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Epidemiological and genetic data support the notion that schizophrenia and bipolar disorder share
genetic risk factors. In our previous genome-wide association (GWA) study, meta-analysis and
follow-up (totaling as many as 18,206 cases and 42,536 controls), we identified four loci showing
genome-wide significant association with schizophrenia. Here we consider a mixed schizophrenia
and bipolar disorder (psychosis) phenotype (addition of 7,469 bipolar disorder cases, 1,535
schizophrenia cases, 333 other psychosis cases, 808 unaffected family members and 46,160
controls). Combined analysis reveals a novel variant at 16p11.2 showing genome-wide significant
association (rs4583255[T], OR = 1.08, P = 6.6 × 10−11). The new variant is located within a 593
kb region that substantially increases risk of psychosis when duplicated. In line with the
association of the duplication with reduced body mass index (BMI), rs4583255[T] is also
associated with lower BMI (P = 0.0039 in the public GIANT consortium dataset; P = 0.00047 in
22,651 additional Icelanders).

Keywords
schizophrenia; bipolar disorder; association; 16p11.2; cross-disorder

Introduction
Two structural variants, a balanced t(1;11) translocation interrupting the DISC1 gene and a
microdeletion at 22q11.2, were the first genetic polymorphisms to show compelling
evidence of association with schizophrenia1, 2. More recently, additional microdeletions and
microduplications conferring risk of schizophrenia and, in some cases, bipolar disorder have
been uncovered3-10. These copy number variants (CNVs) confer high to moderate relative
risk, however, because they typically change copy number of multiple genes, and may also
affect regulation of genes at their margins, they do not generally implicate individual genes.

Common single nucleotide polymorphisms (SNPs) are currently, in addition to structural
variants, convincing risk factors for schizophrenia and bipolar disorder, with alleles at more
than 20 loci reported to show genome-wide significant association with at least one of the
disorders11-29. None of these low-risk variants are located inside structural polymorphisms
previously shown to be susceptibility factors for schizophrenia or bipolar disorder.
Nevertheless, first principles and data from other disorders predict the existence of common
variants conferring risk through the same genes as rare structural alleles30. The identification
of common risk variants within CNV regions may aid in uncovering the causal gene or
genes of a CNV, or help to elucidate other aspects of a CNV’s association with disease.

Two loci have been reported to harbor common alleles showing genome-wide significant
association with both schizophrenia and bipolar disorder13, 16, 23, 24. In addition, several
common variants initially displaying genome-wide significant association with one of the
disorders have been shown, in subsequent studies, to confer risk of the other31, 32.
Investigations considering schizophrenia and bipolar disorder as a single phenotype also
support shared risk alleles16, 19, 22, and an overlapping polygenetic component has been
described by several studies21, 28. These genetic data are consistent with current
epidemiological investigations, which predict shared genetic risk factors for schizophrenia
and bipolar disorder33.

Previously, we carried out a schizophrenia GWA study, SGENE-plus, followed by meta-
analysis of the top 1500 results with data from the International Schizophrenia Consortium
(ISC) and the Molecular Genetics of Schizophrenia (MGS) group15. Loci having P values
less than 1 × 10−4 (covered by 39 SNPs located in 33 genomic regions) were followed up in
a data set of up to 10,260 schizophrenia cases and 23,500 controls14. In this work , we
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broaden our phenotype of interest to psychosis (schizophrenia, bipolar disorder and related
psychoses), examining the same group of follow-up SNPs in a data set augmented by 7,469
bipolar disorder cases, 1,535 schizophrenia cases, 333 other psychosis cases, 808 unaffected
family members and 46,160 controls.

Materials and methods
Samples

The genome-wide typed (“SGENE-plus”; 2,663 cases and 13,498 controls) and meta-
analysis (“SGENE-plus+ISC+MGS”) samples (in total, 7,946 cases and 19,036 controls)
used here were identical to those used in our previous schizophrenia GWA study and meta-
analysis15 . The primary psychosis follow-up samples employed consisted of follow-up
samples from our previous GWA follow-up study (9,246 schizophrenia cases and 22,356
controls)14, plus an additional 9,337 psychosis cases (1,535 schizophrenia, 7,469 bipolar
disorder, 333 related psychoses) and 46,968 controls/unaffected family members. The
primary follow-up samples were genotyped or imputed for all follow-up markers. The
secondary follow-up samples consisted of 1,014 cases and 1,144 controls from the
Göttingen Research Association for Schizophrenia (GRAS)34, 35 study. These samples,
which also had been used for secondary follow-up in our previous GWA follow-up study14,
were genotyped for SNPs that were genome-wide significant in the combined meta-analysis
and primary follow-up samples. Table 1 summarizes the schizophrenia and psychosis
datasets used in previous and current work, and Supplementary Table 1 includes details on
the individual study groups. The autism samples (3,672 cases, 16,103 controls, 4,206 family
members) derived from AGP, AGRE and nine European study groups (Supplementary
Table 2). Further information on ascertainment and diagnosis for the psychosis and autism
samples is provided in the Supplementary Material.

Genotyping and association analysis
Genotyping was carried out using Illumina and Affymetrix genome-wide arrays,Centaurus
assays (Nanogen), Taqman assays, the Sequenom MassArray iPLEX genotyping system and
the Roche LightCycler480 system (Supplementary Tables 1 and 2). Quality control and
imputation were performed, by study group, as described in the Supplementary Methods.
Case-control or family-based association analyses were carried out for each study group. For
the case-control analyses, population stratification was controlled for using genomic control
or principal components. Summary statistics from the various study groups were combined
as described previously15. BMI measurements were adjusted for age and sex, and inverse
standard normal transformed. Analysis was carried out by regressing the adjusted,
transformed data on rs4583255[T] count.

Expression Analysis
For the three brain data sets36-38, expression levels were inverse normal transformed and
regressed on the number of rs4583255-T alleles with gender, age at death, post-mortem
interval, brain source, expression experiment batch, pH (Colantuoni et al36 only), sample
expression level based on the total number of transcripts detected (Webster et al38 only) and
Alzheimer’s disease patient status (Webster et al38 only) as covariates. To incorporate data
from different brain regions (Gibbs et al37) or different probes (KCTD13 in Colantuoni et
al36) derived from the same individual, a mixed-effects model with individual as a random
effect was used. Results from the three data sets were combined using inverse-variance
weighted meta-analysis. The Dutch whole blood data set included control samples from two
studies39, 40. Analysis was performed using linear regression in Plink41 taking age and
gender as covariates. The Icelandic blood data set has been described previously42, and
analysis was carried out as detailed in that work42.
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Results
We assembled a psychosis (schizophrenia, bipolar disorder and related psychoses) primary
follow-up dataset made up of 36 study groups containing a total of 18,583 cases, 68,516
controls and 808 unaffected family members (Supplementary Table 1). In each study group,
allelic association analysis was carried out for 39 SNPs from 33 genomic regions (these
SNPs covered P values less than 1 × 10−4 in the SGENE-plus+ISC+MGS meta-analysis at
r2 = 0.3). Results from the various study groups were combined using inverse-variance
weighted meta-analysis.

At 31 of the 33 loci, ORs in the psychosis follow-up group were in the same direction as in
the discovery data set (SGENE-plus+ISC+MGS) (Supplementary Table 3). A similar pattern
had been observed in the schizophrenia follow-up set—ORs were in the same direction at 30
of the 33 loci14. These results indicate that the set of variants chosen for follow-up was
enriched for risk alleles (P = 7.0 × 10−7 for schizophrenia, and P = 6.5 × 10−8 for
psychosis).

Next, we performed a joint analysis of the discovery and psychosis follow-up sets. To
account for testing two phenotypes (schizophrenia and psychosis), the genome-wide
significance threshold was set at P < (5 × 10−8)/2, or 2.5 × 10−8. Five SNPS, residing at
three loci, exceeded this threshold (Supplementary Table 3). Two of the loci—the MHC
region and 11q21.2 near NRGN—had been genome-wide significant in the previous
schizophrenia analysis; a third locus, in TAOK2 at 16p11.2, was novel (Supplementary
Table 3). Following the addition of data from a further 1,014 schizophrenia cases and 1,144
controls, the variant at the novel locus, rs4583255[T], was associated with psychosis with
increased significance (OR = 1.08, P = 6.6 × 10−11, Table 1). rs4583255[T]’s association
with psychosis fit the multiplicative model (P = 0.42), and there was no evidence of OR
heterogeneity (P = 0.71, I2 = 0, Supplementary Table 4).

In examination of the follow-up samples by diagnosis, the novel variant, rs4583255[T],
showed significant association with both schizophrenia and bipolar disorder (P = 0.0011 and
0.00026), with OR of 1.06 and 1.08, respectively (independent controls were used for the
two analyses; see Supplementary Table 5). We also investigated association with bipolar
disorder for variants that had shown genome-wide significant association with schizophrenia
in our previous study14. Following correction for eight tests, rs12807809[T], near NRGN,
was significantly associated with bipolar disorder (P = 0.0023) with an OR identical to that
of the schizophrenia follow-up samples (OR = 1.09). The remaining schizophrenia
susceptibility variants did not show nominally-significant association with bipolar disorder
—yet OR confidence intervals for the two disorders overlapped for at least some variants at
all loci (Supplementary Table 5).

Intriguingly, the newly-identified SNP is located in a nearly 600 kb region that confers risk
of schizophrenia and bipolar disorder when duplicated5, 6, 28. Copy number gain of the
region also is associated with autism6, 43-45, reduced head circumference46, 47, and low
BMI47. We obtained large data sets to examine association of rs4583255[T] with both
autism and BMI. Based on 3,672 cases, 16,103 controls and 4,206 unaffected family
members from the Autism Genetic Resource Exchange (AGRE), the Autism Genome
Project (AGP) and nine European study groups (Supplementary Table 2), we found no
evidence of association with autism spectrum disorder (ASD), strict autism or multiplex
ASD (ASD, OR = 1.00, P = 0.98; strict autism, OR = 1.02, P = 0.66; multiplex ASD, OR =
1.07, P = 0.22; Supplementary Table 6), although power to detect association at the OR
found in the follow-up psychosis samples was modest (at a 0.05 significance level, power
was about 57% for ASD, 42% for strict autism, and 23% for multiplex ASD). In contrast,
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we found significant association of rs4583255[T] with low BMI in the published GIANT
consortium GWAS dataset of 123,865 individuals48 (P = 0.0039) and in 22,651 Icelanders
who were not included in the GIANT study (P = 0.00047).

Recently, a study examining the effect of altered expression of 16p11.2 CNV region genes
on zebrafish head size identified KCTD13 as the major driver of head size change, with
MAPK3 and MVP named as possible modifiers49. These results motivated us to examine
association of rs4583255[T] with expression of KCTD13, MAPK3, and MVP in human
brain. Using data from three publicly-available data sets with at least 50 European-ancestry
adult brains each (total N = 565)36-38, we found that rs4583255[T] was significantly
associated with expression of MAPK3 (effect = 0.12 s.d., P = 0.011), but not significantly
associated with expression of KCTD13 or MVP (Supplementary Table 7). We also
investigated association of rs4583255[T] with gene expression in blood using data sets from
Iceland (N=972)42 and the Netherlands (N = 437)39, 40. Consistent with the brain results,
rs4583255[T] was significantly associated with higher expression of MAPK3 (for Iceland , P
= 9.4 × 10−15; for the Netherlands, P = 0.014 for probe 3870601,and P = 0.042 for probe
234040), but not significantly associated with expression of KCTD13 or MVP.

Discussion
In this study, we uncovered a novel variant at 16p11.2, rs4583255[T], showing genome-
wide significant association with psychosis (OR = 1.08, P = 6.6 × 10−11). In follow-up
samples, ORs were similar for schizophrenia and bipolar disorder (OR = 1.06 and 1.08,
respectively), and association was significant for both (P = 0.0011 and P = 0.00026,
respectively). Thus, rs4583255[T] is a compelling example of a genetic variant that confers
risk across traditional diagnostic boundaries.

Among the variants that showed genome-wide significant association with schizophrenia in
our previous study14,only rs12807809[T] showed significant association with bipolar
disorder in the current work. Nevertheless, OR confidence intervals for schizophrenia and
bipolar disorder overlapped for most risk alleles. Very large data sets will be necessary to
establish conclusively where these variants fall on the spectrum of conferring risk of one
disorder, exclusively, to conferring equal risk of either.

To our knowledge, this is the first case in which a common risk allele showing genome-wide
significant association with psychosis has turned out to be located within a CNV that had
been previously associated with psychosis. Both copy number gain and loss of the 16p11.2
region are associated with multiple phenotypes. Duplication is associated with
psychosis5, 6, 28, both copy number gain and loss are associated with autism and
developmental delay6, 43-45, and duplication and deletion lead to reduction and enlargement,
respectively, of head circumference and BMI46, 47.

In this work, we found that rs4583255[T] also confers risk of reduced BMI (P = 0.0039 in
GIANT, P = 0.00047 in additional Icelanders). This result supports the suggestion, made
previously47, that the duplication’s effects on psychosis and BMI have a single origin,
presumably in the brain. We did not find evidence of association of rs4583255[T] with
autism, although we were somewhat underpowered to detect an effect of the same size as in
psychosis, especially for sub-phenotypes.

We found that rs4583255[T] was associated with increased expression in adult brain and
blood of MAPK3, one of the 16p11.2 genes identified as involved in causing head
circumference changes in zebrafish49. Caution is required in interpretation of this result,
however, as the significance in brain is marginal, and, furthermore, gene expression in the
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pre-adult brain may be most relevant for the development of psychosis. Data from only
extremely small numbers of European-ancestry brains at pre-adult stages were available;
thus, investigation of the association of rs4583255[T] with gene expression at these stages
was precluded.

In conclusion, in this work, we broadened our phenotype of interest to psychosis, identifying
a new common risk allele, rs4583255[T], with similar ORs for schizophrenia and bipolar
disorder. The novel variant is located within a duplication previously associated with
psychosis, and, in line with the duplication’s effects, also confers risk of low BMI. In the
future, knowledge of this common variant association may prove useful to studies aimed at
further understanding the mechanism through which the duplication exerts its effects on
neurodevelopmental and anthropomorphic phenotypes.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Association results and structure of the 16p11.2 region. Bars on the x-axis indicate
segmental duplications (brown) and recombination hotspots (pink). Association results are
illustrated for SGENE-plus (black), SGENE-plus+MGS+ISC (green), SGENE-plus+MGS
+ISC plus the primary psychosis follow-up (blue), and SGENE-plus+MGS+ISC plus the
primary psychosis and secondary schizophrenia follow-up (red). RefSeq genes in the region
are shown below the plot.
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Table 1
Relevant datasets

N

Dataset case
phenotype

markers
examined cases

controls
+ family
members

initial use overlap with other sets

SGENE-plus GWAS SZ 314,868 2,663 13,498 Stefansson15 no

SGENE-plus+ISC+MGS SZ 1,500 7,946 19,036 Stefansson15 includes SGENE-plus
GWAS

primary schizoprenia
follow-up SZ 39 9,246 22,356 Steinberg14 no

primary psychosis
follow-up SZ, BP, rel 39 18,583 69,324 this work includes primary

schizophrenia follow-up

secondary follow-up SZ 8; 11 1,014 1,144 Steinberg14 no

SZ, schizophrenia; BP, bipolar disorder; rel, related psychoses 1eight markers were examined in this set in the previous work14, an additional
marker is genotyped in the current work
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Table 2
Genome-wide association of rs4583255[T] with psychosis

N

study group cases controls family
members OR (95% CI) P value

SGENE-plus+ISC+MGS (SZ) 7,946 19,036 0 1.10 (1.05, 1.15) 2.5 × 10−5

primary psychosis follow-up (SZ,BP,rel) 18,583 68,516 808 1.07 (1.04, 1.10) 9.2 × 10−7

secondary follow-up (SZ) 1,014 1,144 0 1.10 (0.97, 1.24) 0.14

combined 27,543 88,696 808 1.08 (1.05, 1.10) 6.6 × 10−11

SZ, schizophrenia; BP, bipolar disorder; rel, related psychoses; OR, odds ratio; CI, confidence interval
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