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Abstract 

Age-related changes in brain structure result from a complex interplay between various 

neurobiological processes, which may contribute to more complex trajectories than can be 

described by simple linear or quadratic models. We used a non-parametric smoothing spline 

approach to delineate cross-sectionally estimated age-trajectories of the volume of 17 

neuroanatomical structures in 1100 healthy adults (18-94 years). Accelerated estimated 

decline in advanced age characterized some structures, e.g. hippocampus, but was not the 

norm. For most areas, one or two critical ages were identified, characterized by changes in 

the estimated rate of change. One year follow up data from 142 healthy older adults (60-91 

years) confirmed the existence of estimated change from the cross-sectional analyses for all 

areas except one (caudate). The cross-sectional and the longitudinal analyses agreed well on 

the rank order of age effects on specific brain structures (Spearman´s ρ = .91). The main 

conclusions are that most brain structures do not follow a simple path throughout adult life, 

and that accelerated decline in high age is not the norm of healthy brain aging. 

 

 

Keywords: aging; magnetic resonance imaging; longitudinal; trajectory; atrophy; amygdala; 

cerebral cortex; hippocampus; thalamus; white matter 
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1. Introduction 

The volume of most brain structures shrinks with age, but the degree of change is highly 

heterogeneous across different structures (Allen et al., 2005, Raz and Rodrigue, 2006). Also, 

age-related changes result from a complex interplay between various neurobiological 

processes, which is likely to have different impact in different phases of life. This is likely to 

produce more complex trajectories than what can be described by linear or the usually 

employed higher order polynomial (quadratic or even cubic) models (Fjell et al., 2010a). The 

present study was undertaken with the purpose of estimating trajectories across age of 17 

brain structures in a large cross-sectional sample (n = 1100). Parts of these data have been 

previously published (e.g. Fjell et al., 2009c), and we now re-analyze them by applying a 

statistical approach (the smoothing spline) sensitive to local changes in estimated rate of 

change (Fjell et al., 2010a). This makes it possible to identify critical ages where life-phases 

characterized by relative stability are followed by periods where estimated atrophy 

accelerates, or critical ages where periods of estimated reduction eventually level off. The 

cross-sectional results were compared with longitudinal atrophy rates from a sample of 142 

healthy elderly drawn from the Alzheimer Disease Neuroimaging Initiative (ADNI) (previously 

presented in (Fjell et al., 2009a)). 

 

Previous literature, including reports based on samples overlapping the present, indicates 

inverse U-shaped trajectories for hippocampus, cerebral WM, cerebellum WM and the brain 

stem (Allen et al., 2005, Walhovd et al., 2011, Lupien et al., 2007), while U and J-forms have 

been reported for caudate and the ventricular system (Sullivan et al., 1995, Good et al., 

2001, Walhovd et al., 2011). In contrast, mainly linear trajectories have been reported for 
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amygdala, thalamus, accumbens and putamen (Gunning-Dixon et al., 1998, Jernigan et al., 

2001a, Raz et al., 2003, Sullivan et al., 2004, Allen et al., 2005, Alexander et al., 2006, 

Nunnemann et al., 2007, Abe et al., 2008, Greenberg et al., 2008, Curiati et al., 2009, 

Walhovd et al., 2011). Both linear and quadratic reductions have been found for pallidum 

(Abe et al., 2008, Walhovd et al., 2011). The rational for the present study was to go beyond 

these general trends, by more accurately delineating the trajectories for the different 

structures across adult life, and to identify critical ages characterized by changes in 

estimated rate of atrophy. We included volume for 17 major regions and structures 

estimated from the whole-brain segmentation approach in FreeSurfer (Fischl et al., 2002). 

Surface-based cortical thickness results were presented in a previous publication (Fjell et al., 

in press). 

 

2. Materials and Methods 

2.1 Samples 

2.1.1 Cross-sectional sample: 1100 healthy adults (424 men/ 676 women), with an age range 

of 76 years (18-94 years, mean = 48, SD = 20) were included, pooled from five independent 

studies. Distribution of participants across decades are shown in Table 1. All the healthy 

samples were screened for diseases and history of neurological conditions and dementia, 

and none of the participants showed signs of cognitive dysfunction. The details of each of 

the subsamples are described in Supplementary Table 1, but a brief description is provided 

here: Sample 1 (Walhovd et al., 2005), n = 69, age 20-88 years (mean 51.3); Sample 2 

(Espeseth et al., 2008), n = 208, 19-75 years (mean 46.8); Sample 3 is from the Open Access 

Series of Imaging Studies(www.oasis-brains.org, Marcus et al., 2007), n = 309, 18-94 years 
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(44.5); Sample 4 (Raz et al., 2004a), n = 191, 18-81 years (47.3); Sample 5 (Fjell et al., 2010; 

Westlye et al., 2010), n = 323, 20-85 years (50.8).  

 

[Insert Table 1 about here] 

 

2.1.2 Longitudinal sample: The longitudinal sample consisted of 142 (60-90 years, mean age 

= 75.6 years, 48% females) participants from the Alzheimer Disease Neuroimaging Initiative 

(ADNI) database (www.loni.ucla.edu/ADNI), followed for one year. The raw data were 

obtained from the ADNI database, Principal Investigator Michael W. Weiner, VA Medical 

Center and University of California – San Francisco. The sample is identical to that included in 

a previous publication (Fjell et al., 2009a), and is included to allow direct statistical 

comparisons with the cross-sectional results. ADNI eligibility criteria are described at 

http://www.adni-info.org/index.php?option=com_content&task=view&id=9&Itemid=43.  

 

2.2 MRI processing 

All scans were obtained from 1.5T magnets from two different manufacturers (Siemens, 

Erlangen, Germany; General Electric CO, Milwaukee, WI), and from five different models 

(Siemens: Avanto, Symphony, Sonata, Vision/ GE: Signa). All participants within each sample 

were scanned on the same scanner. For details of the sequences, please consult Fjell et al. 

(Fjell et al., 2009b).  

 

Cross-sectional data were processed and analysed with FreeSurfer 4.01 

(http://surfer.nmr.mgh.harvard.edu/)(Fischl et al., 2002). A neuroanatomical label is 
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automatically assigned to each voxel in an MRI volume based on probabilistic information 

automatically estimated from a manually labeled training set (Fischl et al., 2002). The 

training set included both healthy persons in the age range 18-87 yrs and a group of 

Alzheimer's disease patients in the age range 60-87 yrs, and the classification technique 

employs a registration procedure that is robust to anatomical variability, including the 

ventricular enlargement typically associated with aging. The technique has previously been 

shown to be comparable in accuracy to manual labeling (Fischl et al., 2002; Fischl et al., 

2004). An atlas-based normalization procedure was used, shown to increase the robustness 

and accuracy of the segmentations across scanner platforms (Han and Fischl, 2007). For 

samples 1, 2, 3 and 5, 2-4 MPRAGEs were averaged before pre-processing to increase signal-

to-noise (SNR) and contrast-to-noise ratio (CNR). The following structures/ areas were 

included in the analyses: total brain volume (TBV), cerebral cortex and white matter (WM), 

hippocampus, amygdale, pallidum, caudate, putamen, thalamus, accumbens, brain stem, 

cerebellum cortex and WM, lateral ventricles, inferior lateral ventricles, 3rd ventricle and 4th 

ventricle. All segmentations were manually inspected for accuracy by an experienced 

operator, and corrected in case of errors. Minor manual edits were performed on most 

participants (> 80%), usually restricted to removal of non-brain tissue, typically dura/ vessels 

adjacent to the cortex. Additionally, presence of local artefacts sometimes caused small 

parts of WM to be segmented as GM. Such errors were routinely corrected. For 21 

participants, the final segmentations were judged to be of insufficient quality, and these 

were thus excluded from all analyses, reducing the sample from an initial 1121 to the 

reported 1100. 
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Intracranial volume (ICV) was estimated by use of an atlas-based normalization procedure, 

where the atlas scaling factor is used as a proxy for ICV, shown to correlate highly with 

manually derived ICV (r = .93) (Buckner et al., 2004). In a previous publications with an 

overlapping sample pool, the results for the pooled samples were replicable in each of the 

subsamples (Fjell et al., 2009b, Walhovd et al., 2011), indicating that the sensitivity of 

detecting effects are upheld and the statistical power are increased manifold. Thus, we are 

convinced that the approach of pooling data from different samples yields valid results. Still, 

to remove any offset effects of scanner, all analyses were done on the residuals after 

scanner was regressed out (see Statistical analyses). 

 

Longitudinal change was calculated by use of Quarc, previously demonstrated to be highly 

sensitive to longitudinal volumetric changes based on MRI (Holland & Dale, 2011; Holland et 

al., 2011). Two MPRAGEs at each time-point were averaged to increase the ANR and CNR. An 

increase in SNR/ CNR is expected to yield more accurate change estimates. Labeling was 

done as described in Fischl et al. (2002) with FreeSurfer 3.0.2. 

 

2.4 Statistical analyses 

To reduce the number of comparisons, mean values for left and right hemisphere were used 

in all ROI analyses. Analyses were performed on residuals after the effects of sample/ 

scanner and ICV were removed. ICV was regressed out to remove the effects of the slight 

age-differences in head size (r = -.12, p < 10-4).  

 



9 

 

For the cross-sectional analyses, a nonparametric local smoothing model, the smoothing 

spline, implemented in Matlab, was fitted to the data. We have previously shown that this 

approach gives less biased solutions than the more commonly employed higher-order 

polynomial functions (Fjell et al., 2010a), and that caution should be exerted in inferring 

trajectories from global fit models, e.g. the quadratic model. For instance, the peaks of 

quadratic functions will inherently depend on the age range sampled. The quadratic function 

is always a parabola, which sometimes causes the model to indicate a non-monotonous age-

relationship when non-linear but monotonous trajectories are a more likely. Also, for 

quadratic models, the second derivative is assumed to be constant across the life span, and 

hence the point of maximum acceleration of slope change cannot be determined.  

 

We used an algorithm that optimizes smoothing level based on a version of Bayesian 

Information Criterion (BIC), i.e. the smoothing level that minimizes BIC for each analysis was 

chosen. BIC offers a relative measure of amount of information lost when a model is used to 

describe a set of data, and thus describes the trade off between bias and variance in the 

construction of models. BIC rewards goodness of fit, but includes a penalty that is an 

increasing function of the number of estimated parameters. Thus, BIC attempts to find the 

model that best explains the data with a minimum of free parameters, i.e. with a largest 

possible smoothing level. With no smoothing, the smoothing spline will yield an extremely 

good apparent fit to the data, but the model would not be generalizable (over-fitting). BIC 

takes this into account by penalizing for loss of degrees of freedom. As BIC contains scaling 

constants, the absolute BIC values are irrelevant. To ease comparison of BIC between 

Ordinary Least Squares (OLS) linear models and smoothing spline models, we used ∆I, which 



10 

 

is the difference between BIC for the model and the lowest BIC - in this case, the difference 

between the smoothing spline model and the linear OLS model. As a rule of thumb, ∆I < 2 

would indicate that the two models are essentially indistinguishable with regard to goodness 

of fit, ∆I  > 4 would indicate considerable differences between the models, and ∆I > 10 would 

indicate that the linear model has essentially no support.  

 

We calculated the ages where the slope of the local smoothing curve changed (the second 

derivative), using the expression 

 

−
d2 f age( )

d age2 . We named these age-points critical ages, and 

identified zero, one or two critical ages for each brain structure.  

 

There were no clear differences in age distribution across samples (see Supplementary 

Figure 1). Still, to avoid possible bias resulting from uneven age-distribution across samples 

that could not be resolved by regressing out linear effects of sample and scanner, the main 

smoothing spline analyses were also run for the main structures in a subset of participants 

without any sample × age interaction. For each sample, an equal number of participants 

were chosen for each decade, before the data were pooled. This sample included 522 

participants, with a perfect distribution of participants across decades and samples. 

 

For the longitudinal analyses, annual percentage change was calculated for each ROI. These 

results have previously been reported (Fjell et al., 2009a), but was included to allow direct 

comparison with the cross-sectional results. Correspondence between longitudinal data and 

the smoothing spline models based on the cross-sectional data was assessed in two ways. 

First, we tested whether the structures or regions that showed increases or decreases in the 
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full cross-sectional sample also showed longitudinal increases or decreases, respectively, in 

the independent ADNI sample. Second, we tested to what extent the pattern of estimated 

change across structures was the same in the cross-sectional and the longitudinal data. 

Unfortunately, the ADNI database contains only data for the latter part of the age-range (60-

91 years), so comparisons with the cross-sectional results cannot be done throughout the 

adult life-span. Because the methods used to calculate longitudinal change and to fit the 

cross-sectional trajectories differ in important aspects, and the samples do not overlap, 

direct comparisons of estimations of absolute rates of atrophy between the longitudinal and 

cross-sectional results were not performed. Longitudinal reductions were measured as 

proportion of change between time points, and further converted to annual percentage 

volume change. Brain volumes in the cross-sectional data were regressed on sample and ICV, 

and age-reductions estimated from the cross-sectional data were measured in standard 

deviation decline in volume in the age-range 60 to 90.  

 

3. Results 

3.1 Cross-sectional data 

To compare the linear and the smoothing spline models, we calculated BIC for the 

relationship between each brain volume and age (Supplementary Table 2, also including the 

quadratic model for comparison purposes). Scatterplots illustrating the estimated 

trajectories are presented in Figure 1 (structures) and Figure 2 (ventricular system). Of the 

17 tested regions, a non-linear model represented the data best for 13 (total brain volume, 

cerebral cortex and WM, hippocampus, caudate, cerebellar WM, brain stem, pallidum, 

putamen, and lateral, inferior lateral, 3rd and 4th ventricle). The linear model showed the 
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best fit for five regions (nucleus accumbens, cerebellar cortex, amygdala, thalamus). For the 

putamen, BIC indicated that the smoothing spline model was marginally better than a linear 

model (BIC = 4.16), but deviation from linearity was minute. To test the stability of the 

results, a split half analysis was performed for WM volume (Supplementary Figure 2), 

yielding identical spline curves. 

 

Inspections of the plots revealed substantial differences in estimated trajectories for the 

non-linear models. Especially, there were large differences in curvature. For some structures, 

there was a peak or an inflection point after which the age-relationship increased in strength 

(cerebral and cerebellar WM and hippocampus, to some degree TBV and the brainstem). For 

cerebral WM was a non-monotonous, inverse U-shaped relationship observed. For other 

structures, advanced age was accompanied by reduction in estimated change (caudate and 

all ventricular cavities, to some degree cerebral cortex and pallidum). Validation analyses in 

the subset of participants perfectly distributed across decades in all samples confirmed the 

results (Supplementary Figure 3).   

 

 [Insert Figure 1 and Figure 2 about here] 

 

For the structures that showed deviations from linearity (except putamen), critical ages, i.e. 

the ages where estimated atrophy started to accelerate or decelerate, were identified. For 

some structures, one critical age was identified, while two were found for others (referred to 

as early and late critical age, see Figure 3). Early critical age varied greatly across structures, 

from 31 to 59 years, and volume-age correlations differed between the defined periods. For 
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the regions best described by a linear fit, age-correlations were as follows: amygdala r = -.56, 

putamen r = -.69, thalamus r = -.65, nucleus accumbens r = -.70 and cerebellum GM r = -.52. 

 

[Insert Figure 3 about here] 

 

3.2 Longitudinal validation 

All ROIs showed significant longitudinal change at p < .05. This confirmed the finding of 

substantial atrophy/ ventricular expansion observed cross-sectionally for all ROIs, except the 

caudate nucleus. For caudate, a weak positive correlation with age was observed after 59 

years in the cross-sectional data, which was not found in the longitudinal analyses. 

 

Next, we studied how well the pattern of cross-sectionally estimated change matched the 

longitudinal findings. In the age-range 60-90 years, Spearman ρ between the cross-sectional 

estimate of shrinkage and the longitudinally measured volume loss was .91 (p < 10-5). In the 

cross-sectional analyses, the regions with the steepest estimated decline between 60 and 90 

were cerebral WM (z = -2.20), hippocampus (z = -2.05), cerebellum WM (z = -1.29) and 

thalamus (z = -1.14). In the longitudinal analyses, the hippocampus showed the fastest 

shrinkage rate (-0.83% annually), followed by amygdala (-0.81%), thalamus (-0.69%), cerebral 

WM (-0.58%), accumbens and cerebellum WM (-0.57%), putamen (-0.43%), pallidum (-

0.40%), cerebellar cortex (-0.35%), the brainstem (-0.31%) and the caudate (-0.24%). For the 

ventricles, there was perfect overlap between the cross-sectionally and longitudinally 

estimated expansion, in that the inferior lateral ventricles (cross-sectionally estimated z = 

2.92/ vs. longitudinally estimated % annual change = 5.47) showed the largest effects, 
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followed by the lateral ventricles (z = 2.15 vs. 4.40%), the 3rd ventricle (z = 1.8 vs. 3.07%) and 

the 4th ventricle (z = 0.59 vs. 0.71%). Thus, although there was not a one-to-one 

correspondence between the pattern of change across structures from the large cross-

sectional sample and the longitudinal sample, there was still substantial overlap.   

 

4. Discussion 

There were three main findings: First, a heterogeneous pattern of discontinuous age-

correlations in different age-spans characterised the majority of brain regions, and critical 

ages for changes in estimated rates of atrophy could be identified. Second, accelerated 

estimated reduction with advanced age is not the norm of brain aging. Rather, different 

structures showed a mix of trajectories. When more negative (positive for CSF) age-volume 

correlations were seen in the last part of the age-span, this would typically start in mid-life. 

Finally, the longitudinal analyses in general supported the cross-sectional results, with a 

reasonably coherent pattern of atrophy across structures.  

 

4.1 Trajectories of estimated change across the adult life-span 

Cross-sectional studies have shown non-linear age-relationships for the volume of several 

brain structures (Raz et al., 2004, Allen et al., 2005, Lupien et al., 2007), including studies 

with samples overlapping the present (Walhovd et al., 2009). There have, however, been 

few attempts to describe the trajectories in detail (for exceptions, see (Jernigan et al., 2001b, 

Fjell et al., 2010a, Schuff et al., 2010)). We identified three basic types of trajectories: 
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(1) Linear reduction: Amygdala, putamen, thalamus, accumbens and the cerebellar cortex 

were all linearly related to age (all r’s < -.52), confirming previous findings (Gunning-Dixon et 

al., 1998, Jernigan et al., 2001a, Allen et al., 2005, Curiati et al., 2009, Walhovd et al., 2011).  

(2) Stability followed by decline: Hippocampus, the brain stem and cerebellar WM exhibited 

initial weak age-correlations, but with acceleration of estimated decline from around mid-

life. Hippocampus is especially important due to its role in memory and early AD (de Leon et 

al., 2006, Du et al., 2007, Jack et al., 2008, Fennema-Notestine et al., 2009, McEvoy et al., 

2009). Cross-sectional studies have shown prolonged development (Ostby et al., 2009) and a 

marked non-linear pattern of estimated change in adulthood (Allen et al., 2005, Jernigan and 

Gamst, 2005, Walhovd et al., 2005, Kennedy et al., 2008, Fjell et al., 2010a). We found that 

after a period of relative stability during mid-life, accelerated estimated reductions started at 

about 50 years of age, followed by a strongly negative linear age-relationship from 60 years. 

Cerebral WM was the only structure positively correlated with age in the earliest part of the 

age-range, followed by a strong negative relationship. This pattern is in line with a previous 

publication reporting multi-modal imaging data from 8-85 years, partly overlapping sample 

five (Westlye et al., 2010b). The ventricles showed modest estimated increase or slow 

decrease until 50-60 years, followed by steep estimated expansion during the last phase of 

life.  

(3) Steep, non-linear decline: Total brain volume (TBV), cerebral cortex and pallidum showed 

two critical ages with slight differences in estimated decline. TBV correlated stronger with 

age after 60 years than in the preceding life-phases (p < .05, by use of t-tests of Fisher’s z-

transformed correlations). In contrast, pallidum and the cerebral cortex correlated stronger 

with age early (p < .05).  
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Caudate was the most deviant structure, best described by a U-shaped trajectory. We advise 

to interpret this with great caution, however, as this result was not in coherence with the 

longitudinal analyses, and we have no reason to expect an increase in volume in the latter 

part of the life-span.  

 

4.2 Critical ages in estimated regional brain change 

The trajectory of a neuroanatomical volume across age represents the additive combination 

of several neurobiological processes. We suggest that changes in the relative impact of these 

can be observed as turning points in the estimated change in brain volumes, what we refer 

to as critical ages (see Figure 4). For instance, WM increases in volume well into adulthood 

(Pfefferbaum et al., 1994, Giedd, 2004, Wozniak and Lim, 2006, Westlye et al., 2010b), with 

myelination being one likely underlying factor. After mid-life, volume decreases (Allen et al., 

2005, Walhovd et al., 2011), likely partly caused by loss of small myelinated fibers and 

myelin breakdown (Meier-Ruge et al., 1992, Peters et al., 2000). This will be affected by 

medical conditions such as hypertension, cholesterol, diabetes or metabolic syndrome, 

genetic variations such as apolipoprotein E (APOE), and variables such as cognitive activity 

and education. Processes with opposite effects on WM volume probably work concurrently, 

e.g. redundant myelination (Peters et al., 2000) and fluid bubbles in the myelin sheet with 

higher age (Peters and Sethares, 2002). The relative impact of each of these processes likely 

changes across the age-span. To speculate, one scenario may be as follows: The additive 

effects of developmental processes cause the observed WM volume growth in the first half 

of the age-span. However, after a certain age, myelin breakdown and loss of small 
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myelinated fibers play increasingly important roles, likely before the developmental 

processes have come to an end. Eventually, the degenerative processes will impact the WM 

volume to such an extent that yearly growth is no longer linear, but is gradually reduced. At 

this point, the second derivative of the age-volume trajectory will change, representing a 

critical age. As such, the estimated volume of a brain structure alone reflects the sum of 

many concurrent developmental and degenerative biological processes. We believe that 

identification of turning points may add to our understanding of the trajectories of brain 

volumes across the adult life-span. The trajectory depicted in Figure 4 is meant to illustrate 

the principle of how accumulated influence of opposing factors affects volume, but is not 

intended to accurately depict the life-course of any single structure. 

 

 [Insert Figure 4 about here] 

 

The differences in the slope of the curves between the critical ages varied greatly between 

structures. While the cerebral cortex was almost linearly related to age, cerebral WM and 

the hippocampus showed large slope differences in the age-ranges on each side of the 

critical age. Although not estimated in the present study, confidence intervals for the critical 

ages will likely be larger for the more linear slopes than for the distinct non-linear and even 

non-monotonous slopes.   

 

4.3 Cross-sectional vs. longitudinal results 

It is impossible to infer changes in brain structures based on cross-sectional data alone (Raz 

and Lindenberger, 2010), as this depends on assumptions of no cohort-effects and selection 
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bias. These assumptions may generally not be valid and cross-sectional estimates of change 

diverge substantially (Raz et al., 2005), and sometimes even oppose longitudinal 

observations (Nyberg et al., 2010, Raz and Lindenberger, 2011). Therefore, longitudinal data 

from an independent sample (Fjell et al., 2009a) were included in the present paper. With 

the exception of caudate volume, the direction and statistical significance of the age-

relationships in the cross-sectional data were confirmed by the longitudinal analyses. 

Further, although far from perfect, there was a reasonably coherent relationship between 

the pattern of atrophy between cross-sectional and longitudinal results: the structures with 

the largest age-correlations in the cross-sectional material tended to show the highest rates 

of annual atrophy/ expansion. The rank-order correlation was .91. Thus, at least in their rank 

order of magnitude, the cross-sectional results for the age-range above 60 years seem to be 

largely in coherence with independent longitudinal data. 

 

Nonetheless, caution must still be exercised in interpreting the results, as longitudinal data 

were available for the oldest part of the sample only. The observed correlation between age 

and ICV indicates that cohort differences may indeed exist in the sample. Still, age accounted 

for only 1.4% of the variance in ICV, and all analyses were performed on residuals after ICV 

was regressed out. As the main determinant of ICV is the lifetime maximum size of the brain, 

ICV-corrections reduce the impact of cohort effects. Some evidence even suggests that 

cross-sectional studies may underestimate the extent of regional brain shrinkage in some 

regions (Raz et al., 2005).  
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Of more general concern is that the inherent problem of mapping life-span trajectories from 

cross-sectional examinations cannot easily be resolved with longitudinal data, since 

longitudinal examinations of brain structures over decades are not feasible, and longitudinal 

studies have methodological problems of their own (e.g. selective recruitment and attrition). 

Adding to this, most longitudinal studies are limited in age-span, sample size and number of 

follow-ups. To some degree, combined cross-sectional and longitudinal designs can alleviate 

the concerns raised above. For instance, accelerated hippocampal atrophy with age has 

been demonstrated (Raz et al., 2005, Driscoll et al., 2009, Fjell et al., 2009a, Raz et al., 2010). 

However, all of these studies except Raz et al. (2005) comprised middle-aged and elderly 

participants only, and the results thus inform us less about life-span trajectories.  

 

It is important to keep in mind that brain volumes change within relatively narrow time 

windows. As long as we do not know the true shape of these processes, it is unclear how 

many critical turning points there are in brain development and aging. An ideal approach to 

reproduce the dynamic process of change would be longitudinal studies with high density of 

measures and assessment of multiple time windows across the life span (Raz et al., 2010; 

Raz & Lindenberger, 2011). 

 

Several factors affect the estimated trajectories at the group level and the actual trajectories 

at the individual level. These include genetic variations such as APOE, and medical factors 

such as hypertension, cholesterol and diabetes (for a review, see e.g. Raz et al., 2012). In 

addition, cognitive activity or training may impact brain structure even in older age (Zatorre 

et al., 2012). Future studies should further explore the impact and interactions between 
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genetic, environmental and medical factors on brain structure throughout the adult life. 

More knowledge about these processes will increase our understanding of normal brain 

aging. Also, possible influence of pre-symptomatic Alzheimer’s disease (AD) can be difficult 

to disentangle from normal age-changes in the older participants, as follow-up examinations 

over several years are necessary to exclude subjects with incipient disease. However, while 

this factor is difficult to completely rule out from the present results, there are indications 

that this is not likely to have affected the trajectories to a substantial degree. Even though 

hippocampal volume is the structure that distinguishes best between AD-patients and 

healthy elderly, amygdala is also affected in early stages of the disease (Fjell et al., 2010b). 

While the age-slope for hippocampus is much steeper after 60 years, this is not seen for 

amygdala, which would be expected if incipient AD was a major factor in shaping the 

estimated trajectories. Even if a few of the participants had incipient AD and consequently 

abnormal volume decline in select structures, the smoothing spline approach is relatively 

robust to the influence of outliers as long as the sample size is large. 

 

4.4 Conclusion 

The present study shows that the majority of brain structures follow complex, non-linear 

volumetric trajectories through adult life. Important next step to increased understanding of 

the mechanisms of brain aging will be to conduct large-scale, multi-modal imaging studies, 

combining e.g. volumetry, DTI and intensity/contrast measures (Fjell et al., 2008, Westlye et 

al., 2010b, a), as well as longitudinal studies with high density of measurements to examine 

the trajectories across age with regards to the critical phases proposed on the basis of the 

cross-sectional analyses.  
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Figure legends 

 

Figure 1 Scatterplots of age-brain structure relationships 

The figure shows the individual data points and the cross-sectionally estimated trajectories 

for the 13 brain structures of interest based on the smoothing spline. Y-axis values represent 

mean volume across hemispheres, corrected for the influence of sample and intracranial 

volume (Z-scores). The right bottom figure shows some of the segmented structures of the 

average brain of Sample 2. The three-dimensional renderings illustrate the average shape, 

extension and relative position within the brain. The cerebral cortex and underlying white 

matter are made transparent to allow visualization of the underlying subcortical structures. 

 

Figure 2 Scatterplots of age - ventricular system relationships 

The figure shows the individual data points and the cross-sectionally estimated trajectories 

for the ventricles based on the smoothing spline. Y-axis values represent mean volume 

across hemispheres, corrected for the influence of sample and intracranial volume (Z-

scores). 

 

Figure 3 Estimated age-trajectories and critical ages 

The figure shows the estimated age-trajectories from the cross-sectional analyses for the 12 

areas that deviated from linearity, based on the smoothing spline. Critical ages, identified by 

changes in the second derivative, are displayed. Pearson correlations between brain volume 

and age are shown for each age phase separated by the critical ages. All correlations were 

significant at p < .05, except for pallidum in middle age (.01), cerebellum WM in young age (-
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.02) and brain stem in young age (.01). Due to small age-variance, correlations are not 

presented for age-phases defined by critical ages of 80 years or higher. Critical ages are 

indicative of phases where estimated changes in brain volumes are in transitions. 

 

Figure 4 A hypothetic model for discontinuous change in rate of atrophy 

The figure represents a simplified attempt to visualize how two sets of age-dependent 

degenerative effects can affect the age-trajectory of a brain volume, and how timing of 

critical ages reflect the start and endpoint of these effects. The blue line represents the 

volume of a brain structure through life, e.g. WM volume. In the first part of life, volume 

increases, caused by the sum of progressive events, e.g. myelination and axonal growth 

(green line). Before the maturational changes caused by the progressive events have come 

to an end, degenerative events starts, e.g. selective loss of small-diameter myelinated axons 

(primary degenerative event) and demyelination of larger connections (secondary 

degenerative event). The onset of these processes will affect the growth rate of the curve, 

detected as a change in the second derivative, and this change can be termed early critical 

age. After this point, the volume increase slowly decelerates. After continuous impact on the 

volume from these two processes, one of them eventually burns out in higher age while the 

other continues further. This causes a late critical age, where the volume reductions slowly 

starts to level off. This is of course a gross simplification of the processes in the brain and the 

trajectories that may characterize them. The main point is to illustrate that critical ages may 

be used in the characterisation of estimated age-trajectories of brain volumes, and that they 

may be related to underlying neurobiological events, both developmental and degenerative.  

 











 

Sample Country N 

(% f) 

Age 

mean 

(range) 

Education 

mean 

(range) 

Key 

publications 

Main screening 

instruments/ 

inclusion criteria 

1 Norway 69 

(57) 

51.3 

(20-88) 

15 

(7-20) 

(Walhovd et al., 

2005a) 

Health interview, 

MMSE > 26, BDI < 

16, IQ > 85, RH only 

2 Norway 208 

(71) 

 

46.8 

(19-75) 

14 

(9-22) 

(Espeseth et al., 

2008) 

Health interview, IQ 

> 85 

3 USA 309 

(63) 

44.5 

(18-94) 

3.5 

(1-5)c 

(Marcus et al., 

2007) 

Health interview, 

CDR = 0b, MMSE > 

25b, RH only 

4 USA 191 

(60) 

47.3 

(18-81) 

15.7 

(12-21) 

(Raz et al., 

2004a) 

Health interview, 

BIMCT > 30, GDQ < 

15, RH only, 

neuroradiology, 

5 Norway 323 

(57) 

50.8 

(20-85) 

15.6e 

(4-26) 

(Fjell et al., 

2010; Westlye 

et al., 2010) 

Health interview, 

Neuropsychological 

evaluation, BDI < 16, 

IQ > 85, RH only 

Nor: Norway 

% f: percentage of female participants 

MMSE: Mini Mental Status Exam (Folstein et al. 1975) 

BDI: Beck Depression Inventory (Beck, 1987) 



BIMCT: Blessed Information-Memory-Concentration Test (Blessed et al. 1968) 

CDR: Clinical Dementia Rating (Berg, 1984, 1988; Morris, 1993) 

GDQ: Geriatric Depression Questionnaire (Auer and Reisberg, 1997) 

RH: Right handed 

WASI: Wechsler Abbreviated Scale of Intelligence (Wechsler, 1999) 

a Available for 70 participants 

b Available for participants > 60 years only 

c Available for all participants > 60 years, and sporadically for the rest. 1: less than high 

school grad., 2: high school grad., 3: some college, 4: college grad., 5: beyond college 

d Alzheimer patients 

e Missing for four participant 

Table 1 Sample characteristics cross-sectional sample 



 
 



Structure Linear 

 

BIC 

Quadratic 

 

BIC 

Smoothing 

spline 

BIC 

Linear vs 

smoothing 

∆ BIC 

Total Brain Volume 32165.77 32142.15 32134.01 31.76 

Cerebral cortex 32006.13 31984.60 31980.57 25.56 

Cerebral WM 7548.20 7370.2 7360.08 188.12 

Hippocampus 7327.24 7227.79 7226.24 101 

Amygdala 7302.48 7301.69 7301.17 1.31 

Pallidum 7301.54 7298.56 7289.19 12.35 

Caudate 7623.18 7564.97 7570.50 52.68 

Putamen 6999.88 6996.99 6995.72 4.16 

Thalamus 7105.95 7104.36 7103.14 2.81 

Accumbens 6981.52 6988.51 6981.56 -0.04 

Brain stem 33020.28 33001.76 33003.99 16.29 

Cerebellum cortex 7362.42 7369.39 7362.46 -0.04 

Cerebellum WM 7594.55 7548.38 7550.45 44.1 

Ventricles     

Lateral ventricles 7145.50 7015.81 7011.87 133.63 

Inf Lat Vent 32636.83 32424.91 32385.02 251.81 

3rd ventricle 32502.03 32386.94 32387.29 114.74 

4th ventricle 33024.24 33006.05 33007.41 16.83 

 

Table 2 Testing of linearity 



∆ BIC > 4 indicates that the smoothing spline modell yield a better account of the data than 

the linear modell, while BIC < 4 indicates that a liner fit to the data are the most appropriate. 

BIC values for the quadratic model are included for comparison purposes. 

Bold indicates BIC < 4 

BIC: Bayesian Information Criterion 
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Supplemental Table 1 Sample characteristics cross-sectional sample 



 
Structure Linear 

 

BIC 

Smoothing 

spline 

BIC 

Linear vs 

smoothing 

∆ BIC 

Total Brain Volume 32166 32134 32 

Cerebral cortex 32006 31981 25 

Cerebral WM 7548 7360 188 

Hippocampus 7327 7226 101 

Amygdala 7302 7301 1 

Pallidum 7302 7289 13 

Caudate 7623 7571 52 

Putamen 7000 6996 4 

Thalamus 7106 7103 3 

Accumbens 6982 6982 0 

Brain stem 33020 33004 16 

Cerebellum cortex 7362 7362 0 

Cerebellum WM 7595 7550 44 

Ventricles    

Lateral ventricles 7146 7012 134 

Inf Lat Vent 32637 32385 252 

3rd ventricle 32502 32387 115 

4th ventricle 33024 33007 17 

 

Supplemental Table 2 Testing of linearity 



∆ BIC > 4 indicates that the smoothing spline model yield a better account of the data than 

the linear model, while BIC < 4 indicates that a linear fit to the data are the most 

appropriate.  

Bold indicates ∆BIC > 4 

BIC: Bayesian Information Criterion 
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