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Abstract 
 

Metal complexes of N-heterocyclic carbenes are potential useful catalysts and are therefore of 

large interest. In this master thesis, it was attempted to synthesize several metal complexes 

bearing a new chelating N-heterocyclic carbene ligand. The synthesis of the planned Ru and 

Co complexes did not work out as planned, but two new Rh(III) N-heterocyclic carbene 

complexes were prepared successfully. The synthesis and characterization of the two new 

Rh(III) complexes is described in detail including NMR, IR, MS and single crystal X-ray 

analysis. The new complexes show dynamic behavior due to hindered rotation and this was 

investigated by variable temperature NMR. A DFT optimization of the structure of one of the 

new Rh(III) complexes was performed and showed good agreement with the experimental 

structure. The synthesis and characterization of a new Ag(I) N-heterocyclic carbene and a new 

imidazolium salt, which both are important precursors for preparing the above mentioned 

metal complexes of N-heterocyclic carbenes is described.   
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Abbreviations 
 

acac acetylacetonato 

Ar aryl 

br broad (NMR) 

Bu butyl  

t-Bu t-butyl 

t-BuOK potassium t-butoxide 

cat. catalyst 

COD 1,5-cyclooctadiene 

COSY correlated spectroscopy (NMR) 

Cp cyclopentadienyl, η
5
-C5H5  

Cp
* 

pentamethylcyclopentadienyl, η
5
-C5Me5 

Cy cyclohexyl 

δ chemical shift in ppm (NMR) 

d day(s) or doublet (NMR) 

DFT density functional theory 

DME 1,2-dimethoxyethane 

DMSO dimethylsulfoxide 

EI electron impact (MS) 

equiv equivalent(s) 

ESI electron spray ionization (MS) 

Et ethyl 

h hour(s) 

HMBC heteronuclear multiple-bond correlation (NMR) 

HMQC heteronuclear multiple-quantum correlation (NMR) 

HRMS high resolution mass spectrometry (MS) 

HSQC heteronuclear single-quantum correlation (NMR) 

Hz hertz 
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I iso or ipso 

IR infrared  

J coupling constant (NMR) 

L ligand 

M metal 

m meta 

m multiplet (NMR) 

Me methyl  

MeCN acetonitrile 

mesityl 2,4,6-trimethyl phenyl 

MS mass spectrometry 

m/z mass-to-charge ratio (MS) 

η
n
 hapticity, descriptor of 

nbd norbornadiene 

NHC N-heterocyclic carbene 

NMR nuclear magnetic resonance 

NOE nuclear overhauser effect 

NOESY nuclear overhauser effect spectroscopy (NMR) 

o ortho 

ORTEP Oak Ridge thermal ellipsoid plot 

-
OTf triflate, CF3SO2O

-
 

p para 

Ph phenyl  

ppm parts per million  

i-Pr iso-propyl 

rel relative 

s singlet (NMR) 

T temperature  

t triplet (NMR) 
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v frequency (IR) 

Å ångstrøm 
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The aim of the project 
 

Synthesis and characterization of group 8 and 9 metal 

complexes of N-heterocyclic carbenes 

Lately, a great amount of work on a ligand system with a chelating imino-functionalized N-

heterocyclic carbene has been performed in the Tilset-group (see Figure 1).
[1-11]

 This ligand 

system has been the topic of several master and PhD theses.
[9-11]

 Metal complexes bearing this 

chelating ligand system are potential useful catalysts and are therefore of large interest. 

Among the interesting applications found for these systems is cis-selective cyclopropanation 

by using a Rh(I) complex.
[8]

 

  

Figure 1: Types of metal complexes of imino-functionalized N-heterocyclic carbene complexes 

reported by the Tilset-group (L = different ligands, R = alkyl or aryl groups).
[1]

  

In these types of metal complexes, it is expected that the Ccarbene is strongly bound to the 

metal, while the imine part is more weakly bonded.
[4]

 This hemilabile ligand may then 

decoordinate from the metal and thus open up a coordination site at the metal where catalysis 

might take place after binding of a suitable substrate at the vacant site, or one of the other 

ligands may be dissociated to create an open coordination site.
[4]

 

The aim of this project was to develop new metal complexes of the type described above, then 

characterize them and perform catalytic testing utilizing these complexes. The target metals of 

choice were Ru, Co and Rh which all play important roles in different catalytic processes such 

as catalytic hydrogenation, carbonylation, alkene metathesis, ethylene dimerization, CH-

functionalization etc.
[12]

 Unfortunately there was not enough time to perform the planned 

catalytic testing of the new complexes within the time limitations of this master thesis.  
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Chapter 1 

Introduction 

 

1.1 Carbenes 

Carbenes play an important role in organic and organometallic chemistry and great efforts 

have been made in order to understand their structure, reactivity and stability.
[13-14]

 Carbenes 

are neutral divalent species containing a carbon atom with only six valence electrons.
[15-17]

 

Carbenes can be classified as either triplet carbenes or singlet carbenes.
[15]

 A singlet carbene 

has one lone-pair in a nonbonding sp
2
 orbital and an empty p orbital while the triplet carbene 

has two unpaired electrons, one in an sp
2 

orbital and one in a p orbital, and hence exhibit 

radical character (see Figure 2).
[15]

 

 

Figure 2: A singlet carbene (left) and a triplet carbene (right).
[15]

 

This master thesis will mainly focus on N-heterocyclic carbenes and their properties and 

applications in organometallic chemistry which will be discussed in more detail in section 1.2. 

  



4 

 

1.2 N-Heterocyclic carbenes 

N-Heterocyclic carbenes, often abbreviated NHC’s, are cyclic carbenes containing at least one 

α-amino substituent.
[18]

 N-Heterocyclic carbenes are used as ligands in metal complexes and 

in organocatalysis.
[18-22]

 The structure of some of the most common classes of N-heterocyclic 

carbenes are shown in Figure 3.
[18]

  

 

Figure 3: Some of the commonly encountered N-heterocyclic carbene subclasses.
[18]

 In order to obtain 

the general name of each subclass, the suffix “-ylidene” should be added. 

Structural features such as bond angles and bond lengths together with ab initio calculations 

of the electronic structure indicate that N-heterocyclic carbenes are singlet carbenes.
[14, 23-24]

 

The N-heterocyclic carbenes are more stable than the traditional carbenes.
[16-17, 19]

 This is due 

to both steric and electronic stabilization. The α-amino substituent(s) acts as a π-donor 

substituent towards the empty p-orbital of the singlet carbene, thus stabilizing the carbene (see 

Figure 4). 
[14, 24]

  This is consistent with X-ray diffraction studies, showing that the N-Ccarbene 

bond is shorter than an usual N-C single bond.
[14]

 It has been shown by ab initio calculations 

that the triplet state of the imidazolylidene N-heterocyclic carbene, which cannot be stabilized 

by the lone-pairs from the α-amino substituents, is 84.5 kcal/mol higher in energy than the 

corresponding singlet state carbene.
[14, 16, 19, 24]
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Figure 4: Stabilization of the carbene by donation of the lone-pair on of the α-substituents into the 

empty p orbital of the carbene.
[14]

 

The α-nitrogens also stabilize the carbene moiety by an inductive effect, by pulling some of 

the electron density of the Ccarbene lonepair away.
[19, 25]

 N-heterocyclic carbenes often have  

large substituents on one or two of the α-nitrogens in order to sterically shield the carbene 

moiety.
[14, 16-17, 19, 26]

 

In 1991 the interest in N-heterocyclic carbenes accelerated when Arduengo and co-workers 

reported the isolation of the first stable N-heterocyclic carbene. The carbene was synthesized 

by deprotonation of the corresponding imidazolium salt as shown in Figure 5.
[25]

 The carbene 

bears two large adamantyl substituents on the two α-nitrogens which contribute to the stability 

of the carbene by shielding the carbene moiety. The carbene was stable in the absence of 

oxygen and moisture.
[25]

 

 

Figure 5: Synthesis of Arduengo’s carbene.
[25]

 

Some of the most frequently encountered N-heterocyclic carbenes and their abbreviations are 

listed in Figure 6.
[22]
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Figure 6: Some of the most common N-heterocyclic carbenes and their abbreviations whom are in 

frequent use.
[22]

 

1.2.1 N-Heterocyclic carbenes as ligands in metal complexes 

The two first metal complexes of N-heterocyclic carbenes were reported by Wanzlick and 

Öfele  already in 1968, a long time before Arduengo’s report on the existence of a stable free 

N-heterocyclic carbene.
[25, 27-28]

 

When bound to metals, N-heterocyclic carbenes are relatively unreactive and can be 

considered as spectator ligands.
[29]

 The N-heterocyclic carbenes are primarily bound through 

σ-donation of the carbene lone-pair to the metal with little π-acceptor character.
[17, 19, 21]

 The 

amount of π-back donation from the metal is dependent upon the particular metal and carbene 

in question.
[21]

  

In this thesis, it is chosen to represent the N-heterocyclic carbene metal complexes as shown 

in structure a in Figure 7. This is to emphasize that there is no proton on the Ccarbene. Both 

representations a and b are found in the literature.
[18, 20-21]

  



7 

 

 

Figure 7: Two different ways to represent metal complexes of N-heterocyclic carbenes. Both are 

widely used in the literature.
[18, 20-21]

  

N-Heterocyclic carbenes can be regarded as similar to the well known phosphines. Both are 

neutral two electron donors and can be tuned both sterically and electronically.
[19, 26, 29]

 

However, there are some advantages of N-heterocyclic carbenes over phosphines.
[29]

 When 

using the N-heterocyclic carbenes, it is possible to vary the steric and electronic properties 

independently. An increased size of the substituents on the α-amino substituents have shown 

to have little effect on the electronic properties of the carbene since the substituents are not 

directly attached to the Ccarbene.
[29]

 In the phosphines the substituents will have to sit directly 

on the donor atom, phosphorous, and a change in the substituents will then change both the 

steric properties and the electronic properties of the phosphine ligand.
[29]

 

If there is a need to change the electronic properties of the N-heterocyclic carbenes, a change 

in the nature of the heterocycle is possible (see Figure 3). For example, the imidazole ring has 

a higher electron donor power than benzimidazole, and imidazoline is a better electron donor 

than imidazole.
[17, 29]

  

There is also a difference in how the substituent groups in the N-heterocyclic carbenes and the 

phosphines will sterically effect the metal center.
[17, 19, 29]

 In the phosphine ligands, the 

substituents are pointing away from the metal center while in the N-heterocyclic carbenes the 

substituents are pointing towards the metal center giving the N-heterocyclic carbene ligands a 

larger impact on the metal center. This is illustrated in Figure 8.
[17, 19, 29]

 

 

Figure 8: Illustration of the difference in steric effects caused by N-heterocyclic carbenes and 

phosphines.
[29]
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1.2.2 Preparation of metal complexes of N-Heterocyclic carbenes 

There are several different methods available for the preparation of metal complexes of N-

heterocyclic carbenes. The three most common routes are listed below.
[17, 20, 25, 30]

 

i. Preparation of the free carbene followed by reaction with a suitable metal precursor. 

ii. By reaction of the desired azolium salt with a suitable basic transition metal complex. 

iii. By a carbene transfer from the corresponding Ag(I) carbene. 

Traditionally the first method has been the most employed.
[17, 20, 30]

 A strong base, such as t-

BuOK or BuLi, is needed in order to deprotonate the azolium salt.
[17, 20, 25, 30]

 However, it is 

not always possible to generate the free carbene in this way.
[20-21]

 There may be functionalities 

present that are not stable towards such basic conditions. Another option where such strong 

bases are not required is to react the desired azolium salt with a suitable basic transition metal 

salt, however, this introduces a limitation in which metal precursors can be used and it is not 

always possible to find a suitable precursor for this method.
[20, 30]

 

In 1998 Lin and Wang reported that N-heterocyclic carbene complexes of Ag(I) were versatile 

carbene transfer reagents for preparation of N-heterocyclic carbene complexes of other 

metals.
[31]

 The Ag(I) N-heterocyclic carbene complexes were prepared by reacting the desired 

azolium salt with a mild silver base such as Ag2O.
[31]

 This new method opened up for 

preparation of several new metal complexes of N-heterocyclic carbenes and in the following 

years several new metal complexes of N-heterocyclic carbenes were reported.
[20-21]

 Carbene 

transfer reactions from Ag(I) N-heterocyclic carbenes to other metals have been reported for 

several different transition metals such as Ru(II), Ru(III), Ru(IV), Rh(I), Rh(III), Ir(I), Ir(III), 

Ni(II), Pd(II), Pt(II), Cu(I), Cu(II) and Au(I).
[20, 30]

 

Some examples of preparation of metal complexes of N-heterocyclic carbenes are given in 

Figure 9. 
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Figure 9: Preparation of metal complexes of N-heterocyclic carbenes. (i): Preparation of the free 

carbene followed by reaction with a suitable metal precursor.
[32]

 (ii): By reacting a suitable 

imidazolium salt with a basic transition metal complex.
[8]

 (iii): By carbene transfer from the Ag(I) N-

heterocyclic carbene.
[1]

 

1.2.3 Donor-functionalized N-heterocyclic carbenes 

Donor-functionalized N-heterocyclic carbenes are N-heterocyclic carbenes containing at least 

one anionic or neutral 2e
-
 donor atom (e.g. such as C, N, O, S or P) which can act as a 

polydentate ligand upon coordination to a metal centre.
[33-34]

 Some examples of donor-

functionalized N-heterocyclic carbenes are given in Figure 10.
[33]

  The donor functionalized N-

heterocyclic carbenes often form chelates on the metal centre and the donor atom can in some 

cases be hemilabile meaning that during catalysis it may decoordinate and thus create an open 

coordination site where catalysis may take place.
[33]
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Figure 10: Some types of donor functionalized N-heterocyclic carbenes. a: Imine-functionalized.  b: 

Pyridine-functionalized.
[33]

 c: Phosphine-functionalized.
[33]

 

1.2.4 Imino-functionalized N-heterocyclic carbenes 

Imino-fuctionalized N-heterocyclic carbenes are N-heterocyclic carbenes with an imino-

functionality incorporated into the molecule.
[33]

 One example was shown in compound c in 

Figure 10 above. This type of imino-functionalized N-heterocyclic carbenes has been studied 

extensively in the Tilset-group and they are also the main focus of this master thesis. 
[1-11]

  A 

selection of the previously reported metal complexes of imino-functionalized N-heterocyclic 

carbenes prepared in the Tilset-group is listed in Figure 11.[1, 4-5, 8]
 Rh(I) complex f was 

prepared by reaction of the imidazolium salt with the basic transition metal complex 

Rh(acac)(CO)2.
[8]

 Pd(II) complexes g-i were prepared by a carbene transfer reaction from the 

corresponding Ag(I) carbene.
[1, 4-5]

 

 

Figure 11: A selection of the previously reported imino-functionalized N-heterocyclic carbene metal 

complexes reported by the Tilset-group.
[1, 4-5, 8]
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1.2.5 Rearrangement of imino-functionalized N-heterocyclic carbenes 

It has been reported by Bildstein and co-workers that imidazolium salts with an N-iminoyl 

and an N’-alkyl group such as those listed in Figure 11 undergo rearrangements if prepared as 

the free carbene.
[35]

 Upon deprotonating the imidazolium salt, the initially formed N-

heterocyclic carbene rearranges spontaneously by a migration of the N-iminoyl group from 

the nitrogen to the former Ccarbene yielding a 2-iminoylimidazole (see Scheme 1).
[35]

 The 

rearranged ligand system is now a [N,N]-chelating ligand system and no longer a [C,N]-

chelating ligand system and will bind to metals via the two nitrogens (see Scheme 1).
[35]

  

 

Scheme 1: Rearrangement of an imino-functionalized N-heterocyclic carbene.
[35]

 

The ligand system used in this master thesis falls within the category which will undergo 

rearrangement upon preparing the free carbene.
[35]

 Due to this rearrangement, preparation of 

the free carbene of the ligand system was not attempted. Other routes than the free carbene 



12 

 

route to the metal complexes of N-heterocyclic carbenes had to be chosen, such as the carbene 

transfer from Ag(I) N-heterocyclic carbenes. 

1.2.6 Catalytic applications of metal complexes of N-heterocyclic carbenes 

Probably the most well-known application of N-heterocyclic carbenes is their use in alkene 

metathesis.
[36]

 By replacing one of the PCy3 (Cy=cyclohexyl) ligands in the traditional 

Grubbs’ 1
st
 generation catalyst with an imidazolylidene N-heterocyclic carbene, an improved 

catalyst was obtained.
[36]

 

 

The IMes in the 2
nd

 generation Grubbs’ catalyst is a better donor than the PCy3 in the 1
st
 

generation which enhances the catalyst performance.
[37]

 IMes is also more sterically 

demanding than PCy3 leading to less bimolecular carbene decomposition of the catalyst.
[37]

 

The 2
nd

 generation Grubbs’ catalysts are also more thermally stable than the traditional 1
st
 

generation Grubbs’ catalysts.
[37]

 

Another well known application of the metal complexes of N-heterocyclic carbenes are their 

use in cross-coupling reactions.
[38]

 Cross-coupling represents an extremely versatile tool in 

organic synthesis because C-C bond formation is a key step in a wide range of preparative 

organic processes.
[38]

 N-heterocyclic carbenes have found highly successful applications as 

supporting ligands in cross-coupling reactions, for example in the  Suzuki-Miyaura 

reaction.
[19, 38]

 Their strong donor ability makes the oxidative addition of the aryl halide more 

facile, and the bulky substituents facilitate the reductive elimination. One example is given in 

Scheme 2.
[38]

 The Pd N-heterocyclic carbene complex is prepared in situ from Pd(dba)3, the 

imidazolium salt of the IPr N-heterocyclic carbene and a base, giving the cross-coupled 

product in good yields.
[38]
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Scheme 2: The Suzuki-Miyaura cross coupling reaction of an aryl halide with an aryl boronic acid.
[38]

 

Rh(I) complexes bearing a chelating N-heterocyclic carbene have shown to be excellent 

catalysts for achieving cis-selective catalytic cyclopropanations.
[6-9, 11]

 Extensive work on cis-

selective Rh(I) N-heterocyclic carbene complexes have been performed in the Tilset-group.
[6-

9, 11]
 Scheme 3 shows a highly cis-selective cyclopropanation reaction with diethyl 

diazoacetate using an imino-functionalized Rh(I) N-heterocyclic carbene complex as 

catalyst.
[6]

  

 

Scheme 3: Cis-selective cyclopropanation reported by the Tilset-group.
[6]
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1.3 Chiral metal complexes 

The traditional way of preparing chiral metal complexes is by utilizing chiral ligands.
[39]

 A 

less investigated category of chiral metal complexes are those in which the stereogenic center 

is located at the metal.
[39]

 There are some disadvantages connected to having the chirality 

information at the metal.
[39]

 A major challenge is the racemization of an enantiopure metal 

complex over time.
[39-41]

 Configurational lability caused by labile ligands may lead to 

racemization and therefore during catalysis, racemization may occur when opening up a 

coordination site.
[39]

 For some catalytic applications, there are examples where the metal 

complexes with the chirality information at the metal centre turned out to be more effective 

than the traditional chiral metal complexes.
[39]

 One example being a Mo-based complex with 

a stereogenic metal centre which has been reported to catalyze enantioselective alkene 

metathesis.
[40]

  

The two Rh(III) N-heterocyclic carbene complexes 8 and 9 prepared in this master thesis also 

contain stereogenic centers at the metal rendering them chiral. Figure 12 shows the two 

enantiomers of the Rh(III) N-heterocyclic carbene 8. However, no enantioselective synthesis 

or separation of the enantiomers was investigated. 8 and 9 will only be shown as one of their 

enantiomers throughout the thesis. The enantiomer chosen is the one found in the structure 

based on the X-ray analysis. 

 

Figure 12: The chiral Rh(III) N-heterocyclic carbene 8, where the stereogenic centre is located at Rh. 
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1.4 The CO ligand and its bonding to the metal 

The neutral 2e
-
 donor CO ligand is frequently used in organometallic chemistry.

[12]
 The 

bonding of CO to metals occurs by two types of interactions, as seen from Figure 13. The CO 

donates an electron pair into the empty d orbital on the metal (j) and the metal backdonates 

electrons from its filled d orbital into the antibonding π
*
 orbital in CO (k). The backdonation 

of electrons into the π
* 

of CO will weaken the C≡O bond which can be seen by a lowering of 

the vCO in the infrared spectrum.
[12]

 Thus, the vCO gives valuable information about the 

electron density at the metal centre in which the CO is attached: a more electron rich metal 

center will have a stronger backdonation into the π
*
, lowering the vco, and thus binding the CO 

more tightly. A higher vCO indicates that the CO is less tightly bond to the metal as is seen in 

Figure 14 where CpCo(CO)I2 exhibits a larger vCO than CpCo(CO)2 indicating that the CO is 

less tightly bond in CpCo(CO)I2.
[12, 42]

 It has been shown that substitution of the CO in 

CpCo(CO)I2 occurs readily with both triphenylphosphine and pyridine indicating the quite 

weak bonding of the CO in this complex.
[43]

  

 

Figure 13: The two component bonding in the CO-ligand.
[12]

 j: Donation of a lone-pair on CO into an 

empty d-orbital at the metal. k: Backdonation of electrons from a filled d orbital on the metal into the 

antibonding π
*
 orbital on the metal.

[12]
 

 

Figure 14: vCO of CpCo(CO)2 and CpCo(CO)I2.
[42]
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1.5 Lineshape analysis and the Eyring equation 

The Eyring equation gives the relationship between the rate constant and the absolute 

temperature.
[15]

 If one have the rate constants and their corresponding temperatures, it is 

possible to perform an Eyring plot (see Figure 15) to obtain the enthalpy of activation (ΔH
#
) 

and the entropy of activation (ΔS
#
). Dynamic behavior of molecules can frequently be 

observed by broadened signals in the NMR spectra. The broadening is temperature dependent 

because the rates of the dynamic process depend on the temperature. Acquiring 
1
H-NMR 

spectra at different temperatures followed by lineshape analysis with a program such as 

gNMR gives access to the rate constants at the different temperature for the dynamic 

process.
[44]

 The linear form of the Eyring equation is given in Equation 1. 

   
 

 
  

    

 
 
 

 
    

  
 
  

   

 
 

Equation 1: The linear form of the Eyring equation.
[15]

  

A plot of ln(k/T) versus 1/T yields a straight line with slope –ΔH
#
/R and intercept ln(kB/h) + 

ΔS
#
/R, where R is the gas constant, kB is Boltzmann’s constant and h is Planck’s constant, and 

thus it is possible to determine the enthalpy and entropy of activation.
[15]

 

 
Figure 15: Illustation of an Eyring plot.

[15]
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Chapter 2 

Synthesis of a new imidazolium salt and 

Ag(I) N-heterocyclic carbene complex 

2.1 The scope of the chapter 

N-heterocyclic carbene complexes of Ag(I) are versatile precursors for preparing N-

heterocyclic carbene complexes of other metals. Ag(I) N-heterocyclic carbenes can be 

prepared from their corresponding imidazolium salts.
[20-21]

 In this chapter, the synthesis of 

imidazolium salt 3a and Ag(I) carbene 4a will be described as well as the synthesis of the 

previously reported imidazolium salt 3b and Ag(I) carbene 4b.
[1]

 Imidazolium salts 3a and 3b 

and Ag(I) carbenes 4a and 4b are shown in Figure 16. 

 

Figure 16: Imidazolium salts 3a and 3b and Ag(I) carbenes 4a and 4b.[1] 
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2.2 Results and discussion 

2.2.1 Synthesis of imidazolium salts 3a and 3b 

Imidazolium salt 3b has been prepared previously by the Tilset-group according to Scheme 

4.
[1]

 The new imidazolium salt 3a was thus synthesized by the same strategy with only a few 

minor modifications in the work-up procedure.  

 

Scheme 4: Synthesis of imidazolium salt 3a and 3b.
[1] 

The imidazolium salts were synthesized by a three step procedure. First amides 1a and 1b 

were prepared in good yields from their corresponding anilines and acid chlorides in the 

presence of a base.
[45-46]

 In the subsequent step the iminochlorides 2a and 2b were prepared in 

good yields by treating their corresponding amides with SOCl2.
[46-47]

 In the last step the 

imidazolium salts 3a and 3b were synthesized in moderate to good yields by substitution of 

the chloride in 2a and 2b with 1-methylimidazole. 
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2.2.2 Characterization of amide 1a and 1b, iminochloride 2a and 2b and 

imidazolium salt 3b 

1
H-NMR, MS and IR data corresponded with the reported data for 1a, 1b, 2a, 2b and 3b.

[1, 46-

47]
 For both the amides 1a and 1b the characteristic broad resonance of the NH was observed 

in the 
1
H-NMR spectra, and in the 

1
H-NMR spectra of the iminochlorides 2a and 2b this peak 

had disappeared indicating a full conversion of the amide to the iminochloride. In the 
1
H-

NMR spectrum of imidazolium salt 4b the characteristic NCHN proton was seen downfield at 

10.38 ppm. For both iminochlorides 2a and 2b and imidazolium salt 3b only one set of peaks 

was observed indicating the presence of only one isomer. It was not further investigated if it 

was the E or Z isomer which was observed. 

2.2.3 Characterization of imidazolium salt 3a 

The new imidazolium salt 3a was characterized by NMR, IR and MS. 3a decomposes in 

CDCl3 solution over time, which made the NMR characterization challenging due to the 

appearance of an extra set of peaks from the decomposed species with time. In the 
1
H-NMR 

spectrum of 3a the characteristic resonance of  the NCHN proton was observed downfield at 

10.39 ppm. Only one set of peaks was observed initially indicating the presence of only one 

isomer of 3a. It was not further investigated if it was the E or Z isomer which was observed. 

Upon investigating 3a by MS, the molecular ion minus one chloride was seen. High 

resolution mass spectrometry (HRMS) confirmed that the elemental composition of this peak 

was correct. 

2.2.4 Decomposition of imidazolium salt 3a and 3b in solution 

Both imidazolium salts decomposes in CDCl3 solution over time, the decomposition of 3a is 

shown in Figure 17. It is seen that new peaks appear and the peaks belonging to imidazolium 

salt 3a decrease in intensity. Already 15 minutes after preparing the NMR sample 

decomposition is observed. What the imidazolium salts 3a and 4b decompose to was not 

extensively investigated. However, it was observed that the peak at ca 3.7 ppm grew upon 

adding 1-methylimidazole which may indicate that the 1-methylimidazole is dissociating. 

However, this did not cause any problems for utilizing 3a and 3b in the subsequent reactions 

discussed later in this chapter. 
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Figure 17: Decomposition of 3a observed by 
1
H-NMR (500 MHz, CDCl3). Dry CDCl3 was used. A 

larger version of the spectra can be found in the Appendix. 

2.2.5 Synthesis of Ag(I) carbene complexes 4a and 4b 

Ag(I) carbene 4a and 4b were synthesized in good yields according to Scheme 5: Ag(I) N-

heterocyclic carbenes of the imidazolylidene type are often synthesized by deprotonating their 

corresponding imidazolium salts with a mild silver base, such as Ag2O.
[20]

 Ag(I) carbene 4b 

has already been prepared in our group by this method.
[1]

 It was therefore chosen to 

synthesize Ag(I) carbene 4a by the same method. 3 Å molecular sieves were used in order to 

remove the water formed during the reaction. Ag(I) carbenes 4a and 4b are stable if stored 

under inert atmosphere in the absence of light. 
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Scheme 5: Synthesis of Ag(I) carbenes 4a and 4b.
[1]

 

2.2.6 Characterization of Ag(I) carbene complex 4b 

1
H-NMR, MS and IR data corresponded with the reported data on Ag(I) carbene 4b.

[1]
 In the 

1
H-NMR of 4a it was observed that the NCHN proton of imidazolium salt 3b was absent, 

which indicated full conversion of 3b to 4b. Only one set of peaks was observed, indicating 

the presence of only one isomer of 4b. It was not investigated further if it was the E or Z 

isomer, however, in the previously reported structure of 4a, the E-isomer was observed.
[1]

 

2.2.7 Characterization of Ag(I) carbene complex 4a 

The new Ag(I) carbene 4a was characterized by NMR, MS, IR and single crystal X-ray 

analysis.  

2.2.7.1 NMR, IR and MS  

In the 
1
H-NMR spectrum of 4a it was observed that the the NCHN proton of imidazolium salt 

3a was absent, which indicated a full conversion of 3a to 4a. As for compound 4b only one 

set of peaks was observed indicating that only one isomer is present. It was not investigated 

further if it was the E or Z isomer, however, in the structure based on the X-ray analysis, the 

E-isomer was observed. This indicates that the E-isomer is favored in the solid state. 

At first it was not possible to observe the Ccarbene of compound 4a by 
13

C-NMR. However, it 

was seen indirectly by a heteronuclear HMBC correlation at 184.21 ppm from the methyl 

protons sitting on the nitrogen in the imidazolylidene moiety. Later, a 
13

C-NMR spectrum was 

recorded on an AV600 spectrometer equipped with a cryoprobe to enhance the signal to noise 

ratio.
[48]

 Upon recording a 
13

C-NMR experiment with a relaxation delay of 10 s and 7 k scans, 

it was possible to detect a broad peak at the same chemical shift as the HMBC correlation 
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seen earlier (see Figure 18). Silver has two naturally occurring isotopes 
107

Ag (52%) and 
109

Ag 

(48%).
[21]

 Both of these are NMR active and both have a nuclear spin of ½.
[21]

 Given this 

information, one would expect to observe two doublets in the 
13

C-NMR spectrum due to the 

different couplings with the two different isotopes.
[21]

 However, coupling between Ccarbene and 

Ag is observed in only a few complexes, but the majority show no coupling pattern.
[21]

 A 

significant number of Ag(I) N-heterocyclic carbene complexes have also been reported 

without any observable Ccarbene resonances.
[21]

 It has been proposed that a fluxional behavior 

in which there is an equilibrium between the monomeric AgX(NHC) and the dimeric 

[Ag(NHC)2]
+
 [AgX2]

-
 within the NMR time scale leads to broadening and eventually 

disappearance of the Ccarbene peaks.
[21, 31]

 This fluxional behavior is shown in Scheme 6. As the 

rate of exchange increases, the Ccarbene resonances will first become broader and then 

eventually coalesce into a sharp singlet.
[21, 31]

 Due to the broadness of the signals of the Ccarbene 

in the 
13

C-NMR spectrum it was not possible to measure the exact coupling constants 

1
J(

107
Ag-

13
C) and 

1
J(

109
Ag-

13
C). However, an average of them was found to be ca 250 Hz by 

measuring the distance in Hz between the two broad peaks seen in Figure 18. This is in good 

agreement with previously reported coupling constants between Ag and Ccarbene. 
1
J(

107
Ag-

13
C) 

and 
1
J(

109
Ag-

13
C) usually range from 180-234 Hz and 204-270 Hz, respectively.

[21]
 The 

couplings are proportional to the magnetogyric ratios of -1.089 x 10
7
 rad s

-1 
T

-1
 and -1.252 x 

10
7
 rad s

-1
T

-1
 for 

107
Ag and 

109
Ag respectively.

[49]
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Figure 18: 
13

C-NMR (150 MHz, CDCl3) of 4a. Ccarbene is seen as a broad signal that may resemble two 

doublets. 

 

Scheme 6: Proposed fluxional behavior in solution, a suggested explanation of broadening of the 

Ccarbene shifts in the 
13

C-NMR of Ag(I) N-heterocyclic carbenes.
[21, 31]

 (X= Cl, Br, I). 

Upon investigating 4a by mass spectrometry the peak of [Ag(NHC)2]
+

 is observed. It has been 

reported that Ag(I) carbenes of the Carbene-Ag-Cl-type forms biscarbenes [(NHC)2-Ag]
+
 in 

the gas phase.
[21]

 This is also consistent with what is seen for Ag(I) carbene 4b and other 

similar complexes previously reported by our group.
[1-2]

 High resolution mass spectrometry 

(HRMS) confirmed that the elemental composition of this peak was correct. 

Compound 4a was investigated by infrared spectroscopy (IR). vC=N of 4a was found to be 

1663 cm
-1

, which is within the range of a free imine, indicating that there is no significant 

coordination of the imine nitrogen to the metal in this case.
[50]

 This is in agreement with  the 

structure based on the X-ray analysis of 4a and other similar Ag(I) carbenes reported by the 
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Tilset-group.
[1-3, 5]

 However, it should be kept in mind that the IR data gives information about 

4a in solution, while the X-ray analysis gives information about 4a in the solid state. 

2.2.7.2 Crystallographic structure determination of Ag(I) carbene complex 4a 

Ag(I) carbene 4a was investigated by single crystal X-ray analysis. The structure of 4a is 

shown in Figure 19. Selected bond lengths and bond angles are listed in Table 1 and Table 2. 

 

Figure 19: ORTEP-drawing of complex 4a. Hydrogens and CH2Cl2 are omitted for clarity. Ellipsoids 

at 50% probability. 

Table 1: Selected bond lengths from structure based on the X-ray analysis of 4a. 

Bond Bond length [Å] 

Ag(1)-C(101) 2.075(8) 

Ag(1)-C(l1) 2.343(2) 

Ag(1)-Ag(1) 3.073(2) 

N(101)-C(101) 1.345(10) 

N(102)-C(101) 1.349(11) 

N(103)-C(105) 1.264(10) 
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Table 2: Selected bond angles from structure based on the X-ray analysis of 4a. 

 

Angle Degrees [
o
] 

C(101)-Ag(1)-Cl(1) 165.9(2) 

C(101)-Ag(1)-Ag(1) 76.1(2) 

Cl(1)-Ag(1)-Ag(1) 117.85(6) 

N(101)-C(101)-N(102) 103.9(7) 

N(101)-C(101)-Ag(1) 132.4(6) 

N(102)-C(101)-Ag(1) 123.6(6) 

 

The Ag(I) carbene 4a is seen as a dimer in the structure based on the X-ray analysis. The two 

units are associated through an Ag-Ag interaction, as is seen by the Ag-Ag distance of 

3.0073(2) Å which is considerably shorter that the sum of the van der Waals radii of 3.44 

Å.
[51]

 A similar, although slightly longer, Ag-Ag interaction of 3.0577(10) Å was reported for 

the previously reported Ag(I) carbene 4b.
[1]

 This interaction leads to a slight bending away 

from linearity of the Ccarbene-Ag-Cl angle to 165.9(2)
o
. The Ag-Ccarbene distance is 2.075(8) Å 

which is in agreement with what was seen for the already published 4b. The bonds between 

the Ccarbene and the α-nitrogens show a significant double bond character indicating the 

donation of the lone-pair on the nitrogens into the empty p-orbital on the carbene to stabilize 

the carbene, as was discussed in the introduction section. A normal C-N single bond is usually 

within the range of 1.46-1.48 Å,
[15]

 while in complex 4a they are 1.345(10) Å and 1.349(11) 

Å which is considerably shorter. The imine C=N bond is short, 1.264(19) Å, indicating that 

there is no significant coordination of the imine nitrogen to the metal, this is also consistent 

with what was observed by IR as discussed in the last paragraph. 

2.3 Conclusion 
The new Ag(I) N-heterocylic carbene 4a and imidazolium salt 3a were successfully prepared 

in good yields. Compound 3a and 4a were thoroughly characterized, including NMR, IR and 

MS. A crystallographic structure determination of 4a was also performed and was in good 

agreement with the other spectroscopic data. The rarely observed coupling of Ccarbene with 

107
Ag and 

109
Ag was detected in the 

13
C-NMR spectrum of 4a. The previously reported 

imidazolium salt 3b and Ag(I) N-heterocyclic carbene 4b were also prepared. 
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Chapter 3:  

Synthesis, characterization and properties of new 

Rh(III) N-heterocyclic carbene complexes 

3.1 The scope of the chapter 

In this chapter, Rh(III) complexes 8 and 9 (Figure 20) have been prepared and thoroughly 

characterized. It is hoped that these complexes after further studies may be useful catalysts, 

for example in catalytic hydrogenation, hydroformylation, ethylene dimerization or C-H 

functionalization by virtue of them having a potentially labile coordination site.
[12]

 As is seen 

from Figure 20 complexes 8 and 9 bear a chelating imino-functionalized N-heterocyclic 

carbene in which the imine may decoordinate to create an open coordination site were 

catalysis can occur after binding of a substrate. Another option for creating an open 

coordination site may be to remove a chloride by using a silver salt such as AgOTf.
[12]

 

 

 

Figure 20: The two new Rh(III) complexes 8 and  9. 
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3.2 Results and discussion 
As precursors for complexes 8 and 9 the two chloride bridged Rh(III) dimers 5 and 6 shown 

in Figure 21 were chosen. An attempt to make a Rh(I) complex from Rh(I) dimer 7, was also 

performed, however, this turned out to be less successful. 

 

Figure 21: Rh dimers 5 
[52]

, 6 
[53]

 and  7 
[54]

. 

Two electron donor ligands are known to cleave dimers such as 5-7 to form monomeric 

products.
[20-21]

 The strategy was to attempt to coordinate the desired N-heterocyclic carbene 

ligand to Rh by cleavage of these dimers. A successful attempt on preparating a N-

heterocyclic carbene from complex 5 has been reported previously.
[55]

 

As discussed in the Introduction, Ag(I) N-heterocyclic carbenes are versatile precursors for 

making metal complexes of N-heterocyclic carbenes, especially when it is not possible to 

generate the free carbene, as is the case with the ligand system used in this work.
[20-21]

 

Therefore, it was chosen to go via the Ag(I) carbene to make the desired Rh complexes. The 

Ag(I) carbene of choice is shown in Figure 22. The synthesis and characterization of Ag(I) 

carbene 4a was discussed in the previous chapter. 

 

Figure 22: Ag(I) carbene 4a. 
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3.2.1 Synthesis and characterization of Rh(III) and Rh(I) dimers 5, 6 and 7 

Three different chloride bridged Rh(III) and Rh(I) dimers were prepared by previously 

reported procedures.
[52-54]

 Rh dimers  5-7 were synthesized according to Scheme 7 giving 5 in 

a good yield and 6 and 7 in poor yields. Compounds 5-7 are stable in air. Compound 7 is 

thermally unstable and could only be handled at room temperature for short periods of 

time.
[54]

 

 

Scheme 7: Synthesis of  Rh-complex 5 - 7.
[52-54]

 

The synthesis of compound 6 should, according to literature, yield around 60%.
[53]

 The yield 

for compound 7 is reported on the low side due to work-up problems. Since these are 

previously reported reactions, too much effort was not put into optimizing the yields.
[54]

  

1
H-NMR data corresponded with the reported data for compound 5 and 7.

[52-54]
 Compound 5 

shows the characteristic singlet for the methyls on the Cp
*
 at 1.60 ppm and compound 7 

shows the characteristic broad peak at 2.84 ppm for the two ethylenes due to hindered rotation 
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around the Rh-ethylene bond. Compound 6 is not very soluble in any common organic 

solvents, and is therefore hard to characterize.
[53]

 However, if 6 is suspended in DMSO-d6 a 

homogenous mixture eventually forms and it is possible to obtain a NMR spectrum of 

something that is probably [CpRhCl2(DMSO-d6)]. A singlet at 6.02 ppm which probably 

stems from the Cp is observed in the 
1
H-NMR spectrum. Compound 7 was only characterized 

by 
1
H-NMR due to its thermal instability.  

3.2.2 Synthesis of Rh(III) complex 8  

The Rh(III) N-heterocyclic carbene complex 8 was synthesized in good yields by a carbene 

transfer reaction from the Ag(I) carbene 4a to Rh as shown in Scheme 8. Nimine forms a chelate 

by displacing one of the chlorides and thus creates a cationic Rh(III) complex. Complex 8  is 

a Rh(III) d
6
 18 electron complex and is stable towards air over long periods of time. 

 

Scheme 8: Synthesis of the new Rh(III) complexes 8 and 9. 

3.2.3 Characterization of Rh(III) complex 8  

Rh(III) complex 8 was characterized by NMR, MS, IR and single crystal X-ray analysis. A 

variable temperature NMR investigation also proved valuable for the characterization, since 

not all the peaks were clear at room temperature.  

3.2.3.1 NMR, IR and MS 

In the 
1
H-NMR spectrum of 8 the characteristic resonance of the Cp* is seen at 1.49 ppm. The 

two methyls and the two meta protons on the mesityl appears to be chemically inequivalent, 

they give two different peaks in the 
1
H-NMR indicating that there is some hindered rotation 

present in the complex. The four protons in ortho and meta position on the phenyl substituent 

give rise to four broad peaks indicating some dynamic behavior in the complex, this will be 
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discussed further in detail later in the text. The Ccarbene was observed at 184.46 ppm in the 
13

C-

NMR spectrum and a splitting with the NMR active spin ½ 
103

Rh was observed, 
1
J(

103
Rh-

13
C) 

= 51 Hz. A splitting of the 
13

C-NMR signal of Cp* was also observed. 

Upon investigation by mass spectrometry (MS), the parent peak of the cationic part of 

complex 8 was observed. High resolution mass spectrometry (HRMS) confirmed that the 

elemental composition of this peak was correct. 

The IR stretch of the imine can give an indication on whether or not the Nimine is coordinated 

to the metal. If the Nimine is coordinated to the metal the C=N bond will be weakened and the 

vC=N will be lowered. vC=N  for a free imine is usually between 1690-1640 cm
-1

.
[50]

 The IR 

stretches of the imine in imidazolium salt 3a, Ag(I) complex 4a and Rh(III) complex 8 are 

listed in Table 3.  

Table 3: vC=N for imidazolium salt 3a, Ag(I) complex 4a and Rh(III) complex 8. 

 3a 4a 8 

vC=N 1674 cm
-1

 1663 cm
-1

 1615 cm
-1

 

 

As seen from Table 3 the vC=N of Rh(III) complex 8 is significantly lower than those for the 

imidazolium salt 3a and Ag(I) carbene 4a indicating a coordination of the Nimine to Rh in 

complex 8. This was later confirmed by single crystal X-ray analysis which will be discussed 

later. The IR stretch of the imine in the imidazolium salt 3a and the Ag(I) complex 4a are 

within the range for a free imine. 
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3.2.3.2 Crystallographic structure determination of complex 8  

Crystals of 8 were grown by diffusion crystallization. A nearly saturated solution of 8 in 

CH2Cl2 was layered with Et2O to form the crystals. At first, very small crystals were formed, 

but after several days the crystals grew larger. An X-ray analysis of 8 was performed by 

Professor Carl Henrik Gørbitz and Sigurd Øien. The structure of the cationic part of complex 

8 based on the X-ray analysis is given in Figure 23. The structure is in agreement with the 

other spectroscopic data for 8 discussed earlier. The three legged piano stool-geometry is 

evident. As expected from the IR-measurements discussed earlier, chelation of the Nimine is 

observed, forming a five membered metallocycle. Both the phenyl and the mesityl 

substituents are rotated out of plane compared to the heterocyclic ring due to steric hindrance. 

This is consistent with what was seen in the 
1
H-NMR spectrum of 8 where both the mesityl 

and the phenyl substituent were hindered from rotating freely. This hindered rotation was 

investigated by variable temperature NMR which will be discussed later. 

 

Figure 23: ORTEP-drawing of Rh(III) complex 8.  Hydrogens, the anions and CH2Cl2 are omitted for 

clarity. Ellipsoids at 50% probability.  

The counteranion for complex 8 turned out not to be Cl
-
 as expected. For each cation it 

appears that there are a 1/4 [AgCl2]
-
 unit and a 1/8 [Ag6Cl12]

6-
 unit. 
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This is also supported by the data obtained by MS. In MS, with detection of negative ions, a 

fragment corresponding to n[AgCl2]
n-

 was observed. It is not possible to determine if this 

fragment is [AgCl2]
-
, [Ag2Cl4]

2- 
or any other values of n without looking at the isotopic pattern 

since the information obtained from MS is the mass/charge (m/z) value, which will be the 

same for all of these fragments.
[50]

 By looking at the isotopic pattern and the spacing of the 

peaks seen by MS, an isotopic pattern similar to the one expected for [AgCl2]
-
 was observed 

together with a spacing of the peaks in the isotopic pattern by two units indicating that 

[AgCl2]
-
 is likely to be the true identity of the peak.

[56]
 HRMS confirms that the peak seen 

actually corresponds to [AgCl2]
-
. 

 [AgnX2n]
n-

 anions sometimes forms when utilizing Ag(I) carbenes as carbene transfer 

reagents. Danopoulos and co-workes reported a mixture of Cl
-
 and [AgCl2]

-
 anions when 

transferring a N-heterocyclic carbene from its corresponding Ag(I) carbene to Pd(II).
[57]

 

Wittlesey and co-workers observed [AgBr2]
-
 as the anion upon preparing an Ir(I) N-

heterocyclic carbene.
[58]

 

Complex 8 has a triclinic unit cell unit with space group P . The unit cell of 8 consists of 4 

cations, 1 [AgCl2]
-
 unit and  1/2 [Ag6Cl12]

6-
 unit (see Figure 24). 

 

 

Figure 24:  ORTEP-drawing of the unit cell of Rh(III) complex 8. Hydrogens and CH2Cl2 are omitted 

for clarity. Ellipsoids at 50% probability. 
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A close-up view of the [Ag6Cl12]
6-

 cluster is shown in Figure 25. The [Ag6Cl12]
6- 

cluster 

consists of two different [Ag3Cl6]
3-

 units which are rotated 90
o
 with respect to each other. 

Each of them are disordered through a centre of inversion which has the effect that in some 

places in the structure, up to four different atomic positions end up superimposing each other. 

Such a structure has to the best of our knowledge not been reported before. Selected bond 

lengths and bond angles for complex 8 are given in Table 4 and Table 5. 

                                

Figure 25:  ORTEP-drawing of the [Ag6Cl12]
6-

 cluster in Rh(III) complex 8. Ellipsoids at 50% 

probability.  

Table 4: Selected bond lengths from the structure based on the X-ray analysis of Rh(III) complex 8. 

Bond Bond length [Å] Bond Bond length [Å] 

Rh(11)-C(101) 2.014(4) C(105)-N(103) 1.289(5) 

Rh(11)-N(103) 2.137(3) C(101)-N(101) 1.328(5) 

Rh(11)-Cl(11) 2.4058(11) C(101)-N(102) 1.375(5) 

Rh(11)-C(121) 2.166(4) C(121)-C(122) 1.453(7) 

Rh(11)-C(122) 2.241(4) C(122)-C(123) 1.400(6) 

Rh(11)-C(123) 2.229(4) C(123)-C(124) 1.450(6) 

Rh(11)-C(124) 2.163(4) C(124)-C(125) 1.423(6) 

Rh(11)-C(125) 2.183(4) C(125)-C(121) 1.434(6) 

Rh(11)-Cp(avg.) 2.196   

 

Table 5: Selected bond angles from the structure based on the X-ray analysis of Rh(III) complex 8. 
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Angle Bond angle [
o
] 

C(101)-Rh(11)-N(103) 76.01(15) 

C(101)-Rh(11)-Cl(11) 79.07(12) 

N(103)-Rh(11)-Cl(11) 91.21(10) 

N(101)-C(101)-N(102) 104.9(4) 

N(101)-C(101)-Rh(11) 136.6(3) 

N(102)-C(101)-Rh(11) 115.5(3) 

 

Based upon the information gained by MS and crystallographic structure determination it will 

be assumed that with each cation, there is one [AgCl2]
-
 fragment associated. Therefore, the 

molecular formula [Cp*RhCl(NHC)]
+
[AgCl2]

-
 was used to determine the yield of the 

reaction. 

3.2.4 Synthesis of Rh(III) complex 9 
 

The Rh(III) N-heterocyclic carbene complex 9 was synthesized in good yields by a carbene 

transfer reaction from the Ag(I) carbene 4a to Rh as shown in Scheme 9. The Nimine forms a 

chelate by displacing one of the chlorides and thus creates a cationic Rh(III) complex. 

Complex 9 is a Rh(III) d
6
 18 electron complex and is stable towards air over longer periods of 

time.  

 

Scheme 9: Synthesis of Rh(III) complex 9. 
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3.2.5 Characterization of Rh(III) complex 9 

Rh(III) complex 8 was characterized by NMR, MS, IR and single crystal X-ray analysis. A 

variable temperature NMR investigation also proved valuable for the characterization, since 

not all the peaks were clear or visible at room temperature 

3.2.5.1 NMR, IR and MS 

In the 
1
H-NMR spectrum of 9 the characteristic resonance of the Cp is seen at 5.68 ppm. The 

two methyls and the two meta protons on the mesityl appear to be chemically inequivalent 

and give two different peaks in the 
1
H-NMR indicating that there is some hindered rotation 

present in the complex, as was also observed for complex 8. The two protons in meta position 

on the phenyl substituent give rise to a broad peak. At room temperature the peaks of the two 

protons in ortho position could not be observed due to their broadness at this temperature. The 

dynamic features of the 
1
H-NMR spectrum will be discussed in more detail later in the text. 

The Ccarbene was observed at 181.75 ppm in the 
13

C-NMR spectrum and a splitting with the 

NMR active spin ½ 
103

Rh was observed, 
1
J(

103
Rh-

13
C) = 46.8 Hz. A splitting of the 

13
C-NMR 

signal of the Cp was also observed. 

Upon investigation by MS, the peak of the cationic part of the complex 9 was seen. HRMS 

confirmed that the elemental composition of this peak was correct. A lowering of vC=N 

compared to the vC=N of Ag(I) carbene 4a indicates a coordination of the Nimine to Rh. This 

was later supported by X-ray analysis. 

3.2.5.2 Crystallographic structure determination of complex 9   

Crystals of complex 9 were grown by the vapor diffusion-diffusion technique.
[59]

 A small 

capped vial with a small opening on the top containing a nearly saturated solution of 9 in 

CH2Cl2 was placed into a larger vial containing Et2O. The crystals were formed within 24 

hours. 
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An X-ray analysis of 9 was performed by Professor Carl Henrik Gørbitz and Sigurd Øien. The 

structure of complex 9 based on the X-ray analysis is shown in Figure 26. The structure is in 

agreement with the other spectroscopic data on 9 discussed earlier. As complex 8, 9 also show 

the three legged piano stool-geometry. Chelation of the Nimine is observed, consistent with the 

IR data of complex 9 discussed earlier. The phenyl and the mesityl are rotated out of plane 

compared to the heterocyclic ring due to steric hindrance. This is consistent with what was 

seen in the 
1
H-NMR spectrum of 9 where both the mesityl and the phenyl substituent were 

hindered from rotating freely. This hindered rotation was investigated by variable temperature 

NMR which will be discussed later. 

 

Figure 26:  ORTEP-drawing of Rh(III) complex 9. Hydrogens and disordered CH2Cl2 are omitted for 

clarity. Ellipsiods at 50% probability. 

The crystal structure of 9 was recorded at 193 K, while the crystal structure of 8 was recorded 

at 105 K. At higher temperature, there will be more thermal vibrations, which lead to larger 

and more elongated ellipsoids. This is seen in the ORTEP-drawing of structure 9 (see Figure 

26). 

As for compound 8, the anion is not the expected Cl
-
  in complex 9. For 9, a silver-chloride 

cluster is also observed. In complex 9 one [Ag2Cl4]
2-

 unit is shared between two cations. The 

unit cell of compound 9 is given in Figure 27. The unit cell is triclinic with space group  P  

and consists of two cations sharing one [Ag2Cl4]
2-

 unit. This is also supported by the data 

obtained by MS. In MS, with detection of negative ions, a fragment corresponding to [AgCl2]
-
 

was observed. 
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Figure 27: ORTEP-drawing of the unit cell of Rh(III) complex 9. Hydrogens and CH2Cl2 are omitted 

for clarity. Ellipsoids are shown at 50% probability. 

Based upon the information gained by MS and crystal structure determination it will be 

assumed that with each cation, there is one [AgCl2]
-
 fragment associated. Therefore, the 

molecular formula [CpRhCl(NHC)]
+
[AgCl2]

-
 was used to determine the yield of the reaction. 

Selected bond lengths and bond angles for Rh(III) complex 9 are given in and Table 6 and 

Table 7.  

Table 6: Selected bond lengths from the structure based on the X-ray analysis of Rh(III) complex 9. 

 

Bond Bond length [Å] Bond Bond length [Å] 

Rh(1)-C(101) 1.989(11) C(105)-N(1) 1.273(13) 

Rh(1)-N(1) 2.097(9) C(101)-N(2) 1.335(14) 

Rh(1)-Cl(1) 2.380(3) C(101)-N(3) 1.375(13) 

Rh(1)-C(201) 2.160(13) C(201)-C(202) 1.391(19) 

Rh(1)-C(202) 2.160(12) C(202)-C(203) 1.462(19) 

Rh(1)-C(203) 2.214(11) C(203)-C(204) 1.389(16) 

Rh(1)-C(204) 2.211(11) C(204)-C(205) 1.410(17) 

Rh(1)-C(205) 2.165(11) C(205)-C(201) 1.411(17) 

Rh(1)-Cp(avg.) 2.182   
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Table 7: Selected bond angles from the structure based on the X-ray analysis of Rh(III) complex 9. 

Angle Degrees [
o
] 

C(101)-Rh(1)-N(1) 76.2(4) 

C(101)-Rh(1)-Cl(1) 83.5(3) 

N(1)-Rh(1)-Cl(1) 92.9(2) 

N(2)-C(101)-N(3) 106.9(9) 

N(2)-C(101)-Rh(1) 137.3(8) 

N(3)-C(101)-Rh(1) 114.8(8) 

 

3.2.6 Comparison of the spectroscopic properties and structures of Rh(III) 

complexes 8 and 9 

At room temperature, the 
1
H-NMR spectra of both compound 8 and 9 indicate that there is 

hindered rotation within the complexes. The 
1
H-NMR spectra of compound 8 and 9 with a 

close-up  view of the aromatic region are given in Figure 28. For both complexes the mesityl 

group is prevented from rotating freely around the Nimine.-mesityl bond, which is shown in the 

NMR spectra given in Figure 28 by that the two meta protons on the mesityl substituent turn 

out to be chemically inequivalent, that is; they give rise to two different chemical shifts. 

Dynamic behavior within the NMR timescale is observed for the phenyl substituent in both 

complexes. The phenyl substituent is prevented from rotating freely around the Cimine-Ph bond 

resulting in four broad peaks for the ortho and meta protons on the phenyl substituent in 

complex 8, in 9 a broad peak of the two meta protons and the absence of the peak of the two 

ortho protons on the phenyl substituent is observed. This dynamic behavior was investigated 

further by variable temperature NMR which will be discussed later in the text. 
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Figure 28: 
1
H-NMR spectra of compound 8 (top) and compound 9 (bottom) at ambient temperature. 

For all the bonds connected to Rh, the bonds in complex 8 are slightly longer than those in 

complex 9.  For example, the Rh-Ccarbene bond in complex 8 is 2.014(4) Å where in complex 9  

it is 1.989(11) Å. The Nimine is bond more tightly in complex 9 than in complex 8. The reasons 

for this might be due to the steric effects of the Cp
*
. The Cp

*
 is significantly larger than the 

Cp.
[12]

 The average bond length of the bonds between the carbons in the Cp
*
 and Rh in 

complex 8 are longer than the average length of the bonds between the carbons in the Cp and 

Rh in complex 9. For both complexes 8 and 9 the bonds between the Ccarbene and the α-

nitrogens show a significant double bond character. A normal C-N single bond is usually 

within the range of 1.46-1.48 Å, while in complexes 8 and 9 they range from 1.33-1.38 which 

is considerably shorter.
[15]

 This indicates a donation of the lone-pair on the nitrogens into the 

empty p-orbital on the carbene to stabilize the carbene, as was discussed in the introduction 

section.
[14]

  

The lengths of the bonds between the metal and the Nimine and the lengths of the C=N bonds 

of 4a, 8 and 9 are listed in Table 8. For the two compounds where the Nimine is coordinated to 

the metal, the C=N bond is increased. For complex 4a, which has been discussed in the 

previous chapter, no significant coordination of the Nimine is seen in the structure based on X-

ray analysis, and the C=N bond is shorter. These bond lengths based on the X-ray analysis are 

also consistent with the vc=N of the imines as discussed earlier. The uncoordinated imine in 

complex 4a, shows a higher vC=N and thus a shorter C=N bond than the coordinated imines in 

complex 8 and 9.  
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Table 8: Bond lengths for the metal-Nimine bonds and the C=N bonds in complexes 4a, 8 and 9. 

 4a 8 9 

Nimine-M bond length - 2.137(3) Å 2.097 (9) Å 

C=N bond length 1.264(10) Å 1.289(5) Å 1.273(13) Å 

vC=N 1663 cm
-1

 1615 cm
-1

 1616 cm
-1

 

 

For both complexes 8 and 9 the bite angle of the  Nimine-Rh-Ccarbene chelate is close to 76
o
. In 

comparison, previously reported square planar complexes bearing this type of chelating N-

heterocyclic carbene published by our group show Nimine-Rh-Ccarbene bite angles in the range 

78-79
o
.
 [6]

 For complex 8 the Ccarbene-Rh-Cl angle is slightly smaller than for complex 9, this is 

probably due to the Cp
*
 being more sterically demanding compared to Cp. The same is seen 

for the Nimine-Rh-Cl angle. 

One can not say if the preferred conformation in solution is the same as the solid state 

structure. However, it is possible to do some experiments to support the structure based on the 

X-ray analysis. By performing a NOESY NMR experiment, showing which protons are close 

in space, a few things that support the X-ray structure were observed.
[48]

 

1. The methyl sitting on the nitrogen in the imidazolylidene is pointing towards the Cp. 

2. One of the ortho methyls on the mesityl is pointing towards the Cp. 

The above mentioned NOE correlations were observed for complex 9. The NOE correlations 

are shown in Figure 29, the correlations of interest are circled. Since the NOESY spectrum 

was measured on a solution of complex 9, it supports that the solid state structure might also 

be the preferred conformation in solution. The same correlations were observed for complex 

8, however, for 8 a NOE correlation between both the ortho methyls was observed.  
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Figure 29: NOESY (600 MHz, MeCN-d3, mixing time = 1.20 s) of  9. The NOE correlations 

discussed in the text are circled. 

3.2.7 Chirality of complexes 8 and 9 

The two Rh(III) complexes prepared, 8 and 9, have a stereogenic centre at Rh and are thus 

chiral. The separation of the two enantiomers or an enantioselective synthesis of them was not 

investigated. It was chosen to represent the complexes as the same enantiomers as was seen in 

the crystal structures. However, it should be kept in mind that the synthesis route chosen to 

prepare these complexes gives a racemic mixture. 

3.2.8 Variable temperature NMR of complexes 8 and 9 

Due to the mentioned indications of fluxional behavior of 8 and 9 the 
1
H-NMR spectra of 

complex 8 and 9 were recorded at different temperatures. For complex 8, 
1
H-NMR spectra 

were recorded at temperatures ranging from 1.1 
o
C to 77.4 

o
C and for complex 9 at 

temperatures ranging from -39.3 
o
C to 66.2 

o
C. Deuterated acetonitrile, which has a liquid 

range from -45 
o
C to 82 

o
C was used. In all the NMR spectra discussed in this section, it is 

chosen to show only the spectra of the aromatic region, as this is where the peaks of interest 

are located, the complete spectra can be found in Appendix. The assignments of the peaks 

were shown in Figure 28. 
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3.2.8.1 Variable temperature NMR of complex 8 

As mentioned previously the mesityl substituent in complex 8 is prevented from rotating 

freely. Upon raising the temperature on complex 8 no significant broadening of the 

resonances of the mesityl is observed, indicating a large barrier to rotation for this substituent. 

The hindered rotation is also consistent with what is seen in the crystal structure of 8 (see 

Figure 23). If the mesityl substituent wants to rotate, there will be a steric clash with both the 

Cp* and the phenyl. 

The phenyl group, however, rotates more freely than the mesityl. The spectrum of 8 shows a 

slow rotation at 25 
o
C as is seen from Figure 30. Four broad signals are seen for the protons in 

ortho and meta position indicating that the protons have a different magnetic environment. 

The broadening of the peaks indicate that there is still some rotation present, if the phenyl was 

not rotating at all, sharp signals and splitting with the adjacent protons would be seen as well. 

The proton in para position gives a triplet, since the magnetic environment for this position 

would not change upon rotation around the Cimine-Ph bond. The broadening of the peaks is 

also observed in the 
13

C-NMR spectrum. Figure 30 shows the 
1
H-NMR spectra of 8 upon 

decreasing the temperature. When the temperature is decreased the phenyl rotates more 

slowly, and at 1 
o
C all the peaks of the phenyl have sharpened up and show full splitting with 

the adjacent protons. 

The 
1
H-NMR spectra of 8 with increasing temperature are shown in Figure 31. Upon raising 

the temperature further a faster rotation is observed. The peaks get broader until they get so 

broad that they are no longer visible. At 66 
o
C the coalesced peak at 7.44 ppm of the two 

peaks of the meta protons is observed. Due to solvent limitations it was not possible to reach 

high enough temperatures to see the coalesced peak for the protons in ortho position.  
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Figure 30:  The 
1
H-NMR spectra of 8 with decreasing temperature. 

 

Figure 31:  The 
1
H-NMR spectra of 8 with increasing the temperature. 
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The rotation of the phenyl can be regarded as an exchange between the two protons in the 

meta position and an exchange between the two protons in the ortho position. Such exchange 

can be seen in a NOE-experiment. The NOESY spectrum of 8 is shown in Figure 32. Off-

diagonal peaks in the NOESY spectrum that have the same phase (colour) as the peaks on the 

diagonal may be either peaks due to a COSY correlation or due to an exchange process.
[48]

 In 

the NOESY spectrum of 8, such peaks are seen. These peaks are not observed in the COSY 

spectrum of 8  indicating that they probably occur due to an exchange process. COSY peaks 

in a NOESY spectrum will also have a multiplet appearance, and will not give such round 

peaks as seen in Figure 32.  

 

Figure 32: NOESY-spectrum (600 MHz, MeCN-d3, mixing time = 900 ms) of 8. The off-diagonal 

peaks with the same phase (colour) as the diagonal are likely due to the exchange process. 
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3.2.8.2 Variable temperature NMR of complex 9   

The 
1
H-NMR spectra of compound 9 upon decreasing the temperature are given in Figure 33. 

When the temperature is decreased the rotation slows down and at -9 
o
C the four different 

peaks for the four protons in ortho and meta position starts to show and they get more visible 

at -13 
o
C. At -27 

o
C the splitting of the peaks starts to show and at -39 

o
C the splitting gets 

even more visible. Due to solvent limitations, it was not possible to go low enough in 

temperature to observe full splitting. 

 

Figure 33: The 
1
H-NMR spectra of 9 with decreasing temperature. 

The 
1
H-NMR spectra of 9 upon increasing the temperature are shown in Figure 34.  Already at 

9 
o
C the coalesced peak of the two meta protons is starting to show and at 31 

o
C the coalesced 

peak of the two protons in ortho position starts to show. At 54 
o
C the peak for the two protons 

in meta position has sharpened and at 66 
o
C the peak for the two protons in ortho position is 

nearly sharpened, and the phenyl group is approaching free rotation. No broadening of the 

peaks of the two meta protons on the mesityl substituent was observed upon increasing the 

temperature, indicating a high barrier to rotation for this substituent. 
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Figure 34: The 
1
H-NMR spectra of 9 with increasing temperature. 

3.2.8.2 Comparison of the dynamic behavior of 8 and 9 

At room temperature, the phenyl substituent of compound 9 shows a faster rotation compared 

to compound 8. The 
1
H-NMR spectrum of compound 9 at 24 

o
C  resembles the 

1
H-NMR 

spectrum of compound 8 at 77 
o
C indicating that there is a substantially difference in the 

barrier to rotation of the phenyl substituent for the two complexes. Compound 9 carries the 

less sterically demanding Cp ligand compared to the large Cp* in complex 8, which may 

explain the more freely rotating phenyl in complex 9. For both complexes 8 and 9 no sign of 

rotation of the mesityl substituent within the NMR-timescale was observed, indicating a large 

barrier to rotation of this substituent. 
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3.2.9 Barrier to rotation: Lineshape analysis of Rh(III) complex 8 

The 
1
H-NMR spectrum of Rh(III) complex 8 was recorded at 14 different temperatures 

ranging from 1.1 
o
C to 77.4 

o
C. The exact temperature inside the NMR probe was measured 

for each experiment. It was originally planned to perform a full lineshape analysis of the data, 

but due to overlaps between several peaks, this was impractical. Instead, a lineshape analysis 

was performed in which the goodness of fit was optimized by visual inspection. A model of 

the spin system of the phenyl at low temperature was modeled in gNMR 5.0.
[44]

 The 
1
H-NMR 

spectrum of complex 8 at 1.1 
o
C was simulated in gNMR so that it resembled the 

experimentally acquired spectrum. Then an exchange between the two protons in ortho 

position and an exchange between the two protons in meta position was modeled. The rate of 

the exchange was changed so that one simulated spectrum that matches each of the real ones 

visually at all the different temperatures was obtained. The simulated spectra together with the 

experimental spectra are given in Figure 35.  

 

Figure 35: The simulated spectra of 8 (left) and the experimental spectra (right). 
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An Eyring plot, a plot of ln(k/T), where k is the rate constant and T is the temperature in 

Kelvins, versus 1/T was performed.
[15]

 Linear least square fitting of the data points were done 

to obtain a straight line and the enthalpy and entropy of rotation were calculated from the 

slope and the intercept of the linear fit (for more details see Appendix). The plot and the linear 

fit are given in Figure 36. The values obtained for the enthalpy and entropy of activation are 

listed in Table 9. 

 

Figure 36: Eyring plot of the rotation process of the phenyl substituent in Rh(III) complex 8. In this 

figure, comma is used instead of full stop to indicate the decimal points of the numbers on the axes. 

Table 9: Enthalpy and entropy of rotation obtained from the visual lineshape analysis 

ΔH
#
 59.7 ± 0.4 kJ mol

-1 

ΔS
#
 -17.4 ± 1.4 J K

-1
mol

-1 

 

The enthalpy of rotation obtained from the visual lineshape analysis was 59.7 ± 0.4 kJ mol
-1

. 

In comparison, the rotation of ethane from the more stable staggered form to the eclipsed 

form has an rotation barrier of 13 kJ mol
-1

.
[15]

 The entropy of rotation obtained for 8 is close 

to zero, as expected for such a unimolecular process as rotation. The slightly negative entropy 
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of rotation indicates a more ordered transition state for the rotation process. This suggests that 

there may be a correlated motion that involves the phenyl rotation and the conformation of the 

mesityl group. The mesityl group must assume a particular orientation in order to allow the 

rotation of the neighboring phenyl group. 

 Since this linshape analysis was performed only visually, there is a substantial uncertainty to 

the data obtained. Nevertheless, the data are consistent with such an unimolecular process as 

rotation. 

3.2.10 Computational studies: DFT optimization of Rh(III) complex 8 

The structure of the cationic part of Rh(III) complex 8 was optimized with density functional 

theory (DFT) calculations. For more details on how the calculations were carried out, see 

computational details. The optimized structure together with the experimental structure of 

complex 8 is given in Figure 37. The DFT optimization was performed with help from Dr. 

David Balcells. 

 

Figure 37: The DFT optimized (left) and the experimental (right) structure of complex 8.  

Selected bond lengths and angles were compared with the experimentally obtained structure, 

these values are listed in Table 10 and Table 11. 
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Table 10: Selected bond lengths found in the structure based on the X-ray analysis and in the DFT 

optimized structure of  Rh(III) complex 8. The numbering of the atoms corresponds to the numbering 

scheme in Figure 23. 

Bond 
Experimental structure 

Bond length [Å] 

DFT optimized structure 

Bond length [Å] 

Rh(11)-C(101) 2.014(4) 1.9979 

Rh(11)-N(103) 2.137(3) 2.1336 

Rh(11)-Cl(11) 2.4058(11) 2.3946 

Rh(11)-C(121) 2.166(4) 2.1846 

Rh(11)-C(122) 2.241(4) 2.2673 

Rh(11)-C(123) 2.229(4) 2.2472 

Rh(11)-C(124) 2.163(4) 2.1747 

Rh(11)-C(125) 2.183(4) 2.1889 

Rh(11)-Cp(avg.) 2.196 2.2125 

C(105)-N(103) 1.289(5) 1.2930 

C(101)-N(101) 1.328(5) 1.3398 

C(101)-N(102) 1.375(5) 1.3718 

C(121)-C(122) 1.453(7) 1.4535 

C(122)-C(123) 1.400(6) 1.4108 

C(123)-C(124) 1.450(6) 1.4578 

C(124)-C(125) 1.423(6) 1.4318 

C(125)-C(121) 1.434(6) 1.4365 
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Table 11: Selected bond angles found in the experimental structure and in the DFT optimized 

structure of Rh(III) complex 8. 

Angle 
Experimental structure 

Degrees [
o
] 

DFT optimized structure 

Degrees [
o
] 

C(101)-Rh(11)-N(103) 76.01(15) 76.7190 

C(101)-Rh(11)-Cl(11) 79.07(12) 79.3396 

N(103)-Rh(11)-Cl(11) 91.21(10) 90.8050 

N(101)-C(101)-N(102) 104.9(4) 104.6532 

 

The calculated values correspond well with the experimental values as seen from Table 10 and 

Table 11. The root-mean square deviations from the experimental structure are given in Table 

12 indicating a good agreement between the two data sets. A slight difference in the 

orientation of the phenyl in the DFT-optimized structure compared to the experimental 

structure was observed (see Figure 37). The experimental values are from the complete 

structure of 8, containing both the cation and the anion, while the DFT optimized structure is 

of only the cation, indicating that the counteranion do not have much effect on the structure of 

8.  

Table 12: The root-mean square deviations
a
 from the experimental structure of the DFT optimization 

of 8. Only the selected bond lengths and angles in Table 10 and Table 11 were taken into 

consideration. 

M-ligand 

distances 

[Å] 

Other 

distances 

[Å] 

Bond 

angles 

[
o
] 

0.016 0.007 0.45 

a:
   

 

 
         

 
     

where: 

x = n X-ray parameters 

y = n DFT optimized parameters 
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3.2.11 Attempt at preparing a new Rh(I) N-heterocyclic carbene complex 

 

Figure 38: The desired Rh(I) N-heterocyclic carbene complex. 

An attempt at preparing a Rh(I) complex from Rh(I) dimer 7 by reaction of the Ag(I) carbene 

4a with 7 was made. At first try the experiment was performed on an NMR scale. As soon as 

the solvent was vacuum-transferred into the NMR tube, the colour of the solution changed 

from pale orange to deep red followed by a rapid change to dark green. The crude 
1
H-NMR of 

the reaction showed that all the starting materials had been consumed, but the spectrum 

contains a forest of peaks, and it does not look like there has been any formation of the 

desired Rh(I) complex. 

Based on the colour changes of the reaction mixture in the NMR tube, it looks like there was a 

product formed initially, which then decomposes to the dark green solution. Therefore, the 

same reaction was performed at a laboratory scale at -78 
o
C to see if that would make it 

possible to observe what the initially formed product was. 

Upon performing the reaction at -78 
o
C, the solution also goes deep red, however, in this case, 

it takes 3-4 hours before it reaches this deep red colour. A sample was taken out from the 

reaction mixture to be investigated by 
1
H-NMR, but as soon as the reaction mixture was out 

of the cooling bath, it turned dark green. Upon investigation of this solution by 
1
H-NMR, it 

was again seen that the starting materials were consumed, but no sign of formation of the 

desired complex. 
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In order to investigate what the deep red solution formed at low temperatures consists of, it 

was decided to perform a low temperature NMR experiment and monitor the reaction by 
1
H-

NMR. An NMR tube fitted with a septum containing the Ag(I) carbene 4a dissolved in 

CD2Cl2 was cooled inside the NMR probe. When the solution had reached -60 
o
C the tube 

was taken out of the NMR probe and put into a cooling bath at -78 
o
C while the Rh(I) 

complex 7 was added in excess. The tube was shaken once, and then put back into the NMR 

probe. The 
1
H-NMR spectra for the reaction is given in Figure 39. A close-up on the aromatic 

section is given in Figure 40. 

 

Figure 39: 
1
H-NMR spectra for the reaction between 4a and 7 at low temperatures. 
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Figure 40: 
1
H-NMR spectra for the reaction between 4a and 7 at low temperatures, close-up of the 

aromatic region. 

The uppermost spectrum shows only the Ag(I) carbene 4a at -60 
o
C. In the second spectrum 

Rh(I) dimer 7 has been added, as is seen from the two broad peaks at 2.7 and 3.7 ppm. 

Already here, it can be seen that an extra set of signals starts to appear, and when the 

temperature is raised to -40 
o
C, this becomes more evident. For every signal from the Ag(I) 

carbene 4a, a new signal appears nearby, except for the new signal for the two protons from 

the backbone of the imidazolylidene, which are shifted more upfield. While observing the 

reaction at -40 
o
C it is seen that the starting materials are gradually consumed. 

At -20 
o
C, all of the Ag(I) carbene 4a has been consumed as is seen by the disappearance of 

the leftmost peak. From the 
1
H-NMR spectrum at -20 

o
C, it looks as if there is a new 

compound formed. No 2D characterization was attempted at low temperature. As seen before, 

upon raising the temperature to 0 
o
C, decomposition starts to occur.  

One possible explanation is that at low temperatures there is first a cleavage of the Rh(I) 

dimer 7 by coordination of the carbene, followed by a displacement of one of the ethylenes by 

Nimine forming a chelate giving the 16 electron d
8
 square planar compound a, shown in Figure 
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41. Since there is no clear ethylene peak in the 
1
H-NMR spectra, the ethylene may be labile, 

and thus the peak broadened. It must been kept in mind that ethylene may be hard to observe 

by 
1
H-NMR if the signal is broadened by such a fluxional process and the presence of 

ethylene can not be ruled out solely because of the lack of its signals in the 
1
H-NMR 

spectrum. 

To support this theory, an experiment where CO(g) is bubbled through the reaction mixture of 

presumably a may be performed. If the complex b is obtained (see Figure 41) this may 

support the presence of a. A very close analogue of b has already been reported by our group, 

the only difference being that the aryl substituent is a 2,6-dimethylphenyl, instead of the 

2,4,6-trimethylphenyl in this case.
[8]

 Since we already know that complex b is stable, bubbling 

CO through the solution of a may give b. Unfortunately, there was not enough time to 

perform this within the time limitations of this master thesis. 

 

 

Figure 41: Complex a, a possible complex formed at low temperatures in the reaction between 4a and 

7 and complex b which may be a resulting product of treating a with CO(g). 

Upon adding CpNa x DME to the deep red solution, formation of CpRh(CH2Cl2)2 was 

observed, together with recovery of a compound resembling the Ag(I) carbene 4a, indicating 

that the process leading to the complex formed in the red solution is a reversible process. 

Since none of these compounds are the desired compound, this path was abandoned. 
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3.3 Conclusion and future work 

The new Rh(III) N-heterocyclic carbene complexes 8 and 9 have been synthesized by a 

carbene transfer reaction from their corresponding Ag(I) N-heterocyclic carbenes in good 

yields. A thorough characterization of 8 and 9 were performed and some of their properties 

were investigated. Rh(III) complexes 8 and 9 show interesting dynamic behavior in the 
1
H-

NMR spectra which was further investigated by advanced NMR techniques. Good structures 

in agreement with the other spectroscopic data of both 8 and 9 were obtained by single crystal 

X-ray diffraction analysis. A DFT optimization of 8 was performed and gave good agreement 

with the experimentally obtained data of 8. An unsuccessful attempt on preparing a new Rh(I) 

N-heterocyclic carbene complex was performed. 

In the future, a catalytic testing of the new Rh(III) complexes would be desired. Testing of 

their performance in catalytic processes such hydrogenation, hydroformylation, ethylene 

dimerization or C-H functionalization may be performed. 
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Chapter 4 

Attempts at preparing new Ru(II), Co(I) and Co(III)  

N-heterocyclic carbene complexes 

4.1 The scope of the chapter 

In this chapter, several attempts at preparing Ru(II), Co(I) and Co(III) N-heterocyclic carbene 

complexes are described without any of them leading to the desired complexes. The desired 

complexes are listed in Figure 42. 

 

Figure 42: The desired Ru(II), Co(I) and Co(III) complexes  

 

 

 

  



60 

 

4.2 Results and discussion 

4.2.1 Synthesis of Ru complexes 10, 11 and 12 

Ru complexes 10-12 were prepared according to Scheme 10 by previously reported 

procedures.
[60-62]

 Isolation of Ru(II) hydride 10 from the heptane solution in which it is 

formed is not easy to achieve due to its instability, but in this solution, it is readily available 

for subsequent reaction.
[60]

  

 

Scheme 10: Synthesis of compounds 10-12.
[60-62]

 

The Ru(II) iodo complex 12 can be synthesized either by reacting Ru(I) dimer 11 with I2 or by 

directly reacting the in situ generated Ru(II) hydride 10 with I2.
[62]

 The latter method was 

preferred, since it requires a shorter work-up and gives 12 in good yield. 

4.2.2 Characterization of Ru complexes 10, 11 and 12 

1
H-NMR, MS and IR data corresponded with the reported data on compound 10-12.

[60-62]
 For 

all compounds 10-12 the characteristic singlet of the Cp was observed in the 
1
H-NMR spectra. 

For compound 11 the characteristic vCO for the bridging carbonyl ligand was observed at 1772 

cm
-1

 supporting the bridged structure of 11 in solution. Compound 10 was not isolated and 

was only characterized by 
1
H-NMR and IR spectra of the crude mixture. Its most prominent 

spectroscopic feature was the hydride singlet at -10.69 ppm in the 
1
H-NMR spectrum. 
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4.2.3 Attempts at preparing a new Ru(II) N-heterocyclic carbene complex 

It was attempted to prepare the Ru(II) N-heterocyclic carbene complexes in an analogous way 

as their phosphine analogues. It has been shown that phosphines and phosphites are able to 

substitute one of the carbonyls or the iodide in CpRu(CO)2X (M=Fe; X=Cl, Br, I M=Ru; X=I) 

complexes.
[63-65]

 For example, as depicted in Scheme 11, the substitution of one of the 

carbonyl ligands in CpRu(CO)2I with a phosphite giving CpRu(CO)[P(OR)3] has been 

performed.
[66]

 

 

Scheme 11: Substitution of one of the carbonyl ligands in CpRu(CO)2I. 

Upon reacting triphenylphosphine with CpFe(CO)2I, which is a close analogue of 

CpRu(CO)2I, it is the iodide which is substituted (see Scheme 12).
[65]

 

 

Scheme 12: Substitution of the iodide in CpFe(CO)2I with triphenylphosphine. 

A substitution of one or two of the carbonyl ligands or the iodide in the Ru(II) complex 12 

with the N-heterocyclic carbene of interest by doing a carbene transfer reaction from Ag(I) 

carbene 4b was desired. Substitution of carbonyl ligands and iodides in this way in complexes 

like 12 has, to the best of our knowledge, not been observed before, however, it was hoped 

that the driving force of creating AgCl would contribute to make the reaction sufficiently 

favorable. 

When attempting the carbene transfer from Ag(I) carbene 4b to Ru(II) complex 12 (see 

Scheme 13) no substitution of either carbonyl ligands or iodide occurs. No change in the vCO  

or any shift of the Cp resonance in the 
1
H-NMR spectrum was observed. The reaction was 

also performed in an NMR tube sealed on the vacuum line to make sure that the reaction was 

performed under an inert atmosphere, as well as being able to monitor the reaction by 
1
H-
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NMR. No reaction was observed in this case either. We suspect that the substitution of the 

carbonyl ligands or the iodide in CpRu(CO)2I requires a considerably thermal activation in 

order to proceed. However, increased temperatures seem to lead to decomposition of the 

Ag(I) carbenes used as the carbene source (see 4.2.6). This synthesis strategy was clearly not 

a good choice for the system of interest. 

 

Scheme 13: Attempt at preparing a new Ru(II) N-heterocyclic complex from Ru(II) complex 12 and 

Ag(I) carbene 4b. 

Since it is not possible to isolate the free carbene of the ligand system of interest, an attempt 

was made to prepare the free carbene in situ and see if it could substitute a carbonyl ligand or 

iodide in 12 before the carbene had time to undergo rearrangement.
[35]

 This has been 

performed previously in the Tilset-group with the same ligand system, but with a different 

metal (see Scheme 14).
[7]

 

 

Scheme 14:  Synthesis of Rh(I) N-heterocyclic carbene complex by generation of the free carbene in 

situ.
[7]

 

Upon attempting to make the free carbene in situ and reacting it with Ru(II) complex 12 (see 

Scheme 15) the only reaction observed was decomposition of imidazolium salt 3a. Ru(II) 

complex 12 remained unchanged, as was seen from 
1
H-NMR. 
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Scheme 15: Attempt at generating the free carbene in situ and reacting it with Ru(II) complex 12. 

An attempt at reacting Ru(II) complex 12 with the imidazolium salt 4b directly was 

performed; this resulted in no observable reaction of Ru(II) complex 12.  

These results indicate that it is not favorable to substitute a carbonyl group or iodide in Ru(II) 

complex 12 when using the Ag(I) N-heterocyclic carbene as a carbene transfer reagent. At this 

point, it was decided to leave this strategy. 

4.2.4 Synthesis of Co(III) complex 13 

Co(III) complex 13 was prepared according to Scheme 16 by a previously reported 

procedure.
[43, 67]

 An oxidative addition of I2 to CpCo(CO)2 gave 13 in good yield. 

 

Scheme 16: Synthesis of Co(III) complex 13.
[43, 67]

 

4.2.5 Characterization of Co(III) complex 13 

1
H-NMR, MS and IR data corresponded with the reported data on Co(III) complex 13.

[43, 67]
 

The characteristic Cp resonance was observed as a singlet at 4.34 ppm in the 
1
H-NMR 

spectrum of 13. The observed vco of  2077 cm
-1

 is a substantial increase compared to that of 

CpCo(CO)2 which has vCO of 2028 and 1967 cm
-1

, this indicates that the carbonyl ligand is 

more loosely bonded in 13 than the carbonyl ligands in CpCo(CO)2.
[42]
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4.2.6 Attempts at preparing new Co(I) and Co(III) N-heterocyclic carbene 

complexes 

Some cyclopentadienyl Co(I) and Co(III) complexes of N-heterocyclic carbenes have 

previously been synthesized in the Tilset-group. One example, CpCo(IMes)(CO), is shown in 

Scheme 17.
[32]

 

 

Scheme 17: One of the previously reported Co(I) N-heterocyclic carbene complexes synthesized in 

the Tilset-group.
[32]

  

CpCo(IMes)(CO) was prepared by substituting one of the carbonyl ligands in CpCo(CO)2 

with the free carbene of IMes.
[32]

 Based on this, it was desired to investigate if it would be 

possible to do the same with our N-heterocyclic carbene ligand system. Since it is not possible 

to generate the free carbene of the N-heterocyclic carbene of interest, it was decided to try to 

substitute the carbonyl ligand by a carbene transfer reaction from the Ag(I) carbene 4a.
[35]

 It 

was hoped that the driving force of forming AgCl would make the reaction favorable. 

Upon reacting CpCo(CO)2 with Ag(I) carbene 4a no reaction occurred. Upon heating the 

reaction mixture the Ag(I) carbene 4a decomposed. No change of the Cp resonance in the 
1
H-

NMR spectrum was observed, indicating that there was no reaction occurring. The reaction 

was also performed in an NMR tube sealed on the vacuum line to make sure that the reaction 

was performed under an inert atmosphere, as well as being able to monitor the reaction by 
1
H-

NMR. No reaction was observed in this case either. 
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Scheme 18: Attempt on preparing a new Co(I) N-heterocyclic carbene complex. 

One explanation of the failure of the experiment may be that the free carbene is needed in 

order to substitute the carbonyl ligands in CpCo(CO)2. Therefore an attempt to make the free 

carbene in situ was performed with the hope that the free carbene will substitute one of the 

carbonyl ligands before it undergoes rearrangement (see Scheme 19). This was however also 

unsuccessful. Only decomposition of the imidazolium salt 3a was observed. No shift in the 

1
H-NMR resonance of the Cp was observed. 

 

Scheme 19: Attempt on preparing a new Co(I) N-heterocyclic carbene complex. 

The Co precursor was changed to Co(III) complex 13. As mentioned earlier, the vCO of 

Co(III) complex 13 is significantly higher than for CpCo(CO)2 indicating that the CO is more 

loosely bonded to the metal.
[12]

 This indicates that it might be easier to substitute the COs in 

this complex. It has been reported that substitution of the CO in Co(III) complex 13 readily 

occurs with both triphenylphosphine and pyridine.
[43]

 It was therefore hoped that substitution 

of the carbonyl in 13 would proceed successfully. 

The reaction between 13 and 4a was performed in an NMR tube sealed on the vacuum line to 

make sure that the reaction was performed under an inert atmosphere and to enable 

monitoring of the reaction by 
1
H-NMR. Upon performing the reaction, a rapid colour change 

was observed. Inspection of the reaction by 
1
H-NMR,  showed that the signal of the Cp had 
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changed to more upfield, from 5.66 ppm to 5.28 ppm. However, no sign of formation of any 

desired Co(III) N-heterocyclic carbene complex was observed. 

At this point, due to the time limitations of the master thesis and the more interesting results 

obtained in the Rh project described in Chapter 3, the work on the Co(I) and Co(III) N-

heterocyclic carbene complexes was discontinued. 

4.3 Conclusion 

Several attempts on preparing new Ru(II), Co(I) and Co(III) N-heterocyclic carbene 

complexes have been performed. However, none of them led to any of the desired complexes. 

Based on the experience gained from the work presented in this chapter and the previous 

chapter it seems like that in order to transfer a N-heterocyclic carbene from the Ag(I) carbene 

to the desired metal, it is required to have a readily available coordination site. It appears that 

in the complexes selected for these reactions, the ligands (CO, I) that need to be removed in 

order to provide the vacant sites are probably too strongly bonded. When using Ag(I) 

carbenes, it seems like one is not able to perform substitutions of carbonyl ligands, such as 

substituting the carbonyl ligands in complex 12, 13 and CpCo(CO)2  indicating that the 

driving force of forming AgCl is not enough to make the reaction take place. 
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Experimental 

General 

All glassware was dried in an oven and cooled under argon prior to use. CH2Cl2, THF and 

Et2O were dried using a MB SPS-800 solvent purifying system from MBraun. MeOH was 

dried over molecular sieves. Heptane was distilled and dried over molecular sieves. All 

reactions were performed under an inert argon atmosphere with stirring unless otherwise 

noted. Vacuum line (1 x 10
-3

 mbar) was used for removal of solvents unless otherwise noted. 

NMR spectra were recorded on Bruker Avance DPX200, AVII400, DRX500 and AV600 at 

25 
o
C unless otherwise noted. The peaks in the 

1
H-NMR and 

13
C-NMR spectra of all new 

compounds were assigned using 2D NMR techniques such as HSQC/HMQC, HMBC, COSY 

and NOESY. IR spectra (in solution) were recorded on a Perkin Elmer Spectrum One FT-IR 

spectrometer. An Ar-filled glovebox of the type HE-493 from VAC was used. The X-ray 

structure analysis was performed by Sigurd Øien and Professor Carl Henrik Gørbitz on a 

Bruker APEX II CCD diffractometer. Mass spectra were obtained on a Micromass QTOF II 

spectrometer (ESI) and on a Fision VG Prospec sector instrument at 70 eV (EI) by Osamu 

Sekiguchi. The different isotopes observed by MS are listed as for example: 
35

Cl/
37

Cl 

((rel.%(
35

Cl)/(rel. %(
37

Cl)). Ru has 7 stable isotopes, which give complicated MS spectra, 

therefore only MS data for the most abundant isotope, 
102

Ru, is given.
[56]

 All new reactions 

were performed with Schlenk and glove box techniques and dry and degassed solvents the 

first time they were performed to make sure that no valuable unstable compounds were lost 
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Synthesis of amide 1a
[45-46]

 

 

 

Benzoyl chloride (4.60 mL, 39.6 mmol, 1.1 equiv.) in 21.0 mL CH2Cl2 was added dropwise to 

a stirred solution of 2,4,6-trimethylaniline (5.00 mL, 35.6 mmol, 1.0 equiv.) and Et3N (5.50 

mL, 39.5 mmol, 1.1 equiv.) in 35.0 mL CH2Cl2 and heated at reflux for 48 h. 150 mL CH2Cl2 

was added and the reaction mixture was washed with distilled H2O (100 mL), saturated 

NaHCO3 (aq, 100 mL) and 3M HCl (aq, 100 mL). The product was dried over MgSO4, 

filtrated and the solvent was removed by rotary evaporation yielding 1a (7.81 g, 92%) as a 

cream white solid. 1a was pure by 
1
H-NMR. 

1
H-NMR (200 MHz, CDCl3): δ 2.23 (s, 6H, 2 o-ArMe), 2.28 (s, 3H, p-ArMe), 6.92 (s, 2H, 

ArH), 7.30 (br. s, 1H, NH), 7.40-7.60 (m, 3H, PhH), 7.90 (m, 2H, PhH). 

MS (EI, MeCN) m/z(rel.%): 239(M
+
, 63), 134(25), 105(100), 77(33).  
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Synthesis of amide 1b
[45-46]

  

 

 

Benzoyl chloride (4.60 mL, 39.6 mmol, 1.1 equiv.) in 25.0 mL CH2Cl2 was added dropwise to 

a stirred solution of 2,6-dimethylaniline (4.45 mL, 36.1 mmol, 1.0  equiv.) and Et3N (5.40 

mL, 39.5 mmol, 1.1 equiv.) in 35.0 mL CH2Cl2 and heated at reflux for 48 h. 50 mL CH2Cl2 

was added and the reaction mixture was washed with distilled H2O (100 mL), saturated 

NaHCO3 (aq, 100 mL) and 3M HCl (aq, 100 mL). The product was dried over MgSO4, 

filtrated and solvent was removed by rotary evaporation yielding 1b (7.78 g, 96%) as a cream 

white solid. 1b was pure by 
1
H-NMR. 

1
H-NMR (200 MHz, CDCl3): δ 2.27 (s, 6H, ArMe), 7.12 (m, 3H, ArH), 7.36 (br. s, 1H, NH), 

7.43-7.61 (m, 3H, PhH), 7.87-7.94 (m, 2H, PhH). 

MS (EI, MeCN) m/z(rel.%): 225(M
+
, 54), 120(14), 105(100), 77(45). 

Synthesis of iminochloride 2a
[46-47]

  

 

 

SOCl2 (1.50 mL, 20.7 mmol, 1.4 equiv.) was added to 1a (3.472 g, 14.51 mmol, 1.0 equiv.). 

The reaction mixture was heated at reflux for 4 h. HCl and excess SOCl2 was removed in 

vacuo yielding 2a (3.556 g, 95 %) as a brown oil. 2a was pure by 
1
H-NMR. 

1
H-NMR (200 MHz, CDCl3): δ 2.07 (s, 6H, 2 o-ArMe), 2.30 (s, 3H, p-ArMe), 6.91 (s, 2H, 

ArH), 7.40-7.60 (m, 3H, PhH), 8.20 (m, 2H, PhH). 

MS (EI, MeCN) m/z(rel.%): 257/259(M
+
, 28/9), 222(100), 207(16), 119(11), 104(11), 91(14), 

77(10). 
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Synthesis of imine chloride 2b[46-47]
  

 

SOCl2 (1.80 mL, 25.6 mmol, 1.4 equiv.) was added to 1b (4.15 g, 18.4 mmol, 1.0 equiv.). The 

reaction mixture was heated at reflux for 4 h. HCl and excess SOCl2 was removed in vacuo 

yielding 2b (4.41 g, 98%) as a brown oil. 2b was pure by 
1
H-NMR. 

1
H-NMR (200 MHz, CDCl3): δ 2.12 (s, 6H, ArMe), 6.97-7.15 (m, 3H, ArH), 7.44-7.63 (m, 

3H, PhH), 7.18-8.25 (m, 2H, PhH). 

MS (EI, MeCN) m/z(rel.%): 243/245(M
+
, 30/10), 208(100), 193(11), 105(19), 103(14), 

79(10), 77(18). 
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Synthesis of imidazolium salt 3a  

 

 

1-Methylimidazole (0.70 mL, 8.8 mmol, 1.1 equiv.) was added dropwise to a stirred solution 

of 2a (2.007 g, 7.788 mmol, 1.0 equiv) dissolved in 42.0 mL THF. The reaction mixture was 

stirred at ambient temperature for 48 h. The product precipitated from solution during the 

course of the reaction. The precipitated product was washed with THF (4 x 30 mL) and THF 

was removed by cannula filtration. The product was dried in vacuo yielding 3a (1.781 g, 

68%) as a white solid. 3a was pure by 
1
H-NMR. 

1
H-NMR (500 MHz, CDCl3): δ 1.95 (s, 6H, o-ArMe), 2.18 (s, 3H,  p-ArMe), 4.33 (s, 3H, N-

Me), 6.73 (s, 2H, Ar-H), 7.33 (d, 2H, o-PhH, 
3
J=7.5 Hz), 7.41 (t, 2H, m-PhH, 

3
J=7.5 Hz), 

7.48 (t, 1H, p-PhH, 
3
J= 7.5 Hz), 7.70 (s, 1H, MeNCHCHN), 7.94 (s, 1H, MeNCHCHN), 

10.39 (s, 1H, NCHNMe). 

13
C-NMR (125 MHz, CDCl3): δ 18.46 (o-ArMe), 20.82 (p-ArMe), 37.91 (NMe), 119.40 

(MeNCHCHN), 124.22 (MeNCHCHN), 126.20 (o-Ar), 128.92 (o-Ph), 129.10 (m-Ar), 

129.73 (m-Ph), 132.77 (p-Ph), 134.43 (p-Ar), 138.73 (br., NCHN), 140.78 (i-Ar), 148.08 (i-

Ph). C=N was not observed. 

MS (ESI, MeCN) m/z(rel.%): 304(M
+
-Cl, 8), 222(100). 

HRMS (MeCN): Found 304.1822, calculated for C20H22N3 304.1813. 

IR (CH2Cl2): v(C=N) 1674 cm
-1

. 
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Synthesis of imidazolium salt 3b
[1]

 

 

1-Methylimidazole (0.60 mL, 7.6 mmol, 1.1 equiv.) was added dropwise to a stirred solution 

of 2b (2.670 g, 6.853 mmol, 1.0 equiv) dissolved in 35.0 mL THF. The reaction mixture was 

stirred at ambient temperature for 48 h. The product precipitated from solution during the 

course of the reaction. The precipitated product was washed with THF (3 x 30 mL) and THF 

was removed by cannula filtration. The product was recrystallized from CH2Cl2/Et2O and 

dried in vacuo yielding 3b (0.890 g, 40%) as yellow crystals. 3b was pure by 
1
H-NMR, 

CH2Cl2 was observed in the 
1
H-NMR spectrum. 

1
H-NMR (200 MHz, CDCl3): δ 2.00 (s, 6H, ArMe), 4.33 (s, 3H, NMe), 6.93-8.89 (m, 3H, 

ArH), 7.52-7.32 (m, 5H, PhH), 7.68 (s, 1H, NCHCHNMe), 7.94 (s, 1H, NCHCHNMe), 10.38 

(s, 1H, NCHN). 

IR (CH2Cl2): v(C=N) 1674 cm
-1

. 

MS (ESI, MeCN) m/z(rel.%): 290(M
+
-Cl, 100), 208(15). 
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Synthesis of Ag(I) carbene complex 4a 

 

Imidazolium salt 3a (1.00 g, 2.97 mmol, 1.0 equiv.), Ag2O (0.973 g, 4.20 mmol, 1.4 equiv.) 

and activated 3 Å molecular sieves were suspended in 20.0 mL CH2Cl2 and stirred at ambient 

temperature in the absence of light for 4 h. The solution was filtered off by cannula filtration 

and the solvent was removed in vacuo yielding 4a (1.11 g, 84%) as a weakly yellow solid. 4a 

was pure by 
1
H-NMR. Crystals for single crystal X-ray diffraction analysis were obtained by 

layering a saturated solution of 4a with Et2O. CH2Cl2 was observed in the 
1
H-NMR spectrum. 

1
H-NMR (400MHz, CDCl3): δ 1.99 (s, 6H, o-ArMe), 2.17 (s, 3H, p-ArMe), 3.88 (s, 3H, 

NMe), 6.71 (s, 2H, ArH), 7.08-7.15 (m, 3H, o-PhH and MeNCHCHN), 7.34 (t, 2H, m-PhH, 

3
J=7.6 Hz), 7.48 (t, 1H, p-PhH, 

3
J=7.6 Hz), 7.95 (s, 1H, MeNCHCHN). 

13
C-NMR (100 MHz, CDCl3): δ 18.52 (o-ArMe), 20.81 (p-ArMe), 40.09 (NMe), 120.98 

(MeNCHCHN), 122.27 (MeNCHCHN), 126.11 (o-Ar), 128.82 (m-Ar or o-Ph), 128.90 (m-

Ar or o-Ph), 129.17 (m-Ph), 130.79 (i-Ph), 131.98 (p-Ph), 133.46 (p-Ar), 142.00 (i-Ar), 

152.59 (C=N), 184.21 (NCN). 

IR (CH2Cl2): v(C=N) 1663 cm
-1

.  

MS (ESI, MeCN) m/z(rel.%): 713/715([Ag(NHC)2]
+
, 14/14), 222(100), 207(29). 

HRMS (MeCN): Found 713.2532, calculated for C40H42N6Ag 713.2521.   
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Synthesis of Ag(I) carbene complex 4b
[1]

 

 

Imidazolium salt 3b (868 mg, 2.66 mmol, 1.0 equiv.), Ag2O (871 mg, 3.76 mmol, 1.4 equiv.) 

and activated 3 Å molecular sieves were suspended in 20.0 mL CH2Cl2 and stirred at ambient 

temperature in the absence of light for 4 h. The solution was filtered off by cannula filtration 

and the solvent was removed in vacuo yielding 4b (923.1 mg, 80%) as a grayish solid. 4b was 

pure by 
1
H-NMR. CH2Cl2 was observed in the 

1
H-NMR spectrum. 

1
H-NMR (200MHz, CD2Cl2): δ 2.06 (s, 6H, ArMe), 3.88 (s, 3H, NMe), 6.96-6.82 (m, 3H, 

ArH), 7.20-7.17 (m, 3H, NCHCHNMe and o-PhH), 7.38-7.31 (m, 2H, m-PhH), 7.51-7.44 (m, 

1H, p-PhH), 7.84 (s, 1H, NCHCHNMe). 

IR (CH2Cl2): v(C=N) 1674 cm
-1

.  

MS (ESI, MeCN) m/z(rel.%): 685/687([Ag(NHC)2]
+
, 90/100), 478/480(10/8), 437/439(7/7), 

396/398(42/39). 
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Synthesis of Rh(III) complex 5
[52]

 



Pentamethylcyclopentadiene (0.15 mL, 0.96 mmol, 1.2 equiv) was added to a stirred and 

degassed solution of RhCl3 x 3H2O (205.8 mg, 0.7816 mmol, 1.0 equiv.) in 6.0 mL MeOH. 

The solution was heated at reflux for 21 h, the product precipitated out of the solution during 

the course of the reaction. The solution was filtrated off by cannula filtration and the solid was 

washed with Et2O (3x5 mL) yielding 5 as a red solid (200.5 mg, 83%). 5 was pure by 
1
H-

NMR. 

1
H-NMR (200 MHz, CDCl3): δ 1.60 (s, CpMe). 

MS (ESI, MeCN) m/z (rel.%): 581/583/585(M
+
-Cl, 100/86/11), 314/316(26/4), 

273/275(73/13). 

Synthesis of Rh(III) complex 6
[53]

 

 

Dicyclopentadiene was cracked over iron fillings and freshly distilled cyclopentadiene (bp. ca 

42 
o
C) was collected on an ice bath. Freshly distilled cyclopentadiene (0.26 mL, 3.1 mmol, 

4.2 equiv.) was added to a stirred and degassed solution of RhCl3 x 3H2O (199.3 mg, 0.7569 

mmol, 1.0 equiv) in 6.0 mL MeOH. The solution was heated at reflux for 16 h, the product 

precipitated out of solution during the course of the reaction. The solution was filtered off by 

cannula filtration and the solid was washed with MeOH (5 mL) and Et2O (3x5 mL) yielding 6 

(38.2 mg, 21%) as a red solid. Upon suspending some of the solid into DMSO-d6 a 
1
H-NMR 

of presumably [CpRhCl2(DMSO-d6)] was obtained. 6 was pure by 
1
H-NMR. 

1
H-NMR (400 MHz, DMSO-d6) δ 6.02 (s, Cp).  

13
C-NMR (100 MHz, DMSO-d6) δ 88.56 (d, Cp,

 1
J(

103
Rh-

13
C)=6.9 Hz)). 
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Synthesis of Rh(I) complex 7
[54]

 

 

 

CH2CH2 was bubbled through a stirred and degassed solution of RhCl3 x 3H2O (420.3 mg, 

1.519 mmol) in 20.0 mL MeOH and 0.85 mL distilled water in a Schlenk flask for 8 h. 

Product precipitated out of solution during the course of the reaction. The solvent was 

removed by cannula filtration and the product was washed with of MeOH (2x5 mL) while 

kept in an ice bath yielding 7 (82 mg, 28%) as an orange solid. The product was dried in 

vacuo for 1 h. 7 is thermally unstable and should be stored in a freezer, it can be handled at 

room temperature for short periods only. 7 was pure by 
1
H-NMR. 

 
1
H-NMR (200 MHz, C6D6): δ 2.84 (s, br, CH2). 
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Synthesis of Rh(III) complex 8 

 

Rh(III) complex 5 (27.1 mg, 0.0438 mmol, 1.0 equiv.) in 20.0 mL CH2Cl2 was added 

dropwise to a stirred dry-ice/acetone-cooled solution of Ag(I) carbene 4a (43.3 mg, 0.0974 

mmol, 2.2 equiv.) in 10.0 mL CH2Cl2 in the absence of light. The reaction mixture was 

allowed to warm to ambient temperature over night. The reaction mixture was stirred in the 

presence of light for a few hours to make any excess of 4a decompose and the crude mixture 

was filtrated by cannula filtration. Solvent was removed in vacuo yielding an orange solid 

which was recrystallized from CH2Cl2/Et2O to obtain 8 (54.4 mg, 82%) as an orange solid. 8 

was pure by 
1
H-NMR. CH2Cl2 was observed in the 

1
H-NMR spectrum. Crystals for X-ray 

analysis were grown by layering a saturated solution of 8 with Et2O. 

The reaction was also performed with 100.0 mg of 5 and 157.8 mg of 4a yielding 8 (164.5 

mg, 67%). 

1
H-NMR (500 MHz, MeCN-d3): δ 1.49 (s, 15H, CpMe), 1.82 (s, 3H, o-ArMe), 2.20 (s, 3H, 

p-ArMe), 2.44 (s, 3H, o-ArMe), 4.00 (s, 3H, NMe), 6.78 (s, 1H, ArH), 6.96 (br. s, 1H, o-

PhH), 7.01 (s, 1H, ArH), 7.22 (d, 1H, MeNCHCHN, 
3
J=2.2 Hz), 7.26 (br. s, 1H, m-PhH), 

7.34 (d, 1H, MeNCHCHN, 
3
J=2.2 Hz), 7.55 (t, 1H, p-PhH, 

3
J=7.5 Hz), 7.59 (br. s, 1H, m-

PhH), 7.71 (br. s, 1H, o-PhH). 

1
H-NMR (500 MHz, MeCN-d3, 1.1 

o
C): δ 1.47 (s, 15H, CpMe), 1.79 (s, 3H, o-ArMe), 2.19 

(s, 3H, p-ArMe), 2.42 (s, 3H, o-ArMe), 4.99 (s, 3H, NMe), 6.77 (s, 1H, ArH), 6.95 (d, 1H, o-

PhH, 
3
J=7.6 Hz), 7.01 (s, 1H, ArH), 7.23 (d, 1H, MeNCHCHN, 

3
J=2.2 Hz), 7.25 (t, 1H, m-

PhH, 
3
J=7.6  Hz), 7.34 (d, 1H, MeNCHCHN, 

3
J=2.2 Hz), 7.55 (t, 1H, p-PhH, 

3
J=7.6 Hz), 

7.59 (t, 1H, m-PhH, 
3
J=7.6 Hz), 7.70 (d, 1H, o-PhH, 

3
J=7.6 Hz).  
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13
C-NMR (125 MHz, MeCN-d3): δ 9.65 (CpMe), 19.78 (o-ArMe), 20.74 (p-ArMe), 21.07 (o-

ArMe), 38.69 (NMe), 101.35 (d, Cp, 
1
J(

103
Rh-

13
C)=6.9 Hz), 121.00 (MeNCHCHN), 127.16 

(MeNCHCHN), 128.05 (i-Ph), 129.84-130.50 (br., o-Ph and m-Ph), 130.07 (m-Ar), 130.62 

(o-Ar), 130.88 (m-Ar), 133.69 (p-Ph), 134.50 (o-Ar), 138.17 (p-Ar), 141.77 (i-Ar), 163.32 

(C=N), 184.46 (d, NCN, 
1
J(

103
Rh-

13
C)=51 Hz). 

IR (CH2Cl2): v(C=N) 1615 cm
-1

.  

MS (ESI, MeCN) m/z (rel %):  576/578(M
+
-Cl, 100/18). 

HRMS (MeCN): Found 576.1664, calculated for C30H36N3ClRh 576.1652. 

MS (ESI
-
, MeCN) m/z(rel.%): 177/179/181/183([AgCl2]

-
, 46/100/26/1). 

HRMS (MeCN): Found 176.8436, calculated for AgCl2 176.8428. 

 

 

 

 

 

 

 

 

 

 

 

  



79 

 

Synthesis of Rh(III) complex 9 

Ag(I) carbene 4a (ca 80 mg, 0.18 mmol, 2.4 equiv.)
*
 in 10.0 mL CH2Cl2 was added dropwise 

to a stirred dry-ice/acetone-cooled suspension of Rh(III) complex 6 (36.5 mg, 0.0764 mmol, 

1.0 equiv.) in 10.0 mL CH2Cl2. The reaction mixture was stirred in the absence of light over 

night followed by stirring in the presence of light for a few hours to decompose any excess of 

4a. The reaction mixture was filtered by cannula filtration. Solvent was removed in vacuo 

yielding an orange solid which was recrystallized from CH2Cl2/Et2O to obtain 9 (69.2 mg, 

65%) as an orange solid. 9 was pure by 
1
H-NMR except one unknown impurity in which has 

not been removed. Et2O was observed in the 
1
H-NMR spectrum. Crystals of 9 were grown by 

the vapor diffusion-diffusion technique.
[59]

 A small capped vial with a small opening on the 

top containing a nearly saturated solution of 9 in CH2Cl2 was placed into a larger vial 

containing Et2O. The crystals were formed within 24 h. 

 

1
H-NMR (600 MHz, CDCl3): δ 1.94 (s, 3H, o-ArMe, near Cp), 2.21 (s, 3H, p-ArMe), 2.59 (s, 

3H, o-ArMe), 4.25 (s, 3H, NMe), 5.68 (s, 5H, CpH), 6.66 (s, 1H, ArH, near Cp), 6.91 (s, 1H, 

ArH), 7.19 (d, 1H, MeNCHCHN, 
3
J=2.2 Hz), 7.30 (d, 1H, MeNCHCHN, 

3
J=2.2 Hz), 7.41 

(br. s, 2H, m-PhH), 7.51 (t, 1H, p-PhH, 
3
J=7.6 Hz)**. 

1
H-NMR (500 MHz, MeCN-d3, -21

o
C): δ 1.82 (s, 3H, o-ArMe, near Cp), 2.20 (s, 3H p-

ArMe), 2.56 (s, 3H, o-ArMe), 3.99 (s, 3H, NMe), 5.52 (s, 5H, CpH), 6.72 (s, 1H, ArH, near 

Cp), 7.00 (s, 1H, ArH), 7.10 (s br., 1H, o-PhH), 7.30 (s br., 1H, m-PhH), 7.34 (d, 1H, 

MeCHCHN or MeCHCHN, 
3
J=2.3 Hz), 7.42 (d, 1H, MeNCHCHN or MeNCHCHN, 

3
J=2.3 

Hz), 7.58 (m, 2H, m-PhH and p-PhH), 7.66 (s br., 1H, o-PhH). 

13
C-NMR (100 MHz, CDCl3): δ 19.18 (o-ArMe), 20.85 (o-ArMe), 20.93 (p-ArMe), 39.87 

(NMe), 89.78 (Cp, 
1
J(

103
Rh-

13
C)=5.8 Hz)), 120.05 (MeNCHCHN), 125.50 (i-Ph), 126.05 

(MeNCHCHN), 128.17 (o-Ar), 129.41-129.44 (s br., m-Ph)  129.68 (m-Ar), 130.16 (m-Ar), 
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132.58 (o-Ar), 133.39 (p-Ph), 137.91 (p-Ar), 145.79 (i-Ar), 163.29 (C=N), 181.75 (NCN, 

1
J(

103
Rh-

13
C)=46.8 Hz)

**
. 

IR (CH2Cl2): v(C=N) 1616 cm
-1

.  

MS (ESI, MeCN): m/z(rel.%) 506/508(M
+
-Cl, 100/20). 

HRMS (MeCN): Found 506.0854, calculated for C25H26N3ClRh 506.0870. 

MS (ESI
-
, MeCN): m/z(rel.%) 177/179/181/183([AgCl2]

-
, 66/100/53/5). 

*Due to a problem with the balance, this mass could not be measured exactly. 

** The two protons and carbons in ortho position on the phenyl are not observed due to the broadness 

of their peak at this temperature. 
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Attempt at preparing a Rh(I) complex: NMR-experiment 

 

In the glovebox, an NMR tube was loaded with 7 (10 mg, 0.026 mmol, 1.0 equiv.) and 4a (23 

mg, 0.052mmol, 2.0 equiv). An adaptor was fitted onto the NMR tube and the NMR tube was 

closed and taken out of the glove box. On the vacuum line, CD2Cl2 was degassed by the 

freeze pump thaw method and ca 0.5 mL was vacuum-transferred into the NMR tube. The 

NMR tube was sealed by melting the top off, to prevent any air from entering. The reaction 

mixture first turned deep red, then it rapidly went dark green. No sign of formation of the 

desired product was observed by 
1
H-NMR. 

Attempt at preparing a Rh(I) complex: In round bottom flask at -78 
o
C 

7 and 4a were weighed out in the glove box. 4a (75 mg, 0.17 mmol, 2.2 equiv.) in 19.0 mL 

THF was added dropwise to a stirred solution of 7 (30 mg, 0.077 mmol, 1.0 equiv.) at -78 
o
C. 

The reaction mixture was stirred in the absence of light. After 3 h, the solution had a deep red 

colour. Upon taking out a sample from the cooled reaction mixture, it rapidly turns dark 

green. The same is observed if allowed to slowly heat to room temperature. No sign of 

formation of the desired product was observed by 
1
H-NMR. 

Attempt at preparing a Rh(I) complex: Low temperature NMR experiment 

The sample was prepared in the glovebox. A NMR tube fitted with an air tight septum was 

loaded with 4a (5 mg, 0.01 mmol, 1.0 equiv) and ca 0.5 mL CD2Cl2. A solution of 7 in 

CD2Cl2 was prepared, the concentration was approx. 0.025 mg/μL. The NMR tube containing 

4a was cooled down in the NMR probe. At every 20 
o
C shimming of the magnetic field and 

tuning and matching of the probe were performed. When the sample was at -60 
o
C, it was 

taken out of the probe and put into a cooling bath at -78 
o
C and 7 (250 μL, 0.016 mmol, 1.6 

equiv.) was added. The NMR tube was shaken once and then put back into the probe which 

still holds -60 
o
C. The temperature was raised gradually and the reaction was monitored by 

1
H-NMR. 
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Attempt at preparing a Rh(I) complex: In round bottom flask at -78 
o
C II 

7, 4a and CpNa x DME were weighed out in the glove box. 7 (30 mg, 0.077 mmol, 1.0 

equiv.) in 10.0 mL THF was added dropwise to a solution of 4a (70 mg, 0.16 mmol, 2.2 

equiv.) at -78 
o
C in 6.0 mL THF. The reaction mixture was stirred in the absence of light. 

After 3 h, the reaction mixture had reached a deep red colour. CpNa x
 
DME (30 mg, 0.17 

mmol, 2.2 equiv.) in 10.0 mL THF was added dropwise. The desired product was not formed, 

but CpRh(CH2CH2)2 is seen by 
1
H-NMR. The rest of the peaks resemble those of Ag(I) 

carbene 4a, except that a few of the peaks are slightly shifted, however, this was a crude-

NMR, so there might be some salts present causing the changes in the shifts. 

1
H-NMR (200 MHz, C6D6): (CpRh(CH2CH2)2) δ 1.10 (s br., 4H, CH2), 2.88 (s br., 4H, CH2),  

4.83 (s, 5H, Cp). 

1
H-NMR (200 MHz, C6D6): (presumably of 4a) δ 1.92 (s, 6H, o-ArMe), 2.01 (s, 3H, p-

ArMe), 2.66 (NMe), 5.68 (s, 1H, MeNCHCHN or MeNCHCHN), 6.60 (s, 2H, ArH), 6.86-

7.10 (m, 5H, PhH), 7.37 (s, 1H, MeNCHCHN or MeNCHCHN). 

Variable temperature 
1
H-NMR of Rh(III) complex 8 

A J-Young NMR tube was loaded with Rh(III) complex 8, and the complex was dissolved in 

MeCN-d3. The NMR tube was closed to prevent solvent from evaporating. The 
1
H-NMR 

spectrum of compound 8 was recorded at 14 different temperatures ranging from 1.1 
o
C to 

77.4 
o
C. At every temperature optimization of the magnetic field, shimming, and tuning and 

matching of the probe was performed. The exact temperature inside the probe, where the 

sample sits, was measured with a Delta OHM HD-9214 thermometer. 

Variable temperature 
1 
H-NMR of Rh(III) complex 9 

A J-Young NMR tube was loaded with Rh(III) complex 9, and the complex was dissolved in 

MeCN-d3. The NMR tube was closed to prevent solvent from evaporating. The 
1
H-NMR 

spectrum of compound 9 was recorded at 16 different temperatures ranging from -39.3 
o
C to 

66.2 
o
C. At every temperature, optimization of the magnetic field, shimming, and tuning and 

matching of the probe were performed. The exact temperature inside the probe, where the 

sample sits, was measured with a Delta OHM HD-9214 thermometer. 
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Synthesis of Ru(II) complex 10
[60]

 

 

Dicyclopentadiene was cracked over iron fillings and freshly distilled cyclopentadiene (bp. ca 

42 
o
C) was collected on an ice bath. A Schlenk flask was loaded with Ru3(CO)12 (297.2 mg, 

0.4649 mg, 1.0 equiv.). 25.0 mL heptane was added and the solution was degassed by 

bubbling argon through. Freshly distilled cyclopentadiene (0.75 mL, 8.9 mmol, 19 equiv.) 

was added. The reaction mixture was heated at reflux until the reaction mixture had turned 

pale yellow, this is an indication that the hydride has been formed and it takes approximately 

2 h. Ru(II) complex 10 was not isolated due to its instability.
[60]

 A 
1
H-NMR of the crude 

prepared in the absence of air and water on the vacuum line showed the characteristic hydride 

resonance. 

1
H-NMR (of crude) (200 MHz, C6D6): δ -10.69 (s, Ru-H).  

IR (of crude) (heptane): v(CO) 2032 cm
-1

, 1973 cm
-1

. 
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Synthesis of Ru(I) complex 11
[61]

 

 

Dicyclopentadiene was cracked over iron fillings and freshly distilled cyclopentadiene (bp. ca 

42 
o
C) was collected on an ice bath. A Schlenk flask was loaded with Ru3(CO)12 (297.2 mg, 

0.4649 mg, 1.0 equiv.). 25.0 mL heptane was added and the solution was degassed by 

bubbling argon through. Freshly distilled cyclopentadiene (0.75 mL, 8.9 mmol, 19 equiv.) 

was added. The reaction mixture was heated at reflux until the reaction mixture had turned 

pale yellow. The flask was opened to air for a short time and the reaction mixture was heated 

at reflux for one more hour. Solvent was removed in vacuo and the resulting solid was 

dissolved in CH2Cl2:hexane (1:2) and filtered through alumina with CH2Cl2:hexane (1:2), the 

solvent was removed in vacuo yielding 11 (133.9 mg, 43%)  as an orange crystalline solid. 11 

was pure by 
1
H-NMR. 

1
H-NMR (200MHz, C6D6): δ 4.72 (s, Cp). 

IR (heptane): v(CO) 2002 cm
-1

, 1965 cm
-1

,
 
1935 cm

-1
, 1772 cm

-1
. 

MS (EI, Et2O) m/z(rel.%): 446(M
+
, 38), 418(17), 390(30), 362(24), 334(100). 
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Synthesis of Ru(II) complex 12
[62]

 

 

Dicyclopentadiene was cracked over iron fillings and freshly distilled cyclopentadiene (bp. ca 

42 
o
C) was collected on an ice bath. A Schlenk flask was loaded with Ru3(CO)12 (304.7 mg, 

0.4766, 1.0 equiv.) and 30.0 mL heptane, the reaction mixture was degasses by bubbling 

argon through. Freshly distilled cyclopentadiene (0.80 mL, 9.5 mmol, 20 equiv.) was added 

and the reaction mixture was heated at reflux until the reaction mixture had obtained a pale 

yellow colour. When the pale yellow colour had appeared a heated solution of I2 (293.8 mg, 

1.158 mmol, 2.4 equiv.) in 40.0 mL heptane was added dropwise and the reaction mixture 

turned red, then dark. The reaction mixture was heated at reflux for 6 h (over night may also 

be performed). Solvent and excess I2 was removed in vacuo and the resulting solid was 

dissolved in CH2Cl2 and filtered through alumina. The solvent was removed in vacuo yielding 

12 (390.8 mg, 78%) as a red solid. 12 was pure by 
1
H-NMR except a few impurities in the 

grease-region. 

1
H-NMR (200 MHz, C6D6): δ 4.29 (s, Cp). 

IR (CH2Cl2): v(CO) 2049 cm
-1

, 1999 cm
-1

. 

MS (EI, Et2O) m/z(rel.%): 350(M
+
, 81), 322(53), 294(30), 229(10), 167(100). 
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Attempts at preparing new Ru(II) N-heterocyclic carbene complexes 

 

Several attempts on preparing a new Ru(I) N-heterocyclic carbene complex were performed. 

An overview of the different attempts is given in Table 13. The detailed procedures are given 

below. 

Attempt at preparing a new Ru(II) N-heterocyclic carbene complex I 

Imidazolium salt 3b (115.1 mg, 0.3531 mmol,  1.2 equiv.) in 10.0 mL CH2Cl2 was added to a 

solution of Ru(II) complex 12 (100.6 mg, 0.2882, 1.0 equiv) in 5.0 mL CH2Cl2. The reaction 

mixture was heated at reflux for 4 h. After 4 h the reaction mixture was investigated by IR and 

no change in v(CO) was observed. 

Attempt at preparing a new Ru(II) N-heterocyclic carbene complex II 

A solution of Ag(I) carbene 4b (140.4 mg, 0.325 mmol, 1.1 equiv.)  at 0 
o
C in 11.0 mL 

CH2Cl2 was added dropwise to a solution of Ru(II) complex 12 (102.5 mg, 0.2935, 1.0 equiv) 

at 0 
o
C in 6.0 mL CH2Cl2. The reaction mixture was stirred in the absence of light and was 

warmed to room temperature over night. No change in the vCO was observed by IR and no 

change in 
1
H-NMR shift of the Cp was observed. 

Attempt at preparing a new Ru(II) N-heterocyclic carbene complex: NMR 

experiment I 

An NMR tube was loaded with Ru(II) complex 12 (7.8 mg. 0.022 mmol, 1.0 equiv.) and 

Ag(I) carbene 4b (10.8 mg, 0.025 mmol, 1.1 equiv) and fitted to the vacuum line via an 

adaptor. Dry CDCl3 was degassed by the freeze pump thaw method and vacuum-transferred 

into the NMR tube. The NMR tube was sealed by melting the top off and the reaction was 

monitored by 
1
H-NMR. No significant change of the 

1
H-NMR signal of the Cp was observed. 
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Attempt at preparing a new Ru(II) N-heterocyclic carbene complex: NMR 

experiment II 

A NMR tube was loaded with Ru(II) complex 12 (8.0 mg, 0.023 mmol, 1.0 equiv.) and Ag(I) 

carbene 4b (10.4 mg, 0.0240 mmol, 1.0 equiv.) and fitted on the vacuum line via an adaptor. 

Dry CD2Cl2 was degassed by the freeze pump thaw technique and vacuum-transferred into the 

NMR tube. The NMR tube was sealed by melting the top off and the reaction was monitored 

by 
1
H-NMR. No significant shift in the Cp 

1
H- NMR resonance was observed. 

Attempt at preparing a new Ru(II) N-heterocyclic carbene complex III 

t-BuOK was weighed out in the glove box. t-BuOK (33.3 mg, 0.297 mmol, 1.2 equiv.) was 

dissolved in 20.0 mL THF, cooled down to -78 
o
C and added dropwise to a solution of Ru(II) 

complex 12 (86.3 mg, 0.247 mmol, 1.0 equiv.) and imidazolium salt 3a (93.6 mg, 0.2770 

mmol, 1.1 equiv.) at -78 
o
C in 10.0 mL THF over a period of 30 min. The reaction mixture 

was slowly heated to room temperature over night and investigated by 
1
H-NMR the next day. 

No significant shift in the Cp 
1
H- NMR resonance was seen. Decomposition of imidazolium 

salt 3a was observed. 

Table 13: Attempts at preparing a new Ru(I) N-heterocyclic carbene complex. 

Reagent 1 Reagent 2 Reagent 3 Solvent Conditions Time Result 

12 

 

3b 

 
- 

CH2Cl2 

 
reflux 4 h 

12 unchanged 

 

12 

 

4b 

 
- 

CH2Cl2 

 
0 

o
C Over night 12 unchanged 

12 

 

4b 

 
- CDCl3

a 
Ambient 

temperature 

Followed by 

1
H-NMR 

12 unchanged 

12 

 

4b 

 
- CD2Cl2

a 
Ambient 

temperature 

Followed by 

1
H-NMR 

12 unchanged 

12  

 

3a 

 
t-BuOK 

THF 

 

-78 
o
C, then 

ambient 

temperature
 

Over night 
12 unchanged 

3a decomposed 

a: NMR experiment 
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Synthesis of Co-complex 13
[43, 67]

 

 

CpCo(CO)2 is very air sensitive and was weighed out in the glove box. I2 (570.0 mg, 2.246 

mmol, 1.0 equiv) in 60.0 mL Et2O was added dropwise to a solution of CpCo(CO)2 (413 mg, 

2.29 mmol, 1.0 equiv.) in a Schlenk flask  at 0 
o
C in 10 mL Et2O. The reaction mixture was 

stirred at room temperature for 3 d. The solvent was removed in vacuo and the solid was 

washed with 40 mL heptane yielding 13 (753 mg, 81 %) as a dark purple solid. 13 was pure 

by 
1
H-NMR except a few impurities in the grease-region. 

1
H-NMR (200 MHz, C6D6): δ 4.34 (s, Cp). 

1
H-NMR (200 MHz, CDCl3): δ 5.66 (s, Cp). 

MS (EI, MeCN) m/z (rel.%): 406(M
+
, 5), 378(6), 251(100), 186(10), 128(23), 127(14), 

124(68), 65(12), 39(17). 

IR (CH2Cl2) v(CO) 2077 cm
-1

. 
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Attempts at preparing new Co N-heterocyclic carbene complexes 

 

A few attempts at preparing new Co(I) and Co(III) N-heterocyclic complexes were performed, 

without any overwhelming results. An overview of the different procedures and their results 

are given in Table 14. The detailed procedures are given below. 

Attempt at preparing a new Co(I) N-heterocyclic carbene complex: NMR 

experiment 

All compounds were weighed out in the glove box. An NMR tube was loaded with 

CpCo(CO)2 (13 mg, 0.072 mmol, 1.0 equiv.) and Ag(I) carbene 4a (41 mg, 0.092 mmol, 1.3 

equiv.). The NMR tube was fitted with an adapter, closed to prevent air from entering and 

taken out of the glove box. C6D6 was degassed by the freeze pump thaw method and was 

vacuum-transferred into the NMR tube. The NMR tube was sealed by melting the top off and 

the reaction was investigated by 
1
H-NMR. No indication of any reaction was seen by 

1
H-

NMR. The solution was then refluxed for 1 h and was again investigated by 
1
H-NMR. It was 

observed that the Ag(I) carbene 4a had started to decompose while the 
1
H-NMR signal of the 

Cp had not changed. Upon further heating, the Ag(I) carbene 4a decomposed further. 

Attempt at preparing a new Co(I) N-heterocyclic carbene complex 

t-BuOK and CpCo(CO)2 were weighed out in the glove box. Imidazolium salt 3a (206.5 mg, 

0.6111 mmol, 1.1 equiv.) in 10.0 mL THF was added to a solution of CpCo(CO)2 (99 mg, 

0.55 mmol, 1.0 equiv.)  in 5.0 mL THF, the reaction mixture was cooled down to -78 
o
C and 

t-BuOK (74 mg, 0.66 mmol, 1.2 equiv.) in 20.0 mL THF was added dropwise over 30 min. 

The reaction mixture was stirred and warmed to ambient temperature over night. A sample 

was taken out from the reaction mixture, and an air free NMR sample was prepared on the 

vacuum line. No shift of the 
1
H-NMR signal of the Cp was seen. Decomposition of the 

imidazolium salt 3a was observed.  
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Attempt at preparing a new Co(III) N-heterocyclic carbene complex: NMR 

experiment 

All reagents were weighed out in the glove box. An NMR tube was loaded with Co(III) 

complex 13 (11 mg, 0.027 mmol, 1.0 equiv.) and Ag(I) carbene 4a (13 mg, 0.029 mmol, 1.1 

equiv.). The NMR tube was fitted with an adapter, sealed to prevent air from entering and was 

taken out of the glove box. CDCl3 was degassed on the vacuum line by the freeze pump thaw 

technique and vacuum-transferred into the NMR tube. The NMR tube was sealed by melting 

the top off and the reaction was investigated by 
1
H-NMR. A colour change from the purple 

colour of Co(III) complex 13 to a deep red colour was observed. The 
1
H-NMR shift of the Cp 

has now moved from 5.66 to 5.28 ppm, however, no indications of formation of the desired 

complex was seen. 

Table 14: Attempts on preparing new Co(I) and Co(III)  N-heterocyclic carbene complex 

Reagent 1 Reagent 2 Reagent 3 Solvent Conditions Time Result 

CpCo(CO)2 

 

 

4a 

 

- C6D6
a
 

Ambient 

temperature, 

then reflux 

Followed 

by 
1
H-

NMR 

4a decomposed. 

CpCo(CO)2 

unchanged 

CpCo(CO)2  

 

 

3a 

 

 

t-BuOK THF 

-78 
o
C, then 

ambient 

temperature
 

Over night 

3a decomposed 

CpCo(CO)2
 

unchanged 

13 

 

4a 

 
- CDCl3

a 
Ambient 

temperature 

Followed 

by 
1
H-

NMR 

Starting material 

has disappeared, no 

desired compound 

formed 

a: NMR-experiment 

 

 

  



91 

 

Computational details 

DFT Structure optimization of Rh(III) complex 8 

The structure of the cationic part of complex 8 was optimized with density functional theory 

calculations (DFT) by following the stepwise approach illustrated in Figure 43. The first steps 

were performed on a local desktop computer, whereas the last step was performed on the Abel 

supercomputer.
[68]

 The first optimization was performed on a simplified model of 8, in which 

the phenyl, mesityl and Cp* methyls were replaced by hydrogen atoms. After these initial 

calculations, the system was re-optimized by adding the Cp*-methyls. In the subsequent two 

steps, the mesityl and phenyl groups were added to have a full model of the system. This 

model was finally re-optimized at a higher level of theory on the Abel supercomputer. 

All calculations were carried out at the DFT level with Gaussian09.
[69]

 Structures were fully 

optimized in gas phase without any geometry and symmetry constraints. Vibrational 

frequencies were computed in order to verify that all stationary points were minima of the 

potential energy surface. The pure PBE functional was used to carry out the geometry 

optimizations on the desktop computer.
[70-71]

  The Stuttgart-Dresden pseudopotentials were 

used for Rh and Cl with the associated basis sets.
[72]

 C, N and H were described with the all-

electron double- 6-31G** basis set.
[73]

 For the calculations performed on Abel, a higher level 

of theory was used, involving the hybrid PBE0 functional and the 6-31G* basis set for C, N 

and H.
[74-75]

 The calculations were performed in collaboration with a postdoctoral researcher 

at the CTCC (Centre for Theoretical and Computational Chemistry) of the University of Oslo, 

Dr. David Balcells. 
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Figure 43: Strategy for optimization of the structure of the cationic part of Rh(III) complex 8. 
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Appendix 

 

Compound 1a 

 

 

Figure 44: 
1
H-NMR (200 MHz, CDCl3) spectrum of 1a. 
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Compound 1b 

 

 

Figure 45: 
1
H-NMR (200 MHz, CDCl3) spectrum of 1b. The peak at ca 1.5 ppm is water from the 

NMR solvent. 

  



95 

 

Compound 2a 

 

 

Figure 46: 
1
H-NMR (200 MHz, CDCl3) spectrum of 2a. 
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Compound 2b 

 

 

Figure 47: 
1
H-NMR (200 MHz, CDCl3) spectrum of 2b. 
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Compound 3a 

 

 

Figure 48: 
1
H-NMR (500 MHz, CDCl3) spectrum of 3a. 
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Figure 49: 
1
H-NMR (500 MHz, CDCl3) spectrum of 3a. Close-up of the aromatic region.  

 

Figure 50: 
13

C-NMR (125 MHz, CDCl3) spectrum of 3a. 
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Figure 51: 
13

C-NMR (125 MHz, CDCl3) spectrum of 3a. Close-up of the aromatic region. 

 

Figure 52: HSQC (500 MHz, CDCl3) spectrum of 3a. 
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Figure 53: HMBC (500 MHZ, CDCl3, no decoupling) spectrum of 3a. 

 

Figure 54: IR (CH2Cl2) spectrum of 3a. 
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Compound 3b 

 

 

Figure 55: 
1
H-NMR (200 MHz, CDCl3) spectrum of 3b. The peak at ca 5.3 is CH2Cl2. 
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Figure 56: IR (CH2Cl2) spectrum of 3b. 
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Compound 4a 

 

 

Figure 57: 
1
H-NMR (400 MHz, CDCl3) spectrum of 4a. The peaks at ca 1.5 and 5.3 are due to 

CH2Cl2 and water. 
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Figure 58: 
1
H-NMR (400 MHZ, CDCl3) spectrum of 4a. Close-up of the aromatic region.

 

Figure 59: 
13

C-NMR (150 MHz, CDCl3, d1 = 10 s) spectrum of 4a. The peak at ca 53 ppm is due to 

CH2Cl2. 
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Figure 60: 

13
C-NMR (150 MHz, CDCl3, d1=10 s) spectrum of 4a. Close-up of the aromatic region. 

 

Figure 61: 
13

C-NMR (150 MHz, CDCl3, d1= 20 s) spectrum of 4a. Close-up of Ccarbene. 
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Figure 62: COSY (500 MHz, CDCl3) spectrum of 4a. 

 

Figure 63: HMQC (400 MHz, CDCl3) spectrum of 4a. 
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Figure 64: HMBC (500 MHz, CDCl3, no decoupling) spectrum of 4a. 

 

Figure 65: IR (CH2Cl2) spectrum of 4a. 
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Figure 66: ORTEP-drawing of complex 4a. Hydrogens and CH2Cl2 are omitted for clarity. Ellipsoids 

at 50% probability. 

Table 15: Selected bond lengths from structure based on the X-ray analysis of 4a. 

Bond Bond length [Å] 

Ag(1)-C(101) 2.075(8) 

Ag(1)-C(l1) 2.343(2) 

Ag(1)-Ag(1) 3.073(2) 

N(101)-C(101) 1.345(10) 

N(102)-C(101) 1.349(11) 

N(103)-C(105) 1.264(10) 

 

Table 16: Selected bond angles from structure based on the X-ray analysis of 4a. 

 

Angle Degrees [
o
] 

C(101)-Ag(1)-Cl(1) 165.9(2) 

C(101)-Ag(1)-Ag(1) 76.1(2) 

Cl(1)-Ag(1)-Ag(1) 117.85(6) 

N(101)-C(101)-N(102) 103.9(7) 

N(101)-C(101)-Ag(1) 132.4(6) 

N(102)-C(101)-Ag(1) 123.6(6) 
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Table 17: Crystallographic data for compound 4a. 

Crystal data  

Formula  (C40H42N6Ag2Cl2) 2(C Cl2)* 

Formula weight 1059.34 

Crystal size 0.35 x 0.25 x 0.003 mm 

Colour, shape Yellow, prism 

Crystal system Triclinic 

Space group P  

b 9.265(6) Å 

c 13.543(9) Å 

α 

β 

γ 

V 

Z 

92.527(7)
o 

95.936(7)
o 

101.591(7)
o
 

11102.3(13)Å
3
 

1 

T 100 K 

Radiation 

θmin-θmax 

μ 

Mo Kα, λ=0.71073 Å 

2.3-25.1
o
 

1.29 mm
-1

 

Dx 1.614 Mg m
-3 

Data Collection  

Instrument Bruker Apex II CCD 

diffractiometer 

Measured reflections 7828 

Independent reflections 3843 

Reflections with I>2σ(I) 

Rint 

3613 

 

0.028 

h -1010 

k -1011 

l -1616 
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Refinement  

Refinement on F
2
  

R[F
2
>2σ(F

2
)] 0.063 

wR(F
2
) 0.172 

S 1.61 

Reflections 3842 

Parameters 255 

Restraints 0 

w 1/[σ
2
(Fo

2
)+(0.0257P)

2
+9.P]  

where P=(Fo
2
+2Fc

2
)/3 

(Δ/σ)max <0.001 

Δρmax 2.68 e Å
3
 

Δρmin -1.17 e Å
-3

 

Hydrogen atoms treated by a 

mixture of independent and 

constrained refinement 

 

  

  

 

 

  

* No hydrogen atoms were added to the solvent molecules in this structure 
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Compound 4b 

 

 

Figure 67: 
1
H-NMR (200 MHz, CD2Cl2) spectrum of 4b. 
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Figure 68: IR (CH2Cl2) spectrum of 4b. 
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Compound 5 

 

 

Figure 69: 
1
H-NMR (400 MHz, CDCl3) spectrum of 5. 
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Compound 6 

 

 

Figure 70: 
1
H-NMR (400 MHz, DMSO-d6) spectrum of 6. The peak at ca 3.3 ppm  is due to water in 

the NMR solvent. 
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Compound 7 

 

 

Figure 71: 
1
H-NMR (200 MHz, C6D6) spectrum of 7. 
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Compound 8 

 

 

Figure 72: 
1
H-NMR (500 MHz, MeCN-d3) spectrum of 8. The peaks at ca 2.1 and 5.5 are due to water 

and CH2Cl2. 
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Figure 73: 
1
H-NMR (500 MHz, MeCN-d3) spectrum of 8. Close-up of the aromatic region.

 

Figure 74: 
1
H-NMR (500 MHz, MeCN-d3, -1.1 

o
C) spectrum of 8. The peaks at ca 2.2 and 5.5 ppm 

are due to water and CH2Cl2. 
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Figure 75: 
1
H-NMR (500 MHz, MeCN-d3, -1-1 

o
C) spectrum of 8. Close-up of the aromatic region.

 

Figure 76: 
13

C-NMR (125 MHz, MeCN-d3, d1=5 s) spectrum of 8. The peak at ca 40 ppm is due to 

CH2Cl2. 
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Figure 77: 
13

C-NMR (125 MHz, MeCN-d3, d1=5 s) spectrum of 8. Close-up of the aromatic region. 

 

Figure 78: 
13

C-NMR (125 MHz, MeCN-d3, d1=5 s) spectrum of 8. Close-up of Ccarbene. 
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Figure 79: HSQC (500 MHz, MeCN-d3) spectrum of 8. 

 

Figure 80: HMBC (500 MHz, MeCN-d3) spectrum of 8. 
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Figure 81: NOESY (600 MHz, MeCN-d6, mixing time = 900 ms) spectrum of 8. 

 

Figure 82: IR (CH2Cl2) spectrum of 8. 
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Figure 83: ORTEP-drawing of compound 8. Hydrogens, the anions and CH2Cl2 are omitted for 

clarity. Ellipsoids at 50%  probability. 

Table 18: Selected bond lengths from the structure based on the X-ray analysis of compound 8. 

Bond Bond length [Å] Bond Bond length [Å] 

Rh(11)-C(101) 2.014(4) C(105)-N(103) 1.289(5) 

Rh(11)-N(103) 2.137(3) C(101)-N(101) 1.328(5) 

Rh(11)-Cl(11) 2.4058(11) C(101)-N(102) 1.375(5) 

Rh(11)-C(121) 2.166(4) C(121)-C(122) 1.453(7) 

Rh(11)-C(122) 2.241(4) C(122)-C(123) 1.400(6) 

Rh(11)-C(123) 2.229(4) C(123)-C(124) 1.450(6) 

Rh(11)-C(124) 2.163(4) C(124)-C(125) 1.423(6) 

Rh(11)-C(125) 2.183(4) C(125)-C(121) 1.434(6) 

Rh(11)-Cp(avg.) 2.196   
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Table 19: Selected bond angles from the structure based on the X-ray analysis of compound  8. 

 

Angle Bond angle [
o
] 

C(101)-Rh(11)-N(103) 76.01(15) 

C(101)-Rh(11)-Cl(11) 79.07(12) 

N(103)-Rh(11)-Cl(11) 91.21(10) 

N(101)-C(101)-N(102) 104.9(4) 

N(101)-C(101)-Rh(11) 136.6(3) 

N(102)-C(101)-Rh(11) 115.5(3) 

 

Table 20: Crystallographic data for compound 8. 

Crystal data  

Formula 4(C30H36ClN3Rh)  0.5(Ag6Cl12)   

3.5(CH2Cl2) (AgCl2) 

Formula weight 3320.23 

Crystal size 0.22 x 0.07 x 0.03 mm 

Colour, shape Orange, needle 

Crystal system Triclinic 

Space group P  

a 11.0118(12) Å 

b 17.349(2) Å 

c 18.737(2) Å 

α 

β 

γ 

V 

Z 

72.434(1)
o 

81.111(1)
o 

83.571(1)
o
 

3363.6(6)Å
3
 

4 

T 100 K 

Radiation 

θmin-θmax 

μ 

Mo Kα, λ=0.71073 Å 

1.9-28.7
o
 

1.48 mm
-1
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Dx 1.639 Mg m
-3 

Data Collection  

Instrument Bruker Apex II CCD diffractometer 

Measured reflections 30745 

Independent reflections 15795 

Reflections with I>2σ(I) 

Rint 

10672 

 

0.048 

h -1414 

k -2323 

l -2525 

Refinement  

Refinement on F
2
  

R[F
2
>2σ(F

2
)] 0.051 

wR(F
2
) 0.102 

S 1.01 

Reflections 15795 

Parameters 852 

Restraints 31 

w 1/[σ
2
(Fo

2
)+(0.0336P)

2
+1.190.P]  

where P=(Fo
2
+2Fc

2
)/3 

(Δ/σ)max 0.003 

Δρmax 1.14 e Å
3
 

Δρmin -1.01 e Å
-3

 

Hydrogen atoms treated by a mixture 

of independent and constrained 

refinement. 
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Compound 9 

 

Figure 84: 
1
H-NMR (600 MHz, CDCl3) spectrum of  9. The peaks at ca 1.2, 1.5 and 3.5 ppm are due 

to water and Et2O. The peak at 5.6 ppm is due to an unknown impurity that has not been removed yet. 

The satellites of CDCl3 are visible in the spectrum. 
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Figure 85: 
1
H-NMR (600 MHz, CDCl3) spectrum of 9. Close-up of the aromatic region.  

 

Figure 86: 
1
H-NMR (500 MHz, MeCN-d3, -21.0 

o
C) spectrum of 9. 
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Figure 87: 
1
H-NMR (500 MHz, MeCN-d3, -21.0 

o
C) spectrum of 9. Close-up of the aromatic region.

 

Figure 88: 
13

C-NMR (100 MHz, CDCl3, d1=5 s) spectrum of 9. The peak at ca 55 ppm is due to 

CH2Cl2. The peak at ca 80 ppm  is an unidentified impurity which has not been  removed yet. 
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Figure 89: 
13

C-NMR (100 MHz, CDCl3, d1=5 s) spectrum of 9. Close-up of the aromatic region. 

 

Figure 90: 
13

C-NMR (100 MHz, CDCl3, d1=5 s) spectrum of 9. Close-up of the aromatic region. 
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Figure 91: HSQC (400 MHz, CDCl3) spectrum of 9. 

 
Figure 92: HMBC (400 MHz, CDCl3, no decoupling) spectrum of 9. 
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Figure 93: NOESY (600 MHz, MeCN-d3, mixing time= 1.20 s) spectrum of 9. 

 

Figure 94: IR (CH2Cl2) spectrum of 9. 
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Figure 95:  ORTEP-drawing of compound 9. Hydrogens and CH2Cl2 are omitted for clarity. 

Ellipsoids at 50% probability. 

Table 21: Selected bond lengths from the structure based on the X-ray analysis of compound 9. 

 

Bond Bond length [Å] Bond Bond length [Å] 

Rh(1)-C(101) 1.989(11) C(105)-N(1) 1.273(13) 

Rh(1)-N(1) 2.097(9) C(101)-N(2) 1.335(14) 

Rh(1)-Cl(1) 2.380(3) C(101)-N(3) 1.375(13) 

Rh(1)-C(201) 2.160(13) C(201)-C(202) 1.391(19) 

Rh(1)-C(202) 2.160(12) C(202)-C(203) 1.462(19) 

Rh(1)-C(203) 2.214(11) C(203)-C(204) 1.389(16) 

Rh(1)-C(204) 2.211(11) C(204)-C(205) 1.410(17) 

Rh(1)-C(205) 2.165(11) C(205)-C(201) 1.411(17) 

Rh(1)-Cp(avg.) 2.182   
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Table 22: Selected bond angles from the structure based on the X-ray analysis of compound 9. 

Angle Degrees [
o
] 

C(101)-Rh(1)-N(1) 76.2(4) 

C(101)-Rh(1)-Cl(1) 83.5(3) 

N(1)-Rh(1)-Cl(1) 92.9(2) 

N(2)-C(101)-N(3) 106.9(9) 

N(2)-C(101)-Rh(1) 137.3(8) 

N(3)-C(101)-Rh(1) 114.8(8) 

 

Table 23: Crystallographic data for compound 9. 

Crystal data  

Formula 2(C25H26ClN3Rh) (Ag2Cl4) (CH2Cl2) 

Formula weight 1456.50 

Crystal size 0.30 x 0.10 x 0.05 mm 

Colour, shape Orange, needle 

Crystal system Triclinic 

Space group P  

a 7.380(6) Å 

b 13.31(1) Å 

c 14.805(11) Å 

α 

β 

γ 

V 

Z 

88.642(10)
o 

84.486(9)
o 

75.089(8)
o
 

1398.8(19)Å
3
 

2 

T 193 K 

Radiation 

θmin-θmax 

μ 

Mo Kα, λ=0.71073 Å 

1.6-25.0
o
 

1.29 mm
-1

 

Dx 1.729 Mg m
-3 
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Data Collection  

Instrument Bruker Apex II CCD diffractometer 

Measured reflections 6625 

Independent reflections 4567 

Reflections with I>2σ(I) 

Rint 

2552 

 

0.057 

h -88 

k -1515 

l -1714 

Refinement  

Refinement on F
2
  

R[F
2
>2σ(F

2
)] 0.078 

wR(F
2
) 0.208 

S 0.98 

Reflections 4567 

Parameters 338 

Restraints 42 

w 1/[σ
2
(Fo

2
)+(0.1069P)

2
]  

where P=(Fo
2
+2Fc

2
)/3 

(Δ/σ)max 0.001 

Δρmax 1.16 e Å
3
 

Δρmin -1.73 e Å
-3

 

Hydrogen atoms treated by a mixture 

of independent and constrained 

refinement. 
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Compound 10 

 

 

Figure 96: 
1
H-NMR (200 MHz, C6D6) spectrum of the crude mixture of 10. 
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Figure 97: IR (heptane) spectrum of 10. 
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Compound 11 

 

 

Figure 98: 
1
H-NMR (200 MHz, C6D6) spectrum of 11. 
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Figure 99: IR (CH2Cl2) spectrum of 11. 
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Compound 12 

 

 

Figure 100: 
1
H-NMR (200 MHz, C6D6) spectrum of 12. 
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Figure 101: IR (CH2Cl2) spectrum of 12. 
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Compound 13 

 

 

Figure 102:  
1
H-NMR (200 MHZ, C6D6) spectrum of 13. 
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Figure 103: IR (CH2Cl2) spectrum of 13. 
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Decomposition of imidazolium salt 3a 

  

Figure 105 

Figure 104: Decomposition of imidazolium salt 3a observed by 
1
H-NMR (500 MHz, CDCl3).. 
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Variable temperature NMR of compound 8 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 106: 
1
H-NMR (500 MHz, MeCN-d6) spectra of 8 with decreasing temperature. 
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Figure 107: 
1
H-NMR (500 MHz, MeCN-d6) spectra of 8 with decreasing temperature 
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Variable temperature NMR of compound 9 

Figure 108: 
1
H-NMR (500 MHz, MeNC-d6) spectra of 9 with decreasing temperature. 
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Figure 109: 
1
H-NMR (500 MHz, MeCN-d6) spectra of 9 with increasing temperature. 
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Attempt at preparing a Rh(I) N-heterocyclic carbene complex 

  

Figure 110: 
1
H-NMR (500 MHZ, CD2Cl2) spectra of the reaction between 4a and 7 at low temperatures. 
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Lineshape analysis of compound 8 

Table 24: Data from the lineshape analysis of 8. 

Exp. Temperature Rate Constant ln(k/T) 1/T 

Number [
o
C] [K] [s

-1
] 

  
5 1.1 274.25 2 -4.92089 0.003646308 

4 5 278.15 5 -4.01872 0.003595182 

3 11.7 284.85 10 -3.34938 0.00351062 

2 18.2 291.35 15 -2.96648 0.003432298 

1 25.1 298.25 28 -2.36573 0.003352892 

8 30.8 303.95 40 -2.02798 0.003290015 

9 36.7 309.85 85 -1.29344 0.003227368 

10 42.4 315.55 130 -0.88678 0.00316907 

11 48.2 321.35 230 -0.33445 0.003111872 

12 54 327.15 270 -0.192 0.003056702 

13 59.9 333.05 320 -0.03997 0.003002552 

14 65.6 338.75 500 0.389346 0.00295203 

15 71.8 344.95 700 0.707681 0.002898971 

16 77.4 350.55 1050 1.097042 0.00285266 

 

 
Figure 111: Eyring plot of the rotation process of the phenyl substituent in 8. In this figure, comma is 

used instead of full stop to indicate the decimal points of the numbers on the axes 
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Equation 1: The linear form of  the Eyring equation.
[15]

  

                 
   

 
                

                     
  

 
    

  

 

 

                 
  

 
      

R is the gas constant 

kB is Boltzmann’s constant   

h is Planck’s constant 

Table 25: Enthalpy and entropy of rotation obtained from the visual lineshape analysis of 8 followed 

by an Eyring plot. 

ΔH
#
 59.7 ± 0.4 kJ mol

-1 

ΔS
#
 -17.4 ± 1.4 J K

-1
mol

-1 
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