fitting the GEV distribution 
to annual maximum areal 24-hour precipitation extracted from the precipitation grid, using 
MLE to estimate the three GEV parameters. 

It is common practice to use estimates of probable maximum precipitation (PMP), 
which represent a precipitation amount with a return period of infinity, in the design of critical
constructions like e.g. reservoir dams. Great uncertainties are associated with the estimation of
long return periods, and the evolvement of numerical weather (NWP) models introduces the
possibility of perhaps more physically based PMP estimates (Cotton et al. 2003, WMO 2009).
With these considerations we have in this study not attempted a new statistical method for
PMP-estimation, however, we suggest that a thorough analysis of NWP-based estimation 
methods is carried out in the future.

3 METHOD COMPARISON AND DISCUSSION 
We compare return level estimates from GB-GEV and SB-gf in the 17 catchments, making use 
of previously determined SB-gf estimates computed at MET Norway on different occasions (cf. 
Table. 1). Percentage differences for M100, M500, and M1000 are shown in Fig. 9. GB-GEV 
estimates lie within a 25% deviation of SB-gf estimates in most catchments. In the wetter 
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catchments where PN used in the two methods differ significantly, GB-GEV estimates are 
somewhat higher than SB-gf estimates, especially for M100 (see Fig. 10). The largest deviation 
is seen in Svartevatn, where GB-GEV estimates are 40–60% higher. A natural explanation for 
this is the elevation gradient for precipitation used in the gridded dataset, which in wet areas 
such as Svartevatn, is likely to generate serious overestimation since the elevation gradient is 
defined as a percentage. The growth factors in SB-gf seem to correspond to a somewhat higher 
positive ξa compared to the estimated ξa in GB-GEV. Consequently, in the case of GB-GEV > 
SB-gf for shorter return periods, the longer return periods might correspond quite well. While 
in the opposite case the difference will grow further with longer return periods. 

Figure 11 shows examples of estimates from four catchments; Soneren, Siljan, 
Aursunda and Roskreppfjord, including empirical values. As these are grid-based empirical 
values, and thus biased towards GB-GEV, they can not be applied to determine the better 
model. The 95% and 99% confidence intervals, indicating the uncertainty in the GB-GEV 
estimates, are shown in the figure. It must be emphasized that this confidence interval only 
reflects the uncertainty in the estimation of the GEV parameters, while additional and 
unquantifiable uncertainty is associated with the gridded dataset. For longer return periods SB-
gf stays within the confidence intervals of GB-GEV in all catchments, except at Sira where SB-
gf moves slightly above the upper confidence level for M1000. 

Uncertainties in the gridded dataset are likely to influence our estimates, particularly in 
high elevated and ungauged regions. Another aspect is the vertical precipitation gradient, 
known to overestimate precipitation in higher elevations. The latter, being defined as a 
percentage, produces an even greater overestimation of the extreme values. On the other hand, 
extremes in any interpolated dataset are often underestimated due to smoothing, and the 
relatively sparse station network results in many large precipitation events not being measured 
as small convective cells may travel between observation sites rather than across. In catchments 
located on the borders between different precipitation regimes, the spatial coherence might be 
reduced both due to the nature of different precipitation systems and the heterogeneous effect of 
the precipitation gradient. An important part of computing extreme areal precipitation estimates 
is to be aware of these effects and, while anticipating improved datasets, consider alternative 
estimation methods in the more uncertain regions. 

A more comprehensive study of different precipitation types and their spatial 
distribution would be an interesting focus for future work. Numerical weather models or
statistical pattern recognition (Skaugen 1997) can for instance be used to separate frontal from
convective precipitation, which could further confirm the effect of precipitation types on the
negative shape parameters seen in the Southwest. An analysis of the orographic effect on spatial
correlation also remains a subject of future research.

4 CONCLUSIONS 
We propose a new grid-based method, GB-GEV, for estimating extreme areal precipitation in 
Norway. To the best of our knowledge we are the first to use fine-scale grids for this purpose, 
and to investigate the behavior of the GEV ξ parameter in Norway. Estimates from GB-GEV 
are compared to estimates from the existing method at MET Norway, SB-gf. Due to large 
uncertainties and short time series, as well as the absence of areal precipitation measurements, it 
is difficult to indicate which estimates are better. However, there are relevant and decisive 
differences between the methods. Our findings can be summarized as follows: 

• Grid-based methods are less manual and time-consuming compared to the station-based
method, as well as more objective and consistent in terms of input data. In addition,
estimates in ungauged catchments are easier to obtain.
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• GB-GEV estimates are generally lower than SB-gf estimates, but lie within a 25%
deviation in most catchments.

• We have shown that ξp varies spatially in Norway, seemingly depending on dominating
precipitations systems and orographic enhancement. For areal extremes the catchment
size plays an additional role due to the degree of spatial correlation. We also observe
that record length influences the ξp estimates and that the accuracy most likely increases
with longer series. Our results suggest that ξa should be modeled according to empirical
evidence, however, a more extensive analysis and perhaps additional data sources are
required before concluding on a suitable model.

The authors recognize that GB-GEV estimates are dependent on the quality of the
gridded dataset. This means that estimates are less robust in areas with few observations and 
complex topography. Still, GB-GEV estimates will become more accurate as gridded products 
improve in the future, and the suggested methodology provides more objective and
geographically consistent results than the SB-gf method. GB-GEV can also be applied in
estimating extreme precipitation from future climate projections.
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Table 1 Catchments sorted after increasing size. Median elevation is taken from the digital 
elevation model with 1-km resolution applied in the gridded dataset. PN is normal annual 
precipitation. For size and PN we show values used in SB-gf first, followed by values used in 
GB-GEV. The percentage difference between PN used in SB-gf and PN used in GB-GEV is 
given in parentheses. 

Catchment Size (km²) Elevation 
(m a.s.l.) 

PN (mm) Reference 

1. Teksdal 105/107 177 1300/1555 (+19.6%) Førland (1997)
2. Lauvsnes 114/107 209 1350/1380 (+2.2%) Isaksen (2006)
3. Aursunda 118/119 260 1300/1398 (+7.5%) Mamen (2009)
4. Svartevatn 210/204 1046 2050/2748 (+34.0%) Førland (1991b)
5. Roskreppfjord 282/266 1050 1450/1887 (+30.1%) Førland (1991b)
6. Vekteren 308/293 610 1250/1118 (-10.6%) Førland (1991a)
7. Siljan 490/492 220 1050/1157 (+10.2%) Førland (1986b) 
8. Aursjøen 487/496 1280 760/829 (+9.1%) Hanssen-Bauer 

(1992) 
9. Jølstra 570/573 680 2200/3130 (+42.3%) Førland (1986a) 
10. Namsvatn 696/701 750 1300/1151 (+11.5%) Førland (1991a) 
11. Soneren 701/754 540 900/989 (+9.9%) Hanssen-Bauer 

(1991) 
12. Sira 1720/1554 693 2020/2529 (+25.2%) Førland (1991b) 
13. Røssvatn 1500/1941 580 1200/1536 (+28.0%) Førland (1988) 
14. Røssåga 1800/1941 580 2000/1536 (-23.2%) Mamen (2011b) 
15. Barduelva 2366/2107 671 575/892 (+55.1%) Førland (1990) 
16. Arendal 4200/4006 520 1150/1290 (+12.2%) Mamen (2011a) 
17. Virdnejavrre 5693/5805 435 450/434 (-3.6%) Førland (1994) 
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Fig. 1 Flowchart of the two methods for estimating extreme areal precipitation; SB-gf and GB-
GEV.
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Fig. 2 (a) ξp estimated from the gridded dataset. The two squares represent areas with mainly 
positive (red) and negative (blue) ξp and are used in the further analysis. (b) Topography in 
Norway. (c) Mean annual precipitation for the period 1981-2010. 
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Fig. 3 Frequency distribution of ξp estimated from observations (dark grey) and the gridded
dataset (light grey). Red interval indicates the mean.



Acc
ep

ted
 M

an
us

cri
pt

Fig. 4 ξp estimated from observations against normal annual precipitation. Linear regression 
lines for: all series (solid), series of length > 80 years (dashed), and series of length > 100 years
(stippled). The grey horizontal line indicates ξp = 0. 
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Fig. 5 ξp estimated from observations against time series length. 
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Fig. 6 Catchments and observation sites. Colored sites indicate long (>100 years) observational 
series separated into regions. 
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Fig. 7 Mean ξp against ξa in the catchments. The size of the dots indicates catchment size. The 
thick grey dashed line indicates the diagonal (ξa = ξp) and the thin grey dashed lines indicate ξp 
= 0 and ξa = 0. 
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Fig. 8 ξa estimated from the gridded dataset, against area size in the Southeast (red) and the
Southwest (blue) of Norway.
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Fig. 9 Percentage difference in M100 (circle), M500 (triangle), and M1000 (square) between 
SB-gf and GBGEV estimates. Grey background indicates catchments with large difference in 
PN used in the two methods.
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Fig. 10 Percentage difference in M100 between SB-gf and GB-GEV estimates, against 
difference in PN used in the two methods. The grey solid line indicates the result of the linear 
regression, and the two grey dashed lines indicate no difference between the methods. 
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Fig. 11 Estimated return levels for areal precipitation at (a) Soneren, (b) Siljan, (c) Aursunda 
and (d) Roskreppfjord catchments, using SB-gf and GB-GEV. Empirical values are from the 
gridded dataset. Dashed (dotted) line indicates the 95% (99%) confidence intervals. 
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