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Abstract

A fast segmentation of tubular tree structures like vessel systems in volumetric datasets is of
vital interest for many medical applications. This is especially valid for planning and naviga-
tion in catheter based interventions and liver resection surgical procedures. For catheter based
navigation, blood vessel segmentation helps in planning the placement of stents and valves, and
also in navigating to the desired location. For liver resection, a good visualisation of the blood
vessels in relation to tumours provides better information about spatial relationship, which is
very important in planning an optimal resection plane. Also a fast blood vessel segmentation
will make it feasible to update the models intra-operatively.

In this thesis, we have developed a couple of methods for fast and user-friendly blood vessel
segmentation. The methods work from a user-initiated seed, by tracking and segmenting the
blood vessels to the ends of the vessel tree using a local structure analysis approach. To perform
the structure analysis, we propose novel multiscale modified vesselness and circleness filters.
The bifurcation cross-sections of the blood vessel were found by either detecting multiple peaks
in the filtering output, or by estimating the sudden change in radius of the bifurcation, or by
estimating significant change in the compactness and radius variance of the vessel cross-section.
The novelty in our final algorithm is in performing the whole blood vessel segmentation by use
of only 2D analysis on the blood vessel cross-sections, which makes it faster than performing a
3D image analysis.

Our methods were validated using synthetic as well as medical images, and also by clinically
testing the method on liver hepatic and portal vein segmentation. The results have shown that
the methods work in just seconds for images related to catheter navigation and in a couple of
minutes for liver resection planning images. On medical validation of the liver blood vessel
segmentation, our method detected 100% of blood vessels at and above 3mm radius and 80% at
2.5mm radius, which are the most clinically relevant blood vessels for liver resection planning.
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Chapter 1

Aim of the Thesis

Motivation

Visualisation of blood vessels is crucial for many clinical procedures. The planning and naviga-
tion during catheterisation and liver resection, requires a good knowledge of the blood vessels,
centrelines and diameters at different cross-sections of the blood vessels.

For catheter navigation, a segmentation and visualisation of blood vessels in 3D will help the
interventionist to guide the catheter through the blood vessel to the desired region. Thus helping
in the better placement of valves and stents. With the introduction of Magnetic Resonance (MR)
into the interventional imaging, a 3D visualisation of blood vessels for catheter navigation has
only become more important, as explained in Chapter 3. With additional information such as
the centreline and radius of the blood vessel, the interventionists will be able to better decide on
choosing the right size of stent and valves that would better fit for the specific patient.

For liver resection as well, segmentation and visualisation of hepatic and portal vein is vital
for planning the resection. A good spatial knowledge of the blood vessel, tumour and liver
surface is important for estimating the optimal resection plane for the liver resection. Fig 1.1
show visualisations of blood vessels, tumour and classified liver surface, which provide an easy
way to estimate the resectable region of the liver. The figure also shows liver surface classified
according to the branching of blood vessels, which will provide extra information to a surgeon
in understanding liver region to be resected for maintaining inflow and outflow of blood in
the remaining part of the liver. Currently, the methods for liver blood vessel segmentations
are either performed by an external company or in-house technician, where in both cases the
doctors do not get the freedom to visualise the data themselves. Also, longer processing time is
required for getting the segmentation output as explained in Chapter 3.

A fast blood vessel segmentation is also important for intra-operative use. This will include
catheter navigation, and also navigation in liver resection if an intra-operative update of the
blood vessels are required. In liver resection for example, the surgeon will be able to wait only
a couple of minutes during surgery for getting a new update of blood vessels.



Figure 1.1: Left: A visualisation of hepatic veins, portal veins and tumour in liver. Right: Visualisation
of classified liver surface, where the hepatic and portal veins can be seen through the surface. From [39]

General Aim

Among the blood vessel segmentation methods that are currently available in the literature, cen-
treline tracking methods are found to be most computationally efficient, as explained in Chap-
ter 2. However, many of these methods require a multi-scale vessel enhancement step which is
usually applied to the whole image, making the process time consuming. Therefore, the main
part of this academic thesis work is to introduce a novel, fast and user-friendly blood vessel seg-
mentation method based on centreline tracking with only locally applied vessel enhancement,
for applications to pre-operative and intra-operative interventional planning and navigation. The
focus will also be on developing a single start point method, where the user needs to provide
only one start position to segment the whole connected blood vessel structure.

For achieving the goal, we aim to investigate novel ways to process the vessel structure
information that would provide a fast blood vessel segmentation. The novel methods are to
produce the blood vessel segmentation output in less than a minute for images for catheter nav-
igation, and in a couple of minutes for images for live resection. The final segmentation results
are to be validated by computing overlap measures with ground-truth synthetic blood vessels,
and percentage of detection of blood vessels by the proposed method for medical images.

Specific Aims

* Develop a modified multi-scale vesselness filter incorporating the advantages of both the
Frangi et al. [53] and Erdt et al. [45] approaches.

* Develop a seed based centreline tracking of blood vessels.

* Develop a circle enhancement filter for easy centre point detection of 2D circular struc-

ture.

* Develop a fast blood vessel segmentation method with tracking by 2D cross-sectional
analysis at vessel trunks and 3D vesselness at vessel bifurcations.

* Develop an alternate blood vessel segmentation method with tracking by 2D cross-sectional
analysis at both trunks and bifurcations.



* Test the clinical use of a fast and user-friendly blood vessel segmentation for liver resec-
tion planning and validate the percentage of detection of blood vessels by our method
against manual ground-truth.






Chapter 2

Blood Vessel Segmentation Methods :
A Survey

In the past two decades, a wide range of blood vessel segmentation methods have been devel-
oped, aimed at various medical imaging techniques. However, there is no single blood vessel
segmentation technique that works for all kinds of images. Reviews by Kirbas and Quek [69],
and Lesage et al. [82], and thesis work by Lathen [77] and Dreshler [35], provide a good insight
into the blood vessel segmentation methods in the literature.

Here, we present a survey into some of the blood vessel segmentation approaches that are
currently in the literature. As part of the survey, we classified the various blood vessel segmen-
tation techniques into vessel enhancement, thresholding, region growing, deformable models
and centreline tracking. The vessel enhancement step is usually used as a preprocessing step in
many methods to enhance the vessel structures in the image, and the other methods are mostly
used for extraction of these vessel structures. Our final subsection is on validation, where we
describe the state of art methods used for validating the results of blood vessel segmentation
methods.

2.1 Vessel Enhancement

Vessel enhancement approaches deal with filters that enhance tubular or vessel-like structures
in the image. Vessel enhancement is a widely used technique in the literature, mainly as a pre-
processing technique, before extraction methods could be used to extract the vascular regions.

The vessel enhancement techniques that are most common, use the Hessian matrix based on
the second order derivatives of a Gaussian. Such methods are developed by Sato et al. [107],
Frangi et al. [53] and Erdt et al. [45]. These methods are also known as vesselness filters, as
they measure the likelihood of a voxel belonging to a vessel. The Hessian matrix of 3D image
I(X) is given by

H(X;0) = |L(X;0) I(X;0) 1.(X;0) 2.0



where X = (2,9, 2), Lx(X;0) = {52G(0) } # I(X), L,(X;0) = { 2-G(0) } = I(X), etc.
Let eigenvalues of H be A;, Ay and A3 and their corresponding eigenvectors be v1, v3 and

v3. On sorting the eigenvalues (|A\1] < |Xa] < |A3]), v7 represents the direction along which

the second derivative is maximum i.e. the direction of the tube. The eigenvectors v3 and v3

correspond to the tube cross-section directions. An illustration of this is shown in Fig. 2.1.
Based on the tube model, Sato et al. [107] proposed a line enhancement filter function given

by

)\2
TN, A\ <0, A £0
— A2
F=9 o A A >0,0#£0 22)
0 Ae=0

where ; < ag and A\, = min(—\a, —\3). Here, the eigenvalues are sorted as Ay > Ay > 3.

Frangi et al. [53] used the geometrical aspect of the eigenvalues as a second order ellipsoidal
model to distinguish plate-like, blob-like and tubular structures. The eigenvalues are sorted as
[A1] < |Aa] < |As|. The deviation from a blob-like structure is given by the ratio

A
R, = Al (2.3)
[ A2s
and another ratio distinguishes between plate-like and tubular structures, given by
|As
R, =+ 24
|As]

The filter also makes use of the Frobenius matrix norm to reduce in the influence of noise.

S =AM+ A3+ A3 (2.5)

The final filter is given by

0 A >0,A3>0
(2.6)

where a, b and c are thresholds which control the sensitivity of the line filter to the measures
R,, Ry and S.
Erdt et al. [45] used a parameterless anatomical approach to construct the filter

_ 1Pal =[]l

2
Dol + Pl )(§>‘1 — X2 — \3) 2.7

f=a

where the eigenvalues are sorted as A\; > Ay > A3. The first term is an isotropy factor to avoid
detection of plate-like structures, and the second term is the vessel signal.

The method of Erdt et al. has the advantage of being parameterless. According to a com-
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Figure 2.1: Left: The second order derivative of a Gaussian kernel probes inside/outside contrast of
the range (-s,s). In this example s = 1. Right: The second order ellipsoid describes the local principal
directions of curvature. From [53]

parison done by Drechsler and Laura [36], the methods of Erdt ef al. and Sato et al. have the
advantage of detecting properly connected vessels, whereas the Frangi et al. method has its
strength in the suppression of background noise.

The Hessian based methods make use of linear Gaussian scale space for computation of
the spatial derivatives. This may result in an undesired diffusion of nearby structures into one
another and this leads to problems such as detection of two tangenting tubes as one single tube.
To avoid this problem, Bauer and Bischof [9] introduced a new method where the multi-scale
computation of the gradient vectors is replaced by the Gradient Vector Flow (GVF), because it
allows an edge-preserving diffusion of gradient information.

Apart from the vesselness filters, there are also medialness filters that measure the likelihood
of a voxel being at the medial position of the tube. Krissian et al. [72,73] proposed a medialness
response by taking the relationship between the radius of the structure and the scale at which it
is detected. The response function is locally maximal at the centre of the vessel, given by

1 N-1
R,(Z) = N > =Volo(T + 7V/0T,) - Ua (2.8)
=0

where N = int(2r/o + 1), @« = 27/N, ¥, is the radial direction and —V, I, is the gradient
vector of the initial image, computed at the scale o.

The medialness of Krissian et al. also produces a response for other edges and non-tube-like
structures. An improved medialness response was proposed by Pock et al. [101], that takes the
symmetry property criteria of the object into account.

1 N-1

N =0

RU(T) = w(bl)b, (29)
(1- )2
1 R N-1
where w(b;) = e 7%, withb; = =V, Io(T + 7/00,) - Uo and R = & 3 b
=0

Later, Foruzan et al. [49] proposed a medial-axis enhancement filter where the isotropic
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coefficient introduced by Pock et al. was used to reduce the response of the filter for asymmetric
cross-sections. Fig. 2.2 shows the difference in output between Pock’s method and Foruzan’s
method.

Apart from Hessian based vessel enhancement filters, many other filters are also being de-
veloped. The traditional Hessian-related vessel filters often suffer from detecting complex struc-
tures like bifurcations due to an over-simplified cylindrical model. To overcome this drawback,
a strain energy 3D vessel enhancement filter was proposed by Xiao et al. [123]. Here, the
Hessian matrix is considered as the stress tensor and the orthogonal tensor invariants can be
expressed as interns of eigenvalues. The final vessel shape discriminating function is given by

V(x):{\/ﬂ FA<1

[mode(x) + 1],  otherwise

(2.10)

1
2

where I'A is fractional anisotropy expressed in eigenvalues and,

mode(z) = /2 ; - (2.11)

where )\ is the average eigenvalue.

Quadrature filtering that was successfully applied by Granlund and Knutsson [59] for local
structure estimation, was proposed for use in vessel segmentation by Lathen ez al. [78,79] . The
filter combines directions and scales to produce a multi-scale filter response which captures

lines and edges with high precision.

Morphological filters, such as variants of top-hat operators, were also proposed as vessel
enhancement filters, especially for 2D retinal image analysis. Zana and Klein [127] proposed an
algorithm that combines morphological filters and cross-curvature evaluation to segment vessel-
like patterns. The vessel filter is modelled according to its morphological descriptions such as
linearity, connectivity and vessel width, and also related to calculation of parameters such as the
curve of the Gaussian profile and its variation along the crest lines. Rossant et al. [106] also used
morphological top-hat operator with a disc-shaped structuring element slightly larger than the
thickest vessel to remove background areas. Fig. 2.3 demonstrates the use of a morphological
top-hat operator for vessel enhancement.

Law and Chung [80] proposed a curvilinear structure detector, called the Optimally Ori-
ented Flux (OOP). The oriented flux encodes directional information by projecting the image
gradient along some axes, prior to measuring the amount of the projected gradient that flows in
or out of a local spherical region, and OOP discovers the structure direction by finding an op-
timal projection axis which minimises the oriented flux. This method focuses on the detection
of intensity discontinuities occurring at the object boundaries of curvilinear structures. Ben-
mansour and Cohen [11] proposed a link between OOP and Hessian based vessel enhancement,
where the method exploits the orientation of the vessels by using the optimally oriented flux to

8



Figure 2.2: Enhancement of medial-axes of portal veins in the second phase of two CT datasets. (a),(b)
Original images. (c),(d) The output of Pock’s method. (e),(f) The output of Foruzan’s method. The red
circles show the regions where the Foruzan’s method outperformed Pock’s method. From [49]

construct a multi-resolution anisotropic metric that extracts the local geometry from the image
and describes the vessels orientation and scales.

Reuze et al. [104] introduced the use of 3D geometrical moments for blood vessel segmen-
tation. The method was later used for liver blood vessel segmentation by Esneault ef al. [46],
where a geometrical moment based cylinder detector is applied at every voxel of the image.

Tyrrell et al. [118] proposed using cylindrical superellipsoids to model complex 3D vascu-
lature. Superellipsoids are restricted to cylindrical forms that model a range of shapes from a
simple ellipsoid to an elliptical cylinder. This model allows for joint robust estimation of the
vessel boundary and centrelines.

Though many filters are explained here that are not based on Hessian, Hessian based filter
are still the most used method in the literature. Also, many of the vessel enhancement filters are
based on a scale-space approach, and a multi scale integration is essential for detecting vessels
of varying widths, as shown in Fig. 2.4. The most commonly used multi scale integration is
done by finding the maximum over the covered scale-space [45,53,107,123]. A variation to this
technique was introduced by Lathen ef al. [78] and Drechsler and Laura [37], using weighted
additives of scale responses. An additive of the scales focusses on enhancement of the vessel
around its centre, shown in Fig. 2.5.



Figure 2.3: Steps of the morphological treatment: (a) initial image, (b) supremum of opening, (c) recon-
struction, and (d) sum of top-hats. From [127]

2.2 Thresholding

Thresholding is a basic segmentation step to classify the images into foreground and back-
ground. It is a common step to binarize vessels after vessel enhancement filtering and could
also be used to limit the application of a global method. In bi-level thresholding, the histogram
of the image is usually assumed to have one valley between two peaks, the peaks representing
background and objects respectively. The segmentation by thresholding is given by

In(z) = { 1 I(z) > threshold 2.12)

0 otherwise

The parameter of threshold can be selected manually or automatically. The threshold pa-
rameter can be manually set by either visually inspecting the image or checking the histogram
of the image. Though a number of automatic thresholding algorithms are proposed in the litera-
ture [3,4,110], the most commonly used algorithm is given by Otsu [97]. However, analysis by
Albregtsen [4] on thresholding error versus object area, shows that the Kittler and Illingworth
method [71] and a method by Kapur et al. [65] perform better than the Otsu method, when the
object to background ratio is low. The finding was also confirmed by quantitative performance
evaluation of thresholding techniques by Sezgin and Sankur [110].

The method of Kittler and Illingworth is based on obtaining a minimum classification error
from continuously updated estimates of the distribution parameters. The method of Kapur et
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Figure 2.4: The first four images show the vesselness obtained at increasing scales. The last image is the
result after multiscale integration. From [53]

al. is a thresholding algorithm based on entropy. Here, the image foreground and background
are considered as two different signal sources, so that when the sum of the two class entropies
reaches its maximum, the image is said to be optimally thresholded.

Hysteresis thresholding is another thresholding method with the use of two thresholds. The
image is first segmented by a ‘hard’ threshold which yields only high confidence object pixels.
A second threshold operation, this time with a ‘weak’ threshold, returns then the entire object
together with many background pixels. Using prior knowledge with respect to object connec-
tivity, the segmentation is achieved by choosing from among the object pixels selected by the
‘weak’ threshold only those pixels connected to a high confidence one. Hysteresis thresholding
was used for blood vessel segmentation by Condurache and Aach [98], where the two thresholds
were computed by a fast percentile rule.

2.3 Region Growing

Region growing is a simple region based segmentation method, where the neighbouring pixels
to a seed are added into the region if they satisfy some specified criteria. The process is iterated
until all the pixels satisfying the criteria are added into the region. The final region will be a
connected region. Region growing and its variants are widely used as an extraction step for
blood vessel segmentation.

Boskamp et al. [14] and Martinez et al. [89] used classic region growing for extracting the
blood vessels. Boskamp et al. uses region growing based vessel segmentation where the user
provides one or more seed points, and neighbouring pixels are added into the region on certain
criteria. The criteria include lower grey level intensity, adaptive upper grey level intensity and
gradient threshold. Martinez et al. uses an 8-neighbourhood pixel region growing after scale
space analysis for vessel extraction.

Masutani et al. [90] proposed a shape-based region growing algorithm. Here, the region-
growing is processed in the space limited by the initial shape and the structural information of
the shape is simultaneously obtained. The region grows while avoiding non-vessel regions and
keeps its local smoothness based on math-morphological information and local shape process-
ing.
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Figure 2.5: Left: Vesselness filtered scale space representation of a tubular structure. Right: Result after
adding the vesselness measures of each scale. Darker colors represent higher values. From [37]

Eiho et al. [42] proposed a branch based region growing technique for blood vessels. In
this method, region growing is performed branch by branch and if the growing point reaches a
branch bifurcation part, it is let to go into only one side of the branches. When the growing point
reaches an edge of the vessel, the growing stops, and then it starts again from the latest branch
bifurcation point. A similar region growing is wavefront propagation by Kirbas and Quek [70].
Fig. 2.6 illustrates the wavefront propagation through a tube.

Selle et al. [108] proposed a threshold based region growing, where the threshold is auto-
matically suggested. Here, after each iteration of the region growing, the output is set as new
seeds. The region growing is then contained with reduced threshold. The process continues
until the newly added voxels are completely outside the vessel limits.

Another threshold based region growing is proposed by Erdt er al. [45]. Here the values
of pixels detected as foreground is compared to the mean intensity of the image. If 80% of
the pixels are above the mean intensity, then the threshold is lowered and the procedure is
applied anew. This automatic approach allows the continuos segmentation of vessels that are
disconnected in the original dataset while preventing the segmentation of noisy structures.

Dehmeshki et al. [32] proposed sphericity oriented region growing. The region growing
is weighted according to the strength of connectivity in the connectivity map of each point
neighbouring the current region. This is so that neighbouring points with higher connectivity
are added to the region before neighbouring points with lower connectivity.

Zhan-Peng et al. [128] proposed a 3D hierarchical seeded region growing. The algorithm
uses 3D sub-blocks instead of single pixels and allows the image to be represented in multiple
resolutions. The seeded region growing does the region merging at a lower resolution with a
bigger sub-block size. Then a higher resolution with a smaller sub-block is used to continue to
enlarge over the specified area of the image.

2.4 Deformable Models

Deformable models are techniques where models are deformed to best fit the object. Active
contours are popular image segmentation tools that evolve a contour through external and in-
ternal forces. The external force is an image derived force to expand the contour towards the
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Figure 2.6: Left: Wave propagation. Right: Wave count images through an angiogram segment. From
[70]

BN

object border and the internal force is based on the assigned model that restrain the contour
from free movement. This approach is widely used for vessel segmentations as the forces could
be modelled according to different parameters that fit a vessel-like structure.

The snakes method proposed by Kass et al. [66] is considered the fundamental segmentation
method using active contours. It is an energy minimising spline guided by external constraint
forces and influenced by image forces that pull it toward features such as lines and edges. By
representing the position of the snake parametrically by v(s) = (z(s),y(s)), its energy can be
written as

E= /%[a ‘“/(5)’2 +8 U"(S)ﬁ + Bext(v(s))ds (2.13)

0

where o and ( are weighting parameters that control tension and rigidity of the snakes, and
v'(s) and v” (s) are first and second derivatives of v(s) with respect to s. The external energy
function E...(v(s)) is derived from the image. Given a graylevel image /(z,y), the external
energy designed to lead an active contour toward step edges is

Eer(z,y) = — |VI(z,y)[ (2.14)

Xu and Prince [124] proposed the GVF-snakes method, which uses the Gradient Vector
Flow (GVF) as its external energy function. The GVF energy function is calculated by applying
a generalised diffusion equation to both components of the gradient of an image edge map, and
thus extend far away from the object. This allows the snake to start far from the object, and still
draws it towards the object. As explained earlier, GVF is also used for vessel enhancement.

A variation to the snakes algorithm was proposed by Toledo et al. [116], called eigensnake.
The eigensnake learns an optimal object description and searches for such image feature in the
target image. This is achieved by applying principal component analysis on image responses of
a bank of Gaussian derivative filters. The external energy of the snake is defined as a function
of the Mahalanobis distance of the projected image features to the centre of the learned cluster.
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Another snake algorithm was proposed by Mclnerney and Terzopoulos [92], called topology
adaptive snakes or T-snakes. Their approach exploits an affine cell decomposition of the image
domain (ACID), which allows the T-snakes to segment and reconstruct objects with significant
protrusions, tubular objects, or objects with bifurcations. The ACID divides the image domain
into a collection of convex polytopes. Using the ACID framework, contour evolution is per-
formed by tracking and recording the interior region of a T-snake as it expands or contracts un-
der the influence of pressure forces. The strength of these pressure forces can be directly linked
to the local or global statistics of the image pixel intensity values of the target object. These
statistical constraints allow ACID-based models to behave as active region growing models that
can effectively integrate edge information with region-based information.

Many deformable models have been implemented using the level-set based numerical algo-
rithms [109]. The advantage of the level set method is that numerical computations involving
curves and surfaces can be performed on a fixed Cartesian grid without having to parameterise
these objects. The level set method amounts to represent a closed curve I' using an auxiliary
function ¢, called the level set function. I is represented as the zero level set of ¢ by

I'={(z,y)l¢(z,y) = 0} (2.15)

and the level set method manipulates I' implicitly, through the function . This function ¢ is
assumed to take positive values inside the region delimited by the curve I' and negative values
outside [47,109].

Fei and Park [48] used the level-set method for liver blood vessel segmentation. They seg-
mented the liver automatically using morphological filtering and an improved Otsu’s threshold
method, and then the liver boundary was used as the level set initialisation. Lathen et al. [78]
also used level-set for front propagation after applying their quadrature filter.

Lorigo et al. [85] developed the CURVES system which models the object boundary as a
manifold that evolves iteratively to minimise an energy criterion. This energy criterion is based
both on intensity values in the image and on local smoothness properties of the vessel wall.

A model based quantification of vessel morphology was proposed by Frangi et al. [51,52],
where linear vessel segments are modelled with a central vessel axis curve coupled to a vessel
wall surface. The method consists of a central vessel axis computation and a 3D boundary
model which is then initialised and fitted to the image data using a boundary criterion. Initially
arough central vessel axis is approximated from user initiated seeds joined by a geodesic curve
along the iso-surface. Then the central vessel axis is approximated using a B-spline curve and
fitted into the image data using the vesselness calculated at each voxel of the image. Finally the
vessel wall is modelled using a tensor product of a B-spline that fits to the boundaries of the
underlying vessel. Fig. 2.7 illustrates the working of the method.

Biesdorf et al. [12] proposed segmentation of the aortic arch using a joint 3D model-based
segmentation and elastic registration. The approach is based on an energy-minimising func-
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Figure 2.7: (a) A user initializes two (or more) points on the surface. (b) From these seeds, a geodesic
path is computed. (c) The geodesic path is deformed until the central vessel axis is determined. Using the
distance between the newly obtained vessel axis and the original geodesic path, a circular cross-section
is swept along the axis to generate an initialization of the vessel wall model. (d) Vessel wall and central
vessel axis. From [51,52]

tional J;, corresponding to a vessel segment k, and consists of two terms:

Ji(pry ) = I (gar, 97% or) + Jr(97% 9576 i) (2.16)

The first term J), denotes an intensity similarity measure between a 3D cylindrical intensity
model g,; with parameters p; and the intensities g}f’k" within a 3D ROI of a tomographic image
gr- The second term Jir denotes an energy-minimising functional for elastic registration of
g% with an image gﬁfk generated from the 3D intensity model g,,. The result of the elastic
registration is represented by the deformation field u;. By minimising the overall functional .J,
the segmentation result from the 3D model fitting is used to increase the registration accuracy,
while at the same time the registration result is used to improve the 3D model fitting. After
fitting the aortic arch at vessel segment %, a Kalman filter is used to predict the parameters pj 1

for the next segment.

A fast energy minimisation function, called graph cuts was proposed by Boykov ez al. [15—
17]. The graph cut algorithm works on the principle that a globally optimal segmentation sat-
isfying hard constraints can be computed efficiently in low-order polynomial time using max-
flow/min-cut algorithms on graphs. The algorithm works by making a directional graph, which
starts from setting two terminal nodes, the object terminal S and background terminal 7". All the
intermediate voxels in the image between the terminal nodes are set as intermediate nodes and
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directed weighted links connect the nodes. Two kinds of links are identified: t-links connecting
voxel to the terminals S and 7', and n-links between a pair of intermediate nodes. The energy
function for graph cut method is given by

E= Eregian + Eboundm’y (217)

where a data term F..g0n 1S an energy coding the probability that a voxel belongs to the class
‘object’ or ‘background’ set on t-links, and a smoothing term Ejyoundary i an energy coding the
local discontinuity between a pair of voxels represented by the n-links. Once the graph is built
with the correct weight assigned to each link, a min-cut/max-flow combinatorial optimisation
algorithm is applied to the graph giving the segmentation result, as illustrated in Fig. 2.8.
Graph cut is being widely used in blood vessel segmentation [46, 54]. Freiman et al. [54]
proposed a segmentation of carotid arteries using a graph min-cut method based on a new edge
weights function that adaptively couples the voxel intensity, the intensity prior, and geometric
vesselness shape priors. Esneault et al. [46] proposed a method for liver vessel segmenta-
tion by introducing a 3-D geometrical moment-based detector of cylindrical shapes within the

minimum-cut/maximum-flow energy minimisation framework.

2.5 Centreline Tracking

Centreline tracking methods are based on tracking/tracing from a user initiated seed to the
ends of the vessel by calculating the centreline. These methods are considered computationally
efficient when the computations are performed only locally. However, many of these methods
require whole image analysis to get filtered images to perform smooth tracking of the centreline.

Aylward and Bullitt [6] proposed a seed initiated method, where the centreline is found by
transversing through the ridge. Ridge methods operate by considering an N-dimensional image
to be a surface in an N+1 dimensional space by mapping intensity to height; tubular object
centrelines will exist as one-dimensional (1-D) height ridges on that surface. Here the ridge
is calculated through computation the eigenvalues and eigenvectors of Hessian matrix. The
eigenvalues are sorted as A; < Ay < A3 and the eigenvector corresponding to Aj is the direction
of tracking.

Krissian et al. [73] proposed centreline tracking and vessel reconstruction by using an adap-
tive medialness measure. Again centreline tracking is done using the local eigenvector corre-
sponding to vessel direction. They compute the multiscale response from responses at a discrete
set of scales, then extract the local maxima in this multiscale response in order to estimate the
vessel centrelines. The medialness response used here is explained in Eq. 2.8, and the local

maxima are characterised as

(7;1;)is local maximal <= R} (7) > R} (7 £ v1) and R} (7) > R\ (T £ 0) (2.18)
and R} (z) > R} (T)

tit1
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Figure 2.8: A simple 2D segmentation example for a 3 x 3 image. The seeds are O and B. The cost of each
edge is reflected by the edge’s thickness. The boundary term defines the costs of n-links while the regional
term defines the costs of t-links. Inexpensive edges are attractive choices for the minimum cost cut. Hard
constraints are implemented via infinity cost t-links. A globally optimal segmentation satisfying hard
constraints can be computed efficiently in low-order polynomial time using max-flow/min-cut algorithms
on graphs. From [15]

Another medialness based centreline tracking for vessel segmentation is proposed by Frid-
man et al. [55]. The method was built upon the work of Furst [56] and Aylward and Bullitt [6].
The method extends the work of Furst by improving the robustness of his core following and
termination, and by augmenting Furst’s method with the ability to handle branching objects. It
differs from the work of Aylward and Bullitt by relying on only one seed point per tree structure
and no post-processing to segment a tubular branching object. Branching is detected by ap-
plying an affine-invariant corner detector along with medialness. This consistently gives strong
responses at corners of branches, but also gives strong responses in undesirable places such as
the inside edge of a sharply bending object or places that have voxel jaggedness due to noise or
aliasing. The medial atom spoke that lies on the intersection of the two branches gives a signif-
icantly weaker response in medialness. The location of this spoke tip provides an approximate
starting location for the core of the new branch and the direction in which it points provides an
approximate tangent direction for the new core.

Wesarg and Firle [120] proposed a corkscrew algorithm, which is a semiautomatic extraction
technique requiring the definition of the start and end points of the centreline path to be found.
A first estimation of the centreline of the vessel is calculated and then corrected iteratively by
detecting the border of the vessel perpendicular to the centreline. The major drawback of this
algorithm is the fact that the computed border points neither form a smooth surface in 3D nor a
closed curve in planes perpendicular to the centreline.
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Wette et al. [121] extended the corkscrew algorithm to detect bifurcations by using a ray
casting approach. First, rays are spread out within a cone of angle « directing to the first ap-
proximation of the centreline. In a subsequent task the different lengths of the rays are evaluated
to detect a possible bifurcation.

2.6 Validation

Once, the segmentation is done, the results have to be validated to determine how well the
segmentation method has performed. Validation is an important step to understand, whether the
proposed method is better than the ones that are currently available in the literature, or how well
the proposed method is suited for the particular application. Two important parts of validations

are gold standard models and metrics for segmentation comparison.

2.6.1 Gold Standard Models

Gold standard models are used as approved models for validating the segmentation results from
the proposed method. The three types of models that are generally used are synthetic, phantom
and manual segmentation.

Synthetic models are the most widely used ground-truth for validating blood vessel seg-
mentation methods. These are created virtually in a computer. For validating blood ves-
sel segmentations, the synthetic data are made to mimic the tubular nature of the blood ves-
sels. Simple tubular models are the most widely used as they are easy to create and vali-
date [6,9,11,12,37,49, 73,80, 118, 123]. The validation is done by testing methods in tubes
of varying curvature and radius. The validation can also be performed to understand whether
closely located tubes can be differentiated by the method.

Other than simple tubular models, the models can be made in relation to the tree-like struc-
tures of medical blood vessels, where the branching can be made similar to blood vessels.
These kind of synthetic blood vessels are especially good in validating methods based on track-
ing the blood vessels to understand its branch detection capability. VascuSynth by Hamarneh
and Jassi [61], is a widely accepted method for making synthetic blood vessels. Here, the mod-
els are generated by iteratively growing a vascular structure based on a user-defined oxygen
demand map. The algorithm also makes use of other user-provided parameters like the location
of the root of the tree and number of desired terminal nodes. Esneault et al. [46] proposed mak-
ing models based on real coronary artery tree description, where models are constructed from
centrelines previously determined, and ad hoc vessel diameters are set. Drechsler et al. [38]
proposed making synthetic blood vessels similar to liver blood vessels. The model is made us-
ing physical vascular model to simulate the growth of liver vessels within liver masks extracted
from clinical CT datasets.

Galarreta-Valverde et al. [57] proposed a method for 3D synthetic blood vessel generation,
where the synthetic blood vessels look more like the real blood vessels. The method is an
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extension on the work by Zamir [126] and Liu er al. [84], which uses stochastic parameter
Lindenmayer systems to generate fractal blood vessel structures incorporated with physiolog-
ical laws of blood vessel branching. Compared to the rigid tubular branching trees made by
VascuSynth, the method of Galarreta-Valverde et al. produces real blood vessel-like models, as
shown in Fig. 2.9.

As alternatives to computer-generated synthetic models, physical models or phantoms are
also used for validating blood vessel segmentation methods. Selle et al. [108] used vascular
corrosion casts of the human liver for their validation. For making the casts, the portal and
hepatic veins of cadavers were injected in situ with resin, and left to harden. Then, the liver is
removed from the body and corroded, leaving behind only the detailed branching structure of
the vessel systems. Bauer et al. [10] produced a plastic phantom of a vessel tree with known
digital ground-truth for their validations. Biesdorf et al. [12] validated using a 3D aorta phan-
tom, which was made with acrylic glass based on a real patient image with a severe aneurysm.
Conversano et al. [28] in their paper, explained a method for making a liver phantom using
stereolithography. Here, the phantom is bonded layer by layer, where the complex shapes are
tailor-made using a 3D-CAD drawing of the object.

The final form of gold standard models are made by manual segmentation. The manual
segmentation is usually made by drawing the contours of the blood vessels, by an expert (ra-
diologist, medical personnel or medical imaging specialist) [21, 34, 35]. Drawing contours on
all the slices is a lot of work. A way around it is to draw only on a few slices with maximum
number of vessels and compare their overlap to the segmentation result, as described in Con-
versano et al. [27]. Alhonnoro et al. [5] performed a landmark based evaluation, where 1024
landmarks were collected along the vessels. Each landmark consisted of centreline and radius
at that location, and a hit or miss of landmark was evaluated.

2.6.2 Metrics for Segmentation Comparison

After obtaining the segmentation results from a proposed new method, the results have to be
compared qualitatively and quantitatively to gold standard models to understand the effective-
ness of the segmentation method. A qualitative evaluation is usually performed visually by
an expert by comparing the results with the gold standard models. In contrast to qualitative
evaluation that introduces a degree of subjectivity, quantitative evaluation provides objectivity.

For all comparisons, the gold standard models are considered as the ground-truth. As illus-
trated in Fig. 2.10, on performing a binary classification, the metrics of segmentation can be
obtained from the following basic terms: true positive (TP), false negative (FN), false positive
(FP), true negative (TN). Here, TP + FP is the obtained result and TP + FN is the ground-
truth. TP is the region correctly segmented as part of the result and TN is the region correctly
segmented as not part of the result. Whereas FP is the region incorrectly segmented as part of
result (also termed over-segmentation) and FN is the region incorrectly segmented as not part
of the result (also termed under-segmentation). The main aim of a segmentation method is to
have as little FN and FP as possible in the result.
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Figure 2.9: Top row: 3D synthetic blood vessels generated using VascuSynth [61]; Bottom row: 3D
synthetic blood vessels generated using method of Galarreta-Valverde et al. [57].

The most used metrics of segmentation validation are sensitivity or true positive rate or
recall as in [21,31,33,34,49,94,107], and specificity or true negative rate as in [21,33], which
is also used as 1—specificity or false positive rate as in [28,31,49,94, 107].

Sensitivity = TPZipFN (2.19)
Specificity = % (2.20)
False Positive Rate = FPiiPTN (2.21)
False Negative Rate = FNFiqLVTP (2.22)

Mostly along with sensitivity and specificity, accuracy as in [8,21,31,33,94] and precision as

in [8,118,123] are also calculated to add more information into the evaluation of the validation.

TP+TN

. _ 2.23

CuracY = b Y TN L FP+ FN o
TP

Precision = W (224)

The measure of similarity between two segmentation are mainly provided by the Dice coef-
ficient asin [11,12,28,34,40,46] and the Jaccard similarity coefficient as in [21]. Here, the Dice
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Figure 2.10: A binary classification showing true posive, false negative, false positive and true negative.

coefficient, which is the same as F1 score, is the most commonly used measure for comparison.

TP
cient = ——————————— 2.2
Jaccard coefficient TP+ FPLEN (2.25)
. o 2T P
Dice coefficient = TP+ FP 1+ FN (2.26)

The metrics of segmentation validation could also be calculated by measuring the distance
between the models, or the distance between the centrelines of the models. The most commonly
used distance measurement is maximal distance or Hausdorff distance as in [11,40, 54].

Hausdorff = I(Illeaj{{lgélél d(a,b)} (2.27)

where a is an element of set A, b is an element of set B, and d(a, b) is the Euclidian distance be-
tween the points ¢ and b. A modified symmetric Hausdorff distance (MSHD) was also proposed
by Dubuisson and Jain [41], given by

MSHD = max{Ni > rbréiél d(a,b), = > mi£1 d(b,a)} (2.28)

a geA Ny beB “€

The advantages of using a MSHD is that it is robust to outliers that might result from segmen-
tation errors and also it increases with an increase in the amount of difference between the set
of points.

Apart from metrics of evaluation based on binary classification or distances between sur-
faces is vessel branch detection based validation. For many medical images, it is hard to obtain
a completely manually segmented 3D image as ground-truth, and medically, it might be more
relevant to understand hit and miss of branches. Thus, some work by Conversano et al. [27,28],
Bauer et al. [10] and Fridman et al. [55] describes methods of evaluation, where they have used
branch detection rate according to the radius of the brach as a major criterion for validation.
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Chapter 3
Vessel Segmentation in Clinical Practice

The human body contains several different types of blood vessels that constitute a network of
arteries and veins. Visualisation of these blood vessels is important for improving the planning
and navigation in several interventional procedures. It is specially relevant in catheter-based
procedures and liver resection planning.

3.1 Catheter Navigation

3.1.1 Stent Grafting

An aneurysm is a balloon-like bulge in an artery. It occurs when the blood vessel is damaged
or there is a weakness in the wall of the blood vessel. As the aneurysm grows there is a greater
risk of rupture, which can lead to severe haemorrhage and other complications including sudden
death. The two main types of aneurysm are aortic aneurysm (can be abdominal or thoracic) and
cerebral aneurysm.

Endovascular stent grafting is a treatment for aneurysm. It does not require surgical opening
of chest or abdomen. In this procedure an endovascular stent graft is used to reinforce the vessel
wall and to prevent the damaged area from rupturing. An endovascular stent grafting is done by
inserting a catheter into an artery (using groin) and it is threaded to the site of the aneurysm using
angiography. A guide wire is used to pass the detachable coils (stent) through the catheter and
it is released at the site of the aneurysm. The coil fills the aneurysm, block it from circulation
and cause the blood to clot, which effectively destroys the aneurysm. Fig. 3.1 illustrates the
procedure. The use of vessel segmentation in stent grafting is explained in Section 3.1.3.

3.1.2 Valve Replacement

There are four valves within the heart; the mitral, aortic, pulmonary and tricuspid. These valves
ensure that the blood flows in only one direction through the heart. Valvular heart diseases occur
when there is a damage or defect to these valves. The mitral and tricuspid valves control the
flow of blood between the atria and the ventricles (the upper and lower chambers of the heart).
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Figure 3.1: Stent grafting. From [62]

The pulmonary valve controls the flow of blood from the heart to the lungs, and the aortic valve
governs blood flow between the heart and the aorta, and thereby the blood vessels to the rest of
the body. Mitral and aortic valves are the most commonly affected by valvular heart disease.

Normally functioning valves ensure that blood flows with proper force in the proper di-
rection at the proper time. In valvular heart disease, the valves may become too narrow and
hardened (stenotic) or are unable to close completely (incompetent), leading to poor pumping
action. To compensate for this, the heart muscle enlarges and thickens, thereby losing elasticity
and efficiency. In addition, in some cases, there is greater chance of clot formation, increasing
the risk of stroke or pulmonary embolism.

A transcatheter valve replacement is a minimally invasive surgical procedure for the treat-
ment of valvular heart diseases. This procedure is done without removing the old damaged
valve. Instead of that, it wedges a replacement valve into the valve’s place as shown in Fig. 3.2.
Earlier valve replacement required an open heart procedure, whereas nowadays transcatheter
valve replacement procedures can be done through very small openings.

The transcatheter valve replacement is performed either by the transfemoral approach or the
transapical approach. In a transfemoral approach, a catheter is placed in the femoral artery (in
the groin) and guided into the heart chamber. A compressed heart valve is placed on a bal-
lon catheter and is positioned directly onto the diseased valve. Once it reaches the position, the
ballon is inflated and the valve is secured in place. During the transapical approach, a small inci-
sion is made between the ribs. A compressed heart valve is placed on a ballon catheter, inserted
through the ribs into the apex of left ventricle and positioned inside the diseased valve. Once in
position, the ballon is inflated to secure the valve in place. The use of vessel segmentation in
valve replacement is explained in Section 3.1.3.
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Figure 3.2: Transcatheter valve replacement. From [2]

3.1.3 Interventional Imaging

The catheter navigation procedures are commonly performed using X-ray fluoroscopy imaging.
During a fluoroscopy procedure, an X-ray beam is passed through the body. The image is
transmitted to a monitor so the movement of a body part or of an instrument or contrast agent
through the body can be seen.

The major disadvantage of fluoroscopy is the radiation. The radiation dose the patient re-
ceives varies depending on the individual procedure. Fluoroscopy can result in relatively high
radiation doses, especially for complex interventional procedures which require fluoroscopy to
be administered for a long period of time. Radiation-related risks associated with fluoroscopy
include: radiation-induced injuries to the skin and underlying tissues, which occur shortly after
the exposure, and radiation-induced cancers, which may occur some time later in life.

Magnetic Resonance Imaging (MRI) has recently become a possible imaging modality in
guiding this type of interventions [23,64, 86, 102]. MRI can remarkably discriminate soft tissue
contrast. In addition, the use of ionising radiation is avoided. MR guidance can also give close
to real time imaging with satisfactory resolution.

One of the major challenges of using MR-guided interventions was the guide wire. The
metallic part of the guide wires get heated up in the MR. However, MR-compatible guide wires
are now developed with improved manoeuvrability [24,25]. With the availability of the new
MR-compatible and safe guide wire, certain percutaneous cardiac interventions will become
feasible to perform solely under MR guidance in the future [119].

Regardless of the imaging modality used, blood vessel visualisation is important for all
catheter based navigation procedures. An accurate segmentation and visualisation of the blood
vessels help in better placement of valves and stents, for planning the size of stent and valve
to be used with the information on radius of cross-section of the blood vessel, and also for 3D
navigation of the catheter through the blood vessel. Recently catheter tip tracking methods were
also implemented for use in MR-guided intervention [44]. The tracking methods will be greatly
favoured with a pre-segmented model of blood vessels in which the tracked tip of the catheter
could be shown during intervention.
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3.2 Liver Resection Planning and Navigation

3.2.1 Liver

The liver is the largest organ in the body. It occupies a substantial portion of the upper abdominal
cavity. It is a wedge shaped organ and its size varies according to age, sex and body size. The
liver performs a wide variety of functions. It removes toxic substances, regulates blood glucose
and lipids, breaks down amino acids, produces plasma proteins and immune factors and stores
certain vitamins and minerals.

The liver is divided into eight (nine) independent functional segments according to Couin-
aud’s division [29], as shown in Fig. 3.3. Each segment has its own vascular inflow, outflow
and biliary drainage. The classification is based on the vascular supply in the liver. The right
hepatic vein divides the right lobe into anterior and posterior segments. The left hepatic vein
divides the left lobe into a medial and lateral part. The portal vein divides the liver into an upper
and a lower segment. The left and right portal veins branch superior and inferior to project into
the centre of each segment. Each segment can be resected without damaging the others because
each one is a self-contained unit [122].

The liver receives its blood supply from two sources. The hepatic artery delivers 25% of the
arterial blood to the liver. The portal vein delivers 75% of venous blood to the liver returning
from the small intestine, stomach, pancreas and spleen. The terminal branches of the hepatic
artery and hepatic portal vein empty together and mix as they enter into sinusoids in the liver.
Blood flows through the sinusoids and empties into the central vein of each lobule. The hepatic
vein arises from the central vein and carries out blood from the liver and empties into the vena-

cava.

3.2.2 Resection

Primary liver cancer, which consists predominantly of Hepatocellular Carcinoma (HCC), is the
fifth most common cancer worldwide and the third most common cause of cancer mortality [43].
The incidence of primary liver cancer is increasing in several developed countries and expected
to continue increasing [13]. The liver is also a frequent target of metastases from other cancer
origins, like colorectal, with an estimated 550,000 cases per year worldwide. In Norway, the
most frequent liver neoplasms evaluated for surgical treatment are colorectal metastasis [88].
Liver resection is the treatment of choice with hepatic colorectal metastases [60, 115], even in
recurrent cases [112], with 5 year survival rates of up to 40- 58% following resection [113].
Surgical resection of malignant liver tumours is the only curative therapy. Liver resection
is also critical for a living donor transplantation programme and other non-oncologic surgical
procedures. A successful surgery requires complete removal of the tumour including a safety
margin while sparing as much healthy tissue as possible [99]. Safe hepatectomy with adequate
tumour-free margins leads to a better prognosis [115]. Traditionally, this has been achieved
performing a formal hepatectomy, where the affected lobe of the liver is removed. This is major
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Figure 3.3: Segments of the liver. From [114]

surgery with possibility of serious complications. In addition, the formal liver resection leaves
fewer options for repeated liver resections, in case the patients should get new tumours. Tumour
recurrence occurs in up to 80% of cases [95]. Finally only 5-15% of the patients are eligible for
resection [58,96,117].

Parenchyma-sparing liver resection is an alternative to the formal liver resection. With this
technique the surgeon only removes the tumour, or sometimes the affected segments, from
the liver of the patient. Thus, the patient in most cases will go through a smaller, less trau-
matising operation, enabling shorter hospital stay and earlier return to daily activities. But
most importantly, as a significant part of the liver is spared during the first operation, the pa-
tient will have the possibility to go through new liver resections, should recurrence occur. The
parenchymal-sparing technique is useful for multiple simultaneous liver resections. Increased
use of a parenchymal-sparing approach is associated with decreased mortality without com-
promise in cancer-related outcome [50]. However, a good visualisation of the liver hepatic
segments, blood vessels and tumour are essential for performing parenchymal sparing liver re-
section in a safer manner.

The main vessels in the liver are potential sources of major bleeding during liver resection,
and controlling these is of great importance. 3D visualisation of the blood vessels, especially
around the tumour would provide a better planning for liver resection. This minimises the risk
of major bleeding, which can be costly both for the patient and the hospital. The introduction
of laparoscopic liver resection is also changing many aspects of liver surgery, not least for the
patients. Long term survival of laparoscopic resection is better than of open surgery [67]. Also,
repeated resections are feasible, safe and oncologically adequate with a laparoscopic approach
[111]. However, operating laparoscopically on a solid organ as the liver is very demanding, and
necessitates meticulous studies of the anatomy of the patient in order to preoperatively create a
safe plan for the operation. 3D visualisation of liver anatomy including blood vessels would be
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a giant leap forward for laparoscopic liver surgery.

3.2.3 Planning and Navigation

In order to improve the clinical outcome in terms of surgery time, resectability and safety, a
number of surgical planning and navigation systems have been proposed in the past few years.
These systems are mainly based on the use of pre-operative images to generate a resection
planning from the vascular system of the patient [93]. More recently, interactive visualisation
tools, such as the Resection Map [74], PathFinder Explorer (www.pathnav.com), CAS-ONE
(www.cascination.com) or others [20, 28, 30], have been proposed to increase the orientation
understanding and confidence of the surgeon. During a laparoscopic liver resection, the sur-
geon sees only the surface of the liver with the laparoscopic camera. With the use of LUS
(Laparoscopic Ultrasound) intraoperatively, the surgeons can understand the anatomy of blood
vessels or bile ducts and find the precise tumour localisation [76], thus helping in marking the
resection margins. When using 3D navigation, LUS helps to orient the pre-planned resection
lines with the laparoscopic view.

Among the above mentioned liver resection planning systems, the market leading providers
are CAS-ONE and Pathfinder Explorer. Both have in-depth planning systems, where the resec-
tion plane could be planned on 3D visualisations of blood vessels, tumour and liver. However,
the segmentation and visualisation of blood vessels, tumour and liver, are done externally by
MeVis (www.mevis.de) [19, 100, 105]. MeVis is currently the leading provider for distant ser-
vices such as surgery planning for tumour resection. The Computed Tomography (CT) images
taken of the liver are sent to MeVis, and after a few days, a completely segmented model is sent
back. The models can then be used in the planning systems for planning appropriate resection
plans. Therefore, having a planning platform with in-built segmentation and visualisation sys-
tem will help in saving a lot of time and resources for liver resections. Fig. 3.4 shows the liver
resection planning software, Hepa-Navi, developed at The Intervention Centre, Oslo University
Hospital, for planning the liver resection plane and to guide the surgeon with his preplanned
resection during the surgery. Currently, the blood vessel segmentation needed for the planning
in Hepa-Navi is done externally by technical personnel using whole image vessel enhancement
techniques with manual additions of unsegmented regions, which altogether takes a few hours
for making the plan. Thus, having a fast and user-friendly blood vessel segmentation method
in-built into the planning platform will help the surgeons to interact with the system themselves
to make a good pre-operative plan.

A fast blood vessel segmentation will also greatly help in making an intra-operative update
of the blood vessels. Though intra-operative updates are currently not performed during liver
resections, they are widely used in brain surgery to understand the change in brain structure
once the skull is opened [22, 26, 83]. A similar update could also be useful in liver surgery to
understand the change in liver, blood vessel and tumour, from the pre-operative images to the
time when the operation is to be performed. The two scenarios when the liver changes have
to be understood are: when the abdomen is inflated for the laparoscopic surgery, and during
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Figure 3.4: Left: 3D visualisation of the segmented blood vessels, liver and tumour, along with the
resection plane for planning the liver resection. Right: Laparoscopic liver resection surgery performed
with the help of pre-planned liver resections.

surgery when the liver is being moved a lot. The intra-operative images can be taken using MRI
or ultrasound (US). Thus, having a fast and user friendly blood segmentation method in-built
to the resection planning softwares will not only help the surgeons to make a fast pre-operative
planning, but also help in updating the models with new segmentations taken intra-operatively.
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Chapter 4

Summary of the Papers

4.1 Overview

In the following sections, we summarise the work done related to each of our thesis papers. The
summary will include the aim that we had for each of our paper work, the methods used and
the results obtained by applying these new methods. Below is a table highlighting the important

points of each of the five thesis papers.
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— continued from previous page
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4.2 Paper I

Extraction of blood vessel structure is important for improving planning, navigation and tracking in
several interventional procedures. It is specifically relevant in catheter based procedures like stent graft
positioning and valve replacement, and also in planning and navigation of laparoscopic liver resection.
Centreline based registration methods have proven to be fast for clinical applications and an effective
way of registering multi-modal images [7,75,103].

The most commonly used techniques for centreline extraction depends on extracting centrelines
from pre-segmented vascular models. In these cases, the blood vessels are initially segmented through
thresholding, model-based approaches, or multi-scale vessel segmentation [53,101,107], as explained in
Chapter 2. The segmented output is then skeletonised or thinned, ending up with the final centreline [69].
The main disadvantage here is that these approaches are computationally expensive since they must
process the whole image space to find a few connected blood vessels.

In this paper, we present a semi-automatic seed point based centreline extraction with local vessel
enhancement. Our method lets the user select a single or multiple connected blood vessels of interest,
thus reducing the potential noise of uninteresting voxels and also reducing the processing time.

Here, we have implemented a modified multi-scale vessel enhancement filter. Similar to Frangi et
al., Sato et al. and Erdt er al. [45,53,107], the proposed filter is also based on a Hessian matrix as in
Eq. 2.1. As explained in Section 2.1, we incorporated into our filter advantages of both Erdt er al. and

Frangi et al., given as

0 Ao >0,)\3 >0
V, = 2 4.1)

Xa|—|A -5
(= BRI G = 22 = da)(1 - e 27)

where the eigenvalues are sorted as [A1| < [A2| < A3

,and S is as shown in Eq. 2.5.
We also found that Eq. 4.1 gives exponentially reduced vessel response peak values as the scale is

increased. To normalise this, we multiplied Eq. 4.1 with a scale dependent weighting term,
V =Vt 4.2)

where o is the current scale used for calculating V,, and £ is a constant set to 0.5 based on initial
experiments.

Finally, the multi-scale response is given by taking the maximum across all scales,

Vinuiti = max Vv 43
il Omin<0<Omax ( )
The centreline is extracted using a local computation of modified multi-scale vesselness. Fig. 4.1 left,
shows a simple flowchart description of the centreline extraction method. The user selects a seed within
the interesting connected blood vessel to extract the centreline. From a small 3D volume around the seed,
the eigenvectors corresponding to the directions of the vessel are estimated when their corresponding

eigenvalues are sorted as |A1| < [Aa| < |A3|. Then, the modified multi scale vesselness is applied only
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along the cross-section of the vessel using the cross-section eigenvectors, which gives a Gaussian-like
profile. The actual centre is then calculated by finding the peak, as illustrated in Fig. 4.1 Right. From the
centre, the next centre candidate is found by following along the vessel direction, which is the eigenvector
along the vessel.

When the tracking reaches the bifurcation, there exists multiple peaks rather than just one as in vessel
trunk. Each of these centres are then continued by tracking as before, and the tracking algorithm at any
trunk terminates when the new centre candidate is outside the vessel.

The proposed method was evaluated using both synthetic and medical images. The synthetic images
were created using VascuSynth software [63] and medical images were downloaded from the freely
available DICOM medical image database of OSIRIX [1].

On comparing with a thresholded Frangi’s vesselness output combined with Lee’s thinning [53, 81],
our method is shown to be approximately 5 times faster. The results also show that the proposed method
is customised to detect only the desired blood vessels, thereby eliminating the detection of unwanted
vessel-like structures. The centreline accuracy was evaluated by comparing with ground-truth data cre-
ated by finding Hough circle centres at each cross-section of the vessel structure. The modified symmetric
Hausdorff distance [41] between our result and the ground-truth was only approximately 1 pixel for both

synthetic and medical images.

4.3 Paper II

Liver cancer remains the fifth most common malignancy in men and eight most common in women, with
the number of cases estimated to be 550,000 per year worldwide. Surgical resection of the tumours is the
main curative therapy. However, only 5-15% of the patients are eligible for resection [50,96,117]. Due to
this, minimally invasive techniques such as radiofrequency ablation and high intensity focused ultrasound
are emerging as potential alternatives [68,91]. Liver blood vessel breathing movement information is
important for improving the accuracy of these minimally invasive therapies. Liver breathing movement
information can also show the importance of intra-operative update during a liver resection and thus it
can be used for compensation.

In this paper, we presented a method for rigid registration of the centrelines obtained from the vascu-
lar structures of vessel-enhanced images of liver to conduct a pilot study on the movement of liver blood
vessels during the breathing cycle. The study was conducted using MR images collected from three
healthy volunteers and written informed consent was obtained from all the volunteers. The breath-hold
scans were obtained at inhale and exhale positions.

As a preprocessing step to the proposed method, a rough liver mask was made to limit the region
of interest for later processing. The proposed method starts with the application of our modified multi-
scale vesselness, described in Paper I, to the whole image to obtain a vessel enhanced image of the MR
liver image. Here we have decided to use the modified vessel enhancement filter, as it has an improved
dampening of noise and a good Gaussian profile at the vessel cross-sections.

Following the vessel enhancement, the image was thresholded using the most commonly used au-
tomatic Otsu thresholding into a binary image. This gives a good starting point for 3D thinning to be
performed on the image for obtaining the centreline [81]. In 3D thinning, the object’s surface is eroded

iteratively until only the skeleton remains. Erosion has to be performed symmetrically in order to guar-
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Figure 4.1: Left: Flowchart description of the centreline extraction method of Paper I; Right: 2D repre-
sentation of the centre point extraction from the seed.

antee a medial position of the skeleton lines and in such a way that the object connectivity is preserved.

To find the centrelines of the blood vessels from the two breath-hold positions, the centrelines are
registered to one another to understand their translation or movement. The registration here is performed
using iterative closest point based registration. It iteratively revises the transformation (translation, ro-
tation) needed to minimise the distance between the points of the two initial scans. The optimiser used
for finding the minimum error in our approach was the Levenberg Marquadt (LM) optimiser. The LM
algorithm is an iterative technique that locates a local minimum of a multivariate function that is ex-
pressed as the sum of squares of several non-linear, real-valued functions. As the optimiser finds the
minimum error, the just found transformation gives the final translation or movement between the liver
breath-holds.

The resulting average movement of the liver blood vessels from the inhale to exhale position was
thus found to be 3.66mm in the x (left-right) direction, 31.17mm in y (superior-inferior) direction and
10.57mm in z (anterior-posterior) direction. The process of finding centrelines from the vessel thresh-
olded models and their rigid registration took less than 20 seconds. The result gives important infor-
mation in adjusting the minimally invasive therapies according to the liver movement during breathing.
Also, the result proves the importance of having an intra-operative update of liver models during liver

resection to account for liver movement.

4.4 Paper II1

Results from Paper II have shown the importance of having a fast blood vessel segmentation and centre-

line extraction for intra-operative update of the models. The planning and navigation of interventional
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procedures and catheterisation, requires a good knowledge of the blood vessels, centrelines and diameters
at different cross-sections of blood vessels.

In this paper, we propose a novel combined blood vessel segmentation, centreline extraction and
radius detection method, with the main aim of reducing the processing time, by processing only the blood
vessel regions of the image. The novelty of the method is in performing only 2D cross-sectional analysis
at the vessel trunk with our own circleness equation, which reduces the overall computing expense.

The proposed method works by tracing the blood vessel from a user provided initial position seed,
direction seed and radius, to the end points of the continuous blood vessel structure. The direction seed,
which is also a position, helps in setting the tracking direction by estimating the vector connecting the two
positions. Similar to Paper I, eigenvectors are calculated to estimate the vessel directions. The vessel
cross-vectors are then used to interpolate a 2D blood vessel cross-section image at the seed. Fig. 4.2
illustrates the overall flowchart of the process.

On determining the cross-section image, the vessel border is extracted by applying a Canny edge
detection filter [18]. The radius is then calculated by propagating outwards from the seed towards the
border along the vessel cross directions and an average of all the edge intensities is taken as the local
adaptive threshold at that blood vessel cross-section.

At the vessel trunk, we formulated a new circle structure enhancement filter or circleness filter to give
an output that resembles a Guassian profile with its peak as the centre of the cross-section. The circleness
method is based on 2D Eigen analysis of the 2D Hessian matrix obtained from the cross-section image.
The circleness filter is given by,

SZ

C=(1—e %) (1 ¢ 27) (4.4)

where CT, is circle enhancement ratio that gives a higher value at the center of the cross-section compared
to pixels near the border, given by
o — P2p1+ dops| 4.5)
[A2p2| — [A2p1]

The seed point for the next cross-section is then calculated along the vessel direction from the 3D
position of the centre in the original image, and the new seed is saved into the seed list for further
processing.

Our method works on the principle that there is a significant change in radius at the blood vessel
bifurcation compared to the neighbouring blood vessel trunks. At a bifurcation, the modified multi-scale
vesselness, as explained in Paper I, is performed at the volume around the bifurcation to estimate the
different bifurcating vessel tracks. This makes two distinct peaks representing different bifurcating parts
of the vessel.

The bifurcating vessel direction is calculated using Eigen analysis at each centre, and then used to
find the next possible centre or seed locations at each of the bifurcating vessels. Finally, the new seeds
are saved into the seed list, and the algorithm loop continues until seeds go out of the connected blood
vessels or the image region.

Our proposed method was evaluated on five contrast enhanced MR angiogram images and three syn-
thetic blood vessel-like images. Three of the medical images were obtained from the publicly available
DICOM image database of the OSIRIX software [1] and the other two were obtained from the Institute

of Medical Science and Technology, University of Dundee. The synthetic images were made from an
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Figure 4.2: Overall process flowchart for Paper 11l

extension to the traditional Lindenmayer system [57], mentioned in Section 2.6.1.

When comparing the processing time for finding the blood vessel centreline, our proposed method
was found to be on average more than 20 times faster than whole image processing by multi-scale vessel-
ness [53] with thresholding and thinning [81] and more than 7 times faster than our own earlier method
of blood vessel centreline extraction. Also, the centreline extraction was found to be accurate with a
mean error less than 1 voxel in comparison to the corresponding geometric centres. Also, the percentage
of bifurcating vessels not detected shows that accuracy in bifurcating vessel detection increases with in-
creasing radius, with 100% detection from a radius of 3.5 voxels, above 90% detection from radii of 2 to

3.5 voxels, and above 70% detection from radii 1 to 2 voxels.

4.5 Paper 1V

In this paper, we propose an alternate method of blood vessel segmentation, which is a variation of
the method proposed in Paper III. The novelty of this method is in performing only 2D cross-sectional
analysis for the whole tracking, including bifurcation analysis.

Similar to Paper III, the user initialises the tracking by setting a seed point, a direction seed point
and an approximate blood vessel cross-section radius at the seed point. The cross-section image at the
seed point is found using the eigen vectors at the seed. The vessel cross-section boundary is then found
by Canny edge detection [18], and an approximate diameter of the cross-section is calculated by taking
the maximum of the diameters along the cross-sectional eigenvectors from the seed to the cross-section

border.

37



Here, the bifurcation is detected on the assumption that the contour of a vessel bifurcation cross-
section is very different from the contour of a vessel trunk cross-section. The bifurcating vessel cross-
section is thus identified by calculating the shape descriptors, such as compactness and radius variance
[87]. Fig. 4.3 shows the change in shape descriptor values when the cross-section is a bifurcation.

Compactness is a measure of how circular a given contour is. It can be defined as
Compactness = P2/A (4.6)

where P is the perimeter of the vessel cross-section shape and A is the area of vessel cross-section. Here,
the perimeter is calculated estimating the number of border pixels for the vessel cross-section and the
area found by estimating the number of pixels representing the vessel cross-section. Radius variance
is the variance in the distance from the centre candidate to the border points or the vessel cross-section
contour.

Compared to Paper III for cross-sectional analysis, the proposed method uses the circleness filter for
both vessel trunk analysis and vessel bifurcation analysis. A single-scale approach is used to enhance the
cross-section at vessel trunks, while the multi-scale space approach is used to enhance the cross-section
at vessel bifurcations. The multi-scale integration of the circleness is performed by taking the maximum
across different scales, given as

Crulti = max C 4.7

Omin<0<Tmax

where C' is the single scale circleness described in Eq. 4.4, and o,,;,, is the minimum radius and ¢,
is the maximum radius. o,,.; 1S set as the radius of the cross-section, and o,,,;, is set as one-third the
value of 0,4, for detecting smaller bifurcations of down to one third the size of the radius. Thus using
the circleness for the cross-sectional analysis, the algorithm proceeds in the tracking of the blood vessel
cross-sections to the end of the connected blood vessel region.

Once the 3D blood vessel segmentation is obtained, the user is given an option to perform a post-
processing, where the initial blood vessel segmentation output is set as a seed volume or contour for an
active contour evolution [125], in order to smoothen the surface of the segmented vessel. The user then
sets the region of interest, the processing intensity range, and the values for external and internal forces
governing the flow of the contour, before starting the evolution. On completing the evolution, the final
3D blood vessel segmentation is well fitted to the original blood vessel.

The proposed method was applied on a set of eight images: four synthetic blood vessel images and
four medical images. The synthetic and medical images were obtained in a similar way as in Paper III.
Our validation has shown that the centreline error between our centre and the geometric centre of cross-
section is below 0.8 pixels and also that the Dice coefficient for the segmentation is found to be 80% =+
2.7%. On combining our method with an optional active contour post-processing, the Dice coefficient
for the resulting segmentation is found to be 94% =+ 2.4%. The results show that the percentage of vessels
detected is 100% at and above radius of 2.5 voxels for our proposed. However, the percentage of vessel
detection reduces as the radius of vessel falls below 2 voxels for all the methods. Also, by restricting
the image analysis to the interesting regions and converting most of the three-dimensional calculations
to two-dimensional calculations, the processing of our method was in our experiments found to be more
than 18 times faster than whole image multi-scale vesselness with thresholding and thinning, 8 times
faster than user-initiated active contour segmentation with thinning and 7 times faster than our own

previous method.
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Figure 4.3: Shape descriptor values at various cross-sections of the blood vessel.
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4.6 PaperV

Primary liver cancer, which consists predominantly of hepatocellular carcinoma, is the fifth most com-
mon cancer worldwide and the third most common cause of cancer mortality [43]. The incidence of
primary liver cancer is increasing in several developed countries and expected to continue increas-
ing [13]. Liver resection is the treatment of choice for patients with different types of liver tumours,
including metastases of colorectal cancer, hepatocellular carcinoma and some types of another primary
and metastatic tumours, with 5-year survival rates of 40-58% following resection [112, 113, 115]. The
resection of liver requires extra thorough planning of individual surgical strategy, especially when a non-
anatomical parenchyma-sparing technique is concerned. A 3D visualisation of liver blood vessels will
greatly help in better planning of liver resection.

We present a simple, user-friendly and fast method for 3D modelling of liver vascular structures.
This method can be useful for preoperative planning and intra-operative navigation of liver resection,
both with laparoscopic and open access. The work done in the paper is a clinical adaptation of the method
in Paper III. The methods used here for liver blood vessel segmentation are divided into preprocessing,
blood vessel segmentation and segmentation leak restriction.

The first step in the liver blood vessel segmentation is to pre-process the data to enhance the blood
vessel intensity range and smooth out the noises. Within the preprocessing step, the images are first
remapped to a CT number or Hounsfield unit (HU) range of the CT image which corresponds to the
densities near to contrast-enhanced blood. Followed by curvature flow smoothing of the image to denoise
the image, while preserving the blood vessel edges. The preprocessing step concludes by resampling the
resulting image to an isotropic 1mm voxel image for later structural analysis.

After the preprocessing of the image, the next step is to segment the blood vessels using the seed
based blood vessel tracking method described in Paper III. A change from the method of Paper III is that
we have an additive multiscale integration of modified multiscale vesselness compared to the usually
used maximum of scales. This helps in reducing the diffusion between nearby tubes and also the filter
enhances towards the centre of the vessel cross-section.

The last step in the liver blood vessel segmentation is the vessel direction deviation based leak re-

striction. Here, the angle between the current branch direction and its grandparent branch is checked to
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Figure 4.4: Hepatic and portal blood vessels segmented using the proposed method in Paper V. Blue
represents the hepatic vein, red represents the portal vein, and the yellow represents the region segmented
as both hepatic and portal vein. The yellow region is the leak of our method from hepatic to portal or
vice versa.

estimate the deviation in angle. A branch with a huge deviation in angle is considered as a leak branch
and the tracking in the branch is stopped. Also measured is the vessel bifurcating angle, which is angle
between the vessel tracking vectors before and after the bifurcation. The user is given an option to adjust
the vessel bifurcating angle range to limit the abrupt deviations in vessel tracking directions that might
be related to leaking.

The data used in the study are CT images of patients acquired with contrast enhanced portal phase.
Fig. 4.4 shows a hepatic and portal blood vessel segmentation output by the use of the proposed method.
The results show that the processing time taken for the liver blood vessel segmentation is less than 2min.
However, the preprocessing time was at an average 11min. Also, the percentage of detection of blood
vessels by the proposed method was found to be 100% for all blood vessels of radius at and above 3mm,
80% at 2.5mm, 70% at 2mm and 50% at 1.5mm.
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Chapter 5
Discussion

Visualisation of blood vessels is crucial for many clinical procedures for diagnosis, planning and navi-
gation. This is especially important in interventional procedures, such as catheter navigation and liver
resection. In the case of catheter navigation a fast intra-operative update of blood vessels with the extra
information of their centrelines and radius, will provide a good base for navigation of the catheter, as
well as placement and selection of valves or stents according to the size of the blood vessel. In the case
of liver resection, fast blood vessel segmentation can help to 3D model the liver vasculature for planning
the resection, and provide faster update of the blood vessels during intra-operative procedure.

In our thesis, we have worked on developing a fast and user-friendly method for blood vessel seg-
mentation for interventional planning and navigation. During the period, we developed one method for
centreline extraction (Paper I), and two methods for blood vessel segmentation, centreline extraction and
radius estimation (Paper III & IV). The methods in Paper III and Paper IV are extensions of Paper I, and
are also much faster than Paper 1. In Paper II, we studied the movement of liver blood vessels to under-
stand the need for fast intra-operative update of blood vessel models, and in Paper V, we used clinical
adaptation of the method described in Paper III for liver resection planning. Fig. 5.1 illustrates the link
between the papers.

In Paper I, we developed a semi-automatic seed point based centreline extraction method. For our
method, we developed a modified multiscale vesselness, which has better dampening of noise and steeper
Gaussian-like profiles at the vessel cross-sections compared to commonly used vessel enhancement
methods. We used the Hessian-related eigenvectors for tracking the centres along the direction of the
blood vessel. The method as such was proven to be faster than methods which would require whole im-
age processing for centreline extraction, such as a vessel enhancement followed by thinning. However,
the processing time for the method was seen to increase with increased complexity or increase in the
number of bifurcations.

The idea behind the Paper I method was to only detect blood vessels that are of interest to the user,
which helped in reducing the processing time. However, the processing was not performed just within
the interesting vessel region, as the Hessian analysis was performed for the whole image. Only the cal-
culations related to modified multi-scale vesselness and centreline tracking were performed solely on the
voxels within the vessel region. Still, this helped to reduce the processing time, and also eliminated the
artefacts caused by vessel-like structures, which would otherwise be created with whole image analysis.

In Paper 11, we developed a rigid registration method to register between liver blood vessels of inhale

and exhale breath-holds. The method was developed to study the range of movement of the liver blood
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Figure 5.1: Illustration on the link between papers.

vessels to understand the need for an intra-operative update of blood vessels. The study would also give
an insight into improving the accuracy of minimally invasive therapies such as high intensity focused
ultrasound and radio frequency ablation. Here, we have used our modified multi-scale vesselness from
Paper I for vessel enhancement, as our vesselness has the advantage of detecting properly connected
vessels from Erdt ef al. [45] and the strength in suppression of background noise from Frangi et al. [53].
Thus this work also provided us with knowledge of how the modified multi-scale vesselness method
from Paper I performed on liver images.

After the vessel enhancement, the results were thresholded and then 3D thinned to obtained the
centreline. The resulting centrelines were then registered using iterative closest point based registration
to understand the movement of liver during the breathing cycle. Since the work was just an initial study
of basic understanding, only three volunteers’ liver MR images were used. In the translations of the
liver blood vessels obtained from the three volunteers, two had more similar translations of liver blood
vessels during breathing than the third volunteer. This was a result of increased inhalation and exhalation
by the third volunteer to hold the breath for longer periods. Thus, for more accurate understanding of
liver movement during breathing, the study has to be performed on a larger group of volunteers. Still,
the results from the paper provide a basic understanding of how much the liver moves during breathing,
which asserts the need for intra-operative update of blood vessels.

An intra-operative update of blood vessels require a fast segmentation and visualisation of blood ves-
sels. During the work of Paper II, we realised that our Paper I method was not fast enough in segmenting
a number of bifurcations and also that the method failed when the blood vessel structures become very
complex. This lead us to develop the method in Paper III, which is much faster than the Paper I method.
This method processes completely only the voxels of the interesting regions of the blood vessel. How-
ever, here it is found that the processing time increases with the increase in percentage of blood vessel
volume in the whole image, and with increasing number of bifurcations. This increased processing time
is still shown to be less than the processing time taken for methods related to whole image analysis.

The most critical step in the Paper III method is the bifurcation detection, as the bifurcation can be
missed if the tracked centre is too far into the vessel. However, our results on the analysis of the accuracy
of the bifurcation vessel detection implies that the chance of missing a bifurcation is higher only at

very small vessels with radius of around 1 voxel, which are less important for planning and navigation
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purposes.

A alternative method of blood vessel segmentation is explained in Paper IV. The Paper IV method
is a variation of the method in Paper III; the former uses only 2D cross-sectional analysis for the whole
tracking, but the latter uses 2D cross-sectional analysis at the vessel trunks and 3D volume analysis at
the bifurcations. Also, the bifurcation detection in Paper IV is based on the knowledge that the contour
of a vessel bifurcation cross-section is very different from the contour of a vessel trunk cross-section,
whereas in Paper IlI, the bifurcation detection is based on the knowledge that there is significant change
in radius at the vessel bifurcation compared to the neighbouring vessel trunks.

In Paper IV for the centreline validation, the centre calculated at each vessel cross-section was com-
pared to its geometric centre. One pixel is the minimum centre error that can occur at each vessel
cross-section. The centre error decreases with increasing radius, where the centre error is the highest at
1 pixel radius with 0.75 pixels error and least at 7 pixels radius with 0.09 pixels error.

The segmentation output of the Paper IV method without post-processing differ from the segmen-
tation output of whole image analysis method, as our method has more false positives and less false
negatives than the whole image analysis method. This is proven by higher precision and lower sensi-
tivity for the proposed method without post-processing compared to Frangi’s vesselness method. Lower
sensitivity for the proposed method without post-processing is due to the gaps in vessel segmentation,
particularly at areas where there is a sudden change in the vessel-tracking angle and also at bifurca-
tions where there is a bigger shift in seed positions. These gaps could later be filled with the use of the
post-processing step, which is an optional step for the user to smooth surface of the segmented blood
vessel and fit well to the original blood vessel. In synthetic images, the measurements show that the
segmentation from the user-initiated active contour segmentation is similar to the proposed method with
the post-processing step. However, on visual evaluation of medical images, active contour segmentation
detects less bifurcations than the proposed method without post-processing.

A drawback for both our blood vessel segmentation methods discussed in Paper III and Paper IV,
is that the algorithm might stop tracking at vessel abnormalities (e.g. aneurysms) and vessel gaps. The
reason behind this is that our method works by analysing the tubular or circular structural information
during vessel tracking. Still, a deeper analysis has to be done to estimate to what extent our methods
might fail in these situations. To overcome this drawback, in the future work we propose to detect
small gaps in the connected blood vessels with an angle based search at the end points and on detecting
abnormalities such as aneurysms in blood vessels, to incorporate spherical structure detection when the
tracking reaches an abnormal structure.

Although the alternate blood vessel segmentation method by tracking solely by 2D cross-sectional
analysis in Paper IV was made to reduce the processing time, the processing time for Paper 11l and Paper
IV are almost the same. This is due to the need of extra cross-sectional contour analysis for Paper IV.
In Paper V for liver blood vessel segmentation, we use the method from Paper III, as 3D bifurcation
analysis would give better vessel direction calculation corresponding to new bifurcation seed. Also, the
Paper III when compared to Paper IV will not need any extra pre-processing step, as no gaps are formed
at bifurcations with 3D analysis at the bifurcation.

The results from the liver blood vessel segmentation were validated by measuring the percentage
of detection of blood vessels. The validation results show that our proposed method detects 100% of
the blood vessels from 3mm radius and above, 80% at 2.5mm radius and reduces further as the radius

reduces. The most important vessels for resection planning are from a diameter of Smm (radius of
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2.5mm), because small vessels can be coagulated with many modern devices. Also the processing time
for tracking and segmenting hepatic-portal blood vessels was less than 2min. The preprocessing step
required for the liver blood vessel segmentation takes around 11min of processing, making the present
method not suitable for intra-operative blood vessel segmentation. However, blood vessel segmentation
could be used intra-operatively in the future, by GPU processing of the preprocessing step as it can be
parallelised.

In Paper V, we also implemented a leak restriction of the blood vessel segmentation tracking into
overlapped blood vessels, using vessel direction based procedure. However, results show that there are
still some leaks that occur with our algorithm. In the segmentation result we have given the leaked
region a different label than hepatic and portal veins, to leave the final decision making of where the
leaked region belongs to the user. It is to be noted that though leaks occur with our algorithm, these leaks
are minimised by the vessel direction based leak restriction procedure. Otherwise, the leaks could have
easily spread into the whole of the non-connected vessel.

Our liver blood vessel segmentation does not always provide smooth hepatic or portal vessel, as the
local segmentation output depends solely on how the contrast enhanced blood vessel is represented in the
CT image. In the future work, we would like to make 3D models of the blood vessels with the centreline
and radius information that we gather during segmentation, which would greatly help in obtaining smooth

3D visualisation of blood vessels.
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Chapter 6
Conclusion and Future Work

A correct segmentation of blood vessels is of major importance in many medical applications, e.g. diag-
nosis, surgical planning, navigation, simulation and training. A good blood vessel segmentation can help
in planning and navigation of many interventional procedures. It is well accepted that there is no general
purpose segmentation method suitable for all applications and imaging modalities. As such, the problem
has been approached from many disciplines using many different methods, as shown in Chapter 2.

In this thesis work, we have developed fast and user-friendly methods for blood vessel segmentation,
which could be applied for multiple contrast enhanced images of imaging modalities. During the process
of its development, we implemented novel filters that helped in enhancing the structures. A modified
multiscale vessel enhancement was developed, incorporating the advantages of both Frangi et al. [53]
and Erdt ef al. [45]. The new enhancement filter gave better dampening of noise and steeper Gaussian-
like profiles at the vessel cross-sections. Also, a circle enhancement filter was developed using the
eigenvalue analysis, that outputs a centre enhanced circle detection. The circle enhancement filter or
circleness filter is applied on 2D vessel cross-sections to provide a single peak at the centre of vessel
cross-section with single-scale analysis and multiple peaks at the bifurcation with multi-scale analysis.

The methods developed in this thesis work, is a centreline based tracking of blood vessels using
eigenvectors calculated at the centre of the blood vessel cross-section. We have also proposed two bi-
furcation detection methods, by either detecting a significant change in radius at adjacent cross-sections,
or by detecting the change in vessel contour from a vessel trunk to a vessel bifurcation. The final fast
blood vessel segmentation methods that we proposed vary in their bifurcation detection and analysis. In
one method, the bifurcation analysis is performed using multi-scale modified vesselness at a 3D volume
around the bifurcation cross-section, and the other method use multi-scale circleness at the 2D bifurca-
tion cross-section. The results have shown that both the methods work well in segmenting blood vessel
structures from synthetic and medical images. However, we have used the method with 3D analysis at
the bifurcation for our clinical application, as it might not require a post-processing step to fill the gaps
caused by 2D analysis at the bifurcation. Our blood vessel segmentation won the Best Innovative Idea
award from Inven2, Oslo, Norway, and it is currently filed for a patent.

Our study on liver blood vessel movement during breathing gave a better understanding of the need
of an intra-operative update for interventional procedures. An intra-operative update, which in-turn
require a fast blood vessel segmentation method. The study shows that the average movement of liver
hepatic and portal vein system from inhale position to exhale position is 3.66mm in x direction (left-right

direction), 31.17mm in y direction (superior-inferior direction) and 10.57mm in z direction (anterior-
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posterior direction).

Finally, our blood vessel segmentation method was clinically tested to visualise liver blood hepatic-
portal system for liver resection planning. The segmentation results validation has shown that the per-
centage of detection of blood vessels by the proposed method was found to be 100% of all blood vessels
at and above 3mm and 80% at 2.5mm of radius. Thus our method finds the important range of blood
vessels that are vital for the liver resection planning. Also the processing time was found to be only less
than 2min to segment the whole hepatic and portal liver blood vessel system. However, the preprocess-
ing step took around 11min of processing time, which could be improved in the future work by a GPU
implementation as the pre-processing step could be easily parallelised.

In the future work, we would work on testing the method for catheter navigation applications, es-
pecially with the use of MR as the interventional imaging. The method will also be tested further on
liver for more patient datasets, and will be implemented into our liver planning and navigation system,
Hepa-Navi. A more in-depth clinical study will also be conducted on a larger dataset of patient data to
get further insight into the movement of liver blood vessels during breathing. This information can be
valuable for adjusting the HIFU delivery and RFA ablation techniques. Also a brach-wise analysis of
liver blood vessels will be conducted to automatically classify liver into its segments. In this thesis, we
have not focused on the pre-processing step, but a GPU implementation of mainly the preprocessing for
liver blood vessel segmentation will be performed to reduce the whole processing time for the segmen-
tation to just a couple of minutes. We will also work on the possibilities of applying filters locally at the
just region of interest and also into other variations of pre-processing filters. Thus making the method
fast enough to be used intra-operatively, if the liver blood vessel segmentation models have to be updated

from new images taken during the operation.
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ABSTRACT

Extraction of blood vessel structure is important for improving planning, navigation and tracking in several
interventional procedures. Centerline based registration methods have proven to be fast for clinical applications and an
effective way of registering multi-modal images. Here, we present a novel blood vessel centerline extraction method in
3D. Our method consists of two parts, namely Multiscale Vessel Enhancement Filtering (MVEF) and Centerline
Extraction using Vessel Direction (CEVD). Our proposed MVEF has an improved noise reduction and better Gaussian
profile at the vessel cross-sections compared to conventional MVEF. The CEVD is our novel method for tracing the
peaks of the Gaussian profile of the local MVEEF at the vessel cross-sections. The peak of the Gaussian profile provides
the center position of the blood vessels. The novelty of this method is in effectively finding only the connected
centerlines of the blood vessels of interest. The proposed method was evaluated using both synthetic and medical
images. On comparing with Frangi's vesselness filtering combined with thinning, our method is shown to be
approximately 5 times faster. The results also show that our method is customized to detect only the desired blood
vessels, thereby eliminating the detection of unwanted vessel-like structures. The centerline accuracy was evaluated by
comparing with ground truth data created by finding Hough circle centers at each cross-section of the vessel structure.
The modified symmetric Hausdorff distance between our result and the ground truth was approximately 1 pixel for both
synthetic and medical images.

Keywords: Centerline extraction, vessel tracking, blood vessel segmentation, multi-scale analysis.

1. INTRODUCTION

The human body contains several different types of blood vessels that constitute a network of arteries and veins.
Visualization of these blood vessels is important for improving the planning and navigation in several interventional
procedures. It is specifically relevant in catheter based procedures like stent graft positioning and valve replacement and
also, in planning and navigation of laparoscopic liver resection. Detailed images of these blood vessels are initially
formed using computerized tomographic angiography (CTA) and/or magnetic resonance angiography (MRA) depending
on the part of the body and equipment available. These blood vessel contrast enhanced images provide a basis for
visualizing the blood vessels in three dimensions, which help the interventionists in planning and navigation during
procedures.

The interventional procedures of today are going more towards the use of multiple imaging modalities for improving the
safety for the patient and, for improving the operational procedures in general. This increases the need for faster blood
vessel visualization and registration between multiple modalities, for applications involving navigation using intra-
operative image modalities. Though many different methods are available for registration, centerline based registration
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methods have proven to be fast enough for clinical applications and an effective way of registering multi-modal images
[1,2,3,4].

Many methods for centerline extraction of blood vessels have been presented in the literature. In them, most of the
commonly used techniques depend on extracting centerlines from pre-segmented vascular models. For these cases, the
blood vessels are initially segmented through thresholding, model-based approaches or multiscale vessel segmentation
[5,6,7]. The segmented output is then skeletonised or thinned, ending up with the final centerline [8,9]. The main
disadvantage here is that they are computationally expensive since they must process the whole image space to find a
few connected blood vessels.

In this paper, we present a novel semi-automatic seed point based centerline extraction with local vessel enhancement.
Our method lets the user select a single or multiple connected blood vessels of interest, thus reducing the potential noise
of uninteresting voxels and also reducing the processing time.

The paper is organized as follows. Section 2 describes the methods used, which is divided into two parts, namely
Multiscale Vessel Enhancement Filtering (MVEF) and Centerline Extraction using Vessel Direction (CEVD). The
results are presented in section 3, where the reduction in processing time and the accuracy obtained are shown. We
conclude the paper in section 4 by giving details of possible future work.

2. METHODS

2.1. Multiscale Vessel Enhancement Filtering

Our method is based on the eigenvalue analysis of the Hessian matrix, as described in [6], [7] and [10]. The filter detects
voxels belonging to blood vessel structures, taking into account that arterial blood vessels resemble tubular structures
and venal structures resemble ellipsoidal structures.

Fig. 1. Eigenvalues along the principal direction of curvature of the cylinder.

The Hessian H of the image I describes the second-order structure of local intensity variations at each voxel. The
derivative computation of the Hessian matrix is combined with Gaussian G(g) convolution, for a scale ¢ that varies
accordingly to the width of the blood vessel [7].

Ixx(X: 0) Ixy(X; U) Ixx(X:' U)
H(X;0) = [Lx(X;0) L,(X;0) 1,,(X;0) )
Ly(X;0) Ly(X;0) I1,,(X;0)

where X = (x,y,2), Lx(X;0) = {%G(a)} *1(X), Ly(X;0) = {%G(O‘)} * [(X) and so on.
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This approach measures the contrast between the regions inside and outside the range of scale ¢ in the direction of the
derivative.

In Fig.1, A;, A, and A; are the eigenvalues corresponding to the eigenvectors v, v, and vs;, computed by Eigen analysis of
Hessian. On sorting |1;| < |1,| < |A3], eigenvalue A, represent the eigenvalue along the direction of the vessel and
eigenvalues A, and A; represent the eigenvalues along the vessel cross-section. A tube detection filter was developed
using these eigenvalues in [10].

V= (1- Lednl) (25, -2, - 2,) )

The tube detection filter output, obtained from the above equation also tends to detect noise voxels with no definite
structure. To reduce this noise, we made use of the structureness term described in [6], which is the Forbenius norm of

the Hessian.
S= //112 + 2,5+ 257 3)

Thus, our modified Equation 2 for a single scale is,

C (1 Wy 2y o (-
Vo= (1 [A51+125] ) (3 A=A )‘3) 1—e 2 “)
where c is a constant which depends on the grey scale range of the initial image [6].

We found Equation 4 to give exponentially reduced vessel response peak values as the scale is increased. To normalise
it, we multiplied Equation 4 with a scale dependent weighting term

V_{o ifV, <0 )

- Vdeko'

where k is a constant set to 0.5, based on initial experiments.

e ]

S ()

| -

Eigen Analysis Vessel Response Eigen Analysis Vessel Response

\

=]

Fig. 2. Left: Description of vessel response at vessel trunk. Right: Description of vessel response at vessel bifurcation.

The response of the vessel enhancement filter is highest at the scale that best fits the vessel. A multiscale response for
detecting vessels of varying width is obtained by selecting the maximum response for a range of scales between 6,,;, and
Omax as described in [6].
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Vmulti = max 4 (U) (6)

OminS0=Omax

The Fig.2. left, describes the final MVEF output at the vessel truck cross-section along eigenvectors of the blood vessel
and the Fig.2. right, describes the final MVEF output at the vessel bifurcation cross-section along eigenvectors of the
blood vessel.

2.2. Centerline Extraction using Vessel Direction

The centerline extraction method is based on local computation of MVEF explained in section 2.1. The semi-automatic
method is based on an initial seed point set by the user in one of the blood vessels. This seed point allows the user to
extract just the centerlines of the blood vessels of interest, thus reducing the noise and processing time. The seed point
can be placed anywhere inside the desired blood vessel.

[ Compute eigenvectors: v, v, and v,

v

Find cross-section plane using v, and v, ]

v

Compute MVEF for whole cross-section ]

Find peak points

Compute eigenvectors: v, v, and v,

v

Find next point along vessel using v,

if
outside vessel

................................. > Vessel

Vmux_
Response

seed 4 == ==

Fig. 3. Left: Simple flowchart description of center extraction from seed point. Right: 2D representation of center point
extraction from the user defined seed point.

In a 3D volume around the seed point, Eigen analysis is performed in order to find the eigenvalues A, A, and 25 and their
corresponding eigenvectors vy, v, and v; [7]. These eigenvectors represent the three principal directions of curvature of
the vessel at the voxel under observation. Applying the MVEF at the voxels with the limit of 6, along a vessel cross-
section plane results in a vessel response of which the profile is similar to a Gaussian. The position of the peak of the
Gaussian is set as the center point for the vessel cross-section as shown in Fig.3, right. At the center point, the Eigen
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Analysis is again performed to calculate eigenvector v, that corresponds to the direction of the vessel, which is used to
find the next cross section plane along the vessel for further centerline extraction. The Fig.3, left shows a simple
flowchart explaining the centerline extraction along the vessel trunk.

At the bifurcation, the Gaussian profile of the MVEF is different from that at the vessel trunk. Instead of a single peak, a
peak is found for each bifurcation. One of the peaks is set as the center point and the centerline extraction is continued as
explained previously. The other peaks are set as new seed points for starting new centerline extractions.

Centerline,
——.————
.//
P
. \¥%

—_ ~o-__ 1)

Seed Point /

Fig. 4. Representation of 3D centerline extraction from a single seed point

The centerline extraction of the whole blood vessel with all its bifurcations are thus calculated from a single seed point
provided by the user as represented in Fig.4.

3. RESULTS

The proposed method was evaluated using both synthetic and medical images. The synthetic data was created through
the VascuSyth software implemented in ITK [11]. Multiple varying synthetic data were possible by varying the vascular
parameters file and noise parameter file for the software. The parameters mainly used were the number of leaf nodes,
pressure at perforation and terminal nodes, image size and noise type. The medical images were downloaded from the
freely available DICOM medical image database of OSIRIX [12].

The method is compared with Frangi's vesselness [6] combined with thinning method by Lee [13]. Frangi’s vesselness is
an automatic blood vessel enhancement filter, where a multiscale vesselness is calculated for every voxel in the image.
This is an automatic method where the user has to only select the scales of the blood vessel. Fig. 5 shows six synthetic
vessel images of size 100x100x100, of which centerlines were extracted using the proposed method with only a single
seed point. Each of these synthetic images has varying number of bifurcations and added Gaussian noise. In Fig. 6 the
leftmost column shows the Maximum Intensity Projection (MIP) of the three dimensional medical images. The white
circles indicate the seed points used by our method. The images shown are relevant for catheterization procedures. The
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middle column shows the MIP results of the centerline extraction using the Frangi's vesselness combined with Lee's
thinning and the rightmost column shows the results of centerline extraction using the proposed method. On the medical
images of row 2 and 3, two seed points were used to find the centerline of the completely disconnected blood vessels
compared to a single seed point used in the medical image of row 1.

(a) (b)

oo x

(d) (e) 4 ()
Fig. 5. (a-f)Synthetic images with varying number of bifurcations, overlaid with centerlines extracted using our proposed
method
3.1. Processing time

The centerline extractions were performed on an Intel(R) Core(TM) i7CPU @2.93GHz with 8GB RAM. Table 1 below
illustrates the processing time for the Frangi and Lee method and the proposed method, for synthetic images in Fig. 5
and medical images in Fig. 6. On an average, the proposed method is about five times faster than the traditional method.

Table 1. Comparison between processing time for Frangi + Lee method and the proposed method on synthetic and
medical images

Dataset: Processing Time
Frangi + Lee Proposed Method

Synthetic Image (a) 42.7s 3.7s
Synthetic Image (b) 43.7s 6.2
Synthetic Image (c) 41.5s 8.8s
Synthetic Image (d) 44.5s 10.0s
Synthetic Image (e) 44.0s 10.2s
Synthetic Image (f) 43.7s 15.3s
Medical Image (a) 386s 111s
Medical Image (d) 240s 36s

Medical Image (g) 371s 48s
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3.2. Centerline accuracy

At each blood vessel cross-section calculated using eigenvectors at the cross-section, a Hough circle is fitted. The center
of Hough circle at the blood vessel cross-section is used as the ground truth center and the final combination of all
centers give the ground truth centerline. This ground truth centerline is compared with our result by calculating Modified
Symmetric Hausdorff Distance (MSHD) between them [14].

MSHD(A, B) = max {1~ Scamines(d(a, b)), - Tpes mingeald(b, a)3} ™

() ' (h) (i)

Fig. 6. (a)(d)(g) MIP of 3D Medical Images with the white circles representing the seed points selected (b)(e)(h) MIP of

centerlines extracted using Frangi's vesselness combined with Lee's thinning. (¢)(f)(i) MIP of centerlines extracted using
our proposed method.

We have used MSHD for its desirable features that help in matching two objects based on their edge points. These
features include, monotonic increase in its value as the difference between two edge point increases and its robustness to
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outlier points. Table 2 gives the MSHD from our centerlines and centerlines from the Frangi and Lee method to the
calculated ground truth. It is shown that both methods have good centerline accuracy for all synthetic images with all
MSHD of one or less than one pixel. The difference between the Frangi MSHD and our MSHD is <= 0.1 pixel for the
six synthetic images, and 0.4, 12.0 and 39.4 for the medical images. For the first medical image, both methods again
have good accuracy with MSHD less than 2 pixels. But for the second and third medical image there is a huge difference
in the accuracy, which is consistent with the increase in undesired centerlines detected by the Frangi and Lee method.

Table 2. Comparison between Modified Symmetric Hausdorff Distance (MSHD) for Frangi + Lee method and the
proposed method for all images. MSHD was calculated between the ground truth and results from each of the methods.

Dataset: Modified Symmetric Hausdorff Distance
Frangi + Lee Proposed Method
Synthetic Image (a) 0.96 0.89
Synthetic Image (b) 1.01 0.89
Synthetic Image (c) 0.92 0.94
Synthetic Image (d) 1.09 0.95
Synthetic Image (¢) 1.11 1.09
Synthetic Image (f) 1.70 1.54
Medical Image (a) 1.92 1.56
Medical Image (d) 13.17 1.15
Medical Image (g) 39.81 0.47

4. DISCUSSION AND CONCLUSION

In this paper, we have presented a novel semi-automatic seed point based centerline extraction method. Our proposed
MVEF has an improved dampening of noise and better Gaussian profile at the vessel cross-sections compared to
conventional MVEF [6]. The CEVD is our novel method for tracing the peaks of the Gaussian profile of the local MVEF
at the vessel cross-sections. Though processing time for the proposed method was seen to vary with complexity and the
scale range of the blood vessel structures, the proposed method was faster than the conventional method at any given
variation. The processing time of our method depends mainly on the total number of voxels belonging to blood vessels
rather than the size of the whole image.

Furthermore, our method detects only the blood vessels that are connected to the user’s seed point. This is in contrast to
automatic and global centerline extraction method such as Frangi's vesselness with thinning, which also detects artefacts
that look similar to vessel structures such as bones and muscle edges. This will be very helpful in medical applications
such as catheter tracking, liver surgery planning etc., where the surgeon or physician would like to focus only on the
blood vessels of interest, i.e. most relevant to the procedure. Since our method depends on the blood vessel connectivity,
gaps in the blood vessels could cause abrupt termination of centerline extraction.

In the future work, we will investigate the possibilities of further reducing the processing time as well as increasing the
robustness of the method when used for complex medical images. This will include automatic detection of blood vessel
width, while the centerline is tracked in order to limit the cross-section analysis to be within the blood vessel and to free
the user from selecting the different scales of the blood vessels. This will also improve the effective scale selection and
therefore, reduce the need of multiscale analysis. Work will also be done on improving the ability of the method to detect
and jump across gaps and to further investigate an extension of the centerline extraction method to a fast vessel
segmentation procedure.
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Abstract—

The segmentation of tubular tree structures like vessel systems in volumetric datasets is of vital
interest for many medical applications. In this paper we present a novel, semi-automatic method
for blood vessel segmentation and centerline extraction, by tracking the blood vessel tree from a
user-initiated seed point to the ends of the blood vessel tree. The novelty of our method is in
performing only two-dimensional cross-section analysis for segmentation of the connected blood
vessels. The cross-section analysis is done by our novel single-scale or multi-scale circle
enhancement filter, used at the blood vessel trunk or bifurcation, respectively. The method was
validated for both synthetic and medical images. Our validation has shown that the cross-sectional
centerline error for our method is below 0.8 pixels and the Dice coefficient for our segmentation
is 80% =+ 2.7%. On combining our method with an optional active contour post-processing, the
Dice coefficient for the resulting segmentation is found to be 94% = 2.4%. Furthermore, by
restricting the image analysis to the regions of interest and converting most of the three-
dimensional calculations to two-dimensional calculations, the processing was found to be more
than 18 times faster than Frangi vesselness with thinning, 8 times faster than user-initiated active

contour segmentation with thinning and 7 times faster than our previous method.

Keywords—

Blood vessel segmentation, Centerline extraction, vessel tracking, multi-scale analysis and circle
enhancement filter



INTRODUCTION
Many clinical practices rely on angiography in multiple imaging modalities. This leads to an
increasing need for visualization and segmentation of blood vessels. Analysis of blood vessel
morphology is very important in many clinical applications for diagnosis, planning and
navigation. This is especially important for planning liver resections and navigation of catheter-
based interventions. Catheter tracking require precise knowledge of the blood vessels for
accurate positioning of stents and valves.

Manual segmentation of blood vessels is impractical as they present very complex 3D
structures, which makes an automatic or semi-automatic segmentation important. In the
literature, many papers are dealing with blood vessel segmentation”'. Conventional blood vessel
segmentation methods can be classified as top-down or bottom-up approaches. In top-down
approaches, the process starts from single or multiple user-initiated seed points and iteratively
merges nearby structures or regions based on a predefined condition. In bottom-up approaches, a
predefined condition for blood vessel segmentation is evaluated at each and every voxel of the
input image, not requiring any seed point initializations from the user.

Typical top-down methods include region growing and deformable models. Two major

conditions looked for in region growing methods are intensity value similarity and spatial
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proximity
methods include active contours or snakes, level sets and wave-front propagation™®'"'""”. These
methods work on iteratively adjusting the initial user set contour to fit to the blood vessel
structure. The major disadvantages of these methods are that there is little use of structure
information leading to high chance of leakage, and also that iteratively modifying the contour is

very time consuming.



Typical bottom-up methods are based on local shape descriptors or tube detection

4,5,11,21

filters’ The radius for tube detection varies, but following the concepts of scale-space
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theory , the response of a tubular filter is maximal if the scale fits the object size. Conventional
tube detection filters try to identify the tubular objects at different scales and combine all
responses into one multi-scale response. The major disadvantages of such methods are that they
are computationally very expensive, due to their processing of each and every voxel and its
neighborhood in the image at several scales.

Along with segmentation, a centerline extraction of these blood vessels is also important. An
extracted centerline could be used for fast registration of blood vessels and updating blood vessel

13,20

models obtained intraoperatively ~~. We have earlier proposed a centerline extraction method
that uses our modified multiscale vesselness equation'’. Our earlier method was faster than the
conventional vesselness method by performing the modified vesselness only within regions of
interest; however, this was still not fast enough, as it required prior calculation of whole image
Hessian.

In this paper, we present a novel blood vessel segmentation and centerline extraction method
incorporating both top-down and bottom up approaches. The main aim of this method is to
provide the user with a fast and easy to use blood vessel segmentation method, which has the
potential to be used for updating models during intra-operative procedures. The proposed method
is semi-automatic and works by processing a single 2D blood vessel cross-section at a time and

tracking the connected blood vessel tree to its end points. The final 3D blood vessel

segmentation is calculated by combining all the tracked 2D vessel cross-sections.



METHODS
Our proposed method focuses on segmenting the 3D connected blood vessels by tracking their
cross-sections from a user-initialized seed to the blood vessel ends. The user initializes the
tracking by setting a seed point, a direction seed point and an approximate blood vessel cross-
section radius at the seed point.

In this section we describe the proposed method, which is divided into four parts: 1) cross-
section image, 2) preprocessing for cross-section image analysis, 3) bifurcation detection, and 4)
circle enhancement filter. In the first part, we describe how the cross-section image is calculated
at a seed point and its corresponding cross-sections. In the second part, we describe all the
preprocessing steps required for further cross-section analysis. In the third part, we describe how a
cross-section is classified as a bifurcation. In the fourth, we describe our novel circle enhancement
filter, which is used enhancing the blood vessel cross-section and subsequent centerline
extraction. Finally, we describe an optional post-processing step that allows the user to modify the

output, so that the eventual segmentation gaps are filled properly.

Cross-section Image
At the beginning, the tracking direction of the connected blood vessel of interest is estimated as
the vector connecting the seed point and the direction seed point,

T = (xs —x)t + s — ya)i + (zs — z)k €]

. 2

where T is the tracking direction, (xs, Vs, Zs) is the seed point, (x4, V4, Zq) is the direction seed

and { is the unit vector along the tracking direction.



The tracking direction is used only at the seed point to initialize the direction of segmentation.
At the seed, the tracking direction is set as the vessel direction of flow and its cross vectors are set
as the approximate vectors representing the cross-section of the blood vessel. However, an Eigen
analysis of the Hessian matrix is calculated for precise information of the vessel cross-section
vectors. For the subsequent cross-sections along a trunk, the next possible center pixel or the
center candidate is determined by moving along the vessel direction from the previous center
position.

Eigen analysis can geometrically interpret the second order derivatives of an image at each
point. The second order differential quantity for a volume I (x, y, z) with a Gaussian convolution

95 (x,y,2), is given by the indefinite Hessian matrix"™”",
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and o is the scale parameter set according to the radius of the blood vessel. At the initial seed
point, the user defined initial radius is set as the o, and for the subsequent cross-sections analysis,
the previous cross-section radius is set as the o.

Let the eigenvalues of the Hessian matrix H, be A;, 1, and A3, and their respective normalized
eigenvectors be represented by V7, v, and v5. On sorting the eigenvalues as |1;]| < |1,] < |45],
the eigenvector v; represents the vessel direction and the eigenvectors v, and V5 represent the

vessel cross-section vectors. These vessel cross-section vectors are used to create the vessel cross-



section image, as shown in Fig. 1. The vessel cross-section image is found by interpolating at a

discrete set of points along the 2D plane represented by the two cross vectors, U, and 3.

Preprocessing for Cross-Section Image Analysis
Before moving into the cross-section analysis, some preprocessing steps have to be performed for
calculating the vessel cross-section border, radius and local threshold. These preprocessing steps
help understanding the structure at the cross-section and thus in segmenting the blood vessel
itself.

The border of the vessel cross-section is found by applying a Canny edge detection filter on
the cross-section image, as the blood vessel intensity is different from that of its surroundings’.
2D Gaussian smoothing filter is applied at the beginning of the Canny filter to smooth out noise.
The variance of the Gaussian is proportional to the square of previous radius or the initial user-set
radius. Fig. 2 shows the border of the blood vessel cross-section after applying the Canny edge
detection method. Each border pixel obtained represents the discrete border contour of the vessel
cross-section.

An approximate diameter of the cross-section is calculated by taking the maximum of the
diameters along the perpendicular vectors v, and v, from the seed to the cross-section border, as
shown in Fig. 2. Finally, the local threshold at the vessel cross-section is also found by averaging

all the blood vessel cross-section intensities along the border of the vessel cross-section.

Bifurcation Detection
After performing the preprocessing steps, each of the vessel cross-section images are checked to
determine if it is a bifurcation. The contour of a vessel bifurcation cross-section is very different

from the contour of a vessel trunk cross-section. Fig. 3 illustrates difference in the shape of the



vessel cross-sections between trunk and bifurcation. By calculating the shape descriptors:
. . . . . . . 18
compactness and radius variance, we can identify bifurcating vessel cross-sections *.

Compactness is a measure of how circular a given contour is. It can be defined as

PZ

Compactness = T 5)

where P is the perimeter of the vessel cross-section shape and A is the area of vessel cross-
section. Radius variance is the variance in distance from the center candidate to the border points
or vessel cross-section contour.

Whenever there is a sudden increase above a certain threshold or a sudden change in the shape
descriptors (compactness and radius variance), the corresponding cross-sections are analyzed as
bifurcation cross-sections. Fig. 3 illustrates how the shape descriptor values change as the cross-
section changes from vessel trunk to the vessel bifurcation. The sudden change in the shape

descriptors resembles the change in vessel cross-section border, signifying bifurcation.

Circle Enhancement Filter

On determining whether the vessel cross-section is part of a vessel trunk or a vessel bifurcation,
the process goes forward in enhancing the structure accordingly and finding the center of the
cross-section. We have implemented a novel circle enhancement or “circleness” filter, which
enhances circular structures in the image and provides a good Gaussian profile for the output
intensity. The filter adopts the scale space approach with the possibility of performing the
operation in single or multiscale.

In the proposed method, a single scale approach is used to enhance the cross-section at vessel
trunks, while the multiscale space approach is used to enhance the cross-section at vessel

bifurcations. This makes the bifurcation detection step a very crucial step.



Our circleness filter is based on 2D Eigen analysis on the 2D Hessian matrix computed at each

pixel of the vessel cross-section image. Similar to Eq. 3, the 2D Hessian matrix is given by,

azgzw azgzna
52, lap*
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Lo s 0%92p0 . 0%92p0
2D dyox 2D a2y

Hyp(x,y;0) = (6)

where I, is the vessel cross-section image, g,p, is the 2D Gaussian filter and ¢ is the scale
parameter set according to the vessel cross-section radius, which is found at the preprocessing
step.

Let A,p; and 4,p, be the eigenvalues from the 2D Hessian matrix. These eigenvalues are used
to understand the structural information of at each pixel of the cross-section image. The circleness
filter is formulated with the knowledge that both the eigenvalues will be high at the center of the
cross-section as the cross-section is near circular in nature. After sorting the eigenvalues

(I122p1] < 143p21), we have coined a circleness ratio

_ |A2p1 + a2l %)
R = ———————
||/121)2| - MZD1||
Our novel circleness equation at a single scale using the circleness ratio Cy is
2 52
€= (1-eCrb )(1 - e‘zc2> (8)

where k affects the rate of increase of the Gaussian profile of the circleness filter, while S is the

Frobenius matrix norm of the Hessian,

S = 1’/12012 + /12022 )]

which reduces the effect of noise in the filtered output.
For more efficient processing, we apply our circleness filter only inside the vessel cross-
section region. The region of interest is determined by applying the local threshold found in the

9



preprocessing step. Fig. 4(a) shows the single scale circleness filter output on a vessel trunk cross-
section image. The single peak obtained from the single scale circleness filter applied to a vessel
trunk cross-section is the center of that cross-section. Moving along the vessel direction v; from
the current center, we find the next possible center or the next center candidate for the next cross-
section of the vessel trunk.

At the bifurcation cross-section, we apply the multiscale circleness filter. This allows
determination of multiple peaks, where each corresponds to a bifurcating vessel. The multiscale
circleness is formulated as,

Crutei = - max C(o) (10)

min<0<0max
where is 0y, 1s the minimum radius and ,,,,, is the maximum radius. 7,4, is set as the radius
of the cross-section and, 0,,;, is set as one-third the value of 0,,,, for detecting smaller
bifurcations of up to one-third the size of the radius.

Fig. 4(b) shows the multiscale circleness filter output with multiple centers at the vessel
bifurcation cross-section image, where each center corresponds to a different bifurcating vessel.
Each center found at the bifurcation cross-section is set as a new seed for the whole process to
start again.

At the vessel cross-section, the immediate surrounding 3D neighborhood is also checked and
added as part of the vessel, if they fall within the local vessel threshold. This helps in reducing the
gaps that might be caused by processing 2D slices along a 3D blood vessel. The vessel cross-
section tracking finally stops, when the newly found center candidate falls outside the connected
blood vessel region.

While tracking through the blood vessel, the circleness filter output at each vessel cross-

section is added into its corresponding 3D voxel in the final segmentation output. Thus, when the
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whole connected blood vessel tree is tracked, the method simultaneously produces the complete

3D blood vessel segmentation output and the extracted centerline.

Post-processing
The initial 3D blood vessel segmentation result is obtained after the vessel cross-section tracking
comes to a stop by reaching all the blood vessel end-points. The user then has an option to
perform a post-processing, where the initial blood vessel segmentation output is set as a seed
volume or contour for an active contour evolution”. The user has the option to set the region of
interest and the processing intensity range. Adjusting lower and upper threshold values sets the
intensity range, and the curve within the intensity range can be low-pass filtered for smooth
propagation of the contour. Finally, the user also has to set values for external and internal forces
governing the flow of the contour, before starting the evolution. On completing the evolution, the

final 3D blood vessel segmentation is obtained, which has a smooth surface, well fitted to the

original blood vessel.

RESULTS
The proposed method was applied on a set of eight images: four synthetic blood vessel images
and four medical images. The synthetic images used for our validation were made by a method
proposed by Galarreta-Valverde et al., which is an extension of the traditional Lindenmayer
system (L-system) that generates synthetic 3D blood vessels by adding stochastic rules, and they
were downloaded from Galarreta-Valverde’s web-database of synthetic images’. These synthetic

images were chosen, as they resemble blood vessels from medical images to a great extent. All
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the medical and synthetic images were resampled to ImmxImmxImm voxels to obtain an
isotropic image resolution that is good for structural analysis.

Fig. 5 shows the synthetic blood vessel images and various outputs obtained using different
methods. The first column shows all the synthetic blood vessel images (Imagel-4) used in our
study. The second column shows the 3D models made from Frangi vesselness’. In the third
column, the 3D segmented output from the active contour method with a user-initiated seed point
is shown™. The fourth column shows the 3D models made from blood vessel segmentation using
our proposed method without the optional post-processing step, and the segmentation result with
post-processing step is shown on the last column. We did not consider adding noise in the
synthetic images as our method expects that a blood vessel with contrast will have higher intensity
inside than outside of the vessel. Also, our method works by tracking the blood vessel only from
within the blood vessel, without considering the outside noise.

Fig. 6 shows the medical images used in our study and their corresponding outputs. All the
medical images (Image5-8) shown in the first column are contrast enhanced magnetic resonance
angiogram images. The centerlines extracted using the proposed method are shown in the second
column. Lastly in Fig. 6, the 3D model views from the blood vessel segmentation performed
using Frangi vesselness with thresholding™’, active contour segmentation” and the proposed
method are shown in the third, fourth and last column, respectively. For medical images, the
thresholding for Frangi vesselness is done using maximum entropy thresholding’. The entropy-
based thresholding method is selected as it is shown to give better results when compared to other
similar thresholding methods'. The seed for the active contour segmentation is a sphere with
diameter of 5 voxels and center at the same position as that of the corresponding seed for the

proposed method.
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Processing Time
All blood vessel images, both synthetic and medical, used in our study were segmented on a
MacBook Pro with 2GHz Intel Core i7 processor and 8GB 1600 MHz DDR3 RAM. We
compared the processing time for segmenting the blood vessels from the 8 images by different
methods. Table | shows the processing time taken for centerline extraction by Frangi vesselness
with thinning™”"*, active contour segmentation with thinning, our own earlier method for
centerline extraction'” and our proposed method. The thinning for both Frangi vesselness and
active contour segmentation was performed using Lee’s method'*, where the 3D neighborhood of
each foreground voxel is checked for thinning. Our proposed method is shown to be on average
more than 18 times faster than Frangi vesselness with thinning, 8 times faster than active contour

segmentation and more than 7 times faster than our earlier method'? for centerline extraction.

Centerline Validation
Centerline validation is performed by finding the error between the ground-truth center and the
center, from the proposed method at each vessel cross-section. Making a reliable manual ground-
truth center for each and every vessel cross-section is a time consuming task for humans. An
alternative is to find the geometric center of the vessel cross-section, which is calculated by
performing Hough circle detection, as the blood vessel cross-sections resemble circles. The
Hough circle center will correspond to the center of the vessel cross-section even when the cross-

section is elliptical in shape.

The center error is calculated by finding the Euclidean distance between the Hough circle
center and the center calculated by the proposed method. Fig. 7 shows the mean center error at

vessel cross-sections of all synthetic and medical images at various radius, and the standard
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deviation between images. The center error decreases with increasing radius, where the center
error is the highest at 1 pixel radius with 0.75 pixels error and least at 7 pixels radius with 0.09

pixels error.

Segmentation Validation
Ground-truth data for the images are necessary for validating the segmentation methods. In our
study, we only made ground-truth data for synthetic images and the segmentation validation was
performed only on these images. A simple thresholding is sufficient to create the ground-truth
images for synthetic images, as there is no information outside the vessel regions.
In our study, the validations for segmentation are performed at both the 2D vessel cross-
section segmentation and the final, whole 3D blood vessel segmentation. Various measurements

taken for validating 2D and 3D segmentation are,

) L 2TP
Dice COEffLClent = m (11)
Sensitivity = P 12
ensi le_TP+FN (12)
Specificity = N 13
pecificity = FPLTN (13)
Precision = i 14
recision = wm——— (14)

where, TP is true positives, FP is false positives, TN is true negatives and FN is false negatives.
The Dice coefficient, which is same as the F1 score, is a widely used similarity measurement
between two segmentations.

2D ground-truth vessel cross-section images for validation are obtained by interpolating 3D
ground-truth at positions corresponding to the positions of 2D cross-section images calculated in

our proposed method. Table 2 shows the mean Dice coefficient, sensitivity, specificity and
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precision measurements, for all the 2D vessel cross-section segmentations of all four synthetic
images; and their average values are 87.9% =+ 0.9%, 89.2% = 3.0%, 98.3% + 0.7% and 90.0% +
4.0%, respectively.

Fig. 8 shows sensitivity, specificity and precision measurements at Dice coefficients measured
for 3D blood vessel segmentation of synthetic images by Frangi vesselness, vesselness with post-
processing by use of active contour segmentation, our proposed method and our proposed method
with post processing. For the proposed method, the measurements are given for vessel
segmentation without and with the post-processing step. Our proposed method provides
segmentation output with Dice coefficient of 80% + 2.7%, without the use of post-processing.
While, the validation measurements for the proposed method with post-processing step are, 94%
+ 2.4% for the Dice coefficient, 88.7% + 4.0% for sensitivity, 99.9% for specificity and 99.9% for

precision.

Bifurcating Vessel Detection

Since the segmentation validation is performed only for the synthetic images, a bifurcating
vessel detection study is performed for validating the proposed method on medical images. For
medical images, it is important to know the percentage of detection of bifurcating vessels to
understand how the proposed method performs as the radius of the bifurcating vessel reduces.

Fig. 9 shows the percentage of bifurcating vessels detected as radius of the bifurcating vessels
increases from Imm. The study is performed first by counting the total number of bifurcating
vessels, and then by identifying the number of bifurcating vessels that were segmented by active
contour segmentation, Frangi vesselness method with maximum entropy thresholding, and our

proposed method, at different vessel radius. The results show that the percentage of vessels
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detected is 100% at and above radius of 2.5 voxels for our proposed. However, the percentage of

vessel detection reduces as the radius of vessel falls below 2 voxels for all the methods.

DISCUSSION
We have presented a semi-automatic algorithm for segmentation of blood vessels and extraction
of their centerlines. The algorithm segments blood vessels from single user-initialized seed, and
works by analyzing vessel cross-sections and tracking them to the ends of the connected blood
vessel tree.

The proposed method was tested on eight image datasets, in which four were synthetic images
and four were medical images. With the use of these datasets, the proposed method was validated
for centerline and segmentation accuracy, as well as for processing time.

For the centerline validation, the center calculated by the proposed method at each vessel
cross-section was compared to its geometric center. One pixel is the minimum center error that
can occur at each vessel cross-section. Fig. 7 shows that the mean center error found for all the
vessel cross-sections is 0.55 pixels, which proves that the mean center error for the proposed
method is half of the individual minimum. The figure also shows that the center error is lesser at
the odd diameter cross-sections than its adjacent even diameter cross-sections. This is due to the
discrete nature of the image pixelization, where the odd diameters give a single specific pixel as
its center whereas the even diameters can give multiple center candidates.

We performed segmentation validation for both 2D vessel cross-section segmentation and 3D
connected blood vessel segmentation. In the proposed method, the 2D vessel cross-section
segmented images are combined to form the final 3D blood vessel segmentation. Thus accurate

2D segmentation of vessel cross-section is important for the final 3D blood vessel segmentation.
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Our results in Table 2 confirm a correct 2D segmentation with an average Dice coefficient of
87.9% £ 0.9% and precision in segmentation with 90.0% =+ 4.0%.

The segmentation validation for 3D blood vessel segmentation is performed for the proposed
method without and with the use of post-processing, and the Frangi vesselness method without
and with the use of post-processing. Fig. 8 shows that the Dice coefficient is similar for the Frangi
vesselness method with an average of 83% =+ 4.0%, and our proposed method with an average of
80% = 2.7%. However, the segmentations differ as our proposed method has more false positives
and less false negatives than the Frangi vesselness method. This is proven by the higher precision
of 96.8% + 1.9% for the proposed method compared to 78.4% + 6.5% for Frangi vesselness
method, and lower sensitivity of 68.4% =+ 4.3% for the proposed method compared to 88.9% +
7.6% for Frangi vesselness method. Lower sensitivity for the proposed method is due to the gaps
in vessel segmentation, particularly at areas where there is a sudden change in the vessel-tracking
angle and also at bifurcations where there is a bigger shift in seed positions. These gaps could
later be filled with the use of the post-processing step and our results show that the proposed
method with post-processing gives a better segmentation with Dice coefficient of 94% + 2.5%.
However, similar Dice coefficient of 93.7% + 2.4% can also be obtained by using the post-
processing step on Frangi vesselness method, which shows that the high similarity measures for
the segmentation results are actually obtained by the use of the post-processing step i.e. active
contours.

In synthetic images, the measurements show that the segmentation from the user-initiated
active contour segmentation alone is similar to the proposed method with the post-processing
step. However, on visual evaluation of medical images and from results shown in Fig. 9,

segmentation by active contour method detects fewer bifurcations than the proposed method.
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Thus the results from synthetic and medical images show that by providing the segmentation
result from the proposed method as the starting contour for active contour segmentation will give
a fast approximation to original blood vessel image with very minimum iterations.

Fig. 9 also shows that the thresholded Frangi vesselness segmentation results detect more
vessels than both the other methods. However, the disadvantage of vesselness method compared
to a local tracking method is that the method is applied to the whole image and it detects even
blood vessels that are not connected to blood vessel of interest, as shown in Fig. 6. However,
vesselness or a whole image analysis method has an advantage of detecting vessels that might be
wrongly shown as disconnected in medical images due to contrast variation. It is also to be noted
that more vessel detection could be achieved with the Frangi vesselness method by manually
lowering the threshold, but at the cost of detecting more vessel-like structures that are not of
interest.

The proposed algorithm was coded in C++ with the use of ITK libraries and the post-
processing step was performed using ITK-Snap. Table 1 clearly shows that our proposed method
is faster than all the compared methods for centerline extraction. The post-processing step for the
proposed method took on an average only 1 second extra. The final processing time is within
reasonable limits for use during intra-operative procedures, where faster update of the blood
vessels is required.

A drawback of our method is in not detecting gaps and abnormalities in the blood vessels. The
reason behind this is that our method while tracking always analyses the structural information of
the blood vessel, which is tubular in nature for blood vessels and circular or ellipsoidal for vessel
cross-sections. Another concern is at blood vessel fusion, where the blood vessels overlap due to

imaging artifacts. Here, the proposed method might consider the fusion area as a bifurcation.
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Fig. 9 shows that the percentage of detection of bifurcating blood vessels for our proposed
method falls drastically below vessel radius of 2 mm/voxels. However, for medical applications
such as liver resection, blood vessels with a radius below 2 mm are not of interest.

In conclusion, we have presented a fast method for simultaneous blood vessel segmentation
and centerline extraction. The novelty of our method is in performing only two-dimensional
cross-section analysis for segmentation of connected blood vessels from a single user-initialized
seed point. Our method also has the potential to be used for simultaneous blood vessel
segmentation and labeling, for example in visualizing liver blood vessels separately as hepatic and
portal system. In the future work, we will work on extending our algorithm to segment more
complex blood vessel structure like trifurcations, which are particularly useful for blood vessel
segmentation in liver. We will also work on detecting small gaps in the connected blood vessels
with an angle based search at the end points and on detecting abnormalities such as aneurysms in
blood vessels by incorporating blob detection when the tracking reaches an abnormal structure.
Our future work will also include detection of overlap and limit the leaking at these areas by

including a vessel direction based restriction.
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FIGURE CAPTIONS

FIGURE 1. Vessel cross-section image made using the vessel cross vectors 7, and V5.

FIGURE 2. Right: Vessel cross-section image, and Left: Canny edge of the vessel cross-section
and the two diameters, d1 and d2, along the perpendicular vectors v, and V5, from the seed.
FIGURE 3. Shape descriptor values at various cross-section images along a blood vessel.
FIGURE 4. (a) Top row: Input vessel trunk cross-section image and its 3D intensity plot, Bottom
row: Single scale circleness image of trunk cross-section image and its 3D intensity plot; (b) Top
row: Input vessel bifurcation cross-section image and its 3D intensity plot, Bottom row: Multi-
scale circleness image of bifurcation cross-section image and its 3D intensity plot.

FIGURE 5. First column: Maximum Intensity Projection (MIP) images of input synthetic images
(Images1-4); Second column: 3D view of blood vessel segmentation obtained using Frangi
vesselness; Third column: 3D view of blood vessel segmentation obtained using semi-automatic
active contour segmentation; Fourth column: 3D view of blood vessel segmentation obtained
using our proposed method without post-processing step; Last column: 3D view of blood vessel
segmentation obtained using our proposed method with post-processing step.

FIGURE 6. First column: Maximum Intensity Projection (MIP) images of input medical images
(Images5-8), with red circles indicating the seed points; Second column : MIP images of
centerlines obtained using our proposed method; Third column: 3D volume view of blood vessel
segmentation obtained using Frangi vesselness and max entropy thresholding; Fourth column:
3D volume view of blood vessel segmentation obtained using seed initiated active contour
segmentation; Last column: 3D volume view of blood vessel segmentation obtained using our

proposed method without post-processing step.
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FIGURE 7. Mean center error at various radius and its standard deviation between images.
FIGURE 8. Sensitivity, specificity and precision measurements with different Dice coefficients
calculated for the whole 3D blood vessel segmentation performed using (a) Frangi vesselness
method, (b) proposed method, (c) Frangi vesselness with post-processing, and (d) proposed
method with post-processing.

FIGURE 9. Percentage of bifurcating vessels detected by active contour segmentation, Frangi
vesselness method with maximum entropy thresholding, and our proposed method at various

vessel radius.

TABLE CAPTIONS

TABLE 1. Processing time taken for centerline extraction using, Frangi vesselness with 3D

thinning (F.V.+T.)"", seed initiated active contour with 3D thinning (4.C.+7.)"**

, our earlier
method'” and our current proposed method.

TABLE 2. Mean of Dice coefficient, sensitivity, specificity and precision, calculated along all

the 2D cross-section images of synthetic images.
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FIGURE 2, RAHUL PRASANNA KUMAR, ABME
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FIGURE 4, RAHUL PRASANNA KUMAR, ABME
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FIGURE 5, RAHUL PRASANNA KUMAR, ABME
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FIGURE 6, RAHUL PRASANNA KUMAR, ABME
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TABLES

Data, Size F.VA4T. | A.C+T. | Earlier Curr.
Imagel,

899s 441s 434s 26s
345%345%345
Image?2,

604s 225s 270s 19s
300%300%300
Image3,

71s 36s 36s 9s
150x150x150
Image4,

254s 105s 109s 23s
225%225%225
ImageS$,

321s 132s 96s 28s
384%x384%82
Image6,

274s 107s 32s 12s
352%x384%95
Image?7,

406s 157s 149s 19s
356%330%124
Images,

198s 151s 88s 26s
272x499x88

TABLE 1, RAHUL PRASANNA KUMAR, ABME
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Measurements 2D Cross-section
Data
(%) segmentation
Dice 87.4
Sensitivity 90.0
Imagel
Specificity 98.1
Precision 88.8
Dice 87.2
Sensitivity 92.6
Image?2
Specificity 97.4
Precision 84.9
Dice 87.9
Sensitivity 85.2
Image3
Specificity 98.9
Precision 93.6
Dice 89.4
Sensitivity 89.0
Imaged
Specificity 98.7
Precision 92.8

TABLE 2, RAHUL PRASANNA KUMAR, ABME
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