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Preface

The Earth is a dynamic planet. Every day throughout its history there have been processes working in,

on and around it, from atomic scale to astronomical scale. And every process contributes to a change.

Sometimes this change can be minor, for example when a water molecule trapped in a mineral decides to

leave; or the change can be major, for example when large volumes of the Earths crust are filled up with

glowing hot magma in a relatively short period of time. While studying the Earth in detail we realize

that in most cases, several of these processes work together. Sometimes the result can be disastrous.

Climate changes. You have probably read it in the news, heard about it on the TV and discussed it

over dinner with friends and family. And you notice it, because you still have a vague childhood memory

that the climate was not that extreme before. But then we quickly adapt, we forget and loose interest.

Who does not want a few degrees warming when the polar wind strikes through your body with its ice

needles. Although feeling a little annoyed by the outlook of having to pay more to keep our lifestyle,

we happily separate paper from plastic while clapping our own shoulders ’we did what we could’. Still,

we have no real intentions to stop exploiting our nature and the gift of convertible energy. We remind

ourselves that it cannot be that dangerous, because global warming has happened before when there

were no humans around.

And yes, we have seen it happen before; the Earth has experienced global warming. Interestingly

enough, we never follow up our reassuring statement with: yes, but several of these warming events

were also followed by mass extinctions. And if that was not enough to make you worried, these

warming and mass extinction events also correlate in time with what is interpreted to be related to

a massive release of greenhouse gases to the atmosphere. By the Earth itself! In 2004 a potential

link interlacing these events was discovered by Svensen and his co-workers. They showed how the

emplacement of large volumes magma into what in the oil industry is referring to as good source-rocks

for oil and gas would result in massive generation of, yes exactly, oil and gas. Never has the ill breath

of the Earths catastrophic past been able to touch us more directly. Every year we pump up massive

amounts of the fossil fuel stored in the ground before we release it to the atmosphere though our

increasing energy consumption. The analogy to what could happen to us in the future is thus stored

in the past geological record. This thesis is another piece in the jigsaw puzzle portraying the many

coincidental events that led to such disastrous impacts on the Earths global cycles. The major focus

of this work has been what happens with the rocks that are subjected to the heat from the igneous

intrusions, in terms of organic and inorganic reactions, gas volumes, pressure evolution, and potential

processes for the gas to reach the atmosphere.
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Chapter 1

Introduction

1.1 Do you believe in coincidences?

Large Igneous Provinces (LIPs) have coincided with major climatic and environmental perturbations

since the Palaeozoic (Fig. 1.1) (e.g. Rampino & Stothers, 1988; Stothers, 1993; Palfy & Smith, 2000;

Wignall, 2001; Benton & Twitchett, 2003; Courtillot & Renne, 2003; Jenkyns, 2003; Webb et al.,

2009). The synchronous timing of global warming and mass extinction with the LIPs outlines a gigantic

scientific puzzle, where the arrangement of the individual pieces of data is subjected to continuing

debates. The proxy data from the same time-periods typically reveal global warming of about 4-6 ◦C

or more (Koch et al., 1992; Zachos et al., 1993; Thomas & Shackleton, 1996; McElwain et al., 1999;

Bailey et al., 2003), ocean anoxia with increased organic burial (Jenkyns, 1988; Arthur et al., 1988;

Sliter, 1989; Jenkyns & Clayton, 1997; Jenkyns et al., 2001; Méhay et al., 2009; Tejada et al., 2009),

and carbon cycle perturbations generally attributed to the release of greenhouse gases such as methane

(CH4) and CO2 to the atmosphere (e.g. Norris & Röhl, 1999; Krull & Retallack, 2000; Hesselbo et al.,

2002; Svensen et al., 2004; Cohen et al., 2007; Hesselbo et al., 2007a).

Many hypotheses explaining these events are provided in the literature, ranging from a complete

detachment of the processes, like gas release owing to astronomical forcing (Kemp et al., 2005), to the

gas being generated by the LIP intrusive events themselves through contact metamorphism of organic

material (Svensen et al., 2004; McElwain et al., 2005; Svensen et al., 2007, 2009). Other studies invoke a

combination of LIP formation with other events, such as discharge of methane clathrate from the seafloor

as a response to warming associated with volcanic or thermogenic gas release (Dickens et al., 1995;

Hesselbo et al., 2000, 2002; Cohen et al., 2007). There is also a considerable attention on resolving

the issues linked to the mass extinction events (e.g. Raup & Sepkoski, 1984; Little & Benton, 1995;

McElwain et al., 1999; Berner, 2002; Benton & Twitchett, 2003; Visscher et al., 2004), as these also

correlate with LIPs (Wignall, 2001; Courtillot & Renne, 2003).

Our understanding concerning the causal effects of global warming and its associated mass

extinctions is of principal importance for how Earths history can be applied to understand future

challenges. If we are able to unravel the processes behind such catastrophic events in the Earths history,

we can use this knowledge to predict future scenarios related to increasing anthropogenic gas release

and environmental disturbances (cf. Broecker, 1975; IPCC, 2007).
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Chapter 1: Introduction

The background for this thesis is to evaluate the hypothesis of thermogenic gas release during

contact metamorphism of organic-rich sedimentary rocks, as first proposed by Svensen et al. (2004).

This is a recently proposed hypothesis which need further testing and evaluation. Relatively little

is known about the details of contact metamorphism of organic-rich shales intruded by large magma

volumes. Moreover, the amount of generated gases during metamorphism is poorly constrained, as

is the actual release mechanisms from the aureole to the atmosphere. An improved understanding of

these aspects is needed for establishing the hypothesis as a theory for past environmental changes, and

is critical when testing the aureole-hypothesis against the plethora of other hypotheses (gas hydrate

dissociation, changes in oceanic circulation, meteorite impact, oceanic degassing, to mention a few).

This thesis is aiming at addressing these and other unsolved challenges related to sill emplacement and

contact metamorphism in sedimentary basins.
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Figure 1.1: Large Igneous Provinces, global warming and mass extinction are temporally associated
since the Palaeozoic.

1.2 Volcanic basins

Sedimentary basins intruded by large volumes of magma are referred to as volcanic basins. The magmas

are mostly of basaltic composition, and often associated with LIP-formation. When the magma reaches

the surface it can create kilometer thick piles of lava, referred to as flood-basalts. Below the surface, the

igneous intrusions are emplaced both as sub-horizontal (sills) and sub-vertical (dikes) sheets within the

sedimentary formations. The heat transfer from the hot intrusions to the surrounding host-rocks is the

driving force of contact metamorphism in these basins. Because sedimentary basins represent one of the

Earth’s largest carbon reservoirs (Falkowski et al., 2000), there is a huge potential of liberation of carbon

gases such as CH4 and CO2 from the sediments in a volcanic basin during contact metamorphism.

In 2004 a potential link between volcanic basins and the well established environmental

perturbations recorded at ∼55 Ma (the Paleocene-Eocene Thermal Maximum; PETM) was discovered

on the basis of detailed seismic imaging and borehole studies in the Vøring and Møre basins, offshore

Norway (Svensen et al., 2004). The principal idea is rapid generation of large volumes of greenhouse

gases during contact metamorphism that were released efficiently to the atmosphere triggering global

warming. This idea was later followed up to encompass other coinciding LIPs and climate perturbations,

among others the Karoo volcanic basin intruded during the Toarcian (∼183 Ma), the Siberian Traps

during the end-Permian (∼252 Ma) and the Emeishan volcanic province during the end-Guadalupian

(∼261 Ma) (e.g. McElwain et al., 2005; Beerling et al., 2007; Svensen et al., 2007; Retallack & Jahren,

2008; Svensen et al., 2009; Ganino & Arndt, 2009).
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There is some controversy whether the Toarcian carbon isotope perturbation was a global or local

event (van de Schootbrugge et al., 2005; Wignall et al., 2006; McArthur, 2007; Hesselbo et al., 2007b;

McArthur et al., 2008). One argument against the Toarcian excursion being a global event is the absence

of the δ13C excursion in belemnites in a secion on the coast of Yorkshire, UK (van de Schootbrugge

et al., 2005). An alternative model for the negative excursions is the Küspert’s model (1982) referring to

advection of isotopically light, organic matter-derived CO2 from anoxic bottom waters associated with

the anoxic event (Schouten et al., 2000).

The key to further constraints on the mechanisms related to the negative carbon isotope spikes may

lie in volcanic basins, where enormous volumes of magma were rapidly emplaced synchronously with

the excursion events. The Karoo Basin is particular well-exposed volcanic basin covering nearly two-

thirds of South Africa (Chevallier & Woodford, 1999). It is basically undisturbed by tectonic forces

since the time of emplacement of the Karoo-Ferrar Volcanic Province at ∼183 Ma (Duncan et al., 1997;

Jourdan et al., 2008). From field work, satelite images and borehole cores from the Karoo Basin, we

can study processes that happened in the past. This involves processes related to the emplacement and

differentiation of the magma (Marsh & Eales, 1984; Marsh et al., 1997; Galerne et al., 2008; Polteau

et al., 2008a,b; Galerne et al., 2010, Chapter 6, this thesis), the effects of contact metamorphism and

fluid generation in the intruded sedimentary formations (Svensen et al., 2007; Polteau et al., in prep.,

Chapters 2 and 3, this thesis), or processes related to sediment deformation and fluid expulsion (Jamtveit

et al., 2004; Svensen et al., 2006, 2007, 2008, Chapters 4 and 5, this thesis).

There is still limited data and modeling on the actual fluxes of carbon gases to the atmosphere.

Due to the existence of vertical cylindrical conduits referred to as vents, we know that there must have

been a release of the aureole fluids some time during or after the sill emplacement (cf. Jamtveit et al.,

2004; Svensen et al., 2006, 2007, Chapter 4). However, the relative importance of gas release through

venting or through seepage is unconstrained by our current data set. If our estimates are correct, which

shows that there has been a massive fluid generation throughout the Karoo basin (Svensen et al., 2007,

Chapters 2 and 3), and that most of these gases were efficiently released to the atmosphere through the

vents, it implies that also the lower Toarcian carbon isotope perturbation can be related to a global event

arising from the massive release of carbon gases.

1.3 Organic matter in shales

This section is an introduction to relevant aspects of organic matter in marine shales and their formation.

The shales considered in this thesis is of marine origin, emplaced in front of the Cape Fold Belt forming

the Karoo Basin (Lock, 1980; Smith, 1990; Cole, 1992; Catuneanu et al., 1998).

1.3.1 Formation of shales

Primary production of organic matter starts with photosynthesis where water and CO2 react to produce

carbohydrates, water and oxygen with the use of solar energy. The carbon in the oxygen is thus

reduced with the help of living organisms. The photosynthesis needs sunlight, chlorophyll and nutrients.

The main sources for production of organic matter are phytoplankton using the photosynthesis, and
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zooplankton living on the phytoplankton in the photic zone of the oceans, and to some degree lakes.

Algae growth in lakes may cause perfect conditions for accumulation of organic-rich sediments. Organic

matter can also accumulate from spores and pollen, woody fragments or other types of life.

The accumulation of organic matter in sediments requires that it is not eaten on its way down to the

bottom and it is not oxidized back to CO2. Commonly, less than 0.1% of the produced organic matter

gets preserved in the sediments. Favorable conditions for accumulation of organic matter in a basin is

thus anoxic conditions, i.e. no free O2 available. Rocks rich in organic matter such as shales and coals

are accumulated under such conditions, and are source-rocks for oil and gas. The more hydrogen in the

organic matter, the more petroleum can be generated.

During burial, or diagenesis, the biopolymers such as lipids, carbohydrates and proteins are reduced

to biomonomers by bacterial degradation up to about 60 ◦C . The biomonomers have ’glue’ electrons

and can combine to form geopolymers. The resulting complex combination of different building blocks

of geopolymers and undegraded biopolymers become the precursor of kerogen. During diagenesis

they undergo a whole series of low-temperature reactions such as decarboxylation, polymerization and

reduction forming the kerogen in lithified sediments. Kerogen is defined as the organic matter insoluble

in organic solvents (Durand, 1980).

When the temperature reaches above at least 60 ◦C , the kerogen breaks down to non-volatile

organic matter called bitumen, which is the organic matter soluble in organic solvents (Hunt, 1996).

The bitumen can decompose further by a process called organic cracking to oil, gas and carbonaceous

residue (graphite). The cracking involves breaking of carbon bonds to form smaller compounds. During

decomposition of kerogen there is a loss of functional groups and increasing aromatization of the residue.

The long chains of carbon with hydrogens attached (C15+) called n-alkanes are the constituents of oil,

while the short compounds (C1−3) make up the gas fraction of the generated hydrocarbons.

The difference in kerogen types determines the amount of oil and gas that can be generated. There

are three main types: Type I kerogen is a uniform type of materials with a very high hydrogen fraction.

This gives a very good potential for oil and gas generation, and due to the high hydrogen-content almost

all of the organic matter (∼90%) can crack into hydrocarbons (Ungerer & Pelet, 1987). Type II kerogen

has a more diverse composition with a higher oxygen to hydrogen ratio, but is still a very good source for

oil and gas. About 60% of the kerogen can crack into hydrocarbons (Ungerer & Pelet, 1987). Organic

rich shales have commonly a mixture of Type I and Type II kerogen. Type III kerogen is a very diverse

mixture of organic matter, usually with woody fragments with a high oxygen to hydrogen ratio. Hence,

this kerogen type is mostly a source of carbon gases, such as CO2 and CH4. It is a common constituent

in coals, and typically around ∼25% of the kerogen is available for hydrocarbon generation (Ungerer &

Pelet, 1987). Upon heating above ∼130 ◦C , oil can be converted into gas in a process called secondary

cracking (Hunt, 1996).

Coals are composed of macerals in a similar way as rocks are composed of minerals. The three

main maceral groups are liptinite, vitrinite and inertinite. These macerals are also constituents in

shales. Vitrinite is particularly useful maceral due to its qualities as a maturation index. Vitrinite

is composed of aromatic rings stacked on top of each other and linked with longer chains. Upon

maturation, i.e. generation of hydrocarbons, the longer chains break off and increase the aromaticity of

the vitrinite (Dow, 1977; Behar & Vandenbroucke, 1987). This increases the reflectivity of the vitrinite.
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The reflectivity measurements are made with a reflecting microscope, and if one uses oil-immersion

objectives to enhance the reflectivity the value is reported in %Ro (’o’ for oil), which is the percentage

of incident light that is reflected back through the microscope.

Heat is the major factor in cracking of organic matter to hydrocarbons which initiates at about

90 ◦C (Dieckmann et al., 1998), where the rate depends exponentially on the temperature (e.g. Burnham

& Sweeney, 1989; Sweeney & Burnham, 1990; Ungerer, 1990; Behar et al., 1992; Seewald et al.,

1998). Furthermore, at about 130-150 ◦C oil cracks further into gas (Hunt, 1996; Dieckmann et al.,

1998). Changes in heating rates can shift these temperatures with about 15 ◦C increase per order of

magnitude increase in heating rate (Pepper & Corvi, 1995). In a contact metamorphic setting where

the temperatures reach up to several hundred degrees (∼600 ◦C ), the conditions are prosperous for

generation of gaseous hydrocarbons.

1.3.2 Contact metamorphism of organic material

Tholeiitic sills, such as the ones intruded into the Karoo Basin holds temperatures between about

1100 ◦C and 1200 ◦C . The sharp thermal gradients developing to the relatively cold (30-100 ◦C )

host-rocks cause rapid heat transfer from the intrusion into the surroundings.

When organic matter stored in sedimentary rocks are subjected to heating above ∼85 ◦C it will

decompose into hydrocarbons such as oil and gas (Tissot & Welte, 1984). Thus, the temperatures

during contact metamorphism are favorable for rapid maturation of organic material. The generation

of hydrocarbons during contact metamorphism is recorded as a progressive loss of total organic matter

(TOC) towards the intrusive contact and an corresponding increase in the vitrinite reflectance (%Ro),

i.e. increased organic maturation (Fig. 1.2). The intrusive heat can also cause dehydration of hydrous

minerals generating H2O in the contact zone. This is confirmed through several studies of intrusions

emplaced in both shales and coals (e.g. Simoneit et al., 1978; Peters et al., 1983; Bostick & Pawlewicz,

1984; Raymond & Murchison, 1988; Gurba & Weber, 2001; Drits et al., 2007, Chapter 3). Contact

metamorphism of organic material is discussed in more detail in Chapters 2 and 4.

1.3.3 Carbon isotopes

Organic matter contains less of the carbon isotope 13C relative to 12C than the average atmospheric

composition due to fractionation during photosynthesis, where 12C is preferred over 13C because of the

slight differences in weight. This difference can be expressed through δ13C in � by the formula:

δ13C =

(
13C/12C

)
sample −

(
13C/12C

)
standard

(13C/12C)standard
×1000. (1.3.1)

A common standard used to express the carbon ratio is the Vienna PeeDee Belemnite (VPDB) which

consequently has a δ13C of 0 �. In the case of organic material, this ratio is much lower than that of the

VPDB, and the δ13C is a negative value, commonly between -15 and -25 � (Whiticar, 1996).

When carbon is released during contact metamorphism, the bonds between 12C − 12C breaks more

easily than 12C-13C bonds, and the result is hydrocarbons with even more negative δ13C values than

the precursor kerogen (Clayton & Bostick, 1986; Lorant et al., 1998). Because of this fractionation,
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Figure 1.2: Schematic model of contact metamorphism of shales. The intrusive heating causes organic
maturation seen as increased vitrinite reflectance (%Ro) and decreasing total organic carbon (TOC)
towards the contacts. As a result hydrocarbons, such as methane (CH4) is generated. The sediment
heating also initiates inorganic reactions of hydrous minerals liberating H2O.

methane has isotopic compositions (δ13C ) ranging between -20 and -50 � (Andresen et al., 1995;

Whiticar, 1996; Cramer et al., 1998). When large amounts of 13C depleted gases are released rapidly to

the atmosphere, it has the potential to perturb the average isotopic carbon composition of the exogenic

cycle (including the carbonate and the organic carbon cycles).

1.4 Rapid release from vast carbon reservoirs

1.4.1 The proxy records

The negative carbon-isotope excursions (δ13C ) on the order of -2 to -8 � (depending on the material

analyzed and the sampling location) found in both the marine and terrestrial reservoirs characterize the
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global events of LIPs and mass extinctions (Thomas & Shackleton, 1996; Jenkyns & Clayton, 1997;

Gröcke et al., 1999; Jenkyns et al., 2001; Palfy et al., 2001; Ward et al., 2001; Jenkyns, 2003; Hesselbo

et al., 2007a). The causal process for such excursions must be fast enough and large enough to explain

the carbon isotopic records (Norris & Röhl, 1999; Röhl et al., 2000). This requirement can be illustrated

from a simple mass balance expression for the change in δ13C of the exogenic carbon cycle through time

(ΔδEx/Δt) (e.g. Kump & Arthur, 1999; Dickens, 2001),

ΔδEx

Δt
=

Fadd

MEx
(δadd −δEx)+

Fin

MEx
(δin −δEx)− k f (1.4.1)

where Fadd is the flux of added carbon (Gt C per year) with isotopic composition δadd of -35�, Fin

is the background flux of carbon into the cycle (0.8) with a flux-weighted isotopic composition δin =
−5� (Dickens, 2001), MEx is the total mass (42 529 Gt C) in the exogenic carbon cycle (atmosphere,

biosphere and oceans), k is the residence time of carbon in the system (1/100 000 years), and f is the

isotopic fractionation relative to organic and carbonate carbon with a value kept constant at -9�. The

initial value for the carbon isotope composition of the total system before release δ0
Ex is 0.18�. The

values are taken from Beerling et al. (2002) and are representative for the Early Toarcian.

We can solve for δEx explicitly as a function of release time t by intergrating Eq. 1.4.1 with respect

to time,

δEx (t) = −
(
Fadd

(
δadd −δ0

Ex

)
+Fin

(
δin −δ0

Ex

)−MExk f
)

e

(
− (Fadd+Fin)t

MEx

)

Fadd +Fin

+
Faddδadd +Finδin −MExk f

Fadd +Fin

(1.4.2)

Figure 1.3 shows the solution to Eq. 1.4.2 for continuous gas release (in the Toarcian) as a function

of the relased mass of carbon (C) and total release time. By using this figure as a proxy for the Toarcian

isotopic excursion, we can infer that in order to get isotopic excursions of -5 to -6 � observed in the

geological record of the Toarcian event (Hesselbo et al., 2000; Beerling & Brentnall, 2007; Cohen et al.,

2007), the release must have occurred within maximum 200 ky.

To assume a regular, continuous release of carbon to the atmosphere might be too simplified. Indeed,

the proxy records indicate that the release occurred in pulses (Kemp et al., 2005). In Figure 1.4 I

illustrate how the carbon excursion becomes more negative when the release occurs in pulses rather than

being continuous. If the total release occurs in periods of extreme fluxes into the atmosphere, the total

mass needed to generate a particular excursion decreases.

1.4.2 Thermogenic gas versus methane clathrates

There are two leading hypotheses that can explain the proxy data from among others the PETM and

the Toarcian; release of methane clathrates and thermogenic gas release through pipes (Beerling &

Brentnall, 2007). Methane clathrates are crystalline substances of CH4 molecules trapped within water

cages, with stabilities dependent on temperature, pressure and salinity (Kvenvolden, 1993).

An initial warming from the release of volcanic gases, potentially aided by tectonic activities or
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(‰)

Figure 1.3: δ13C excursion as function of release time (continuous) and amount of carbon released. The
figure is calculated for carbon released with a δ13C of -35 �. Other values are representative for the
Toarcian global cycle, and are taken from Beerling et al. (2002).

sea level drop, could therefore result in clathrate instability with positive feedback to the climate (e.g.

Dickens et al., 1995, 1997; Hesselbo et al., 2000; Beerling & Berner, 2002). This hypothesis is popular

among many scientists because of: 1) the very negative isotopic signature of clathrates (average δ13C

of ∼ −60�), which requires much less gas mass to explain the excursions. 2) The feedback of the

methane release can rise the global temperatures, causing instabilities of further clathrate packages.

This will result in a pulsed release, thus reducing the required gas mass (Fig. 1.4). 3) The sizes of past

clathrate reservoirs are ambiguous, but are generally thought to comprise a sufficient volume to cause

the global carbon cycle perturbations.

The major dilemma or blessing with this hypothesis is that there are limited methods available to

prove - or disprove - methane clathrate gas release, as it would leave few traces in the geological record

other than the isotopic signature. Moreover, the model requires a triggering mechanism which is a

weakness of this hypothesis.

The hypothesis of thermogenic gas release during contact metamorphism as a consequence of LIP

formation was developed on the basis of seismic data showing disrupted hydrothermal vent complexes

and breccia pipes originating from sill intrusions (Svensen et al., 2004). Breccia pipes are cylindrical

pipe-structures, generally between 20 and 150 m in diameter, formed in the contact aureoles of sills that
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Figure 1.4: Illustration of negative carbon excursions as a result of continuous and pulsed release of
methane. A total mass of 5000 Gt is released over 100 000 years into the Toarcian exogenic carbon
cycle. The continuous release yields a maximum excursion of -1.5 �, while a release of three 1000
years pulses over the same interval results in a -4.2 � excursion.

intruded organic-rich sedimentary formations (e.g. Svensen et al., 2007, 2008, 2009). Hydrothermal

vent complexes are used to denote less than 1 km deep pipes related to boiling and expansion of pore-

fluids (Jamtveit et al., 2004; Svensen et al., 2006).

Such pipes, or vents, must be the result of local pressure build-up (Jamtveit et al., 2004; Svensen

et al., 2006; Rozhko et al., 2007). An effective way of generating overpressures deeper than 1 km

is to break down organic material stored in the sedimentary rocks into mobile hydrocarbons. There

will be sufficient heat for the devolatilization reactions to occur as the melts are protruding sideways

and upwards throughout the sedimentary basin. The hydrocarbons would then be pulsed out to the

atmospheric cycle over a relatively short time-span through the breccia pipes. Furthermore, it is likely

that an initial warming by thermogenic gas release could trigger further destabilization of methane

clathrates by a positive feedback-mechanism (Svensen et al., 2004; Cohen et al., 2007).

This model provides the background skeleton to some of the problems addressed in this thesis. The

pipe-structures are observed and mapped, the loss of organic content towards intrusion contacts are well

documented and the timing of the intrusive events are within the same time-frame as the negative carbon

excursions. Now remain the questions of 1) how much gas can be generated from sill intrusions, 2) what

is the nature of the contact metamorphism of shales in a volcanic basin, and 3) what is the magnitude

of the pressure building up from devolatilization? Further physical and chemical implications of the

pressure anomalies developing in and around the intrusions during contact metamorphism are explored

in the two last chapters of this thesis.
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1.5 Modeling of contact metamorphism

All of the chapters in this thesis include numerical modeling. This section gives a brief introduction to

modeling of heat transfer coupled to organic maturation, which is a key topic in Chapters 2 and 3. More

detailed modeling descriptions are given in the relevant chapters.

Cooling of a sheet intrusion is a well known process studied by both numerical and analytical

methods (e.g. Jaeger & Cook, 1979; Turcotte & Schubert, 2002). The basic equation for conductive

heat transfer is called Fourier’s law and can be written

qT = −λ∇T (1.5.1)

which states that the heat flux qT is proportional to the thermal gradient ∇T with a constant of

proportionality λ i.e. the heat conductivity coefficient. The negative sign arises because the heat flux

goes from hot to cold areas, i.e. down along the thermal gradient.

The heat flow equation describes the temporal evolution of the temperature,

ρCp
∂T
∂t

= ∇(λ∇T ) (1.5.2)

where Cp is specific heat capacity and ρ is density, stating that the rate of temperature change is

proportional to the difference between heat flux in and out of the system (i.e. the gradient of the thermal

flux).

The equation describes a continuous temperature field, while in a numerical model the system is

divided into tiny fractions in space (Δx, i.e. x-direction only assuming a 1D model) and time (Δxt).

Hence, the equation is discretized in order to solve it numerically,

T new −T old

Δt
=

λ
ρCp

(
T old

i+1 −2T old
i +T old

i−1

Δx2

)
(1.5.3)

where i defines the position on the regular numerical grid, Δx = xi − xi−1 = xi+1 − xi. There are several

methods available for discretization of such a partial differential equation, and this method is usually

referred to as finite difference explicit model. Explicit refers to the fact that the temperature on the right

hand side of Eq. 1.5.3 is the old temperature. Both explicit finite difference and implicit finite element

methods are utilized in this thesis.

The details of organic maturation and kerogen cracking is poorly understood due to the complex

nature of precursor material (i.e. life) (Peters et al., 2006). Luckily, it has been shown that for a wide

range of geological processes the organic reactions can be approximated by a first order reaction kinetics

following the Arrhenius law,

k = Aexp(−E/RT ) (1.5.4)

(Burnham & Sweeney, 1989; Sweeney & Burnham, 1990), where k is the reaction rate, A is the prefactor,

E is the activation energy and R is the universal gas constant. One can think of the kinetic system as balls

rolling back and forth in a half-cylinder, and that A is the total number of rolling balls, exp(−E/RT )
is the hight of the cylinder wall and k is the rate of balls rolling out of the half-cylinder (i.e. reactions
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occurring). The rate of change in organic material W converted into hydrocarbons is,

∂W
∂t

= kW. (1.5.5)

Implicit discretization of this equation (Eq. 1.5.5) gives,

W new =
W old

(1− kΔt)
, (1.5.6)

where W new is the amount of convertible organic matter left after a given time. Eq. 1.5.5 is coupled to

Eq. 1.5.3 through temperature T .

1.6 Equilibrium thermodynamics

Thermodynamic relations are utilized in Chapter 4. Here we present a brief overview of some key

thermodynamic concepts, such as the first and second law of thermodynamics, and local thermodynamic

equilibrium.

The first law of thermodynamics is a statement based on conservation of energy. There are all sorts

of mechanisms by which energy can be put into or taken out of a system. In thermodynamics, these

mechanisms are usually classified under two categories, heat (Q) and work (W ). Heat is defined as

any spontaneous flow of energy from one object to another caused by a temperature difference. Work

in thermodynamics is defined as any other transfer of energy into or out of a system. The first law of

thermodynamics states that there exists a quantity called internal energy (U) that changes both due to

work done on the system and the heat transfer in the system,

dU = dQ+dW. (1.6.1)

If the only work that is done on the system is compression-work in a quasi-static system, we can rewrite

the work term by considering work = force×distance = pressure (P) × volume change (dV ), i.e.

dW = −PdV. (1.6.2)

The negative sign comes from the convention that work done on the system should be positive, although

positive work gives a negative volume change (i.e. volume decrease). The system is quasistatic in

the sense that the process is slow enough for the system to continuously equilibrate to the changing

conditions.

The second law of thermodynamics states the change in a quantity called entropy (S) can be related

to the amount of heat transferred between a system and its surroundings. For a system undergoing a

reversible process the second law can be written

dS = dQ/T. (1.6.3)

Reversible processes are defined as continuous successions of equilibrium states, which means that a
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system changes from one equilibrium state to another, without ever leaving equilibrium. The reversible

process can be described as an imaginary path between two states that are used for calculation of the

energy difference between those states.

There are many formulations of the second law, and another part of this law is that the entropy will

never decrease, but can remain constant (for reversible processes) or increase (for irreversible processes).

Irreversible processes are referring to systems going from a higher energy state to a lower energy state.

It does not mean that the system cannot revert back to a higher energy state, but that it will not be a

spontaneous process. Because energy is conserved, this energy loss is actually an entropy gain. Thus,

for any process we can write,

dS ≥ 0 (1.6.4)

Considering only reversible processes, the first and second laws of thermodynamics can be

combined to give

dU = T dS−PdV. (1.6.5)

This is the fundamental equation that relates energy changes to the state variables S, T , V and P for

a closed system. This equation can be extended to include other types of work such as chemical

work relating chemical potential and concentration, and mechanical work relating deviatoric strain and

changes in volume fractions (i.e. porosity).

Eq. 1.6.5 is defined for a total system in equilibrium. It means that there are no gradients in

temperature, pressure or composition. This is an unlikely state for geological systems almost constantly

in some kind of flux of e.g. heat and matter. We still want to apply thermodynamics to these systems.

We can divide our system into parts that are small enough and where the changes are slow enough that

we can assume equilibrium in that local fraction of the system. This local equilibrium is not part of the

thermodynamics, but a concept we apply in order to solve our system.

Our system should not depend on the amount of mass in our system, i.e. the variables we use for

local equilibrium should be intensive. We can make the extensive variables in Eq. 1.6.5 intensive by

normalizing them by unit mass,

du = T ds−Pd(1/ρ), (1.6.6)

where u is specific internal energy, s is specific entropy and 1/ρ is specific volume. Hence we can apply

our assumption of local thermodynamic equilibrium to all the variables in our system. This makes it

possible to solve systems that are not in global equilibrium, i.e. systems in which transport processes

such as heat and fluid flow occur.

1.7 Unresolved questions

Geologists recognized more than a century ago that rocks lose volatile compounds such as H2O and

CO2 during metamorphism (Dana, 1863). However there are still many unresolved questions linked to

prograde metamorphism and emplacement of igneous intrusions in sedimentary basins.

First of all there is a general deficiency in integrated studies concentrating on both organic and

inorganic effects of the intrusions, with only a few good examples (e.g. Finkelman et al., 1998; Drits
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et al., 2007). The major focus is commonly localized effects of single, relatively thin intrusions on

organic matter (e.g. Bostick, 1979; Simoneit et al., 1978; Perregaard & Schiener, 1979; Bostick &

Pawlewicz, 1984; Clayton & Bostick, 1986; Saxby & Stephenson, 1987; Bishop & Abbott, 1995). The

extent of the thermal aureoles is commonly discussed in the papers, and conclusions vary significantly

for the different study areas. Systematic evaluations of aureole development are surprisingly rare, with

only a few exceptions (e.g. Raymond & Murchison, 1988; Barker et al., 1998). In order to make a

global statement of the thermal aureoles, we need to identify the major processes influencing the aureole

thicknesses.

Thermal modeling is a common method to quantify the extent of contact metamorphism around

intrusions (e.g. Jaeger, 1959; Delaney, 1982; Barker & Bone, 1995; Bishop & Abbott, 1995; Barker

et al., 1998; Dutrow et al., 2001). It is however less common to couple the thermal evolution with

kinetic modeling of organic reactions to estimate the actual effect on organic maturation (Braun &

Burnham, 1987; Sweeney & Burnham, 1990; Galushkin, 1997; Kjeldstad et al., 2003; Fjeldskaar et al.,

2008). None of the aureole models have been used to quantify the organic and inorganic devolatilization

reactions on a larger scale, and only limited estimates of how much gas can actually be released from

shales due to sill intrusions exist (e.g. Svensen et al., 2004, 2007).

In a volcanic basin multiple intrusions could significantly alter the thermal regime (e.g. Hanson &

Barton, 1989). Further quantification of the effect of multiple sills on the total organic maturation in a

volcanic basin, such as the Karoo Basin, is therefore needed.

Although we know that fluid overpressure can be generated in a contact aureole from for example the

presence of fractures, there are limited studies quantifying the pressure buildup in the contact aureoles

(e.g. Litvinovski et al., 1990; Hanson, 1995; Jamtveit et al., 2004). It is however well recognized

that devolatilization reactions can induce overpressure during regional metamorphism (e.g. Walther &

Orville, 1982; Connolly, 1997; Osborne & Swarbrick, 1997; Ague et al., 1998; Balashov & Yardley,

1998).

One feature related to overpressure in the aureole is the formation of sandstone dikes intruding into

the igneous sills (Walton & O’Sullivan, 1950; Van Biljon & Smitter, 1956). Although overpressure can

be explained by e.g. boiling and expansion of porefluids (e.g. Delaney, 1982; Kokelaar, 1982), there

are no explanation why sandstone dikes should preferentially intrude into the sill from both above and

below, irrespective of gravity.

Zooming in from the global effects of contact metamorphic gas generation to the aureole processes

and further into interaction between the aureole and the sill, we arrive at the processes occurring within

the cooling sill. For a long time the question of reversed geochemical differentiation (D-shaped profiles)

within tholeiitic intrusions have been a question of continued debate (Latypov, 2003, , and references

therein). Proposed mechanisms range from crystal settling (Simkin, 1967) and multiple intrusions (Gibb

& Henderson, 1992) to a combination of thermal and compositional convection (Kerr & Tait, 1986; Tait

& Jaupart, 1992; Jaupart & Tait, 1995). The latter model suggests an important contribution of melt-

movement to the differentiation process. If we know that there are pressure anomalies in the aureole we

could potentially think of pressure anomalies also existing within the sill. To our knowledge no-one has

investigated the generation of pressure anomalies within a sill, and the influence of pressures on the melt

flow. Such pressure-induced flow can have important implications for our interpretation of geochemical
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differentiation.

1.8 Introduction to the chapters

This thesis is a collection of papers, either accepted (Chapter 2), submitted (Chapter 3), ready for

submission (Chapter 4), in press (Chapter 5) or published (Chapter 6). The chapters are arranged from

global impacts and basin-scale considerations to local aureole and sill processes, where Chapters 2

and 3 encompass contact metamorphism of shales in sedimentary basins, Chapter 4 couples contact

metamorphism to pressure, and Chapters 5 and 6 consider some implications of the pressure anomalies.

The first paper in this thesis entitled ’How contact metamorphism can trigger global climate

changes: Modeling gas generation around igneous sills in sedimentary basins’ explores the nature of

contact metamorphism in shales by compiling previous studies, and by developing a numerical model

to describe organic and inorganic reactions during contact metamorphism (Chapter 2). The model is

applied to calculate gas generation on a basin scale, and to discuss the potential global implications.

This paper aligns itself in the debate regarding global climate changes associated with LIPs, with the

major focus on the Karoo Basin (∼183 Ma) and the Vøring and Møre basins (∼55 Ma). From upscaling

of gas generation around one intrusion to basin scale, we show that the amount of carbon gas that can

be generated is on the order of 103 to 104 Gt methane (CH4), depending on the initial organic content

in the sediment and the size of the basin. The magnitudes are compatible with the proxy data from each

time period, and thus conclude in favor of thermogenic gas release as an important mechanism inducing

global climate change. Such estimates based on actual calculations are not available in the existing

literature.

Before drawing this conclusion we go through a large set of published studies related to sill

intrusions into organic-rich sediments to look for systematic characteristics of aureoles. From this

compilation we can make global statements about fluid production in the sedimentary basin, and

compare the model with the existing data. By first sight it seems to be no ’rule of thumb’ between

the sill thickness and aureole thickness. However, from several numerical calculations we discover that

the lack of clear correlations are due to the fact that the aureole thickness also has a strong dependence

on initial temperature of the host-rock, and to some degree the temperature of the intrusion. The nature

of this relationship is deduced from linear regression of ∼1500 model runs.

In addition to the kinetic modeling of organic reactions we use mineral equilibria calculated using

Perple X (Connolly, 2005) to model dehydration reactions, and compare the relative amounts. We use

these results in combination with fluid-fluid equilibrium calculations to show that the expected fluid

composition will tend towards a CH4-dominated fluid and a H2O-dominated fluid.

The second paper entitled ’Contact metamorphic devolatilization of shales in the Karoo Basin,

South Africa, and the effects of multiple sill intrusions’ investigates the details of contact metamorphism

by presenting two case studies from the organic-rich shale formations in the Karoo Basin, South Africa

(Chapter 3). The first case study is used to constrain the model introduced in the first paper. The model

is also extended to encompass multiple (2-5) sills, backed up by data from the second case study. The
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main aim is to establish the effects of multiple intrusions on the organic maturation and devolatilization

in the basin.

This paper backs up on the conclusions from the first paper, by showing that the numerical model

explains well data from organic-rich Jurassic shales affected by the Karoo-Ferrar LIP about 183 Ma.

Furthermore, it suggest that the gas generation potential based on one sill in the first paper could be a

lower estimate, as multiple levels of sill intrusions cause elevated hydrocarbon generation throughout the

intruded formations. The effects of multiple sills on the fluid production potential have to our knowledge

not been constrained before.

We show that two simultaneously emplaced sills can generate up to 35% more CH4 than two single

sills. One implication of this is that in a sedimentary basin intruded by a LIP, metamorphism is no longer

localized at the sill contacts, but can extend over the whole basin. Multiple intrusions are equivalent of

having a higher background temperature in the host-rock, which from the first paper is shown to be an

important factor determining the extent of the aureole.

We have less data to constrain the dehydration modeling, but the presence of metamorphic minerals

such as biotite and epidote and the decreasing clay content towards the contact suggest dehydration of

even more hydrous minerals within 1-2 meters away from a 10 meter thick intrusion. This is supported

by the numerical model, where we show that the generation of H2O from mineral dehydration is more

localized to the aureoles than the CH4-generation from breakdown of organic matter.

The presence of an extensive fracture network and breccia pipes originating in the aureoles of the

shale formations supports devolatilization and generation of overpressure.

The third paper entitled ’Fluid overpressure and rate of devolatilization during metamorphism’

couples the devolatilization reactions in shales with pressure generation in the aureole by the usage of

analytical and numerical methods (Chapter 4). The main aim is to establish a new analytical solution

coupling reaction induced overpressure generation and fluid flow. The model is applied to evaluate

the feedback of overpressure on the reactions, and to find conditions for aureole fracturing and vent-

formation related to massive degassing of the aureole.

The first and second paper concluded on extensive devolatilization of the contact metamorphic

shales. This paper deals with the effect of such devolatilization on the fluid pressure and the related

escape of the fluids to the atmosphere. The analytical solutions show that for generation of low-density

CH4 gas in low-permeable systems such as shales, fracturing and venting are likely to occur. This is

important for the thermogenic gas model, as the proxy data is best explained by a rapid release.

The derivations presented in this paper are based on very few assumptions, and the basic equations

of temperature, pressure and fluid flow are derived from conservation of mass, momentum and energy,

and are thermodynamically admissible. The equations are consistent with the equations used in this

thesis, and thus this paper provides a theoretical basis for the whole study.

This paper uses a known analytical solution for the diffusion-equations to solve for the temperature

evolution of a sill intrusion with latent heat of crystallization. The novel thing in the analytical solutions

is coupling of a temperature driven reaction front with a net volume change with fluid pressure evolution

and fluid flow. We thus obtain an exact solution for the overpressure at the front. The efficiency of

the volume changing reaction building up the overpressure relative to the efficiency of the fluid flow
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reducing the overpressure determines the overpressure at the reaction front.

The dynamics of the reaction front are determined by the degree of host-rock heating before

the reaction occurs, the pressure-dependency of the reaction and the magnitude of the overpressure.

If the overpressure is large enough, the equilibrium conditions for the reactions are shifted towards

higher reaction temperatures, and thus more heating is required for the reaction to proceed. This may

ultimately terminate the reaction.

The fourth paper entitled ’Sandstone dikes in dolerite sills: Evidence for high pressure gradients

and sediment mobilization during solidification of magmatic sheet intrusions in sedimentary basins’

examines the interaction between the overpressure in the heated aureole and the corresponding

underpressure in the cooling sill through sandstone dike injections into the sill (Chapter 5). The paper

integrates field work, geochemical data, mineral equilibria calculations and numerical modeling of

thermal stresses related to sill cooling and aureole heating to investigate the intrusion mechanism of

the sandstone dikes.

This paper focuses on local processes related to pressure anomalies generated during sill cooling

and the implications for sediment and fluid transport. The main concepts utilized in this paper are

the interaction between overpressure in the aureole described in the third paper (Chapter 4) and the

underpressure in the crystallizing sill introduced in the fifth paper (Chapter 6). We show that the down-

pressure gradients going from the aureole and into the sill cause a favorable directional pathway for

sandstone dikes to intrude into the sill, both from above and below. This is a novel idea which can

have further implications for the interactions between magmatic and aureole processes. This study

provides further evidence for generation of aureole overpressure. The overpressure generation causing

sandstone fluidization is most likely governed by boiling and expansion of existing pore-fluids rather

than devolatilization reaction. However, it is the same basic physics of a fluid pressure source related to

the positive net volume change of a reaction.

Furthermore, we calculate the phase equilibria similar to those introduced in the first paper

and compare it to the mineral assemblages of the presented sandstone dikes to constrain the peak

metamorphic conditions. We use the peak metamorphic condition to constrain the timing of sediment

dyke intrusions.

The fifth paper entitled ’Post-emplacement melt flow induced by thermal stresses: Implications for

differentiation in sills’ delves into the processes within the sill itself and presents a new mechanism for

magmatic differentiation related to thermal stresses and underpressure within the sill (Chapter 6). It is

an integrated study of geochemical analyses, modeling of thermal stresses and the model is applied to

deduce geochemical changes arising from underpressure-driven melt flow within the crystal network.

This paper deals with processes within the crystallizing sill. The model is based on the same

governing principles applied in Chapter 4 and 5, i.e. temperature-driven pressure anomalies and

the implications for chemical reactions. Using the same physical laws as with the well established

overpressure generation, we show that for reactions with a net negative volume change the result is a

fluid underpressure. The preferred injection of overpressurized sandstone dikes into the sills, regardless

of the direction of gravitational force, supports the existence of underpressure in the sills (Chapter 5).
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The net negative volume change within the sill relates to the phase transition of melt to crystals upon

magma cooling. When melt crystallizes the density increases. However, if crystallization occurs within

a strong crystal network, the rigid crystals provide a strong surrounding frame that cannot contract

enough to adjust to the volume decrease associated with the density increase. The result is a fluid

underpressure. The crystal network thus plays a similar role as the host-rock sediment matrix for the

limited accommodation of the volume change of the reactions.

The result will be a a sucking force, promoting porous flow of melt towards within the zone of

crystallization. Segregation of crystals from its equilibrium melt is a well known phenomenon that

creates magmatic differentiation. Traditionally this transport is attributed to the crystals moving away

from the melt, while we propose that this transport might as well go the other way around. The

movement of more primitive melt from the center and into the sill margins successfully explains why the

composition at the margins is more primitive at exactly the margins relative to the center, i.e. reversed

differentiation.

1.9 Outlook

• There is still a long way to go before getting good flux estimates of the carbon gases to the

atmosphere. Combining the reactions solved in the two first papers with the solutions in the third

paper will put further constraints on the release mechanisms and fluxes.

• Another angle of approach that could help estimating the carbon flux is to constrain the effect of

melt emplacement rates on gas generation and shale maturation.

• A quantification of the effects of relative emplacement timing between intrusions is the next step

in the evaluation of the implications of multiple intrusions.

• We assume that the data collected in the Karoo Basin is representative for the sill intrusion event.

However, we have little constrain on what happened in the 180 Ma after the volcanic event. This

could be investigated by making a full basin model. Such model could help constrain further the

paleodepth, as this is difficult to do with traditional methods such as vitrinite reflectance, due to

the overall elevated organic maturation in the basin.

• The analytical solutions can be expanded to include a finite sill length, which could then account

for longer term effects also after crystallization of the sill. Alternatively, this can easily be done

numerically.

• There are some processes that are not considered and that may play a role on a longer time

scale, such as compaction driven flow, and advective processes related to for example the breccia-

pipes. Advective processes can be important when convective systems develop and the host-rock

permeabilities are high. It would be interesting to investigate the effect of extensive fluid flow by

coupling of the fluid pressure and flow to temperature and contact metamorphism.

• The analytical model developed in Chapter 4 could be expanded to also include underpressure

development in the intrusion. Such extension will be valuable in constraining interactions between
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the intrusion and the host-sediment, and evaluate the potential for magma contamination. Such

model will be the next logical step in developing the melt-flow differentiation model further.

• A more close coupling between chemical reactions in general and the processes already

considered in Chapter 4 will give a powerful tool that can be applied to investigate an array of

geological processes.
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2.1 Abstract

Large volumes of greenhouse gases such as CH4 and CO2 form by contact metamorphism of organic-

rich sediments in aureoles around sill intrusions in sedimentary basins. Thermogenic gas generation and

dehydration reactions in shale are treated numerically in order to quantify basin-scale devolatilization.

We show that elevated organic maturation occurs within 30-250% of sill thickness, depending on host-

rock temperature and intrusion temperature. In contact metamorphism of shales with total organic

carbon (TOC) content of >5 wt%, CH4 is the dominant volatile generated through organic cracking,

with 85-135 kg CH4 being generated per cubic meter of aureole, while H2O generation from dehydration

reactions is 30-110 kg/m3-aureole. Even using conservative estimates of melt volumes, extrapolation

of our results to the scale of sill complexes in a sedimentary basin indicates that the devolatilization

released ∼2700-16200 Gigaton (Gt) CH4 in the Karoo Basin (South Africa), and ∼600-3500 Gt CH4 in

the Vøring and Møre basins (offshore Norway). The generation of volatiles is occurring on a time-scale

of 10-1000 years within an aureole, which makes the tempo of sill emplacement in organic-bearing

lithologies the time-constraining factor on a basin scale.
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2.2 Introduction

The emplacement of Large Igneous Provinces (LIPs) were synchronous with major climatic and

environmental perturbations since the Paleozoic (e.g. Stothers, 1993; Wignall, 2001; Courtillot & Renne,

2003). Pronounced negative carbon-isotope (δ13C) excursions are identified from proxy data records

covering these events, suggesting a release of 12C-enriched carbon gases to the atmosphere (e.g. Jenkyns,

1988; Dickens et al., 1995; Hesselbo et al., 2000). The sources of these gases are debated, and both gas

hydrate dissociation and lava degassing have been suggested. Svensen et al. (2004) suggested that the

source of carbon could be contact metamorphism of organic-rich shale around intrusive sills during LIP

emplacement, and that the generated gases subsequently vented to the atmosphere. This hypothesis is

supported by the presence of degassing pipes associated with the sills, and is now adopted to explain

the end-Guadalupian (261 Ma), the end-Permian (252 Ma), the end-Triassic (200 Ma), the Toarcian

(183 Ma), and the PETM (55 Ma) (McElwain et al., 2005; Payne & Kump, 2007; Svensen et al.,

2007; Retallack & Jahren, 2008; Ganino & Arndt, 2009; Svensen et al., 2009). The key process of this

hypothesis, gas generation during contact metamorphism of organic matter, remains poorly constrained.

Organic matter stored in sedimentary rocks (e.g. black shale) represents one of the Earth’s largest

carbon reservoirs (Falkowski et al., 2000). This reservoir is tapped during contact metamorphism of

organic material (e.g. Perregaard & Schiener, 1979; Saxby & Stephenson, 1987; Raymond & Murchison,

1988; Barker et al., 1998; Gurba & Weber, 2001; Othman et al., 2001). Carbon loss in aureoles is

manifest by a decreasing total organic carbon (TOC) content and increasing vitrinite reflectance (%Ro)

towards the contact with the sill intrusions.

A large fraction of the carbon gases are released from the aureoles to the atmosphere through the

formation of hydrothermal vent complexes and evidence of aureole degassing through these vents has

been reported from many volcanic sedimentary basins related to LIP formation, such as the Karoo

Basin, (South Africa), the Tunguska Basin (Russia) and in sedimentary basins offshore Norway (Planke

et al., 2005; Svensen et al., 2006, 2007, 2009). These vents were formed by pressure-buildup due to

devolatilization and phase transitions in the fluid (e.g. Jamtveit et al., 2004).

The aim of this study is to quantify gas formation by cracking of organic material and

devolatilization of minerals in contact aureoles by numerical modeling (Fig. 2.1b). We quantify

aureole thickness on the basis of vitrinite reflectance profiles and obtain the mass and composition of

devolatilization products as a function of sill volume and TOC content (Fig. 2.1c). The composition and

fate of the generated fluids are discussed. We extrapolate our results from aureole scale (10-100 meters)

to basin-scale (> 70 000 km2) to evaluate the causal connection between contact metamorphism during

LIP formation and global carbon cycle perturbations.

2.3 Aureole processes

2.3.1 Contact metamorphism of organic material

Maturation of organic material in contact with igneous intrusions is thoroughly documented in the

literature using several methods, including vitrinite reflectance measurements, Rock-Eval pyrolysis,

gas chromatography, and stable isotope analysis (e.g. Powers & Clapp, 1932; Simoneit et al., 1978;
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Figure 2.1: (a) Schematic model of a contact aureole around a sill intrusion emplaced into sedimentary
rocks. Overpressure in the aureole may ultimately cause venting of fluids to the atmosphere. (b)
Schematic details of the two main fluid-producing processing occurring together in an aureole; kerogen
cracks to methane, and hydrous minerals release H2O during prograde metamorphic reactions. (c) The
final aureole is consisting of an inner aureole defined by vitrinite reflectance >1.5 %Ro where only gas
is generated and an outer aureole defined by >0.5 %Ro, where gas and potentially oil can be generated.
The TOC content decreases and the %Ro increases towards the contact.

Bostick, 1979; Simoneit et al., 1981; Saxby & Stephenson, 1987; George, 1992; Bishop & Abbott,

1995; Zhu et al., 2007; Mastalerz et al., 2009). Contact metamorphism of organic material leads

to elevated vitrinite reflectance (%Ro), loss of TOC, increased aromatization and changes in carbon

isotope compositions (δ13C) of the residual organic material towards the contact (e.g. Peters et al.,

1983; Clayton & Bostick, 1986; Barker & Bone, 1995; Meyers & Simoneit, 1999; Cooper et al., 2007).

Sill intrusions are accordingly important in many sedimentary basins for maturing source rocks and

producing methane-rich gases.

Many studies focus on local contact metamorphic effects and seldom present complete sets of

the key analyses needed to quantify organic and inorganic devolatilization reactions. In addition, sill

thicknesses, host-rock compositions, and depth of emplacement vary considerably. We have summarized

39 aureole case studies around sheet intrusions published since 1959 (Table 2.1) to get an overview

of published data and aureole processes that have been considered in the literature. Only 5 of these

studies include modeling of vitrinite (Sweeney & Burnham, 1990; Brown et al., 1994; Galushkin, 1997;

Fjeldskaar et al., 2008; Rodriguez Monreal et al., 2009). Most numerical models are restricted to

calculations of the temperature profile around intrusions, which is not sufficient when trying to estimate

the amount and composition of fluids that can be generated.

A key issue discussed in the literature is the estimation of contact aureole thickness. A common

method is based on vitrinite reflectance profiles, and aureole thicknesses usually vary between 30-200%

of the intrusion thickness (Table 2.1). The great span in this parameter in published aureole data suggests

an influence of several factors, for example degree of background maturation, varying temperature of
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Table 2.1: List of studies dealing with contact metamorphism from sill intrusions.

References Modeling Data Intrusion Normalized Lithology of
provided provided thickness aureole host-rock

Barker & Bone (1995) Vb-Da 2.2 m ∼5% D high grade limestone
Barker et al. (1998) T-F-LC V 0.06-40 m 30-150%a D clay/sediments
Bishop & Abbott (1995) T V-TOC.RE-GC 0.3-3.0 m 30-70%a D shale/silty shale
Bostick (1979) V 0.5-9.2 m 50-75%a D coal/oranic matter
Bostick & Pawlewicz (1984) V 3.6-10.4 m 75-100%a D shale/limestone
Brown et al. (1994) T-Ro V 40-80 m 150%a S
Clayton & Bostick (1986) V-RE-GC-Da 1.3 m ∼50%a D siltstone
Cooper et al. (2007) V-TOC-Da 0.15-1.8 m 75-110%a S/D coal/black shale
Delaney (1982) T-F-Me
Dow (1977) V ∼180 m 200%a S
Drits et al. (2007) Mi 0.5-80 m ∼75%a S mudstone
Dutrow et al. (2001) T-F-R TOC-Da 11 m 35-55%b D carbonate/siltstone
Finkelman et al. (1998) V-RE-EL-Mi 1.5 m ∼35%a D coal/coke
Fjeldskaar et al. (2008) T-Ro V 118.5 m ∼150%c S silt/shale/sandstone
Galushkin (1997) T-F-LC-LD-Ro V 0.9-118.5 m 55-170%a S/D black shale/silt
George (1992) V-RE-GC-Da .5 m ∼70%a D silt/oil shale
Golab et al. (2007) Mi-El-Da ∼0.1-3 m ∼200%a D coal
Gröcke et al. (2009) V-Da 1.2-1.5 m ∼100%a D coal
Gurba & Weber (2001) V 20.8-39.3 m 30-90%a S coal
Hanson & Barton (1989) T-LC-LD D
Jaeger (1959) T-F-LV 100%c

Kjeldstad et al. (2003) T-F-P-Ro
Litvinovski et al. (1990) T-LM-P 500 m >>10%b D clay/pumice
Mastalerz et al. (2009) V-Da >1.2 m ∼50%a D coal
Meyers & Simoneit (1999) TOC-RE-Da 1.5 m ∼60%b S coal
Othman et al. (2001) V-RE-GC 0.4-15.7 m S mudstone
Perregaard & Schiener (1979) V-GC 4.5 m ∼50%a D shale
Peters et al. (1983) V-RE-GC 0.2-15 m 50%-70%a S black shale
Polyansky & Reverdatto (2006) T-LM-F-R 280 m 10-70%c S sand/siltstone
Raymond & Murchison (1988) V 50-118.5 m ∼100-200%a S shale/silt/limestone
Rodriguez Monreal et al. (2009) T-Ro-HC V-RE-GC 110-600 m 50-100%a S black shale
Saghafi et al. (2008) V-Da ∼2.4 m ∼400%a D coal
Santos et al. (2009) T Mi-El 13 m ∼90%b S carbonate/black shale
Saxby & Stephenson (1987) TOC-GC-Da 3 m ∼50%b S oil shale
Simoneit et al. (1978, 1981) V-TOC-GC-Da 0.2-15 m 40-50%a S black shale
Snyman & Barclay (1989) V 50-1400%a D/S coal
Svensen et al. (2007) V-TOC-Re 80 m ∼30%a S clack shale/shale
Sweeney & Burnham (1990) T-Ro V 10.4 m ∼100%a/c D shale
Zhu et al. (2007) V-GC-Da 50 m ∼20%a S black mudstone

aCalculated from elevated vitrinite profiles. bBased on other measurement techniques. cBased on modeling results.

Modeling: T- Thermal modeling; F- Effect of fluids; LC - Latent heat of cystallization; LD - Latent heat of dehydration; LM -

Latent heat of host-rock melting; LV - Latent heat of vaporization; Me - Mechanical failure;

Data: V - Vitrinite; Vb - Bitumen reflectance; TOC - Total organic carbon; RE - Rock-Eval analysis; GC - Gas

chromatography; Da - Additional data; Mi - Mineralogical data; El - Elemental Data.

Aureole: D - Dike; S - Sill;
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intrusion contact, different fluid systems, or multiple intrusions (Raymond & Murchison, 1988; Hanson

& Barton, 1989; Galushkin, 1997; Barker et al., 1998; Kjeldstad et al., 2003; Fjeldskaar et al., 2008).

To constrain some of these variations and how they influence the aureole processes, we test how key

parameters (intrusion temperature, host-rock temperature and sill thickness) affect both the aureole

thickness and the mass of generated gases during heating. Through numerical modeling we are able

to cover the whole range of natural variations and simulate the response of the host shale.

2.3.2 Modeling of aureoles

Numerical modeling of aureole-processes has several approaches, including pure heat conduction,

heat conduction with latent heat of crystallization, dehydration and contact melting, inclusion of heat

advection by fluids with or without pore-pressure buildup (e.g. Jaeger, 1959; Delaney, 1982; Hanson &

Barton, 1989; Litvinovski et al., 1990; Barker et al., 1998; Dutrow et al., 2001; Annen & Sparks, 2002;

Kjeldstad et al., 2003). Some common modeling approaches are presented in Table 2.1. Studies of mixed

inorganic and organic reactions in shale and coal during contact metamorphism are less common (e.g.

Finkelman et al., 1998; Golab et al., 2007; Santos et al., 2009). Contact metamorphism processes such

as mineral dehydration, decarbonation and host-rock melting reactions are commonly done in aureoles

of large plutons (e.g. Jamtveit et al., 1992; Svensen & Jamtveit, 1998; Holness & Isherwood, 2003;

Polyansky & Reverdatto, 2006; Nabelek, 2007). Mineral reactions in sedimentary host-rocks around

sheet intrusions are comparatively poorly documented (Holness & Watt, 2002; Haave, 2005; Drits et al.,

2007; Henry et al., 2007; Ganino et al., 2008).

2.4 Methods

We use a 2D finite element model for conductive heat-flow around a sill intrusion with latent heat of

crystallization, latent heat of kerogen cracking and latent heat of dehydration reactions. The model

accounts for vitrinite maturation and kerogen cracking by kinetic modeling using Easy%Ro (Sweeney

& Burnham, 1990) and mineral dehydration as predicted by phase equilibria (Connolly, 2005). We

focus on first-order effects and do not involve fluid flow and heat advection. This simplification is

justified by an analytical solution showing that advective heating has little effect on intrusive cooling

for low-permeability systems (Podladchikov & Wickham, 1994). In addition, we avoid making global

assumptions about the permeability and amount of pre-existing fluids in the basin host-rocks. Despite

the common use of Easy%Ro to estimate vitrinite profiles around sill intrusions, there has been

little focus on the sensitivity of the model to varying initial parameters. We therefore conducted a

series of simulations calculating vitrinite reflectance profiles to study the response of the model to

the key parameters influencing the thermal input: sill thickness; intrusion temperature; and host-rock

temperature.

2.4.1 Thermal modeling

We have developed a numerical model solving the thermal evolution of sill cooling using 2D finite

element and 1D finite difference method. The thermal solver is shown in Fig. 2.2.
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Figure 2.2: Setup of the numerical model for a 100 meter thick sill. (a) Initial conditions. An
instantaneous emplacement of a 1150 ◦C sill in a host-rock of 100 ◦C. (b) The sill is cooling by
conduction with time. Parameters used in the modeling are given in Table 2.2.

We assume instantaneous igneous emplacement and no post-emplacement flow. The physical

parameters used in the modeling are given in Table 2.2. We use the 1D model to calculate a series

of aureole thicknesses by systematically varying the intrusion temperature from 900 to 1300 ◦C, the

host-rock temperature from 10 to 110 ◦C, and the sill thickness from 1-150 m. The 1D model gives

similar results to the 2D model, but is far more time-efficient for the array of runs conducted. We solve

the heat conduction equation with latent heat,

∂T
∂t

=
k

ρCeff
P

(
∂2T
∂x

+
∂2T
∂z

)
− LOMROM

ρCP
− LDRD

ρCP
, (2.4.1)

where T is temperature, ρ is density, k is thermal conductivity, CP is heat capacity, t is time, x is

horizontal direction, z is vertical direction, L is latent heat of devolatilization reactions, and R is rate
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of devolatilization reactions. An effective heat capacity, ρCeff
P , accounts for the latent heat of fusion in

the crystallizing parts of the sill,

Ceff
P = Cp(1+Ste) f or (TS < T < TL)

Ceff
P = Cp f or (TS > T ).

(2.4.2)

The Stefan number, Ceff
P , is quantifying the effect of the latent heat by

Ste =
LC

(TL −TS)CP
, (2.4.3)

where LC is latent heat of crystallization, TL is liquidus temperature and TS is solidus temperature of

the melt. Effects of latent heat of mineral dehydration and organic cracking are accounted for by the

enthalpy method. Reaction rates are coupled directly to the devolatilization reactions. We have fixed

the boundary conditions to the host-rock temperature at the top and bottom of the domain, while the

boundary conditions at the sides are free. The boundaries do not influence the developing thermal field.

We assume that the host-rock temperature above and below the intrusion are equal.

2.4.2 Organic maturation

The individual chemical steps during kerogen cracking are complex and to a large degree unknown (e.g.

Beardsmore & Cull, 2001). However, it has been shown for a bulk organic system that the kinetics can

be satisfactorily approached by the Arrhenius equation using a set of parallel first order reactions,

k = Aexp(−Ei/RT ), (2.4.4)

where A is the frequency factor, R is the gas constant and Ei is the activation energy for the ith reaction

(e.g. Tissot et al., 1987; Ungerer & Pelet, 1987). The parallel reactions (i) represent different kinetics

of the kerogen bonds. We utilize the model Easy%Ro developed by Sweeney & Burnham (1990) for

consistent modeling of vitrinite reflectance and organic cracking reactions. It is based on an average

set of kerogen kinetics and conveniently implemented using the following approach. The Arrhenius

equation is integrated over time,

It =
t∫

0

Aexp(−E/RT )dt, (2.4.5)

in order to calculate the decrease in the initial amount of convertible material (Wi0),

Wit = Wi0 exp(−Iit), (2.4.6)

where Wit is the fraction of convertible material at time t (gHC/kgTOC). The total amount of product

released at time t, Qt , is

Qt = ∑
i

Wi0 −Wit . (2.4.7)
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Table 2.2: Parameters used in the thermal modeling.

Symbol Description Value Unit
Tm Initial temperature of melt 1423∗ K

Thr Initial temperature of host-rock 348∗ K

TL Liquidus temperature 1423a K

TS Solidus temperature 1223a/∗ K

KT Thermal diffusivity (k/ρ/CP) 10−6b/c m2/s

ρm Density melt 2600b kg/m3

CPm Heat capacity melt 820b J/kg/K

ρhr Density host-rock 2400d kg/m3

CPhr Heat capacity host-rock 850e J/kg/K

k Thermal conductivity 2.1b/ f J/K/m3

LC Latent heat of crystallization 320g kJ/kg

LD Enthalpy of mineral dehydration 2800h kJ/kgH2O

LOM Enthalpy of organic cracking 375i kJ/kgTOC

R Gas constant 8.31 J/K/mol

A Frequency factor 1013 j 1/s

E Activation energy 142-301 kJ/mol

d Aureole thickness m

h sill thickness 1-150∗ m

W fraction of convertible organic matter pr TOC 850 j g/kg

ROM rate of kerogen conversion into hydrocarbons kgTOC/m3/s

RD rate of mineral dehydration reaction kgHC/m3/s

XO atomic fraction of nO relative to nH +nO -

nO number of moles of oxygen per mole fluid -

nH number of moles of hydrogen per mole fluid -

∗This study approximations; aMétrich & Rutherford (1998); bBarker et al. (1998); cDelaney (1982); dStorvoll et al. (2005);
eBerkovich et al. (2000); f Reiter & Tovar (1982), for shale; gTurcotte & Schubert (2002); hTrommsdorff & Connolly (1996),

average dehydration; iShih & Sohn (1978); jSweeney & Burnham (1990).
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Vitrinite reflectance is calculated by

%Ro = exp(−1.6+3.7F), (2.4.8)

where F = ∑
i

fi

(
1− Wi

Wi0

)
and fi is the weighting factor for the ith reaction. Values for E and f can be

found in Sweeney & Burnham (1990). From this model it becomes apparent that the minimum value of

%Ro is exp(−1.6) = 0.2 when F = 0, and oppositely, at maximum conversion F = 0.85, the value of

%Ro is 0.2× exp(3.7×0.85) = 4.6.

We assume that all hydrocarbons are converted into methane (CH4), because the kinetic conditions

for transformation of organic matter at high temperatures favor gaseous products over liquid petroleum

(e.g. Reverdatto & Melenevskii, 1983; Tissot & Welte, 1984; Karlsen & Skeie, 2006). Secondary

cracking of oil to gas is expected to initiate around 180 ◦C (Schenk et al., 1997), which is reached

even in the outer aureole, supporting our assumption.

The CH4 yield (kgCH4 /m3
rock) is calculated from the relation

QCH4 = Qt × τ×M f ×ρhr, (2.4.9)

where Qt is hydrocarbon yield (gHC/kgTOC/1000), τ is kg carbon per kg shale (wt% TOC/100), M f

is conversion factor from C to CH4 (1.34), and ρhr is density of the host-rock (2400 kg/m3) which

corresponds to an average density of sediments at ∼3 km depth in a basin (Storvoll et al., 2005). We use

this depth as an analog to the paleo-depth of the deep organic-rich shale formations in the Karoo Basin

(Catuneanu et al., 2005).

We extrapolate the calculations of gas quantities generated in one aureole to basin-scale gas

generation by assuming a cumulative sill thickness of 100 meter intruding into organic formations in

a basin. The amount of CH4 generated per unit area of sill (kg m−2) is determined by summing up a 1D

section above and below the 100 m thick sill.

2.4.3 Mineral dehydration modeling

Mineral dehydration reactions are modeled to estimate the relative amounts of CH4 and H2O generated

in aureoles for different initial wt% TOC and sill thicknesses. The thermal solver is coupled to

mineralogy by phase equilibrium modeling (Connolly, 2005). We use an average pelitic sediment

composition after Caddick & Thompson (2008), with SiO2 = 59.80 %, Al2O3 = 16.57 %, MgO =

2.62 %, Na2O = 1.73 %, CaO = 1.09 %, FeO = 5.81 %, H2O = 5.00 %, by weight. Fig. 2.3a shows

the calculated equilibrium mineral assemblages of the pelite, and Fig. 2.3b displays the bulk water

content of the mineral assemblage as a function of temperature and pressure. We fix the thermodynamic

pressure at 100 MPa, and use the transient thermal solver to extract contact aureole temperatures (along

the dashed line). The discrepancy between the H2O content in the mineral assemblage of the initial

host-rock (5 wt% H2O) and the transient H2O content equals the amount of H2O released as a free fluid

phase. The total amount of H2O generated is thus directly linked to the maximum temperature obtained

in the aureole.
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Figure 2.3: (a) Stable mineral assemblages calculated from Perple X (Connolly, 2005) for an average
pelite (Caddick & Thompson, 2008). The assemblages are simplified from original calculations to
consider major dehydration reactions. Wet melting may occur above ∼750 ◦C as indicated by the
dashed line (Nichols et al., 1994; Grant, 2004). (b) Calculated bulk maximum H2O content as a function
of pressure and temperature. The dashed line indicates where the calculations in our model are done.
Maximum temperature obtained in the aureoles in this study is indicated by the star at ∼600 ◦C. Mineral
abbreviations: Ab - albite; Bio - biotite; Chl - chlorite; Ep - epidote; hCrd - hydrous cordierite; K-fsp -
alkali-feldspar; Mica - white mica; Ol - olivine; Opx - orthopyroxene; Plag - plagioclase; Qz - quartz;
San - sanidine; Zeo - zeolite;
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2.4.4 Linear regression analysis

We apply linear regression analysis to our set of 1D calculations of aureole thicknesses. The parameters

and results are assembled in matrices which are solved for the unknown coefficients C:

[
d1

h1 . .
dn

hn

]
=

⎡
⎢⎢⎢⎢⎢⎣

CThost−rock

CTintrusion

Cln(h)

C1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

T 1
host−rock

T 1
intrusion

ln(h)1 11

: : : :

T n
host−rock

T n
intrusion

ln(h)n 1n

⎤
⎥⎦ , (2.4.10)

where d is the aureole thickness, h is the sill thickness and n is the number of calculations in this study

(∼1500). The coefficients are used to construct a simple formula predicting the normalized aureole

thickness. To evaluate the accuracy of the regression model we find the coefficient of determination R2

from

R2 ≡ 1− Serr

Stot
, (2.4.11)

where Stot is the total sum of squares, Stot =
n
∑

i=1
(yi − ȳi)

2, where y = (d/h)calculated is the calculated

aureole thicknesses (d) normalized over sill thickness (h) and ȳ = 1
n

n
∑

i=1
yi is the grand mean of the

normalized aureole thickness; Serr =
n
∑

i=1
(yi − zi)

2 is the total sum of squared errors, where z = (d/h) f itted

for the fitted aureole thicknesses normalized over sill thickness.

2.4.5 Fluid composition

Fluid speciation calculations are conducted in order to find the phase relation between the generated H2O

and CH4. We calculate carbon saturated fluid phase equilibria in Perple X as a function of temperature

using the equation of state from Connolly & Cesare (1993). Carbon-saturated fluids have only one

compositional degree of freedom (XO) which is specified by

XO =
nO

nO +nH
, (2.4.12)

where nO and nH are number of moles of O and H per mole of fluid (Connolly, 1995). A pure CH4-

fluid has XO = 0, and a pure H2O-fluid has XO = 1/3. For the bulk fluid composition in the aureoles

we use the calculations of H2O and CH4 generated in the inner aureole. Preexisting pore-fluids are not

considered.

2.5 Results

2.5.1 Devolatilization reactions

Fig. 2.4 shows the results of the final reaction stages of fluid generation as a function of TOC content

(1 and 5 wt%) of the host-rocks. We define the inner aureole as vitrinite reflectance larger than 1.5

%Ro marking the metagenetic maturation level (gas only), and outer aureole as %Ro between 0.5 and
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1.5 marking the catagenetic maturation (oil+gas) (e.g. Dow, 1977; Hunt, 1996). The aureole thickness

is defined from the 1%Ro contour, and is ∼150 meter for the 100 meter thick sill (Fig. 2.4d). The

amount of CH4 generated during heating varies greatly with the initial total organic carbon. The amount

of H2O generated in the inner aureole ranges from 30 to 110 kg/m3, decreasing to 0 kg/m3 in the outer

aureole (Fig. 2.4a). The CH4 generation in a shale of 1 wt% TOC is ∼20-30 kg/m3 in the inner aureole,

decreasing to 10 kg/m3 in the outer aureole (Fig. 2.4b). For 5 wt% TOC the CH4 generation is 85-135

kg/m3 in the inner aureole, decreasing to 40 kg/m3 in the outer aureole (Fig. 2.4c). This implies that in

the case of 1 wt% TOC the mass of generated CH4 is 2-4 times less than the amount of H2O. For 5 wt%

TOC the amount of generated CH4 is up to twice the amount of H2O. The mass per volume of generated

fluids is unaffected by the sill thickness. However, a lager sill will affect a larger total volume of rocks

and hence generate a larger total mass of CH4 and H2O. The total masses of fluids summed up for the

2D sections are for the 100×1200 meter case 20100 ton/m H2O, 10400 ton/m CH4 for 1 wt% TOC, and

51200 ton/m CH4 for 5 wt% TOC. The devolatilization reactions are completed within ten to several

hundreds of years, depending on sill thickness.

2.5.2 Aureole thickness

To compare published data from different geological settings we have normalized the aureole

thicknesses d to the intrusion thickness h (Fig. 2.5a). The assembled data from Table 2.1 show that

most of the aureole thicknesses fall between 30-200% of the sill thickness (Fig. 2.5b). There is a

tendency for the thinner intrusions to have smaller aureoles than thicker intrusions, although no clear

distinction can be made. The distribution of observed aureole thicknesses is within the same range as the

calculated distribution of aureole thicknesses shown in Figure 2.5c, resulting from systematic variations

of sill thickness (1-150m), intrusion temperature (900-1300◦C) and host-rock temperature (10-110◦C).

Applying linear regression analysis (Eq. 2.4.10) to the series of runs conducted results in the

following fitting formula

d
h
≈ 0.0102 ·Thost - rock +0.0029 ·Tintrusion +0.1936 · ln(h)−6.8611, (2.5.1)

where d is the aureole thickness and h is the sill thickness. Figure 2.6a shows a plot of the values

obtained from this formula against calculated values. Most of the calculated aureoles are reproduced

by the fitting formula to within a factor 2 (Fig. 2.6)b). The fit is most accurate for sills of 5 to 20

meters, with less accuracy for higher sill thicknesses. From Eq. 2.4.11 the coefficient of determination

is R2 = 0.89, which indicates that we capture about 90% of the response of d/h in the calculations by our

approximated formula based on our three key variables (Eq. 2.5.1). This simple relationship originates

from vitrinite calculations using an equation with a total of three exponents (Eq. 2.4.8). From the

formula we see that changing the host-rock temperature by 50 ◦C has a larger influence on the aureole

thickness than changing the intrusion temperature by 50 ◦C. Changing the sill thickness by 50 meters

will have an intermediate influence. Hence, host-rock temperature is the most sensitive parameter, while

sill thickness will be most important for the non-normalized aureole thickness. This suggests that the

depth of sill emplacement and the geothermal gradient in the basin are important factors in determining

the volume of heated sediments, and hence the total mass of generated gas.
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Figure 2.4: Calculation of (a) H2O, (b) CH4 for 1 wt % TOC and (c) 5 wt% TOC for a 100 m thick sill
emplaced at ∼3 km depth with intrusion temperature of 1150 ◦C and host-rock temperature of 75 ◦C.
Generated amounts are given in kg m−3. The figure shows the final aureole at 500 years.

2.5.3 Latent heat

Calculations with and without latent heat of crystallization and devolatilization reactions on the vitrinite

profiles are compared with normalized data from a 10.4 meter thick sill (Bostick & Pawlewicz, 1984).
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Figure 2.5: (a) Vitrinite profiles from several sill intrusions of various thicknesses plotted as a function
of normalized aureole thicknesses. There is a large diversity in the profiles, although all profiles show
an increase from ∼0.5-1 %Ro up to ∼5 %Ro at the contact. (b) Relative aureole thicknesses based
on elevated vitrinite reflectance varying from ∼30 to 400 % sill thickness (Table 2.1). (c) Calculated
relative aureole thicknesses based on %Ro >1, for varying sill thickness and temperature of intrusion
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Figure 2.6: (a) Calculated aureole thicknesses (y) plotted versus fitted aureole thicknesses (z) (Eq.
2.5.1). About 90% of the data can be reproduced by a plane involving intrusion and host-rock
temperature, as well as the natural logarithm of the sill thickness. (b) Differences between calculated
and fitted aureole thicknesses (error) are approximately within a factor 2 (dashed line), i.e. the fitting
formula (Eq. 2.5.1) gives a good indication of expected aureole thickness arising from heat conduction
within a factor 2 error. The fitting formula is most accurate for sills around 5-20 meters, with progressive
less accuracy with increasing (and decreasing) sill thickness.

It is approximately 20% difference in the aureole thickness between latent heat of crystallization,

dehydration and cracking and no latent heat, and about 28% difference with latent heat of crystallization
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only (Fig. 2.7). The spreading of the data points is by comparison 10-20%. The calculation without

latent heat fits with the lower end of the data, while the calculated lines with latent heat fit the upper

end of the data. We have used initial thermal values reported by Bostick & Pawlewicz (1984) with a

host-rock temperature of 30 ◦C and an intrusion temperature of 1240 ◦C for the calculated lines in Fig.

2.7. By using a lower intrusion temperature, all three calculations fit better to the data points closest to

the intrusion, suggesting that the reported intrusion temperature is overestimated.
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Figure 2.7: Comparison of numerical calculations without (long dashed line) latent heat, with latent heat
of crystallization and devolatilization (solid line) and latent heat of crystallization only (short dashed
line) with data (circles) from aureoles around a 10.4 m dike (Bostick & Pawlewicz, 1984), normalized
over intrusion thickness. Host-rock temperature is 30 ◦C and intrusion temperature is 1240 ◦C (Bostick
& Pawlewicz, 1984), the other values used are given in Table 2.2.

2.5.4 Fluid composition

The results of fluid speciation calculations are plotted in Figure 2.8a, contoured for pressures ranging

from 100 MPa to 500 MPa. Fig. 2.8b shows densities at 100 MPa calculated using the equation of state

from Connolly & Cesare (1993). The compositions of the fluids generated are calculated from average

aureole values. In the case of 1 wt% TOC we use 20 kg/m3 (1259 mol/m3) CH4 and 90 kg/m3 (5000

mol/m3) H2O, which gives a mole fraction of oxygen of nO = 0.40 and a mole fraction of hydrogen

of nH = 1.20. For the 5 wt% case we use 120 kg/m3 (7500 mol/m3) and the same H2O, resulting

in nO = 0.29 and nO = 2.29. Substituting these numbers into Eq. 2.4.12 yields X1wt%
O = 0.25 and

X5wt%
O = 0.11, indicated by stars in Fig. 2.8a.

The density of the fluid generated from a shale with 1 wt% TOC will be 350 kg/m3 at time of high-

temperature generation (450 ◦C and 100 MPa) (Fig. 2.8b). At 375 ◦C the fluid will exsolve into a CH4-

dominated phase and a H2O-dominated phase. The density of the CH4-dominated phase will decrease

from 300 kg/m3 to 180 kg/m3 down-temperature (375-200 ◦C) due to exsolution of progressively more
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H2O. The density of the H2O-dominated fluid will increase from 700 kg/m3 at 375 ◦C to 900 kg/m3 at

200 ◦C. For a shale with 5 wt% TOC, the relatively lower amount of H2O (∼90 kg/m3) will be miscible

with the generated CH4 (∼120 kg/m3) down to temperatures of 275 ◦C at 100 MPa. Then the fluid will

unmix into a CH4-dominated fluid with a density of 140-180 kg/m3 (450-200 ◦C) and a H2O-dominated

fluid with a density of 800-900 kg/m3.
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Figure 2.8: (a) Fluid speciation phase diagram calculated from Perple X, using the equation of state
from Connolly & Cesare (1993) contoured for pressures ranging from 100 - 500 MPa. For 1 wt% TOC
there will be miscibility between water and methane at ∼375 ◦C, while fluids in rocks of 5 wt% TOC
are miscible at ∼275 ◦C , for thermodynamic pressures of 100-200 MPa. (b) Calculated densities of
the fluid(s) at 100 MPa. At this pressure the CH4-dominated phase will have a relatively low density
of ∼200 kg/m3, while the H2O-dominated phase will have a relatively much higher density of ∼900
kg/m3.

2.5.5 Basin-scale gas generation

Figure 2.9 shows the extrapolation of CH4 generated in the aureole to basin scale sill complexes

emplaced in shale as a function of function of TOC content from 0.5-10 wt% and area covered by a

cumulative sill thickness of 100 meter. This is relevant to understand gas generation in sedimentary

basins affected by LIPs, like the Vøring and Møre basins (offshore Norway), the Karoo Basin (South

Africa), and the Tunguska Basin (Russia). The total area estimated to be covered by sills in the Vøring

and Møre basins is 85 000 km2 (Svensen et al., 2004). However, the Vøring and Møre basins belong

to the North Atlantic Volcanic Province, which is probably at least 5 times as large (Svensen et al.,

2004). The extent of sills intruding into the Western Karoo Basin is ∼50 000 km2 based on the mapped

area of vent structures (Svensen et al., 2007). For the total Karoo Basin we use an area of 390 000

km2 as an estimate for area of sills intruded into carbon-rich sediments (Svensen et al., 2007). For the

Siberian Traps we use an area of 1.6 million km2 based on outcropping sill intrusions (Svensen et al.,

2009). For a 1-6 wt% TOC background shale, the CH4 generation potential from sill intrusions for the
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Vøring and Møre basins is calculated to be ∼600-3500 Gt (Fig. 2.9). The total production potential in

the Karoo Basin ranges from ∼2700 to ∼16200 Gt of CH4 (for 1-6 wt% TOC). The source of carbon

from the Karoo Basin is mainly the organic rich Ecca Group, including the black shale of the Whitehill

Formation of 2-8 wt% TOC and the Prince Albert Formation of 0.5-4 wt% TOC (Svensen et al., 2007).

With an average TOC content of 2-4 wt%, a conservative estimate of the methane produced in the Karoo

Basin is ∼5400-10700 Gt CH4. The formation of the Siberian Traps are responsible for massive contact

metamorphism and enhanced maturation in the Tunguska Basin, Russia (e.g. Kontorovich et al., 1997).

We estimate that at least ∼12000-66000 Gt of CH4 (for 1-6 wt% TOC) could have been generated

through contact metamorphism of organic material in the Tunguska Basin, using the same upscaling

approach as for the other basins.
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Figure 2.9: Calculated total methane potential in Gigatonnes (Gt) as a function of area covered by
a cumulative intrusion thickness of 100 meter continuous sill. The generation potentials are for the
Western Karoo Basin (50 000 km2) ∼400-2100 Gt CH4, the Vøring and Møre basins (85 000 km2)
∼600-3500 Gt CH4 and the total Karoo Basin (390 000 km2) ∼2700-16200 Gt CH4, for values of
reacted shales from 1 to 6 wt% TOC.
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2.6 Discussion

2.6.1 Modeling of contact metamorphism in shales

Heat flow model

We have used a heat conduction model with latent heat of crystallization and devolatilization reactions

to estimate volatile production around igneous sills in sedimentary basins. We included latent heat

of crystallization as it is considered a first order effect in cooling and crystallization of melts (e.g.

Jaeger, 1957; Spohn et al., 1988; Barker et al., 1998). Conversely, the effect of latent heat consumed

in dehydration reactions is believed to have minor influence on the thermal profile (e.g. Walther &

Wood, 1984; Hanson & Barton, 1989; Galushkin, 1997). However, latent heat of organic cracking

indicate measurable quantities of latent heat consumed in the organic cracking (Berkovich et al.,

1997). Combining latent heats of crystallization in the sill and devolatilization in the aureole gives

an approximate 20% correction to the aureole thickness, which is similar to the variations within

vitrinite reflectance measurements itself (10-20%). Misfits between data and calculated profiles can

be compensated by varying thermal properties of the sill and the host-rock. Hence, effects of latent heat

on calculated vitrinite reflectance profiles are only of major importance when all other thermal properties

in the aureole are well constrained.

Latent heat of vaporization may also be a heat sink in shallow intrusions, but because we consider

deeply buried shales (∼3 km) with low porosity we do not incorporate this effect, as vaporization of

pure H2O is confined to the upper ∼1 km of a sedimentary basin (Kokelaar, 1982; Wagner & Pruss,

2002).

We have assumed no additional heat transport by fluid flow (i.e. a Peclet number of zero) because

of the large uncertainties associated with effect of heat advection on thermal profiles on a basin scale.

Although not shown here, there is a tendency of larger aureoles above than below sill intrusions (e.g.

Simoneit et al., 1978; Peters et al., 1983; Gurba & Weber, 2001), which can result from vertical heat

transport by fluids or incremental emplacement history (e.g. Kjeldstad et al., 2003; Annen, 2009).

However, conduction is the main heat-transfer process in low-permeable shale sequences due to limited

pore-water convection (Bjørlykke et al., 1988; Raymond & Murchison, 1988; Connolly & Thompson,

1989; Podladchikov & Wickham, 1994). Organic cracking by conductive heat has not been fully

explored by numerical modeling, which makes it an important task to complete before more complexity

is added.

Gas generation

Using default kinetic parameters from Easy%Ro determined from a wide range of source rocks is ideal

for our generalised numerical approach to basin-scale aureole processes. The total generation potential

W used in Easy%Ro adds up to 850 gHC/kgrock, similar to Type I kerogen, while the broad distribution

of activation energies (142-301 kJ/mol) resembles the behaviour of Type III kerogen (Ungerer & Pelet,

1987). Thus, the overall behaviour of kerogen kinetics in shale source-rocks in our model is maintained.

Note that the usage of default kinetics implies that our model cannot explain all case studies, due to

a vast array of kinetic responses in different rock types (e.g. Snowdon, 1979; Holness & Watt, 2002;
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Peters et al., 2006).

Organic cracking reactions have multiple-order kinetics (Price, 1983). However, the simple first

order Arrhenius equation provides sufficient coverage of the bulk kerogen kinetics due to its flexibility,

i.e. it has a temperature dependence in both the frequency factor (A) and the activation energies E.

Indeed, the vitrinite model Easy%Ro by Sweeney & Burnham (1990) is demonstrated to fit well with

measured vitrinite profiles in many geological settings (e.g. Sweeney & Burnham, 1990; Fjeldskaar

et al., 2008), including this study.

The type of kerogen in the heated sediments dictates how much gas can be generated. Humic coals

are mainly composed of Type III kerogen from which 10-25% of the carbon mass can be converted into

gas (e.g. Hunt, 1996). In contrast, Type I and II kerogen commonly found in organic rich shales have

the potential of converting up to 95% of the TOC to hydrocarbons (e.g. Ungerer & Pelet, 1987; Behar

& Vandenbroucke, 1988). Because we use a conversion factor of 85% by weight, our approach will

lead to an overestimation of gas generated from coal source rocks. Moreover, a considerable proportion

of the carbon gases generated in coals can be retained due to a high trapping efficiency within the

structural network of coals (Behar & Vandenbroucke, 1988; Hunt, 1996; Saghafi et al., 2007, 2008).

Also precipitation of carbonates derived from coal decomposition and CO2 can cause further retention

of the carbon gases (Finkelman et al., 1998; Golab & Carr, 2004). Coals are therefore less important for

generating and releasing large volumes of CH4 gases relative to black shales. Still, there are several

case studies demonstrating considerable gas generation in coal experiencing contact metamorphism

(Snyman & Barclay, 1989; Gurba & Weber, 2001; Cooper et al., 2007; Gröcke et al., 2009). Hence,

it is reasonable to assume that coal-derived carbon gases may play an important role during large scale

contact metamorphism in sedimentary basins (McElwain et al., 2005).

Isotope fractionation during gas generation

A recent study by Gröcke et al. (2009) suggesting that the generation potential of isotopically depleted

carbon gases from coals is low based on lack of carbon-isotope (δ13C) enrichment in residual kerogen

towards the intrusion contact. The fractionation of CH4 relative to total kerogen is -1.4� to -12� for

coals and -17.5� to -15� for shales (e.g. Clayton, 1991; Andresen et al., 1995), which is commonly

believed to cause a corresponding enrichment in δ13C in the residual kerogen. However, care should

be taken when using carbon-isotope composition of residual kerogen to infer the mass and composition

of thermogenic gas released, as experiments show that there is no simple relationship between residual

kerogen and the gas generated (Andresen et al., 1995; Lorant et al., 1998). For example, CO2 has a

positive fractionation of about 1� to 3� for coals, and 3� to 5� for shales (Andresen et al., 1995).

Hence, we expect that a large generation of CO2 can contribute to the small lowering of δ13C values in

the residual carbon. Indeed, some coals have a correlation between higher maturity and more negative

kerogen δ13C (Andresen et al., 1995; Cooper et al., 2007; Schimmelmann et al., 2009). More commonly,

studies report no significant shift in δ13C of the residual kerogen with increasing coal maturity (e.g.

Faure, 1986; Ripley & Taib, 1989; Whiticar, 1996), even when methane with δ13C values from -50 �
to -25� is released (Cramer et al., 1998). Due to the lack of response in residual kerogen in addition to

several factors influencing the δ13C values, it is speculative to use kerogen δ13C values as proxy for the
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generation of isotopically light carbon gases (cf. Gröcke et al., 2009).

Dehydration of minerals

We assume that the dehydration reactions occur at thermodynamic equilibrium. The advantage of this

approach compared to kinetic modeling is that kinetics of mineral reactions are often poorly constrained,

and rely on overstepping for reactions to occur (e.g. Nabelek, 2007). The overstepping temperature

needed for dehydration reactions are rarely more than a few degrees, with a maximum of 40 ◦C (Walther

& Wood, 1984), and would only lead to a minor shift of the equilibrium reaction conditions (Fig. 2.3).

The rate of dehydration reactions depends primarily on the rate of heat input (e.g. Walther &

Orville, 1982). Dehydration reactions at contact aureole temperatures (∼500 ◦C) are estimated to go

to completion after ∼200 years (Walther & Wood, 1984). This is well within the cooling time of thicker

sills of 100 meters (∼500-1000 years). For thinner sills of 10 meters, the time of elevated temperature in

the aureole may be too short for the minerals to reach equilibrium (∼10-50 years). Heating experiments

on oil shales show a water loss of ∼40 kgH2O/m3, using the reported density of 2200 kg/m3 (Gregg et al.,

1981). This is in agreement with the lower range predicted by our numerical model.

2.6.2 Aureole thickness

We have shown that the existing ’rule of thumb’ predicting aureole thicknesses of about 100% of the sill

thickness can be improved to involve temperature of host-rock and intrusion, in addition to sill thickness

(Eq. 2.5.1). The derived relationship is consistent with a large diversity in the data (Fig. 2.5a,b), and

with the compilation of Raymond and Murchison (1988) showing a relation between the logarithm of

intrusion thickness and the aureole thickness. However, there is a consistent tendency for the numerical

modeling to over-estimate the vitrinite profile relative to observed profile data. This indicates that there

are some local processes which are not considered in our generalized model. A non-instantaneous

emplacement model could potentially account for some of these discrepancies (Galushkin, 1997).

An important implication of the relationship in Eq. 2.5.1 is that we expect larger aureoles to occur

when sills intrude into host-rocks of relatively high background temperatures, as long as the temperature

is within the field of normal organic maturation. Thus thicker aureoles will develop in basins with

high geothermal gradients or around deeply emplaced sills. This is illustrated in Figure 2.10a using

Eq. 2.5.1, showing aureole thicknesses as a function of different geothermal gradients. The figure is

calculated using a sill thickness of 50 meters and a constant intrusion temperature of 1150 ◦C. Figure

2.10b illustrates how sill thicknesses influence the aureole thicknesses with depth. The geothermal

gradient is fixed at 20 ◦C/km, with a constant intrusion temperature of 1150 ◦C. Due to the natural

logarithm of the sill thickness in Eq. 2.5.1, the increase in aureole thickness between a 10 and a 50

meter thick sill is larger than the increase between a 50 and a 100 meter thick sill. In a volcanic basin,

multiple sill intrusions can cause larger aureoles due to elevated background temperatures (Hanson &

Barton, 1989; Deyoreo et al., 1991).
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Figure 2.10: Calculated aureole thicknesses as a function of geothermal gradient (a) and sill thickness
(b) using Eq. 2.5.1. In Figure (a) the sill thickness is set to 50 meters, whereas the geothermal gradient
is fixed at 20 ◦C/km in Figure (b). A sill temperature of 1150 ◦C is applied in both cases.

2.6.3 Composition and fate of fluids

The fluid speciation suggests the presence of a fully miscible fluid in the sediments in the early stages

of cooling, while at lower temperature (<300 ◦C) the fluid will unmix into a low density CH4-phase

and a more dense H2O-phase (Fig. 2.8). At 100 MPa the solubility of CH4 in H2O is 0.4-10 wt% for

the temperature range 100-350 ◦C (Bonham, 1978). This implies that for an aureole of 5 wt% TOC, a

maximum of ∼20 kg/m3 CH4 can be retained in the denser, less mobile H2O-dominated phase (10%

of 120 kg/m3 CH4 + 90 kg/m3 H2O). Contact aureoles in shales will be dominated by CH4-H2O fluids

rather than H2O-CO2 fluids, because of low oxygen fugacity resulting from a lack of oxygen sources

(Connolly & Cesare, 1993). This fits well with our assumption of kerogen converting mainly into CH4,

rather than CO2. Substantial addition of CO2 from decarbonation or kerogen Type III rich sources can

lead to a shift towards H2O-CO2 fluids (e.g. Gregg et al., 1981; Hunt, 1996; Finkelman et al., 1998;

Santos et al., 2009). Also, H2O can react with residual graphite to produce CH4-CO2 fluids, with

composition depending on the redox conditions (e.g. Pattison, 2006; Boiron et al., 2007).

The fates of the generated fluids will depend on relative densities, capillary pressures and over-

pressure buildup, among others (e.g. England et al., 1987; Jamtveit & Yardley, 1997). A fluid-

pressure buildup in the aureole will promote fluid flow out of the aureole either by seepage through
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microfractures, or by explosive venting. Fluid-expansion resulting from kerogen cracking to gas is

a well established source of overpressure in shales (e.g. Osborne & Swarbrick, 1997; Tingay et al.,

2009). There is a large density decrease going from CH4 incorporated in kerogen matter (∼1000 kg/m3)

and H2O stored in hydrous minerals (2400 kg/m3) to volatile CH4 and H2O (∼200 and ∼800 kg/m3),

supporting pressure buildup and vertical fluid flow. The extra porosity generated from devolatilization

can cause compaction and initiation of porosity-waves, which provides an effective transport mechanism

to the atmosphere (e.g. Connolly, 1997; Connolly & Podladchikov, 1998; Appold & Nunn, 2002).

If a large volume of rock is undergoing contact-metamorphic devolatilization-reactions more rapidly

than the fluids can escape, the building up of overpressure may eventually be released through extensive

brecciation of the rock. Pipe-like flow structures originating from contact aureoles are evidence of

such overpressures (e.g. Skinner & Marsh, 2004; Oliver et al., 2006; Svensen et al., 2006, 2009). An

overpressurized aureole can arise from boiling and expansion of pore-fluids down to depths of ∼1

km (Delaney, 1982; Kokelaar, 1982; Manning & Bird, 1991; Jamtveit et al., 2004). At larger depths,

enhanced compaction reduces the amount of pore-fluids available, while higher pressures will reduce

thermal expansion of the fluids. Pipe-structures rooted down to 4 km are thus more likely to form

due to generation of substantial masses of CH4 and H2O in aureoles (Svensen et al., 2006, 2007).

Depending on the time-scale and extent of fluid generation, such explosive release of over-pressure

through brecciated vents will rapidly transport the aureole fluids to the atmosphere (Svensen et al.,

2006). Vents are observed to commonly originate at sill tips (Planke et al., 2005). Thus, vents can drain

aureole fluids from both upper and lower aureoles through lateral flow (cf. England et al., 1987). A

typical pipe source region can be on the order of 5 km3, effectively draining the aureole systems for the

generated fluids (Svensen et al., 2009).

2.6.4 Climate implication of basin-scale gas generation

Throughout geologic history, formation of Large Igneous Provinces in sedimentary basins has coincided

with episodes of global warming and mass extinctions (e.g. Wignall, 2001; Svensen et al., 2004). The

Emeishan volcanic province (∼260 Ma) is related to the end-Guadalupian extinction and warming event

(e.g. Zhou et al., 2002; Retallack et al., 2006; Ganino & Arndt, 2009), the Siberian Traps (∼252 Ma)

coincides with the end-Permian extinction and warming event (e.g. Visscher et al., 2004; Retallack &

Jahren, 2008; Svensen et al., 2009), the Central Atlantic magmatic province (∼200 Ma) is related to the

Triassic-Jurassic extinction and warming event (e.g. McElwain et al., 1999; Courtillot & Renne, 2003),

the Karoo igneous province (∼183 Ma) is related to a global warming and minor extinction event (e.g.

Jenkyns & Clayton, 1997; Svensen et al., 2007, 2008) and the North Atlantic igneous province (∼55

Ma) is related to the global warming and minor extinction event at the Palaeocene-Eocene boundary

(e.g. Svensen et al., 2004; Storey et al., 2007). All these events can be explained by large scale

contact metamorphism of organic material, with subsequent gas generation and release to the atmosphere

through vents. In addition, large-scale extinctions related to the end-Permian (Siberian Traps) and the

end- Guadalupian (Emeishan Igneous Province) can be enhanced by the release of ozone-depleting

halogens formed by contact metamorphism of evaporite horizons (Visscher et al., 2004; Beerling et al.,

2007; Svensen et al., 2009).
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Commonly, thick sills (>100 m) covering several square kilometers are found in deep levels of many

sedimentary basins (e.g. Mjelde et al., 1998; Chevallier & Woodford, 1999; Planke et al., 2005; Polteau

et al., 2008). This implies a relatively high host-rock temperature (∼75-100 ◦C) and potentially elevated

background maturation at the time of the LIP formations. In our model, these conditions support the

formation of thick aureoles (Eq. 2.5.1). If the intruded shale is mature, the original source-rock potential

is decreased and the kinetic behavior of the kerogen will be dictated by higher activation energies as the

most labile bonds break off in the initial maturation. This is not accounted for in our modeling, but can

be approached by using a TOC content that corresponds to the level of background maturation in the

basin. We therefore assume that the host-rocks have a maximum average of 6 wt% TOC on the basin

scale, although individual shale-formations can have initial TOC contents of at least 10 wt%.

The calculated amounts of CH4 generated in the Vøring and Møre basins in Fig. 2.9 are similar to

the ∼1340 Gt CH4 that was estimated for a 200 meter thick aureole (i.e. 100 meter thick sill) at 2 wt%

TOC by Svensen et al. (2004). This is a conservative value as the cumulative sill thickness in the basins

can reach at least 300 meters, giving values three times higher than presented in Figure 2.9. Release of

these gases has been linked to the Paleocene-Eocene Thermal Maximum (PETM) occurring at ∼55 Ma.

A -2 to -3 � drop in δ13C values recorded at the PETM can be explained by release of about 1600-3100

Gt isotopically depleted methane (Dickens et al., 1995; Higgins & Schrag, 2006). Pagani et al. (2006)

estimate a larger negative drop of -3 to -5 �. Comparing our estimate of 3500 Gt CH4 to calculations of

Pagani et al. (2006) give a -2.5 to -3.5 � negative shift of δ13C depending on the isotopic composition

of the released methane (i.e. δ13C of -35 to -50 �). For the conservative value of 2000 Gt CH4 the drop

is -1.5 to -2 � for the same δ13C range of methane released. For our least conservative estimate using

300 meters of cumulative sill thickness in the Vøring and Møre basins, ∼4000 Gt C (5250 Gt CH4) can

be generated to match the higher estimates (4000 Gt C with δ13C of -35 �) required by the study of

Panchuk et al. (2008).

The values calculated for the Western Karoo Basin (Fig. 2.9) coincide well with the values 394-

675 Gt CH4 estimated by Svensen et al. (2007) based on actual aureole measurements. Similarly, the

calculated methane generation potential for the total Karoo Basin corresponds well with the estimates

ranging from 2505 to 10037 Gt CH4 for a TOC-interval of 2-5 wt% and cumulative sill thickness of

100-200 meters (Svensen et al., 2007).

Rapid production (i.e. 10-1000 years) of large amounts of isotopically light carbon gas is compatible

with the proxy data suggesting rapid release of huge amount of δ13C-depleted gases to the atmosphere

(e.g. Hesselbo et al., 2000; Kemp et al., 2005; McElwain et al., 2005). The rate-limiting process will

mainly be the duration of sill-emplacement in organic-rich formations, as both cracking and subsequent

venting are relatively rapid processes. A massive release of methane from contact aureoles can trigger

positive feedback mechanisms, such as release of methane from gas hydrates (e.g. Dickens et al., 1995;

Hesselbo et al., 2000; Berner, 2002) and decreased overall storage capacity of carbon in the Earth system

(e.g. Cox et al., 2000; Friedlingstein et al., 2006). The advantages of the thermogenic gas release over

the methane hydrate mechanism are: 1) no requirement of any pre-warming episode; 2) the existence

of geological evidences that hydrocarbons were generated, and released, from basin-wide occurring

contact aureoles; 3) the generation potential of methane is in the same magnitude required to explain

the proxy data, which may not be the case for the methane hydrate source (Higgins & Schrag, 2006;
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Panchuk et al., 2008); 4) a coherent explanation of the coincidental timing of LIP formation and global

carbon-cycle perturbations.

2.7 Conclusions

We have developed a numerical model that predicts aureole thicknesses, gas generation and

mineral dehydration for a wide range of intrusion thicknesses, intrusion temperatures and host-rock

temperatures. By extrapolating our model to basin-scales, we are able to estimate information about

aureoles that are directly observable. Our key conclusions are:

• Aureole thicknesses can vary from ∼30-200% of the sill thickness, depending on host-rock

temperature, sill thickness and intrusion temperature. Effects of latent heat can give up to 20%

correction to the calculated vitrinite profiles relative to calculations with no latent heat. Vitrinite

data itself may vary up to 10-20%. A formula to estimate aureole thicknesses was developed to

include temperature of host-rock and intrusion as well as sill thickness:

d
h
≈ 0.0102 ·Thost−rock +0.0029 ·Tintrusion +0.1936 · ln(h)−6.8611

• CH4-H2O fluids will be the dominating product from contact metamorphism of shale, while H2O-

CO2 fluids can form in the presence of carbonate or humic host-rocks. CH4 will dominate for

TOC contents of >5 wt%, while H2O will dominate for TOC contents of <1 wt%.

• Conversion of organic material to hydrocarbons in contact aureoles is a rapid process (10-1000

years) depending on intrusion thickness. The rate-limiting factor for hydrocarbon generation is

the duration of sill emplacement.

• We estimate that the generation potential of CH4 is ∼600-3500 Gt from the Vøring and Møre

basins, ∼2700-16200 Gt from the Karoo Basin and ∼12000-66000 Gt from the Tunguska Basin.

The key parameters are sill volume and TOC content of the intruded shale formations.

• Density change and pore-pressure build-up associated with the kerogen decomposition promotes

overpressure and venting of CH4 to the atmosphere through pipe-structures and seepage.

• Thermogenic gas generation related to LIP formations in sedimentary basins, with subsequent

release of these gases to the atmosphere provides a causal connection for triggering global carbon

cycle and environmental perturbations in times of LIP formation, like the end-Permian (∼252

Ma), the Toarcian (∼183 Ma) and the Paleocene-Eocene (∼55 Ma).
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MÉTRICH N. & RUTHERFORD M.J. (1998) Low pressure crystallization paths of H2O-saturated basaltic-hawaiitic melts from
Mt Etna: Implications for open-system degassing of basaltic volcanoes. Geochimica et Cosmochimica Acta, 62, 1195–1205.

MEYERS P.A. & SIMONEIT B.R.T. (1999) Effects of extreme heating on the elemental and isotopic compositions of an Upper
Cretaceous coal. Organic Geochemistry, 30, 299–305.

MJELDE R., DIGRANES P., SHIMAMURA H., SHIOBARA H., KODAIRA S., BREKKE H., EGEBJERG T., SØRENES N. &
THORBJØRNSEN S. (1998) Crustal structure of the northern part of the Vøring Basin, mid-Norway margin, from wide-angle
seismic and gravity data. Tectonophysics, 293, 175–205.

NABELEK P.I. (2007) Fluid evolution and kinetics of metamorphic reactions in calc-silicate contact aureoles - From H2O to
CO2 and back. Geology, 35, 927–930.

NICHOLS G.T., WYLLIE P.J. & STERN C.R. (1994) Subduction zone melting of pelagic sediments constrained by melting
experiments. Nature, 371, 785–788.

55



Chapter 2: Modeling gas generation

OLIVER N.H.S., RUBENACH M.J., FU B., BAKER T., BLENKINSOP T.G., CLEVERLEY J.S., MARSHALL L.J. & RIDD

P.J. (2006) Granite-related overpressure and volatile release in the mid crust: fluidized breccias from the Cloncurry District,
Australia. Geofluids, 6, 346–358.

OSBORNE M.J. & SWARBRICK R.E. (1997) Mechanisms for generating overpressure in sedimentary basins: A reevaluation.
AAPG Bulletin, 81, 1023–1041.

OTHMAN R., AROURI K.R., WARD C.R. & MCKIRDY D.M. (2001) Oil generation by igneous intrusions in the northern
Gunnedah Basin, Australia. Organic Geochemistry, 32, 1219–1232.

PAGANI M., CALDEIRA K., ARCHER D. & ZACHOS J.C. (2006) Atmosphere: An Ancient Carbon Mystery. Science, 314,
1556–1557.

PANCHUK K., RIDGWELL A. & KUMP L.R. (2008) Sedimentary response to Paleocene-Eocene Thermal Maximum carbon
release: A model-data comparison. Geology, 36, 315–318.

PATTISON D.R.M. (2006) The fate of graphite in prograde metamorphism of pelites: An example from the Ballachulish
aureole, Scotland. Lithos, 88, 85–99.

PAYNE J.L. & KUMP L.R. (2007) Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of
carbon isotope fluctuations. Earth and Planetary Science Letters, 256, 264–277.

PERREGAARD J. & SCHIENER E.J. (1979) Thermal alteration of sedimentary organic matter by a basalt intrusive
(Kimmeridgian Shales, Milne Land, East Greenland). Chemical Geology, 26, 331–343.

PETERS K.E., WALTERS C.C. & MANKIEWICZ P.J. (2006) Evaluation of kinetic uncertainty in numerical models of
petroleum generation. AAPG Bulletin, 90, 387–403.

PETERS K.E., WHELAN J.K., HUNT J.M. & TARAFA M.E. (1983) Programmed pyrolysis of organic matter from thermally
altered Cretaceous black shales. AAPG Bulletin, 67, 2137–2146.

PLANKE S., RASMUSSEN T., REY S.S. & MYKLEBUST R. (2005) Seismic characteristics and distribution of volcanic
intrusions and hydrothermal vent complexes in the Vøring and Møre basins. In: Petroleum Geology: North-West Europe
and Global Perspectives & Proceedings of the 6th Petroleum Geology Conference. Geological Society, London, 833–844.

PODLADCHIKOV Y.Y. & WICKHAM S.M. (1994) Crystallization of Hydrous Magmas - Calculation of Associated Thermal
Effects, Volatile Fluxes, and Isotopic Alteration. Journal of Geology, 102, 25–45.

POLTEAU S., MAZZINI A., GALLAND O., PLANKE S. & MALTHE-SØRENSSEN A. (2008) Saucer-shaped intrusions:
Occurrences, emplacement and implications. Earth and Planetary Science Letters, 266, 195–204.

POLYANSKY O.P. & REVERDATTO V.V. (2006) Contact metamorphism and metasomatism near the Talnakh intrusion: Fluid
convection and heat transfer modeling on the basis of the Finite-Difference method. Doklady Earth Sciences, 114, 803–807.

POWERS S. & CLAPP F.G. (1932) Nature and origin of occurrences of oil, gas, and bitumen in igneous and metamorphic
rocks. AAPG Bulletin, 16, 719–726.

PRICE L.C. (1983) Geologic time as a parameter in organic metamorphism and vitrinite reflectance as an absolute
paleogeothermometer. Journal of Petroleum Geology, 6, 5–37.

RAYMOND A.C. & MURCHISON D.G. (1988) Development of Organic Maturation in the Thermal Aureoles of Sills and Its
Relation to Sediment Compaction. Fuel, 67, 1599–1608.

REITER M. & TOVAR R.J.C. (1982) Estimates of Terrestrial Heat-Flow in Northern Chihuahua, Mexico, Based Upon
Petroleum Bottom-Hole Temperatures. Geological Society of America Bulletin, 93, 613–624.

56



RETALLACK G.J. & JAHREN A.H. (2008) Methane Release from Igneous Intrusion of Coal during Late Permian Extinction
Events. The Journal of Geology, 116, 1–20.

RETALLACK G.J., METZGER C.A., GREAVER T., JAHREN A.H., SMITH R.M.H. & SHELDON N.D. (2006) Middle-Late
Permian mass extinction on land. Geological Society of America Bulletin, 118, 1398–1411.

REVERDATTO V.V. & MELENEVSKII V.N. (1983) Magmatic heat as a factor in generation of hydrocarbons: the case of basalt
sills. Geologiya i Geofizika, 24, 15–23.

RIPLEY E.M. & TAIB N.I. (1989) Carbon isotopic studies of metasedimentary and igneous rocks at the Babbitt Cu—Ni
deposit, Duluth complex, Minnesota, U.S.A. Chemical Geology: Isotope Geoscience section, 73, 319–342.

RODRIGUEZ MONREAL F., VILLAR H.J., BAUDINO R., DELPINO D. & ZENCICH S. (2009) Modeling an atypical petroleum
system: A case study of hydrocarbon generation, migration and accumulation related to igneous intrusions in the Neuquen
Basin, Argentina. Marine and Petroleum Geology, 26, 590–605.

SAGHAFI A., FAIZ M. & ROBERTS D. (2007) CO2 storage and gas diffusivity properties of coals from Sydney Basin,
Australia. International Journal of Coal Geology, 70, 240–254.

SAGHAFI A., PINETOWN K.L., GROBLER P.G. & VAN HEERDEN J.H.P. (2008) CO2 storage potential of South African
coals and gas entrapment enhancement due to igneous intrusions. International Journal of Coal Geology, 73, 74–87.

SANTOS R.V., DANTAS E.L., DE OLIVEIRA C.G., DE ALVARENGA C.J.S., DOS ANJOS C.W.D., GUIMARÃES E.M. &
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Contact metamorphic devolatilization of
shales in the Karoo Basin, South Africa,
and the effects of multiple sill intrusions
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3.1 Abstract

Quantification of fluid generation during contact metamorphism of shale is important for the

understanding of metamorphic processes, fluid flow in sedimentary basins and perturbations of the

global carbon cycle. In this study we provide geochemical and numerical analyses from the organic-

rich Ecca Group in the Karoo Basin, South Africa, which was affected by contact metamorphism from

multiple sill intrusions in the Early Jurassic. Organic matter was efficiently converted to hydrocarbons

during contact metamorphism, and complete loss of organic carbon in the innermost aureole is common.

Mineral dehydration reactions are evident from the occurrence of metamorphic minerals like biotite and

loss of the clay fraction towards the intrusive contact. We have developed a numerical model in order to

quantify fluid production from both inorganic and organic reactions during contact metamorphism. The

modelling results are constrained by data from two case studies in the Karoo Basin in order to obtain

reliable estimates of the carbon loss from metamorphism of shale. We show that single, thin (∼15

meter thick) sills have a gas production potential of several gigatons of methane (CH4) if emplaced over

a >1000 km2 area. Furthermore, the vertical spacing between simultaneously emplaced sills has an

important influence on the gas generation potential. When two sills are emplaced with a vertical spacing

of ∼7 times the intrusion thickness, the total CH4 generation is up to ∼35 % more than for two separate

sills. Data and modelling from five sills emplaced within the Ecca Group show hydrocarbon generation

∗Physics of Geological Processes, University of Oslo, P.box 1048 Blindern, 0316 Oslo, Norway.
†VBPR, Oslo Innovation Center, Gaustadalléen 21, N-0349 Oslo, Norway
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throughout the organic-rich section, with total carbon loss next to the sills. This has implications for the

fluid production and metamorphism in volcanic basins where multiple sills are common.

3.2 Introduction

Large Igneous Provinces (LIPs), such as the Karoo-Ferrar province, are characterized by the presence

of an extensive network of sills and dykes emplaced in sedimentary rocks (Du Toit, 1920; Walker &

Poldervaart, 1949; Marsh et al., 1997; Chevallier & Woodford, 1999; Galerne et al., 2008; Polteau

et al., 2008). An important consequence of the intrusive activity is rapid heating of the host sediments,

causing devolatilization of organic matter and hydrous minerals. Modelling and field data show that

several thousand gigatons of methane (CH4) can be generated during basin-scale contact metamorphism,

subsequently released to the atmosphere through breccia pipes and hydrothermal vent complexes

(Svensen et al., 2004, 2006, 2007; Polteau et al., in prep.; Aarnes et al., accepted). Such voluminous

release of methane will perturb the global carbon cycle if generated and released on a short timescale.

There are several examples of concurrent global climatic perturbations and emplacement of LIPs

into sedimentary basins, such as in the North Atlantic Province (∼55 Ma), the Karoo-Ferrar Province

(∼183 Ma), the Siberian Traps (∼252 Ma) and the Emeshian Volcanic Province (∼260 Ma) (Rampino

& Stothers, 1988; Palfy & Smith, 2000; Wignall, 2001; Courtillot & Renne, 2003; Svensen et al., 2004,

2007; Ganino & Arndt, 2009; Svensen et al., 2009). Indeed, the isotopic records associated with several

LIP emplacement events show sharp negative carbon excursions which are best explained by a massive

and rapid release of 13C depleted carbon gases, e.g. methane, to the atmosphere (Dickens et al., 1997;

Jenkyns & Clayton, 1997; Hesselbo et al., 2000; Kemp et al., 2005; McElwain et al., 2005; Suan et al.,

2008). Although basin scale estimates of thermogenic gas generation from contact metamorphism shows

that the potential gas generation is sufficient to explain the proxy record (Svensen et al., 2004, 2007,

2009; Aarnes et al., accepted), there is a need for complementary studies that investigate how multiple

sills within organic-rich strata affect the gas generation potential.

There are several studies documenting hydrocarbon generation during contact metamorphism of

organic matter around single sheet intrusions (Simoneit et al., 1978; Perregaard & Schiener, 1979;

Clayton & Bostick, 1986; Raymond & Murchison, 1988). They conclude that these single intrusions

had only localized effects on the organic maturation in the host sediments, mainly because the studies

were made on thin intrusions, often dikes. In a volcanic basin such as the Karoo Basin, several levels

sill intrusions of 10 to over 100 meter vertical thickness are common. Multiple intrusion levels will rise

the temperature over much larger rock volumes than single intrusions (Hanson & Barton, 1989), leading

to enhanced hydrocarbon generation on a basin scale (Price, 1983). The coupling between thermal

evolution of sills and the organic maturation and devolatilization reactions occurring in the host-rocks

has been modelled by Aarnes et al. (accepted), and enables quantification of methane generation during

contact metamorphism.

This study focuses on integrating field data and numerical modelling of single and multiple

intrusions emplaced into the organic-rich Ecca Group in the Karoo Basin, South Africa. The aim

is to quantify the degree of organic maturation and extent of fluid production based on geological

data. We provide two case studies, one near Hopetown in the northern Karoo Basin, and one in
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Calvinia in the western Karoo Basin. In the Hopetown case study we compare data from one

contact metamorphic borehole section with its unmetamorphosed equivalent, and use the information

to constrain the numerical modelling. In the Calvinia case study we present data from the whole Ecca

Group intruded by five sills emplaced at different levels. We apply the developed model to quantify

the combined thermal effects of the multiple sills on the intruded shales. Moreover, we identify the sill

spacing as an important factor that enhances the maximum gas generation. The effects of multiple sills

and sill spacing are relevant for other geological systems where large volumes of magma intrude into

sedimentary formations.

3.3 Geological setting

The Karoo Basin covers nearly two thirds of South Africa (Fig. 3.1). The basin accommodates a >5

kilometers thick sedimentary sequence of Late Carboniferous to Early Jurassic age deposited in the

foreland basin of the Cape Fold Belt (Lock, 1980; Cole, 1992; Catuneanu et al., 1998). The depositional

environments range from partly marine (Dwyka and Ecca groups) to fluvial and aeolian in the Beaufort

and Stormberg groups (Smith, 1990; Catuneanu et al., 1998). The sedimentation was terminated by the

extensive volcanism in the early Jurassic (183 ± 1 Ma; Duncan et al., 1997).

The organic-rich shale formations of the Karoo Basin are located within the Ecca Group, and include

the Prince Albert, the Whitehill, and the Tierberg formations. The Prince Albert Fm. is dominated by

dark greenish-grey shale deposited in a deep water environment (Catuneanu et al., 1998). The total

organic carbon (TOC) content of the Prince Alberg Fm. varies considerably, with up to 12 wt. % TOC

locally (Faure & Cole, 1999). The Whitehill Fm. is a black shale unit consisting of carbonaceous pyritic

shale, with overall high TOC contents of up to 15 wt. % (Faure and Cole, 1999; Branch et al., 2007). The

hydrogen and oxygen indexes from the Whitehill Fm. indicate a mixture of Type I and Type II kerogen

(Faure & Cole, 1999). The depositional environment ranges from brackish to deep marine deposits

(Smith, 1990; Visser, 1992; Catuneanu et al., 2005). The Whitehill Fm. reaches a maximum thickness

of about 80 meters in the Loeriesfontein area (Visser, 1992). The Tierberg Fm. is a grey shale with

an upward transition from deep-water submarine to shallow-water deltaic deposits and finally terrestrial

facies (Faure & Cole, 1999). The average TOC contents in the Tierberg Fm. are 1-2 wt. % (Svensen

et al., 2007).

Lower Jurassic sills and dikes are present throughout the Karoo sedimentary sequence, with the

most extensive and thickest sills located within the Ecca Group (Du Toit, 1920; Chevallier & Woodford,

1999). Because of the overall high TOC contents in the Ecca Group, these shales represent a potentially

significant source of methane-rich fluids when heated during contact metamorphism.

3.4 Methods

3.4.1 Borehole sampling

In this study we present two case studies from 1) Calvinia and 2) Hopetown locations (Fig. 3.1).

Near Calvinia in the western Karoo Basin two fully cored boreholes were drilled trough breccia
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Figure 3.1: Simplified geological map of the Karoo Basin, South Africa after Svensen et al. (2008).
The borehole locations used in this study are indicated with stars. The green Dwyka Group sediments
define the basement of the basin, followed by the Ecca Group, the Beaufort Group, the Stormberg Group
with the extrusive lavas of the Drakensberg Group stratigraphically on top. Outcropping sills are marked
in red. Inferred deep-rooted breccia pipes are located in the Ecca Group, while the hydrothermal vent
complexes are found in the Stormberg Group (Svensen et al., 2007). Note that the circles indicate pipe
clusters and not individual pipes

pipes (G39980 and G39856) and one was drilled through an undisrupted reference borehole (G39974).
Samples were collected in 2007 at the core library of the Council for Geoscience in Pretoria, South
Africa. Based on outcropping geology and the logs from these Calvinia cores (Svensen et al., 2007)
we constructed a simplified cross-section (Fig. 3.2). 13 samples were collected in 2007 and additional
data were compiled from Svensen et al. (2007). The G39974 borehole was drilled to 1016 meters.
The sampling was focused around a 10 meter thick sill located between the Whitehill and the Tierberg
formations.

There are two cored boreholes in the Hopetown location in the northern Karoo Basin; the KL 1/78
and DP 1/78 drilled 3 km apart. Figure 3.3 shows a simplified cross-section from Hopetown. The KL
1/78 core was drilled through a 15.5 meter thick sill intruded into the Whitehill Fm., while this sill is
not present in the DP 1/78. Since there are only two thin sills (1-2 m thick) intruded into the DP 1/78
section, we use this borehole as a reference of background maturation. The presented data from 31
samples from the KL 1/78 and 13 samples from the DP 1/78 are compiled from Polteau et al. (in prep.).
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Figure 3.2: ((a) Simplified cross-section based on three boreholes and outcropping geology. Two
boreholes (G39980 and G39856) are drilled trough vent complexes. The stratigraphic logs are after
Svensen et al. (2007). DW - Dwyka Group; PA - Prince Albert Fm.; WH - Whitehill Fm.; TB - Tierberg
Fm.; WF - Waterford Fm. (from the Beaufort Group). C1 - 116 m thick sill; C2 - 85 m thick sill;
C3 - 10 m thick sill, presented in detail in this study; C4 - 17 m thick sill; C5 - 100 meter thick sill,
where the thickness is inferred from outcropping geology and elevation maps. Note that several sills
follow the horizons between different formations. (b) Aerial photo from Google Earth showing the
outcropping geology of the Calvinia location. The white line represents the cross-section in (a), the
stars show the locations of the boreholes and the arrow points out another breccia pipe located in the
area. The outcropping sills can be identified by the distinct reddish-brown color and by the sometimes
sharp boundary with the sedimentary formations below.

3.4.2 Bulk chemical analysis

Total organic carbon (TOC) contents, Rock-Eval and vitrinite reflectance analyses were carried out on

12 powdered samples from G39974 and 43 samples from KL 1/78 and DP 1/78 using a Rock-Eval 6
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Figure 3.3: Simplified logs of the Hopetown location from DP 1/78 and KL 1/78. The boreholes are
located 3 km apart. The 15.5 meter thick sill (H1) intruding the Whitehill Fm. in the KL 1/78 are not
present in DL 1/78, The two sills of 1 m (H2) and 2 m (H3) intruding DP 1/78 are not present in KL
1/78. TB - Tierberg Fm.; WH - Whitehill Fm.; PA - Prince Albert Fm.

instrument at Applied Petroleum Technology (APT), Kjeller, Norway. The TOC and Rock-Eval analyses

are performed at temperatures between 300 ◦C and 850 ◦C during 25 minutes. Mineral carbon is defined

as CO2 released after the CO signal in the IR-detector drops to zero. The TOC and total carbon (TC)

were determined at the Department of Geosciences, University of Oslo, Norway, using a LECO CR-412

in order to get the amount of inorganic carbon in the samples, which subtracted from the mineral carbon

measurements from APT gives the amount of graphite. The samples were heated to 1350 ◦C under

constant oxygen supply in a CO2-free environment. HCl was used to remove all inorganic carbon for

the TOC measurements, after determining the TC.

The vitrinite reflectance was determined at APT from polished slabs analysed on a Zeiss Standard

Universal research microscope-photometer (MPM01K) equipped with a tungsten-halogen lamp (12V,

100w) and an Epiplan-Neofluar 40/0.90 oil objective. Quality ratings reported in Table 3.1 are based on

various important aspects which may affect the measurements, like abundance of vitrinite, uncertainties

in the identification of indigenous vitrinite, type of vitrinite, particle size and particle surface quality.
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3.4.3 Petrography

Thin sections were studied and analysed using a JEOL JSM 6460LV Scanning Electron Microscope

(SEM) and a Cameca SX100 electron microprobe with integrated energy dispersive spectrometer and

five wavelength-dispersive crystal spectrometers at the Department of Geosciences, University of Oslo.

Standard polished thin-sections were carbon-coated for microprobe analyses, while carbon present in

the samples was detected using uncoated thin sections and low vacuum SEM analysis. The microprobe

analyses were carried out with an accelerating voltage of 15 kV and a beam current of 10 A. The

detection limit is on average 0.08 wt. %. We analysed plagioclase, K-feldspar, chlorite, muscovite,

biotite, epidote and titanite. Occurrences of quartz, carbonate, pyrite and titanium oxides were also

confirmed using the microprobe.

3.4.4 Numerical modeling

We have adopted the numerical model presented in detail by Aarnes et al. (accepted) which solves the

heat conduction equation with latent heat, coupled to organic and inorganic devolatilization reactions

using the finite difference method. Organic maturation is solved by assuming a reaction rate following

the Arrhenius equation with a set of parallel first order reactions (i), ki = Aexp(−Ei/RT ), where A is

the frequency factor, R is the gas constant and Ei is the activation energy for the reaction i (Tissot et al.,

1987; Ungerer & Pelet, 1987). We implement the Easy%Ro method developed by Sweeney & Burnham

(1990) to obtain the vitrinite reflectance and organic cracking reactions, %Ro = exp(−1.6 + 3.7F),
where F is the fraction of converted material. Values for E are taken from Sweeney & Burnham (1990).

The CH4 yield (kgCH4 /m3 rock) is calculated from the relation (cf. Schmoker, 1994), QCH4 = Qt ×
τ×M f × ρhr, where Qt is hydrocarbon yield (gHC/kgTOC/1000), τ is kg carbon per kg shale (wt. %

TOC/100), M f is conversion factor from C to CH4 (1.34), and ρhr is density of the host-rock (2400

kg/m3), which corresponds to an average density of sediments at ∼3 km depth in a basin (Storvoll et al.,

2005). This depth corresponds roughly to the stratigraphic position of the Ecca Group at about 31 ◦

South (i.e. Calvinia) in the Karoo Basin (Catuneanu et al., 2005).

Mineral dehydration reactions are coupled to the thermal solver by assuming phase equilibria

(Connolly, 2005). We use the bulk rock compositions of the Tierberg, Whitehill and Prince Albert

formations from analyses given in Visser (1992) to calculate mineral equilibria (Fig. 3.4). The major

dehydration reactions are related to breakdown of chlorite (Chl) and muscovite (Mus). The maximum

H2O content in the equilibrium mineral assemblage of the initial host-rock at a given temperature gives

the amount of H2O released as a free fluid phase. We fix the thermodynamic pressure at 100 MPa,

which is the approximate lithostatic pressure at 3 to 4 km depth. However, the pressure dependence on

the equilibrium H2O contents is insignificant above ∼50 MPa.

Initial and boundary conditions

The initial conditions are chosen in order to match the Hopetown case study. We use an intrusion

temperature of 1150 ◦C (Toplis & Carroll, 1995) and a host-rock temperature of 50 ◦C with a geothermal

gradient of 25 ◦C /km (Brown et al., 1994), which would place the top of the Ecca Group at about 2 km

depth. At the latitude of Hopetown (29.4◦ S), the Ecca Group is inferred to be at about 1-2 km depth
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Figure 3.4: Calculated bulk H2O contents for (a) the Prince Albert Fm. (max 4.53 wt. % H2O), (b) the
Whitehill Fm. (max 6.12 wt. % H2O), and (c) the Tierberg Fm. (max 4.37 wt. % H2O), as a function of
pressure and temperature, based on mineral equilibrium calculations in Perple X (Connolly, 2005). The
bulk rock compositions are taken from Visser (1992). Mineral abbreviations with solid solution: Bio -
biotite, Chl - chlorite, Epd - epidote, Crd - high cordierite, Ksp - alkali feldspar, Mus - muscovite, Plg -
plagioclase (ordered structure), San - alkali feldspar (ordered structure), and Zeo - zeolite. Without solid
solution: Alb - albite, and Kao - kaolinite.

(Catuneanu et al., 1998). As an initial condition before emplacing the intrusion, we ran the model until

the calculated background vitrinite reflectance fitted the vitrinite reflectance data of DP 1/78. The initial

amount of TOC is found from interpolation of the TOC data from DL 1/78. The thermal diffusivities

used are 1.0× 10−6 m2s-1 for the shales and 9.8× 10−7 m2s-1 for the dolerite (Aarnes et al., accepted,

and references therein).

Model assumptions

We focus on quantifying the effect of conductive heating with latent heat of crystallization and mineral

reactions as a first approximation. Therefore heat advection is not considered. This can be justified since

the advective heat transported with the fluids out of the aureole is commonly considered a second order

effect (Peacock, 1987; Connolly & Thompson, 1989; Ferry & Dipple, 1991; Podladchikov & Wickham,

1994). Moreover, modelling of heat advection is associated with several unconstrained parameters,

such as transient permeabilities and reaction induced pressure gradients. A thorough quantification of

feedback of advective heating on reaction progress is hence outside the scope of this study.

We assume that all hydrocarbons are converted into methane (CH4) as a first approximation,

since the kinetic conditions for transformation of organic matter at high temperatures promote gaseous

products over liquid petroleum (e.g. Reverdatto & Melenevskii, 1983; Tissot & Welte, 1984; Schenk

et al., 1997; Karlsen & Skeie, 2006).

Loss on ignition (LOI) values are reported in weight percent to be 5.66 in the Prince Albert Fm., 10.2

in the Whitehill Fm., and 4.85 in the Tierberg Fm. (Visser, 1992). However, it is likely that the content

of pure H2O is less than what is reported from LOI, because unknown amounts of other components,

such as CO2, make up the total LOI. Because the LOI values should be a function of the organic matter

content in the samples, we reduced LOI by a factor related to the reported carbon, which are respectively

2, 4 and 1 wt. % for the Prince Albert, Whitehill and Tierberg formations. The reductions resulted in
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4.53 wt. % H2O for the Prince Albert Fm. (20% less than the LOI value), 6.12 wt. % H2O for the

Whitehill Fm. (40% less) and 4.37 wt. % H2O for the Tierberg Fm. (10% less). These H2O contents are

similar to average low-grade pelitic shales (4.34 wt. %; Shaw, 1956), and the reduction is done in order

to have reliable estimates of water production in the aureoles.

We consider dehydration reactions occurring at thermodynamic equilibrium conditions. This

assumption is based on studies reporting that the overstepping temperatures relative to equilibrium are

rarely more than a few degrees for most dehydration reactions (Walther & Wood, 1984). This would

only lead to a minor shift towards higher temperatures in the calculated equilibrium reactions (Fig. 3.4).

3.5 Results

3.5.1 Thermal alteration of organic matter

We have investigated the thermal alteration of organic matter around the 10 meter thick sill C3 in

borehole G39974 (Calvinia location and Figure 3.2). This borehole is particularly interesting for our

study, as it consists of multiple intrusions of variable thickness. We include data from the entire borehole

section in order to constrain the numerical modelling. Selected data of TOC (wt. %) and %Ro is plotted

in Figure 3.5, and additional data is presented in Table 3.1. The contact metamorphic Tierberg Fm.

above the C3 sill is a consolidated, dark grey shale with occasional layers of poorly cemented volcanic

ash that is better cemented close to the intrusion. Subvertical veins filled with minerals like titanite,

chlorite and plagioclase are constrained to within 1 meter of the upper contact of the sill. The highest

vein frequency coincides with the highest TOC loss for the shale. The TOC loss is reflected in the rock

color, which progressively darkens from pale grey hornfels at the contact to dark grey shale about 2

meters away from the contact (Fig. 3.5b).

The influence of contact metamorphism on the Whitehill Fm. black shale is seen by the lack

of gypsum precipitation on the core surface, which occurs due to the interaction of the shales with

water in the atmosphere (Fig. 3.5c). The shales are overall well compacted, with very high vitrinite

reflectance values (1.2-4.7 %Ro) and low TOC values (Fig. 3.5a). Vitrinite in the samples is dominated

by inertinite and reworked vitrinite, which makes reliable vitrinite measurements difficult. All samples

in the borehole have very low yields of S1 (hydrocarbons in the sample), S2 (hydrocarbons generated

upon pyrolysis) and S3 (CO2 generated upon pyrolysis). The only significant occurrences of graphite

(above 5 wt. %) are in the two Whitehill Fm. samples at the lower contact with the C3 sill (sample

G39974-07-344.11 m and sample G39974-07-346.00 m).

At the Hopetown location we have data from both a reference borehole (DP 1/78) and the contact-

metamorphic equivalent (KL 1/78) intruded by a 15.5 meter thick sill (H1; Fig. 3). This provides

a unique data set to constrain our numerical modelling. The samples from DP 1/78 are good source

rocks for oil and gas, while the metamorphosed sections in KL1/78 and G39974 are virtually barren

(Fig. 3.6a). The reference Whitehill Fm. (sample DP 1/78-81.85) is made up by up to 50 % dark

bands of organic matter interlayered with fine-grained quartz, plagioclase and smectite (Fig. 3.6b). The

remaining 50% is calcite. The contact metamorphosed equivalent of the Whitehill Fm. (KL 1/78-71.28)

was sampled at the upper contact of the H1 sill. The sample consists of 90% well compacted calcite and
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Figure 3.5: (a) Log of the borehole core G39974 around the 10 meter thick sill intrusion (C3) at the
Calvinia location. Mineralized veins are occurring close to the sill contacts, while horizontal carbonate
layers are found up to 20 meters above the upper contact. The TOC contents in the upper contact
decrease towards the sill, while the TOC contents in the lower aureole show no trend towards the
intrusion. Note the new TOC-scale for the Whitehill Fm. samples. The vitrinite reflectances have
very high values and are all above oil maturity (0.5 %Ro; e.g. Hunt, 1996). The data are scattered,
and there is little trend in the data towards the intrusion. (b) Borehole section of the Tierberg Fm. in
the upper aureole. The loss of TOC can be seen as a progressive bleaching of the Tierberg Fm. shale
towards the contact. (c) Core from the Whitehill Fm. below the sill. The lower sill contact is located
at the upper left corner of the image. The degree of contact metamorphism is traced by the progressive
loss of gypsum precipitation (white surface) towards the contact.

about 10% Mg-chlorite. Almost all the organic matter is gone from the sample (Fig. 3.6c). Only minor
traces (μm) of organic carbon remain in the veins together with pyrite, apatite and calcite.

3.5.2 Mineralogy and petrography

Selected mineral analyses are presented from the Tierberg and Whitehill formations sampled at the upper
and lower contact of the C3 sill at the Calvinia. We present the two contact samples, G39974-334.18
from the Tierberg Fm. (Table 3.2) and G39974-344.11 from the Whitehill Fm. (Table 3.3), since they
represent the samples that experienced the highest degree of metamorphism. The analyses are used
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Table 3.1: Data from Rock-Eval and organic analyses for the borehole G39974 at the Calvinia location.
Well depth TOC* Min.C* TOC ** TC** Graph. Overall S1 S2 S3 Tmax HI OI

sample (m) (wt%) (wt%) (wt%) (wt%) (wt%) %Ro std% # quality (mg/g) (mg/g) (mg/g) (◦C) (mg/g) (mg/g) FM

G39974/04- 203.15 1.01 0.20 0.95 1.11 0.04 4.14 0.34 20 M/G 0.02 0.06 0.23 477 6 23 TB

G39974/04- 238.30 0.65 0.20 0.77 0.85 0.12 4.34 0.30 20 M 0.02 0.03 0.13 490 5 20 TB

G39974/04- 273.22 0.79 0.20 0.81 0.93 0.08 4.53 0.43 22 M/G 0.01 0.05 0.08 513 7 10 TB

G39974/04- 294.42 0.85 0.10 0.79 0.84 0.05 4.52 0.40 21 M 0.02 0.03 0.09 506 3 11 TB

G39974-07- 314.20 0.26 0.10 0.26 0.30 0.06 3.01 0.05 6 M 0.01 0.07 0.24 343 27 92 TB

G39974-07- 314.66 0.28 0.30 0.40 0.57 0.13 2.79 0.00 1 P 0.01 0.06 0.18 408 21 64 TB

G39974-07- 317.86 0.52 0.11 0.67 0.72 0.06 1.28 0.05 1 G 0.01 0.08 0.25 343 15 48 TB

G39974/04- 322.50 0.67 0.10 0.65 0.67 0.08 4.53 0.52 21 M/G 0.01 0.03 0.11 438 5 16 TB

G39974-07- 323.23 0.47 0.10 0.55 0.53 0.10 4.68 0.28 6 M 0.01 0.06 0.18 369 13 38 TB

G39974-07- 327.58 0.23 0.17 0.35 0.39 0.13 2.95 0.15 3 P 0.01 0.05 0.18 441 22 78 TB

G39974-07- 329.33 0.29 0.50 0.21 0.69 0.02 1.56 0.06 7 M/G 0.01 0.06 0.35 337 21 121 TB

G39974-07- 331.56 0.14 0.13 0.26 0.24 0.13 3.43 0.13 2 P 0.01 0.07 0.22 342 50 157 TB

G39974-07- 334.18 0.05 0.10 0.06 0.02 0.10 1.21 0.16 3 P 0.01 0.06 0.17 384 120 330 TB

Sill C3

G39974-07- 344.11 2.62 6.92 12.23 12.52 6.63 3.14 0.00 1 P 0.03 0.23 0.26 582 9 10 WH

G39974-07- 346.00 7.55 5.22 9.25 9.28 5.19 4.12 0.25 7 M 0.13 0.50 0.38 334 7 5 WH

G39974-07- 346.80 4.17 0.39 5.14 5.16 0.37 3.11 0.14 9 M 0.04 0.10 0.27 337 2 6 WH

G39974/04- 350.45 4.73 0.30 4.46 4.39 0.30 4.69 0.40 20 G/M 0.04 0.02 0.12 347 0 3 WH

G39974-07- 351.10 1.46 8.78 2.81 10.90 0.69 3.45 0.00 1 P 0.02 0.06 0.42 340 4 29 WH

G39974/04- 363.40 3.75 0.70 4.29 4.24 0.70 4.61 0.36 20 G/M 0.03 0.03 0.16 348 1 4 WH

G39974/04- 372.00 2.43 0.40 6.50 6.40 0.50 4.65 0.34 22 M 0.02 0.05 0.09 517 2 4 WH

G39974/04- 381.39 4.53 0.70 5.22 5.19 0.70 5.03 0.45 20 G/M 0.09 0.05 0.08 307 1 2 WH

G39974/04- 387.36 3.10 1.50 4.58 4.61 1.47 4.77 0.32 19 G/M 0.10 0.09 0.11 298 3 4 WH

G39974/04- 393.26 3.37 1.10 4.07 4.06 1.10 4.64 0.38 20 M/G 0.05 0.17 0.42 376 5 12 WH

G39974/04- 397.43 4.85 0.80 4.62 4.68 0.74 2.36 0.19 4 P 0.03 0.09 0.16 433 2 3 WH

G39974/04- 402.11 3.08 0.80 3.21 3.23 0.78 4.08 0.56 21 M 0.04 0.18 0.09 364 6 3 WH

G39974/04- 405.13 2.12 1.60 3.70 3.75 1.55 barren - 0 P 0.01 0.03 0.00 542 1 - WH

G39974/04- 409.66 1.11 1.80 2.89 2.88 1.80 7.39 0.67 12 M 0.01 0.03 0.00 360 3 - WH

G39974/04- 412.67 0.03 0.60 8.87 13.54 0.00 7.77 0.75 3 P 0.00 0.01 0.28 336 47 933 WH

G39974/04- 415.70 0.02 0.00 0.00 0.00 0.00 7.90 0.49 15 P 0.01 0.05 0.03 600 230 150 WH

Sill C2

G39974/04- 502.60 0.01 0.00 0.00 0.02 0.00 barren - 0 - 0.00 0.02 0.13 355 200 1300 PA

G39974/04- 512.81 0.02 0.00 0.00 0.00 0.00 4.87 0.46 4 P 0.00 0.03 0.15 520 130 750 PA

G39974/04- 520.20 0.03 0.00 0.00 0.00 0.00 8.19 0.43 10 M/G 0.01 0.02 0.03 468 67 100 PA

G39974/04- 534.40 0.01 0.00 0.00 0.00 0.00 7.58 0.66 23 M/G 0.00 0.03 0.03 502 310 300 PA

G39974/04- 558.08 0.04 0.30 0.34 0.38 0.26 7.60 0.53 21 M/G 0.00 0.01 0.00 509 20 - PA

Sill C1

G39974/04- 705.42 0.03 0.00 0.00 0.00 0.00 barren - 0 - 0.00 0.01 0.00 336 40 - DW

G39974/04- 727.80 0.07 0.20 0.00 0.00 0.20 6.96 0.47 6 P 0.01 0.01 0.00 341 11 - DW

G39974/04- 777.90 0.05 0.10 0.01 0.07 0.04 2.69 0.51 5 P 0.00 0.04 0.13 444 70 260 DW

G39974/04- 798.28 0.02 0.30 0.00 0.08 0.22 3.11 0.35 11 P 0.00 0.02 0.16 445 90 800 DW

G39974/04- 821.77 0.08 0.10 0.03 0.20 0.00 2.93 0.28 17 M 0.01 0.02 0.03 509 24 38 DW

# = Number of measurements; Min. C. = Mineral carbon; G = Good, M = Moderate, P = Poor; *Applied Petroleum Technology;
**University of Oslo; FM = Sedimentary formations; TB = Tierberg; WH = Whitehill; PA = Prince Albert; DW = Dwyka;
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Figure 3.6: (a) Source rock richness plot of all samples from the Calvinia and Hopetown locations as
a function of Hydrogen Index (HI) and wt% TOC (Table 3.1 and Polteau et al., in prep.). The un-
metamorphosed samples (open symbols) indicate a fairly good potential for oil and gas particularly for
the Whitehill formation, while the metamorphosed equivalents (filled symbols) are to a large degree
barren. Modified after Akande et al. (1998). (b) Thin section image of the low-grade metamorphosed
sample DL 1/78-81.85 from the Whitehill Fm. A fine-grained mineral network intermixed with carbon
is making up most of the sample, making it a good source for hydrocarbons. The off-white areas are
calcite-carbonate. (c) Thin section image of the metamorphosed equivalent of the Whitehill Fm. at the
very contact in sample KL 1/78-71.28. The sample is basically barren, except for a carbon remnant in
the vein. The sample is mostly calcite with some Mg-rich chlorite.

to infer peak metamorphic conditions, and to provide information about the mineral reactions during

metamorphism.

The Tierberg Fm. sample (G39974-334.18) is a hornfels with a 2D porosity of about 6 % and several

sub-vertical and horizontal veins (Fig. 3.7). The main mineral phases are quartz (Qtz), alkali feldspar

(Ksp), albitic plagioclase (Alb), muscovite (Mus) and chlorite (Chl), with accessory titanite (Ttn),

epidote (Epd), calcium-carbonate (Car) and rare apatite (Apt). Some of the epidotes are interpreted

as REE-epidote (allanite) due to the low total oxide sum in the analyses (Tables 3.2 and 3.3). There

are two main domains in the sample, one muscovite-dominated (Fig. 3.7b) and one quartz-dominated

domain (Fig. 3.7c). This is likely a result of depositional differences with mainly detrital muscovite

and quartz, respectively. Most of the vertical veins terminate against the muscovite dominated lithology,

where the fluid-pathway is dominated by an interconnected micro-porosity (Fig. 3.7b). The quartz-

dominated lithology in the sample G39974-334.18 has pores up to 50 μm in diameter, in addition to

some micro-porosity. Although the pores are relatively large, they appear to have low interconnectivity

based on the 2D BSE image (Fig. 3.7c).

Metamorphic muscovite and chlorite are growing within the pores, commonly as needles or fans.

There are no significant chemical differences between the same mineral phases occurring in the matrix

compared to those occurring in the veins. Epidote and titanite only occur in veins and nodules. The

nodules are circular mineral domains interpreted to be formed as a response to metamorphic mineral

growth.
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The Tierberg Fm. samples up to ∼20 meters above the contact (i.e. at 314.20 m) are dominated

by chlorite, plagioclase, quartz and K-feldspar, with accessory pyrite and carbonate. There are no clay-

minerals within ∼2 meters from the contact, while clay-minerals are present in the samples above ∼2

meters.

The Whitehill Fm. sample (G39974-344.11) represents a metamorphic black shale, with some

vertical and horizontal veins. The main mineral phases in the Whitehill Fm. are quartz, plagioclase

and biotite (Bio) with minor muscovite, alkali feldspar, rutile, titanite, pyrite, calcite and epidote. The

biotite is partly retrograded to chlorite, which is evident from the low oxide sums and low potassium

(K) contents.

The mineral assemblage in the Whitehill Fm. sample differs from the Tierberg Fm. sample by

containing metamorphic biotite, but not metamorphic chlorite as is common in the Tierberg Fm. sample.

The Whitehill Fm. sample has both plagioclase and albite, while the Tierberg Fm. sample only contains

albite. Furthermore, metamorphic epidote is part of the mineral matrix, and not restricted to veins, as is

the case in the Tierberg Fm. sample. The muscovite analyses show higher iron and magnesium contents

in the Whitehill Fm. compared to the Tierberg Fm..

There are less veins in the Whitehill Fm. as a whole compared to the Tierberg Fm.. A few veins in

the Whitehill Fm. are containing solid bitumen that was once liquid petroleum. The mineral assemblages

in Whitehill Fm. down to ∼10 meters (sample G39974-351.10) away from the bottom contact resemble

the contact sample, although the carbonate contents vary locally.

3.5.3 Modeling organic maturation and gas generation

The effect of a single sill

From the boreholes at the Hopetown location (DP 1/78 and KL 1/78) it is possible to calculate the

difference between the formations that were affected by a 15.5 meter thick dolerite sill (H1) and the

unaffected reference hole. In order to make a coherent quantification of the organic maturation and gas

generation in the aureoles we apply our numerical model to this case study as mainly a calibration study.

In order to plot the two boreholes on the same log, we have adjusted the original borehole depth of the

core DP 1/78 to account for the H1 sill.

Figure 8 shows the modelling results compared to the borehole data. The calculated TOC after the

intrusive event fits well with the data from KL 1/78 (Fig. 3.8a). All vitrinite populations are plotted, as

it is difficult to define the true population in the high grade samples (Fig. 3.8b). Two vitrinite reflectance

samples of about 8 %Ro at the upper and lower contact are omitted from the graphical representation

due to the model limitations of Easy%Ro to maximum 4.6 %Ro. Despite the wide scatter of the data,

the general trend of increasing vitrinite reflectance towards the sill contact relative to the background

values is captured.

The fluid yields represent the amounts generated within the rock volume of a unit column. Summing

up the total yields in this column above and below the sill results in a total amount of 1700 kg/m2 of CH4

and 1200 kg/m2 of H2O (Fig. 3.8c). The calculated amount of methane is comparable to the 1671 kg/m2

CH4 estimated by Polteau et al. (in prep.) from the same data. The maximum temperature calculated is

590 ◦C within 10 cm from the contacts, and above 150 ◦C for the rest of the plotted section (Fig. 3.8d).
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Figure 3.7: Sample G39974-334.18 from the Tierberg Fm. close to the upper contact. (a) A hand-
specimen image of the extensive fracture network crosscutting the sample.(b) Backscatter electron
(BSE) image of the matrix in the muscovite-rich domain shows interconnected micropores through the
solid matrix. (c) A BSE image of the matrix in the quartz-rich domain reveal relatively large, isolated
pore spaces, making up about ∼6% of the surface. Mineral abbreviations are the same as in Figure 3.4.

We can assume that this 15.5 meter thick sill is present within the Whitehill Formation in a larger

area. If we assume that the sill thickness and host-rock lithology is maintained, we can extrapolate the

amount of generated hydrocarbons as a function of sill size. Upscaling to a sill of 50×50 km, which is

geologically plausible, results in a hydrocarbon generation of 4.3 gigatons (Gt) CH4 (Fig. 3.9).

The effect of vertical separation between two sill intrusions

Modelling of the 15.5 meter sill showed that the thermal influence of a single sill is not enough to

reproduce elevated vitrinite reflectances significantly more than 20 meters above and below, although

the vitrinite data show elevated reflectances up to 30 meters away from the contacts (Fig. 3.8b). Because

multiple intrusions-levels are very common in the Karoo Basin, it is possible that the thermal profile was

influenced by more than one sill.
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Figure 3.8: Modelling of the 15.5 meter thick sill (H1) near Hopetown based on the reference borehole
DP 1/78 (open circles) and the intruded borehole KL 1/78 (filled circles). (a) Modelling of organic
cracking (TOC). Dashed line is the inferred background TOC based on the data from DP 1/78, and
the solid line is the calculated TOC compared to the KL 1/78 data. (b) Calculated vitrinite maturation
(%Ro). The level of background maturation is determined from the mean through the open circles (DP
1/78). All populations of the vitrinite reflectances are plotted, which result in a large scatter in the data
(KL 1/78). (c) Calculated CH4 and H2O generation. (d) Recorded maximum temperature in the aureole
from the model. The borehole depth of DP 1/78 was corrected for the missing sill by adjusting the level
of the 5 uppermost samples 10 meters up and the 7 lowermost samples 5 meters down.
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Figure 3.9: Calculated methane generation around the 15 meter thick sill intruding into the Whitehill
formation as a function sill area. For a sill of 50 by 50 km the estimated total generation is 4.3 Gt of
CH4.
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Chapter 3: Effects of multiple sills

We evaluated numerically the total methane production as a function of vertical distance between

the H1 sill and an assumed sill of the same thickness (15.5 m) simultaneously emplaced below the H1-

sill with a vertical distance of 0 to 150 meters. Zero distance is the same as one merged sill of 31 m.

The result of 150 1D-model runs shows that there is a critical distance at which the thermal aureoles of

the two sills start to interact in the host-rock between the two sills (Fig. 3.10a). This occurs at a vertical

distance of 110 meters (∼7 times the sill thickness). The interaction becomes stronger as the two sills

move closer. At the same time the volume of rock available for devolatilization reactions decreases

between the sills.

The result in (Fig. 3.10b) shows the total gas generation when the two sills are emplaced in the

Hopetown location (solid line), and when the two sills are emplaced in host-rock with a fixed TOC

(dashed line) in order to avoid the influence of local variations. Figure 3.10 reveals that there is an ideal

spacing for maximum gas generation of about 5 ton/m2 when the two sills are about 60 meters apart

(i.e. 4 sill thicknesses). This is due to an optimal balance between the strength of the thermal interaction

compared to the total rock volume that is affected. The interaction of two sills results in about 35%

higher methane production than the two separate sills of 15.5 meters (∼4 ton/m2). When there are no

differences in initial TOC values (dashed line), we find that one thick sill gives a higher gas yield than

two isolated sills.

A model run with two 100 meter thick sills results in the same pattern as shown in Figure 3.10.

The main differences compared to the modelling of the 15.5 meter sills are that the thermal interaction

occurs when the sills are 10 times the sill thickness apart, and the maximum gas production occurs when

the two sills are 5 sill thicknesses apart. Also from the runs of 100 meter thick sills, two sills closer than

10 sill thicknesses apart creates up to ∼30% higher gas production than the two separate sills.

The effect of multiple sill intrusions

Data and stratigraphy from the Calvinia area (Fig. 3.2) are used to model the full sedimentary succession

of the Ecca Group in the Karoo Basin. From Figure 3.2 we implement a cross-section going from the

topmost sill (C5) covering the Tierberg Fm. down to the basal Dwyka Group. The modelling results are

presented in Figure 3.11. The borehole depth and the data are taken from G39974, thus negative depth

corresponds to lithologies more elevated than the starting point of the borehole. The physical properties

are equal to those used to model the Hopetown location. We repeated an initial heating similar to the

Hopetown model before emplacing the sills. Initial TOC values (dashed line, (Fig. 3.11a) are chosen to

best fit the final data, and are comparable to the values from the reference borehole (DP 1/78).

If all sills are intruded simultaneously, the calculated TOC-profile greatly overestimates the

metamorphic grade indicated by the TOC data around the three lowest sills (C1-C3) because of the

close distance between the sills (Fig. 3.10). There are no real constraints about the timing of sill

emplacement available for the Karoo Basin. We therefore conducted several runs applying different

emplacement intervals, and found that an emplacement interval of 20 000 years between each sill gave a

reasonably good fit to the TOC data (Fig. 3.11)a. An interval of 30 000 years did not change the profile

significantly; while an interval of 10 000 years resulted in a slight overestimation of the calculated TOC

compared to the TOC data within the Whitehill Fm..
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Figure 3.10: (a) The result of several 1D model runs with increasing vertical distance between two sills
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sill is emplaced below with a distance varying from 0 to 150 meters. The plot shows elevated vitrinite
reflectance relative to the background maturation, and reveals that there is a critical distance (∼110
meters) where the thermal profiles of the two sills start to interact. (b) Calculated methane generation in
a vertical column of the Hopetown location (solid line) and an idealized setting with fixed initial TOC
(dashed line) as a function of vertical distance between the two sills. As the sills are moved closer,
the degree of the interaction increases up to about 60 meters, where the volume of rock that is affected
decreases and thus the total methane production decreases.
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Figure 3.11: Modelling results from borehole G39974 at the Calvinia location of (a) TOC evolution,
(b) vitrinite reflectance, (c) fluids generated and (d) maximum temperature in a stratigraphic sequence
influenced by five intrusions. The stratigraphy is based on logs by Svensen et al. (2007) and the cross
section in Figure 3.2. The sills are emplaced with an interval of 20 000 years, starting with the lowermost
sill. The uppermost sill is emplaced 80 000 years after the bottom sill.

The fit with vitrinite reflectance is difficult, both due to the large scatter and the lower maximum

value of the Easy%Ro-implementation than the measured ones (Fig. 3.11b). We did not plot the

measured reflectance values above 5 %Ro, as they most likely arise from other organic macerals than

vitrinite.

The calculated amount of fluids generated reveal that H2O is the dominating fluid released in the

low TOC shales, whereas CH4 dominates in the high TOC shale (Fig. 3.11c). The total amount of

carbon released from a vertical column of the cumulative Ecca Gr. formations is ∼60 ton CH4/m2-

column. To summarize, the most important modelling results are that multiple sill intrusions result in

elevated background maturation and large scale gas generation throughout the organic-rich formations,

and that the maximum calculated temperature reaches above as much as 150 ◦C throughout the modelled

cross-section (Fig. 3.11d).

3.6 Discussion

3.6.1 Mineral dehydration

The presence of metamorphic minerals such as biotite, epidote and plagioclase in the Whitehill Fm.

sample indicates that the duration of the thermal pulse from the 10 meter thick sill was long enough

for mineral reactions to occur as a response to contact metamorphism. Occurrence of biotite suggests

that dehydration due to break-down of chlorite occurred, and that the temperature reached at least
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∼350 ◦C , as calculated from thermodynamic equilibrium (Fig. 3.4). This reaction corresponds to a

major liberation of mineral-bound water. In the Tierberg Fm., the lack of clay minerals within 2 meters

above the C3 sill strongly suggests water liberation from breakdown of hydrous clay phases during

contact metamorphism.

The metamorphic minerals of the Whitehill Fm. (e.g. biotite, epidote and plagioclase) indicate a

higher metamorphic grade than the metamorphic minerals in the Tierberg Fm. (e.g. chlorite and albite).

This can be related to the more extensive fracture network in the Tierberg Fm., indicating active fluid-

flow through the fractures and pores for some time before mineral precipitation. At the time when the

fluids have sealed the fractures through precipitation, the temperature has also cooled down and the

minerals will record a corresponding lower metamorphic grade. Conversely, in the Whitehill Fm. where

fractures and hence fluid flow are limited, the metamorphic minerals can form at peak metamorphic

conditions.

This is supported by similar mineral compositions in the veins and matrix in the Tierberg Fm.

(Table 3.2), which suggests that the metamorphic minerals precipitated from a fluid going through

both the pores and veins. Furthermore, the epidote-minerals in the veins of the Tierberg Fm. suggests

that the temperature of the fluid was above 200 ◦C at the time of crystallization (Figure 3.4; Bird and

Spieler (2004)). This implies that the veins were acting as active transport channels during the contact

metamorphic event. They were however sealed before the contact temperature decreased to 200 ◦C ,

which from modelling suggests precipitation within 10 years after emplacement.

3.6.2 Fate of the organic carbon

Our modelling suggests that hydrocarbons will be formed primarily as methane, as high maximum

temperatures (∼590-150 ◦C ) were reached in the models of both the Hopetown and Calvinia locations,

and oil is converted into gas above ∼120 ◦C (Hunt, 1996). Moreover, the overall high vitrinite

reflectances above 1.3 %Ro are equivalent of being in the metagenetic stage where all the oil has

converted to gas through secondary cracking (Bostick, 1979). Bitumen-filled veins in the Whitehill

Fm. demonstrate the presence of some liquid hydrocarbons trapped below the C3 sill from Calvinia.

However, vertical migration of liquid hydrocarbons from metamorphic sediments below cannot be

excluded. We therefore infer that both oil and gas will be liberated in the basin as a whole, while

the hydrocarbon products will be mostly gaseous in the contact aureoles.

The high-grade contact zone in the Tierberg Fm. above the C3 sill contains no organic carbon,

although residual carbon is expected from the conversion of kerogen to hydrocarbons (Tissot et al.,

1987). The total loss of graphite indicates a process where residual carbon is dissolved by supercritical

H2O-dominated fluids. It has been shown that graphite can react with water to produce carbon gas above

∼250 ◦C following the reaction 2Cgraphite+2H2O = CH4+CO2 (Connolly & Cesare, 1993; Pattison,

2006). Pattison (2006) showed that significant amounts of residual graphite can be dissolved by fluids

released during mineral dehydration reactions in shales. This reaction favours gaseous products with

increasing temperature (Barker et al., 1998). If we in addition to mineral dehydration account for pre-

existing pore-waters heated by the intrusion, the conversion of solid graphite to carbon gases provides an

efficient way of transport residual carbon away from at least the inner part of the aureoles. The complete
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Chapter 3: Effects of multiple sills

loss of TOC will result in rock compaction (cf. Yoshinobu & Girty, 1999). A compaction of the reacted

host-rock is supported by the stratigraphic thickness of the metamorphosed Whitehill Fm. from KL

1/78 being about 2 meter (∼20%) thinner than the thickness of the reference Whitehill Fm. in DL 1/78

(Polteau et al., in prep.).

In order for the gigatons of carbon gas generated in the aureole to have an impact on the global

carbon cycle, they need to be released rapidly to the surface. This large-scale fluid transport from the

aureoles to the atmospheric cycle is interpreted to occur through the abundant breccia pipes associated

with the Ecca Group in the Karoo Basin (Svensen et al., 2004, 2006, 2007, 2008, 2009). Numerous

horizontal fractures are compatible with a large lateral component in the fluid flux (Ferry & Gerdes,

1998), possibly feeding the vertical pipe-structures.

There are at least 5 more breccia pipes present near the Calvinia area, and more than 400 breccia

pipes associated with metamorphism of the Prince Albert and Whitehill Fm. in the Loriesfontein area

∼50 km further north (Svensen et al., 2007). Figure 3.2 shows that the vent complexes are rooted in the

Prince Albert Fm. where the predicted fluid generation is the highest (Fig. 3.11). Assuming that the top

sill acts as an effectively impermeable layer, the generated fluids will create a massive pressure build-up

(Aarnes et al., in prep.). This pressure can be released through vent formation (Jamtveit et al., 2004;

Svensen et al., 2006; Aarnes et al., in prep.).

The inferred compaction in the Hopetown accompanying the devolatilization in the low-permeable

shales will promote the development of porosity waves, which provide enhanced fluid-flux out of the

aureole (Connolly & Podladchikov, 2000; Appold & Nunn, 2002; Connolly & Podladchikov, 2007).

3.6.3 Effect of multiple intrusions in the basin

The high maximum-temperatures reached during the model runs (>150 ◦C ) predict that the whole Ecca

Group experienced sill-induced maturation of organic material. This is consistent with the study of

Brown et al. (1994), suggesting that the thermal history of the Karoo Basin was strongly influenced by

the intrusive event. For comparison, cracking of organic matter to hydrocarbons is thought to initiate at

about 85 ◦C (Tissot & Welte, 1984; Killops & Killops, 1993). The overall high vitrinite reflectance and

the low TOC content in the borehole G39974 support such a high level of organic maturation. Moreover,

the low gas yields (S1, S2 and S3; Table 3.1) from the organic pyrolysis show that the Calvinia section

has been subjected to extensive metamorphism of organic material throughout the core.

The TOC data fits well to the calculated values from the combined thermal evolution of the multiple

sills, emplaced at 20 000 years interval (Fig. 3.11). This choice of interval is based on several modelling

runs varying from syn-emplacement to an interval of 30 000 years, where 20 000 years gave a good fit

between modelling and data for our choice of initial model conditions. We did not pursue the effect

of timing on other parameters in this study, and can therefore not exclude that with different initial

conditions another interval would be more appropriate. However, the modelling results suggest that the

thermal maturation around a set of three closely emplaced sills is insensitive to emplacement intervals

on a time-resolution lower than 10 000 years.

The lack of clear trends in the vitrinite reflectances towards the C3 sill (Fig. 3.5) can be explained

by the overall high metamorphic grade due to the influence of the larger sills below. Also, modelling of
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the H1 sill could not reproduce the high levels of vitrinite reflectance in borehole KL 1/78 up to more

than 20 meters away from the sill, although the reflectance data show elevated vitrinite reflectances at

least up to 30 meters away. This suggests a thermal influence from other sills also in the Hopetown

location. Due to the predicted elevated maturation throughout the Ecca Group, the samples of the

reference-hole (DP1/78) have most likely experienced some degree of metamorphism in addition to

burial metamorphism, even though we have evidence of only two minor sills in this borehole (H2 and

H3). This is supported both by the occurrence of bitumen veins also in the DP 1/78 (Polteau et al.,

in prep.), and by a background vitrinite reflectance above 0.5 %Ro in most of the DL 1/78 samples

corresponding to the level of active hydrocarbon generation (Dow, 1977). However, based on the large

scatter in vitrinite reflectances, the lack of non-recycled vitrinite macerals, the poor overall quality of

the measurements, and the potential dissolution of organic matter by hot fluids, we have to be careful

when using the vitrinite data as an absolute maturation index related to the contact metamorphic events

in the Calvinia and Hopetown case studies.

Aarnes et al. (accepted) showed how aureole thicknesses are directly controlled by background

temperature of the intruded host-rock. Thus in a volcanic basin, previous intrusions will raise the

background temperature for thousands of years and create favourable conditions for hydrocarbon

formation. This is because higher background temperatures require less added heat before organic

cracking initiates, and because higher background temperatures make intrusive cooling slower due to

less steep thermal gradients between the sill and the host-rock. The main implications of the elevated

metamorphic grade due to multiple intrusions are:

1. The elevated heat flow resulting from multiple sills emplaced throughout the basin will influence

the maturation level several hundred meters away from the intrusions. This is important when

interpreting maturation levels and burial depths in volcanic basins.

2. Gas generation is not limited to the aureoles, but will occur in the whole basin as a result of the

intrusive activity. Thus the total hydrocarbon yield in a volcanic basin is potentially many times

larger than what can be estimated by assuming separate intrusions.

3.7 Conclusions

Based on an integration of numerical modelling with organic and inorganic geochemistry, we are able

to constrain and quantify the effect of single and multiple sills on the intruded shales. The major

conclusions can be summarized:

• Field data show that the key consequences of intrusive heating are major loss of organic carbon,

increased maturity, metamorphic mineral reactions and generation of overpressure and fluid flow

out of the aureoles.

• One single, thin (15 m) sill intruded into the organic-rich Whitehill Fm. can generate several

gigatons of CH4, depending on the lateral extent of the sill.

• When two 15 meter thick sills are simultaneously emplaced with a vertical separation of less than

about 7 sill thicknesses, they induce elevated organic maturation and gas generation relative to
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two isolated sills emplaced further apart. There is an optimal vertical distance of about 4 sill

thicknesses where the total gas generation increases by 35%, relative to two separate sills. For

two 100 meter thick sills the thermal interaction initiates at ∼10 sill thicknesses, with a maximum

generation at ∼5 sill thicknesses of vertical separation.The total gas generation increases by 30%

relative to two separate sills.

• Numerical modelling of 5 sills of variable thicknesses intruded into the Ecca Group in the Calvinia

area shows that hydrocarbon production is occurring throughout the entire sedimentary section,

and is not restricted to the aureoles.

• Since multiple intrusion levels are common in the Karoo Basin, our study strongly supports large-

scale and basin-wide generation of hydrocarbons in the Early Jurassic.
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devolatilization during metamorphism
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4.1 Abstract

Exact and numerical solutions to reaction induced fluid overpressure coupled to temperature and fluid

flow are derived. The model is derived from basic principles of conservation of mass, energy and

momentum, and is thermodynamically consistent. Devolatilization reactions leading to overpressure are

particularly important during contact metamorphism where high thermal fluxes cause large volumes of

fluids to be rapidly generated. We employ a model of conductive heat transfer around a magmatic

intrusion with latent heat of crystallization, coupled to overpressure buildup resulting from fluid

generation and diffusive fluid flux. We can identify three key factors involved in the pressure build-

up: 1) The efficiency of flow relative to the thermal reaction front, 2) the reaction temperature relative

to the available heat in the system, and 3) the feedback of overpressure on the reaction temperature as a

function of the Clapeyron-slope. If the fluid production is more efficient than the fluid transport out from

the front, the solution simplifies to an isochoric system controlled by the effective volume change of the

reaction. Fluid flow reduces the pressure at the reaction front by dispersing it over a larger area. Still,

overpressures above 10 MPa can develop in the presence of fluid flow. If the devolatilization reaction is

pressure dependent, the fluid pressure build-up from the reaction will shift the equilibrium conditions for

the dehydration reaction towards higher temperatures, which in turn will impede the reaction rate. We

use the model to deduce the criteria for fracturing and breccia-pipe formation. The formation of breccia-

pipes is important as they provide efficient transport channels for aureole fluids to the atmosphere,

with a potential impact on the global climate. The analytical solutions are however general, and

can be applied to quantify a number of geological processes related to dehydration-reactions during

prograde metamorphism. Moreover, the solutions presented in this study can be used for verification

and development of reactive transport models.

∗Physics of Geological Processes, University of Oslo, P.box 1048 Blindern, 0316 Oslo, Norway.
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4.2 Introduction

Devolatilization of sedimentary rocks is a key process during progressive metamorphism. Commonly,

the positive change in fluid volume released upon devolatilization is larger than the corresponding

decrease in solid volume, causing a net volume increase of the reaction. If the sudden increase in volume

of the reaction cannot be accommodated by the host-rock, the fluid pressure will build up (Hanshaw &

Bredehoeft, 1968; Thompson, 1987; Walther, 1990). By definition, fluid overpressure is present when

the fluid pressure exceeds the hydrostatic pressure. Understanding processes related to devolatilization

of carbon-fluids, such as CH4 and CO2 is important also in a broader perspective due to the potential

influence on the global carbon cycle (e.g. Bickle, 1996; Svensen et al., 2004).

Contact metamorphism is of particular relevance due to the rapid heat transfer causing efficient

devolatilization of the intruded sediments (e.g. Simoneit et al., 1978; Jamtveit et al., 1992; Lasaga &

Rye, 1993; Bishop & Abbott, 1995; Cooper et al., 2007; Nabelek, 2007; Aarnes et al., in review).

Overpressure during contact metamorphism can be generated by several volume changing processes,

such as boiling and thermal expansion of pore fluids, buoyancy effects, release of magmatic fluids and

fluid generation within the contact aureole (e.g. Furlong et al., 1991; Hanson, 1992; Nabelek & Labotka,

1993; Hanson, 1995; Osborne & Swarbrick, 1997). Overpressures resulting from boiling and thermal

expansion of pore-fluids is well documented, especially around large plutons (Knapp & Knight, 1977;

Norton & Knight, 1977; Einsele et al., 1980; Delaney, 1982; Manning & Bird, 1991; Cathles et al.,

1997; Cui et al., 2001). Similarly, phase transitions related to secondary cracking of oil to gas can cause

a significant fluid pressure increase (Barker, 1990; Luo & Vasseur, 1996; Carcione & Gangi, 2000).

Buoyancy forces are on the contrary considered to be minor (Cathles, 1977).

Depending on the permeability of the host-rock in front of the reacting interface, the efficiency

of fluid generation (pressure buildup) can be comparable to the efficiency of fluid flow (pressure

relaxation). Typical devolatilization reactions related to pressure-anomalies are water liberation from

hydrous minerals such as sheet silicates (Walther & Orville, 1982; Connolly, 1997), decarbonation of

calcite and dolomite (Balashov & Yardley, 1998), and cracking of organic matter to hydrocarbon fluids

and CO2 (Osborne & Swarbrick, 1997; Burrus, 1998; Berg & Gangi, 1999; Wangen, 2001; Hansom &

Lee, 2005; Rodriguez Monreal et al., 2009). The fluid-pressure anomalies depend on the efficiency of

the reaction and the magnitude of the volume changes (e.g. Ague et al., 1998).

Dehydration reactions are mainly temperature dependent, hence pressure is generally considered

a minor factor in prograde dehydration reactions. However, a recent study suggests that pressure can

have a critical influence on the dehydration conditions in the Southern Alps, New Zealand (Vry et al.,

2010). Vry and co-workers provide evidence for major dehydration upon decompression and uplift at

temperature conditions below 500 ◦C , rather than at the deepest parts of the mountain chain. The full

implications of this study requires a larger understanding of the influence of pressure on the reaction

dynamics (Wannamaker, 2010).

Due to the relatively high permeabilities estimated in the upper 5 km of the crust (Ingebritsen &

Manning, 2002), overpressures are commonly assumed negligible in this regime. However, evidences of

significant overpressure generation during contact metamorphism comes from development of fracture

networks (e.g. Nishiyama, 1989; Manning & Bird, 1991; Nabelek & Labotka, 1993; Aarnes et al., in
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review), fluidization of the host sediment (Delaney, 1982; Kokelaar, 1982), formation of sandstone dykes

(Walton & O’Sullivan, 1950; Svensen et al., in press) and hydrothermal vent complexes and breccia

pipes from within the aureoles (Jamtveit et al., 2004; Skinner & Marsh, 2004; Svensen et al., 2004;

Planke et al., 2005; Oliver et al., 2006; Svensen et al., 2006, 2007; Aarnes et al., in review). Breccia

pipes and hydrothermal vent complexes are vertical cylindrical structures that cut vertically through

sedimentary strata (Fig. 4.1). Hydrothermal vent complexes are related to boiling and expansion of

pore-fluids due to the intrusive heat in the upper ∼1 km (Jamtveit et al., 2004).

Breccia pipes are rooted deeper (2-3 km) than where boiling of pure water can occur (∼1 km), and

are suggested to form by large-scale devolatilization of intruded shales (Svensen et al., 2007). From

theoretical approximations with order of magnitude estimates, Jamtveit et al. (2004) recognized that the

amount of fluid overpressure depends to a large degree on the relative rates of heat and fluid transport.

The development of vent complexes is particularly important for the fluid budget of contact aureoles, as

they provide efficient transport channels of fluids from the aureole to the atmosphere. The large scale

release of carbon gases generated in the aureole may have global climatic consequences (e.g. Svensen

et al., 2004, 2007, 2009; Aarnes et al., accepted).

Implications for fluid flow, fracturing and brecciation of the host-rock require a better model

quantifying the fluid pressure buildup in a devolatilizing, partly drained system. Reactive transport

models in porous media coupling mass transport, heat, fluid flow and chemical reactions in various

geological systems are well documented in the literature (e.g. Lichtner, 1985; Ortoleva et al., 1987;

Lichtner, 1988; Baumgartner & Ferry, 1991; Steefel & Lasaga, 1994; Kelemen et al., 1995; Le Gallo

et al., 1998; Xu & Pruess, 2001; Gaus et al., 2005). A key topic in these models is fluid-rock interactions

(Steefel & Maher, 2009, , and references therein). Such reaction models, however, do not usually provide

an understanding of the hydrologic driving forces for the fluid flow while deriving the fluid flux from

the conservation of the fluid mass under simplifying steady-state conditions and other assumptions, such

as a steady-state flow regime in response to thermal expansion (Furlong et al., 1991; Ferry & Gerdes,

1998).

In this study we continue the work initiated by Jamtveit et al. (2004), by adding exact solutions

for a thermally driven reaction front coupled to overpressure generation, and accounting for pressure

relaxation by fluid flow. The solutions are based on conservation laws of energy, mass and momentum,

and are thermodynamically consistent. We focus on the first order processes related to contact

metamorphism, such as conductive heat transfer with latent heat of crystallization, velocity of the

reaction front, Darcian fluid flow, and feedback of pressure on the reaction rate. The reactions are

represented by a source-term and can therefore be substituted by any reaction with a net volume change.

The basic setup allows us to investigate the main processes determining the overpressure generation.

The model is solved for contact metamorphism specifically, but the results are also relevant for regional

prograde metamorphism, and other areas with high heat flow, such as crustal shear zones and zones with

magmatic activity during crustal thickening (e.g. Peacock, 1989; Leloup et al., 1999; Baxter et al., 2002;

Ague & Baxter, 2007; Weinberg et al., 2009).
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Figure 4.1: (a) Satellite image of the Karoo Basin, South Africa, from Google Earth. Red dots represent
clusters of breccia pipes associated with the stratigraphically deepest shale formations in the Karoo
Basin. (b) A photograph of a breccia pipe located at the study area marked in (a). (c) A satellite image
from Google Earth of the same breccia pipe as (b). (d) A photo of the Mackay’s Kop hydrothermal vent
complex, located in the Eastern Cape, South Africa.
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Table 4.1: Symbols and typical values used in this paper.

Symbol Description Unit Typical value
z Vertical direction m
zm, zr Position of crystallization and reaction fronts m
t Time s
Tm, Thr Melt and host-rock temperatures K 1100-1200; 20-100
Tr, Tc Reaction and contact temperatures K 100-500; 500-600
TL, TS Liquidus and solidus temperatures K 1200; 900-1000
Pf , Phr Fluid pressure; background hydrostatic fluid pressure Pa
Pr, ΔPr Fluid pressure and overpressure (Pr −Phr) at the front Pa
PV Isochoric overpressure Pa
Pc ’Dummy’ constant for fluid pressure at the intrusive contact Pa
h, Δh Specific enthalpy; latent heat of crystallization

(
h f −hs

)
kJ/kg ; 320-400

s f , ss Specific entropy; fluid and solid J/K/m3

ρ f , ρs Density; fluid and solid kg/m3 200-1000; 2400
u f , us Specific internal energy; fluid and solid J/ m3

v f , vs Velocity; fluid and solid m/s
φ, (1−φ) Porosity; fluid and solid m3/m3

qS Entropy flux J/K/kg/m2/s
qρ Mass flux kg/m2/s
qE Energy flux J/kg/m2/s
qv Momentum flux m/s/kg/m2/s
QS, f , QS,s Entropy source; fluid, solid J/K/kg/m2/s
Qtotal

S Total entropy source
(
QS, f −QS,s

)
J/K/kg/m2/s

Qρ, f , Qρ,s Mass source; fluid and solid kg/m2/s
QE, f , QE,s Energy source; fluid and solid J/kg/m2/s
Qv, f , Qv,s Momentum source; fluid and solid m/s/kg/m2/s
Qtotal

f Total fluid generated at the reaction front kg/m3 20-120
λ Heat conduction coefficient J/K/s/m 1-3
Cp Specific heat capacity J/kg/K 700-1000
κT Thermal diffusivity coefficient, λ/ρ/Cp m2/s 10−6; 10−3-10−7

k Permeability of the host-rock m2 10−12-10−20

μ f ,μs Viscosity; fluid and solid Pas
β f Effective isothermal compressibility of the fluid 1/Pa 10−8-10−10

η Bulk viscosity Pas
κH Hydraulic diffusivity coefficient,

(
k/μ f /β f /φ

)
m2/s 10−6; 10−3-10−7

α f Isobaric thermal expansion of the fluid 1/K
ξT , ξP Non-dimensional coordinates; temperature and pressure -
ξm

T Rate of the crystallization front (non-dimensional)(zm/2κT t) -
ξr

T Rate of the reaction front (non-dimensional)(zr/2κT t) -
Ri Efficiency of reaction versus fluid flow, ξr

T κT /κH -
Rc Degree of overpressure effects on reaction-closure (non-dimensional) -
ΔToh Degree of thermal overheating of the host-rock (non-dimensional) -
Ste, L∗ Degree of latent heat effects (analytical, numerical) (non-dimensional) -
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4.3 Theoretical background and methods

4.3.1 Temperature of a cooling sill

Conductive heat transfer

A description of all symbols used in the following sections are given in Table 4.1. In our model we use

conductive heat transfer from the intrusion to the host-rock with latent heat of crystallization released

within the intrusion, as they contribute to the first order temperature changes in a contact metamorphic

setting (cf. Appendix 4.C). The heat conduction equation is derived in Appendix 4.A-4.C, and can be

written
∂T
∂t

= κT
∂2T
∂z2 (4.3.1)

(1) where z is the vertical direction, t is time, T is temperature, κT = λ/ρ/Cp is the thermal diffusivity,

and Cp is the specific heat capacity, ρ is density and λ is the thermal conductivity.

Latent heat of crystallization

Specific latent heat, Δh, is given in J/kg and is the amount of energy released upon the phase transition

from melt to crystals in a cooling magma. There are different methods to treat this non-linearity in the

temperature equation. We use the effective heat capacity method for the numerical solution, and apply

conservation of energy at the crystallization front for the analytical solution.

The effective heat capacity method is conveniently implemented in the numerical solution. Specific

heat capacity (Cp) is defined as the specific enthalpy (h) change as a function of temperature change

at constant pressure, Cp = (∂h/∂T )P. A higher effective value for the heat capacity is therefore

equivalent of releasing excess enthalpy (i.e. energy) over the crystallization interval without changing

the temperature. A melt consists of several phases with different crystallization temperatures, so that

the heat capacity can be approximated as a linear function over the crystallization interval between the

solidus (TS) and liquidus (TL) temperatures. The effective heat capacity becomes,

Cpeff = Cp(1+L∗) for TS < T < TL

Cpeff = Cp for T ≤ TS and T ≥ TL,
(4.3.2)

where the degree of the latent heat effect is determined by

L∗ =
Δh

Cp(TL −TS)
,

and Δh = (h f −hs)
In the analytical solution, the latent heat release is more conveniently treated by a heat balance at the

crystallization front in the limit where TS is close to TL. Conservation of energy requires that the rate of

latent heat release at the crystallization front equals the rate of heat conducted away from the interface
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(Turcotte & Schubert, 2002),

ρΔh
(

dzm

dt

)
= λ

(
∂T
∂z

)
z=zm

. (4.3.3)

The left-hand side expresses the rate of the latent heat release at the crystallization front and the right-

hand side expresses the rate of heat conduction away from the crystallization front following Fourier’s

law. In this manner the latent heat is incorporated into the thermal budget. Although looking different

from the effective heat capacity method, this is simply two ways of treating the same physics.

4.3.2 Fluid pressure during prograde metamorphism

Fluid pressure evolution

The fluid pressure equation is derived on the basis of the conservation laws in the Appendices 4.A-4.C,

and can be written,
∂Pf

∂t
= κH

∂2Pf

∂z2 , (4.3.4)

where Pf is the fluid pressure, κH = k/(φβ f μ f ) is the hydraulic diffusivity coefficient, k is the

permeability, μ f is the fluid viscosity, φ is porosity, and β f the effective fluid compressibility assuming

spatially homogeneous permeability and viscosity. The pressure evolution by diffusive fluid flux is

identical in structure to the thermal equation.

Reaction induced pressure

The pressure at the reaction front Pr is coupled to temperature through a devolatilizing reaction-front zr

following a reaction-temperature isograd Tr (Fig. 4.2). The position of this reaction-front is controlled

by the efficiency of heat diffusion into the host-rock. If the generated fluids stagnate at the reaction-

front, the overpressure is controlled by the effective volume change of the reaction, i.e. the isochoric

pressure buildup. If the fluids are allowed to flow away from the reaction-front the overpressure at the

front is reduced by distributing the pressure further out into the host-rock (Fig. 4.2).

There is conceptually no difference between the source of pressure due to devolatilization-reactions

and the source of heat due to crystallization-reactions. For the numerical simulation of pressure it is

convenient to introduce the devolatilization-reaction as a separate source-term in Eq. 4.3.4, cf. Appendix

4.C,
∂Pf

∂t
= κH

∂2Pf

∂z2 +
(

1
ρ f

− 1
ρs

)
Qρ, f

φβ f
, (4.3.5)

where 1/ρ f − 1/ρs is the net volume change of the reaction, ρ f is the fluid density (kg f luid /m3
f luid),ρs

is the solid density (kgrock/m3
rock), and Qρ, f is the rate of fluid mass production per unit volume of

rock (kg f luid /m3
rock/s). The source term Qρ, f (kg f luid /m3

f luid) encompass all devolatilization reactions

occurring at the reaction front. Eq. 4.3.5 shows that the fluid pressure evolves through time due to the

imbalance between the reduction of pressure through Darcy flux and the increase of pressure through the

source-term. Although we focus on devolatilization, the source term can describe any volume-changing

process such as melting and expansion of pore-fluids. For example if the reaction related to a phase

change occurs in an isochoric system , Eq. 4.3.5 has a source term where Qρ, f = α f dT/dt and α f is
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thermal expansion of the fluid (e.g. Domenico & Palciauskas, 1979; Manning & Bird, 1991; Corbet &

Bethke, 1992; Aarnes et al., 2008)

By analogy with the energy balance for latent heat released at the crystallization front (Eq. 4.3.3), the

pressure source is readily incorporated into the analytical solution by introducing a mass balance relation

at the reaction front. Due to the low storage capacity for excess fluid in the host-rock, conservation of

mass requires that the fluid production rate at the reaction front equals the fluid expulsion rate away

from the reaction front, (
1

ρ f
− 1

ρs

)
Qtotal

f
dzr

dt
= − k

μ f

(
∂ΔPf

∂z

)
z=zr

, (4.3.6)

where Qtotal
f is the total amount of fluids generated at the front (kg f luid /m3

rock) and ΔPf = Pf −Phr is the

fluid overpressure, i.e. the fluid pressure relative to the background hydrostatic pressure (Phr) prior to

any devolatilization-reaction. The left-hand side of Eq. 4.3.6 describes the fluid production rate at the

reaction front, and the right-hand side of Eq. 4.3.6 describes the expulsion rate out of the front following

Darcian flux down the pressure gradient. This balance assumes a steady state fluid flux away from the

reaction front and further into the host-rock.

P
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PrPhr

∆Pr

T

z

Tm
Thr
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reacted host-rock

reaction front ( zr )
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Figure 4.2: A schematic drawing of temperature and pressure profiles at a certain time after sill
emplacement. There are two moving fronts; the crystallization front (zm) and the reaction front (zr).
The crystallization front marks the interface between melt and crystals, and moves towards the center of
the intrusion with time. Latent heat is released upon crystallization in the zone where melt and crystals
exist. The reaction front follows the reaction temperature isograd (Tr), and marks the interface between
the devolatilization reactions and the un-reacted host-rock. The release of fluids at the reaction front
builds up an overpressure ΔPr (Pr relative to background hydrostatic pressure Phr).
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4.4 Formulation of analytical solutions

4.4 Formulation of analytical solutions

4.4.1 Temperature

One method to find the analytical solution to a partial differential equation on the form T = T (t,z) with

variables t and z, is to transform the equation into an ordinary differential equation where temperature

is a function of only one variable T = T (ξT ), and ξT = ξT (t,z). This transformation can be achieved

through dimensional analysis, and is presented in detail in Appendix 4.D.

The transformation of Eq. 4.3.1 gives the following equation (Eq. 4.D.7 from Appendix 4.D),

dT ∗

dξT
= − 1

2ξT

d2T ∗

dξT
2

where we from the dimensional analysis have defined the new variable as ξT = z/(2
√

κT t) (Eq.

4.D.2a, Appendix 4.D), and the non-dimensional temperature as T ∗ = (T −Thr)/(Tm −Thr) (Eq. 4.D.1,

Appendix 4.D). Thr is the initial host-rock temperature and Tm is the initial melt temperature. The non-

dimensional temperature is not a necessity, but is introduced to simplify the solution in order to reduce

the number of controlling parameters.

We define our system to be half of a contact metamorphic setting. Thus, the solution starts at

the crystallization front (ξm
T ), where the temperature is equal to the melt temperature, T ∗(ξm

T
)

= T ∗
m =

1, and ends infinitely far into the host-rock (ξ∞
T ), where the temperature equals the background host-

rock temperature, T ∗ (ξ∞
T ) = T ∗

hr = 0. The differential equation for temperature is solved by advanced

integration of the Eq. 4.D.7 using these boundary conditions. The final analytical solution to the thermal

equation is

T ∗(ξT
)

=
erfc(ξT )

1+ erf
(
ξm

T

) (4.4.1)

as derived in Appendix 4.D. The error function is by definition

erf(ξ) =
2√
π

∫ ξ

0
e−τ2

dτ

, and erfc(ξ) = 1−erf(ξ), given as the classical solutions to the linear second order ordinary differential

equations in a semi-infinite half-space (e.g. Carslaw & Jaeger, 1959; Crank, 1979; Turcotte & Schubert,

2002; Philpotts & Ague, 2009). The error function has the properties that erf(0) = 0 and erf(∞) = 1.

Of key interest in geological systems is the solution for the dimensional temperature T (t,z), which

is achieved by substitution of the non-dimensional expressions for ξT (Eq. 4.D.2a) and T ∗ (Eq. 4.D.1)

into Eq. 4.4.1:

T (t,z) = Thr +
(Tm −Thr)erfc

(
z

2
√

κT t

)
1+ erf

(
ξm

T

) . (4.4.2)

Figure 4.3 illustrates the relationship between the dimensional and non-dimensional coordinate systems.

The temperature is conducted out into the aureole with time in the dimensional coordinate system of z

(Fig. 3a). If we divide each of the thermal profiles in Fig. 3a by 2
√

κT t for their respective times,

they collapse to the exact same profile in the non-dimensional coordinate system of ξT (Fig. 3b). This
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profile stays constant for all times until the intrusion has crystallized completely, because time is already

included as a parameter in the horizontal axis. This implies that the parameter ξm
T has a constant value

which represents the position of the crystallization front in the non-dimensional coordinate system, i.e.

at -0.5 in Fig. 3b. The crystallization front has a negative value because the intrusion is located at

−d < z < 0, where d is the half thickness of the intrusion, and zc = 0 at the contact between the host-

rock and the intrusion (Fig. 4.2).

intrusion intrusionhost-rock host-rock

-2 0 2 4 6
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t=1 year
t=5 years

Dimensional Non-dimensional

-20 0 20 40
0
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(T
 -T

hr
)/(

T m-T
hr
)

z (m)

a b

 xT=z/(2√κTt)

 -xT =-0.5m

Figure 4.3: (a) The analytical solution for thermal profiles for three different times in the dimensional
coordinate system for an intrusion with a half-thickness of 20 meters using Eq. 4.4.2. The heat is
conducted further into the host-rock with time as the crystallization of the intrusion continues. (b) When
the thermal profiles are normalized by the square root of the thermal diffusivity and their respective times
the solutions collapse to one single profile in the non-dimensional coordinate system (Eq. 4.4.1). The
parameters are set to κT = 10−6 m2/s and −ξm

T = −0.5.

The crystallization front

While κT is a well constrained parameter for most rocks, the position of the crystallization front ξm
T is

still an unknown quantity. This position depends on the initial thermal gradients between the host-rock

and the intrusion, and on the latent heat released during crystallization. The parameter ξm
T describes

the rate of crystallization, i.e. how fast the crystallization front reaches a given position, or how far it

reaches for a given time. We find the location of this boundary in the dimensional coordinate system by

rearranging Eq. 4.D.2a and solving it at the crystallization front zm,

zm = −2ξm
T
√

κT t. (4.4.3)

This relation shows that ξm
T can be interpreted as a constant controlling the position of the crystallization

front in the dimensional coordinate system.

The value for ξm
T is determined by evaluating the heat balance relation at the crystallization front

(Eq. 4.3.3). The rate of the crystallization front is found by differentiating Eq. 4.4.3 with respect to
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time,
dzm

dt
= ξm

T

√
κT

t
. (4.4.4)

The temperature gradient at z = zm is found from taking the gradient of T from Eq. 4.4.2 and using the

chain rule of differentiation,

(
∂T
∂z

)
z=zm

= (Tm −Thr)
(

∂T ∗

∂ξT

)
ξT =ξm

T

(
∂ξT

∂z

)
= −exp

(−ξm
T

2)(Tm −Thr)√
πκT t

(
1+ erf

(
ξm

T

)) . (4.4.5)

Substitution of Eq. 4.4.4 and Eq. 4.4.5 into Eq. 4.3.3, and including the definition of κT , gives an

equation for calculating ξm
T ,

Ste =
Δh

Cp(Tm −Thr)
=

exp
(−ξm

T
2)

√
πξm

T

(
1+ erf

(
ξm

T

)) , (4.4.6)

where the left hand side is called the Stefan number (Ste). The equation defines an unique

correspondence between Ste and ξm
T that can be demonstrated by computing the Ste number using the

above explicit equation as a function of varying ξm
T and graphically visualizing it on ξm

T -Ste diagram at

the desired range of the Ste numbers (Fig. 4.4a). The data used to plo this figure can be used as a lookup

table to infer ξm
T as a function of Ste number. A Stefan number of zero is equivalent of no latent heat

released upon crystallization.

When the crystallization front is calculated for the system of interest, we can solve the corresponding

temperature analytically from Eqs. 4.4.1 or 4.4.2. For illustration, two temperature profiles are plotted

as a function of ξT for Stefan numbers of 1.2 and 0.2 (Fig. 4.4b). A higher Stefan number is equivalent

of the release of more latent heat, and corresponds to a less extensive crystallization front (i.e. smaller

ξm
T ).

The contact temperature T ∗
c is depending on the Stefan number, where a higher Stefan number gives

a higher contact temperature (T ∗
c = 0.74 for Ste = 1.2) (Fig. 4.4c). For a lower Stefan number, the

contact temperature is just above half between the initial melt (Tm) and host-rock (Thr) temperatures

(T ∗
c = 0.58 for Ste = 0.2). The non-dimensional contact temperature can be found from Tc = T ∗

c Tm +
(1−T ∗

c )Thr.

4.5 Pressure

The pressure equation is solved in an identical way as the temperature by the three main steps; 1)

transformation of the partial differential equation through dimensional analysis of the fluid pressure

equation (Eq. 4.3.4) presented in Appendix 4.D; 2) specification of the boundary conditions and solving

the equation; 3) treating the pressure source at the reaction front (Eq. 4.3.6).

From the dimensional analysis we transformed the partial differential equation of pressure into an

ordinary differential equation (Eq. 4.D.8, Appendix 4.D),

dΔPf (ξP)
dξP

= − 1
2ξP

d2ΔPf (ξP)

dξP
2

99



Chapter 4: Analytical solutions to overpressure

0.40.2 0.6 0.8 1 1.2

0.40.4

0.5

0.6

0.7

Ste

 x
Tm

a

-0.5 0 0.5 1 1.5 2 2.5

0.2

0.4

0.6

0.8

1

 

 

Ste=1.2
Ste=0.2

(T
 -T

hr
)/(

T m-T
hr
)

b

intrusion host-rock

TC
*

 xT=z/(2√κTt)

0.4 0.6 0.8 1 1.2
Ste

0.74

0.66

0.58

0.62

0.70

(T
C -

T hr
)/(

T m-T
hr
) c

0.2

Figure 4.4: Calculations of different relationships between the crystallization front (ξm
T ), Stefan

numbers (Ste) and contact temperatures (Tc). (a) Plotted solutions to Eq. 4.4.6 as a function of the
Stefan number. Higher Stefan numbers inhibit the movement of the crystallization front, i.e. smaller
values of ξm

T . (b) Analytical solutions to temperature profiles of a cooling intrusion for two different
Stefan numbers (Eq. 4.4.1). At higher Stefan numbers (1.2) the release of more latent heat is slowing
down the crystallization, and causing a higher contact temperature than at small Stefan numbers (0.2).
(c) Plotted solutions of contact temperature as a function of varying Stefan numbers. More latent heat
release results in a higher contact temperature.

where the fluid overpressure is a function of a single parameter, ΔPf = f (ξP) . The new non-dimensional

parameter is defined as ξP = z/2
√

κHt (Eq. 4.D.2b, Appendix 4.D). As boundary conditions we set the

100



4.5 Pressure

overpressure infinitely far from the reaction front to zero, ΔPf (ξ∞
P ) = 0, and the fluid overpressure at

the contact to a constant contact pressure, ΔPf (0) = Pc. The analytical solution for overpressure (Eq.

4.D.10, Appendix 4.D) becomes

ΔPf (ξP) = erfc(ξP)Pc.

In the dimensional coordinate system this can be written as

ΔPf (z, t) = erfc
(

z√
κHt

)
Pc. (4.5.1)

An expression for Pc is an unknown constant representing pressure at the contact is derived in the

following section.

The contact pressure

The expression for the unknown contact pressure Pc is found from solving the conservation of mass

relation (Eq. 4.3.6) at the reaction front. The spatial position of the reaction front zr is controlled by the

temperature evolution (Eq. 4.D.2a),

zr = 2ξr
T
√

κT t, (4.5.2)

where ξr
T is the position of the reaction front (i.e. the isograd of the reaction temperature) in the non-

dimensional coordinate system. ξr
T can be interpreted as a factor that controlling the extent of the

reaction in the aureole; for a large value of ξr
T the reaction front will be located further away from the

contact at a certain time compared to a smaller value. Similarly, the time required for the reaction to

reach a fixed position in z-space is proportional to (ξr
T )−2, which implies that a higher value results in a

shorter time. It thus plays a similar role as the ξm
T does for determining the efficiency of the crystallization

front.

The rate of the reaction front (left-hand side of Eq. 4.3.6) is solved by taking the time derivative of

Eq. 4.5.2 with respect to time,
dzr

dt
= ξr

T

√
κT

t
. (4.5.3)

The fluid-pressure gradient at the front is found from taking the gradient of Eq. 4.5.1 at z = zr,

(
∂ΔPf

∂z

)
z=zr

= − Pc√
πκHt

exp

(
−(ξr

T )2κT

κH

)
. (4.5.4)

Substituting Eqs. 4.5.3 and 4.5.4 into Eq. 4.3.6 and solving the expression for Pc yields:

Pc =
(

1
ρ f

− 1
ρs

) Qtotal
f

φβ f

√
π
(

ξr
T

√
κT

κH

)
exp

(
ξr

T
2 κT

κH

)
. (4.5.5)

The time parameter is cancelled, which implies that the contact pressure is not a function of time. This

is consistent with our assumption of a constant in time contact pressure as our boundary condition of

our solution (Eq. 4.5.1) to the pressure equation.

Since we have obtained an expression for the pressure at the contact, we can substitute this into Eq.

101



Chapter 4: Analytical solutions to overpressure

4.5.1 (or Eq. 4.5.2) to obtain the analytical solution to the overpressure,

ΔPf (ξP) = erfc(ξP)
(

1
ρ f

− 1
ρs

) Qtotal
f

φβ f

√
π
(

ξr
T

√
κT

κH

)
exp

(
ξr

T
2 κT

κH

)
. (4.5.6)

This expression appears complicated, but by looking closer at the terms, we recognize that the ratio

κT /κH times the square of ξr
T reappears in all the terms. We assign this term to a non-dimensional

parameter,

Ri = (ξr
T )2 κT

κH
, (4.5.7)

which describes the competition between the velocity of reaction front propagation and the efficiency

of the hydraulic diffusion. A large value for Ri is equivalent to a high reaction intensity, with efficient

reaction rate and heat diffusion relative to the fluid flow.

We also recognize that the ratio of constants in Eq. 4.5.6 defines the over-pressure generated at

constant volume PV , i.e. at isochoric conditions,

PV =
(

1
ρ f

− 1
ρs

) Qtotal
f

φβ f
. (4.5.8)

By taking the rate of Qtotal
f we can recover the source term in the pressure equation used for the numerical

solution (Eq. 4.3.5).

Introducing the new notations, the analytical solution to pressure (Eq. 4.5.7) reduces to

P∗ = erfc(ξP)
√

πRiexp(Ri) , (4.5.9)

where P∗ = ΔPf /PV is the non-dimensional overpressure. At isochoric conditions the host-rock does

not release any overpressure by fluid flow to accommodate the effective volume change of the reaction

determined by PV . Thus, the isochoric condition defines the maximum overpressure that can be

generated. ξP can be substituted by Eq. 4.D.2b from Appendix 4.D to obtain dimensional coordinates.

4.5.1 Resolving overpressure at the reaction front

Eq. 4.5.9 provides a solution to the fluid pressure profile in space and time. Using this expression we

can obtain an exact solution to the overpressure at the reaction front, ΔPr, by substituting z = zr from

Eq. 4.5.2 into Eq. 4.5.9, which gives

P∗
r =

ΔPr

PV
=
√

πRiexp(Ri)erfc
(√

Ri
)

. (4.5.10)

This equation quantifies the over-pressure instantly generated at the front upon fluid production, while

at the same time the overpressure is relaxed through fluids diffusing away from the front. Time is not a

separate parameter in this solution, which implies that a system with a constant diffusivity ratio generates

a constant value for the overpressure at the reaction front with time. The spatial position of the front (zr)

will of course move through time, with a rate depending on the value of the reaction extent parameter

ξr
T and the efficiency of heat conduction. The solution to Eq. 4.5.10 is plotted in Figure 4.5 for different
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theoretical values of Ri.

For large values of Ri(> 1), the reaction rate is much larger than the hydraulic diffusivity, and the

fluids are stagnant relative to the reaction front. As a result the over-pressure approaches isochoric

conditions, and Eq. 4.5.10 reduces to P∗ ≈ 1. This relation can be found from Taylor expansion of Eq.

4.5.10 around Ri = ∞. In the opposite case when Ri is small (
 1), Eq. 4.5.10 reduces to P∗ ≈ √
πRi.

This can be found from series expansion of Eq. 4.5.10 around Ri = 0. This expression provides a

simple approximation to the overpressure generated at the front allowing for fluid flow, revealing the

key parameters controlling the overpressure (κT , κH and ξr
T ).

∆P
r/P

V

 Ri=(xT)2κT/κH
r

Isochoric
overpressure

Overpressure reduced
by fluid flow

∆Pr/PV~√�Ri ∆Pr/PV~1

100

10-1

10-2

10-4 10210110010-110-210-3

Figure 4.5: The solution to pressure at the front (Eq. 4.5.10) as a function of the parameter Ri (Eq.
4.5.7). When the reaction front driven by heat conduction is much larger than the fluid flux (Ri > 1),
the over-pressure approaches the volume-change of the reaction (PV ), i.e. isochoric pressure build-up.
Fluid flux out of the dehydration front reduces the over-pressure. The reduction is proportional to a
factor

√
πRi.

4.5.2 Reaction front controlled by temperature

Figure 4.5 shows theoretical values of Ri which needs to be substituted by real numbers in order to solve

the overpressure analytically. The thermal and hydraulic diffusivities are assumed to be known model

parameters. However, the ξr
T at the reaction front is still an unknown integration constant that needs

to be calculated. In case of purely temperature controlled reactions, we can calculate the reaction front

by substituting the temperature defining the reaction front Tr into the analytical solution of temperature
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(Eq. 4.4.1).
Tr −Thr

Tc −Thr
= erfc(ξr

T ) . (4.5.11)

Eq. 4.5.11 is normalized by contact temperature instead of melt temperature due to substitution of

1+erf
(
ξm

T
)

with (Tm −Thr)/(Tc −Thr).
We have solved Eq. 4.5.11 for different reaction and contact temperatures (Fig. 4.6). Large values

for ξr
T represent scenarios where the temperature defining the reaction front (Tr) is close to the initial

host-rock temperature (Thr). The reaction front progresses efficiently because the amount of additional

host-rock heating needed for the reaction to occur is low. Oppositely, small values for ξr
T represent

high reaction temperatures close to the maximum temperatures that can be obtained by heating from

the intrusion, i.e. the contact temperature. In this scenario the host-rock sediments require significant

heating before the devolatilization reaction initiates. The reaction rate is correspondingly limited.

The generated overpressure has thus an implicit dependency on the reaction temperature. Figure

4.7 illustrates this dependence of overpressure on both fluid flow and reaction temperature. The fluid

flow is primarily controlled by the permeability of the host-rock in front of the reaction interface, and

higher permeability implies higher flow and thus reduction of the overpressure. The values for the fixed

parameters are given in the caption of Figure 4.7.
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Figure 4.6: Calculated reaction extents as a function of reaction temperatures. The tree curves
show the reaction extent for different contact temperatures. The reaction front is efficient when the
reaction temperature is close to the host-rock temperature, while it becomes limited as the reaction
temperature gets closer to the contact temperature. All reaction temperatures are given relative to host-
rock temperature.
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Figure 4.7: One solution to fluid overpressure (ΔPr) as a function of both the reaction temperature and
the degree of fluid flow, i.e. mainly permeability. A low reaction temperature will promote efficient
movement of the reaction front, and fluids will be liberated faster than they are able to flow out, hence
increasing the pressure. We have fixed the other parameters to the following values: Tc-Thr=550 ◦C and
Ste=0.5, corresponding to a Tc-Thr= 1100 ◦C ; κT = 10−6m2/s, which is the typical heat diffusivity for
most rocks (Delaney, 1982); μ f φβ f = 10−12 s corresponding to a H2O or CH4 fluid (Ague et al., 1998;
Wangen, 2001), and an isochoric pressure PV of 108 Pa (Aarnes et al., 2008). Note that at relatively high
permeabilities (10−16-10−15 m2), the generated overpressure can be significant (>10 MPa).

4.5.3 Validation by numerical solution

We have compared our derived analytical solutions to the equivalent numerical solutions in order to

validate the model. It is easier to compare temperature and pressure through the dimensional coordinates

(z,t) than in the non-dimensional coordinate system (ξT and ξP). The following solution is therefore a

representation of one out of several possible contact metamorphic systems. As an initial setup the

intrusion temperature equals the initial melt temperature, and the host-rock temperature equals the

background temperature. The initial condition for overpressure is zero throughout the domain, i.e.

pressure equals hydrostatic pressure.

The comparison shows that the analytical solution to the temperature evolution with latent heat

(Eq. 4.4.2) plots on top of the numerical solution to Eq. 4.3.1, with the use of Eq. 4.3.2 for the

latent heat of crystallization (Fig. 4.8a). Due to the different ways of treating the latent heat, the two

solutions differ slightly in the crystallization interval. When solving the analytical expression we include
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Figure 4.8: Model result showing numerical and analytical solutions to temperature (Eqs. 1 and 8) and
pressure (Eqs. 3 and 16) for a sill with a half-thickness of 50 meters after 10 years. (a) Temperature
relative to host-rock temperature, with a latent heat of 320 kJ/kg; Tm −Thr = 1100; Tr −Thr = 300; and
κT = 10−6m2/s. (b) Overpressure relative to background host-rock pressure, with a PV of 108 Pa (100
MPa) and κH = 10−6 m2/s.

a condition specifying that ξT <−ξm
T =−ξm

T , to extend the validity range of the analytical solution from

the crystallization front to the intrusion center.

The analytical solution to the fluid pressure in the aureole (Eq. 4.5.9) plots exactly on top of the

numerical solution to Eq. 4.3.5 (Fig. 4.8b). The analytical solution has boundaries from the reaction

front and infinitely far into the host-rock due to the choice of boundary conditions. We extend the

validity range by adding the condition P(0 < z < zr) = Pr, assuming no flow of fluids into the intrusion.

The extent of the reaction front, ξr
T , is found from solving Eq. 4.5.11 for thermal values given in the
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caption of Figure 4.8. Implementation of the reaction source-term at an interface in the numerical model

with a finite resolution is done by chain rule of differentiation at the front, Qρ, f = (dzr/dt)
(
Qρ, f /dz

)
,

where dz is the length of one grid point defined by the numerical resolution.

4.6 Reaction closure by fluid overpressure

4.6.1 A pressure sensitive reaction rate

When the fluid-pressure increases as a result of dehydration, the equilibrium conditions for the reaction

are simultaneously shifted along the reaction curve in the P−T space. Figure 4.9 shows three theoretical

reaction curves with different Clapeyron-slopes: 1) temperature controlled, 2) intermediate, and 3)

pressure controlled. When the reaction initiates, the temperature is equal to reaction temperature (Tr)
and pressure is equal to the background host-rock pressure (Phr). As the fluids are liberated, the

overpressure increases with a magnitude ΔPr. This creates a new P− T -condition for the reaction to

proceed depending on the Clapeyron-slope of the reaction. A gentle slope gives a higher effective

reaction temperature, slowing down the reaction due to the additional heating required for the reaction

to continue. If the reaction is very pressure sensitive (line 3 in Fig. 4.9) this may even terminate the

reaction.

We therefore correct Eq. 4.5.11 for the influence of the overpressure and Clapeyron-slope of the

reaction by adding the effective temperature increase. From geometrical constraints we find that the

effective reaction temperature is T eff
r = Tr0 +(dT/dP)ΔPr, where Tr0 is the initial reaction temperature.

Substitution of T eff
r into Eq. 4.5.11 gives a pressure-dependent reaction rate,

(
dT
dP

ΔPr

Tc −Thr

)
+

(
Tr0 −Thr

Tc −Thr

)
= erfc(ξr

T ) . (4.6.1)

Although it is most common to represent the Clapeyron-slope as dP/dT , we use the opposite relation

dT/dP, as it is the form appearing in Eq. 4.6.1.

4.6.2 Data collapse

The aim of the following analysis is to show the three dependencies of ξr
T , i.e. reaction front temperature,

fluid flow and Clapeyron-slope in a simple 2D representation. First we substitute ΔPr = P∗
r PV into Eq.

4.6.1 and use the approximation P∗
r ≈ √

πξr
T

√
κT /κH from the fluid flow regime (Ri 
 1; Fig. 4.5).

Secondly, for small values of the reaction rate (ξr
T < 0.1) we can approximate erfc(ξr

T ) ≈ 1. This

approximation is good for predicting closure of the reaction, as ξr
T will be correspondingly small.

Applying these approximations we can equate ξr
T to the relevant parameters from Eq. 4.6.1:

ξr
T ≈ 1

ΔTohRc
(4.6.2)

where the non-dimensional parameter group Rc represents the parameters influencing reaction closure

by fluid overpressure,

Rc =
dT
dPV

ΔPr

(Tc −Thr)

√
π

κT

κH
, (4.6.3)
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Figure 4.9: Three schematic end-member reaction lines drawn in a P−T diagram for (1) a temperature
controlled reaction, (2) an intermediate and (3) a pressure controlled reaction. When the temperature
has reached the reaction curve at Tr at a background pressure of Phr, the reaction has three possibilities:
(1) The reaction curve is temperature controlled, and an increase in pressure (ΔPr) will simply move
the reaction-condition along the curve up-pressure without changing Tr. (2) The reaction curve depends
both on temperature and pressure, and an increase in pressure will shift the reaction-conditions to higher
temperatures. (3) The reaction curve is pressure dependent, and a little change in pressure will require a
large change in the temperature at which reaction takes place.

and ΔToh represents the parameters determining the degree of thermal overheating of the host-rock,

ΔToh =
Tc −Thr

Tc −Tr
. (4.6.4)

Figure 4.10 shows the approximated value for ξr
T as a function of Rc and ΔToh. Red colours represent

efficient reaction rate, and blue colours represent reaction closure. We identify two domains, one

where the reaction rate (ξr
T ) is temperature controlled (vertical lines) and one where the reaction rate is

influenced by temperature and pressure (inclined lines). In the temperature domain (Rc < 1) the solution

for ξr
T is governed by Eq. 4.5.11, and the reaction rate is only dependent on of the degree of thermal

overheating, i.e. the amount of heating required for the host-rock to reach the reaction temperature. A

large value of ΔToh is equivalent of a large degree of host-rock heating before the reaction temperature

is reached (Tr ∼ Tc), slowing down the reaction front.

In the pressure domain (Rc � 1) the solution for ξr
T is governed by both overpressure and

temperature. Depending on the magnitude of the overpressure determined from the volume change

of the reaction (PV ), and the amount of overpressure reduced by flow
(√

κT /κH

)
, variations in the
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Figure 4.10: The solution of Eq. 4.6.2 for ξr
T as a function of the non-dimensional parameter Rc ( Eq.

4.6.3) and degree of thermal overheating (Eq. 4.6.4). When Rc is larger than 1, then the reaction
proceeds according to the temperature conditions. However, if Rc is much larger than 1, then the
overpressure generated due to the reaction will work to inhibit the movement of the reaction front,
and hence closing the reaction. The black lines (1,2 and 3) represent theoretical scenarios for reactions
with different Clapeyron-slopes, i.e. the curves 1,2 and 3 from Figure 4.9. Steep slopes (curve 1) have
limited influence of the generated overpressure and are thermally controlled, while reactions with gentle
slopes (curve 3) will be strongly influenced by the reaction induced overpressure, and will require more
heating for the reaction to proceed. We have fixed the contact temperature to Tc −Thr = 680 ◦C as an
intermediate choice, and changes in this value have negligible influence on the diagram.

Clapeyron-slopes (dT/dP) will influence the reaction rate.

In the case of a steep reaction curve, i.e. a small value of dT/dP (curve 1, Figs. 4.9 and 4.10),

the change in reaction temperature with increasing pressure is negligible, and the reaction will rate as

constrained by the initial reaction temperature only. Larger dT/dP of the dehydration reactions (curve 2,

Figs. 4.9 and 4.10) reduces the movement of the reaction front by requiring a higher effective reaction

temperature. In the case of gentle Clapeyron-slopes (curve 3, Figs. 4.9 and 4.10), the overpressures

created can be large enough to terminate the reaction due to the very high effective reaction temperatures.

When this is the case, the reaction can continue if the overpressure is reduced by for example fracturing

of the host-rock. This is equivalent of reducing the value of Rc, and thus moving downwards in the

diagram to the conditions where a more efficient reaction rate is expected.
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4.6.3 Feedback mechanism of fluid overpressure

Figure 4.11 illustrates two solutions to overpressure generated at the reaction front as a function of the

Clapeyron-slope of the reaction (pressure dependence) and permeability of the host-rock (degree of fluid

flow) by using the full equation for the reaction rate Eq. 4.6.1. For illustration purposes we use isochoric

pressures PV of 108 Pa (a,c) and 109 Pa (b,d). The other parameters are given in the figure caption.

Isochoric pressure conditions are predicted for permeabilities lower than 10−17 m2 for both cases in

the thermally controlled regime (i.e. red areas in (Fig. 4.11c,d). A higher permeability requires a more

gentle dT/dP-slope to have any effect of pressure. Furthermore, there is a large difference between PV

of 108 Pa and 109 Pa, where in the latter case the feedback of overpressure on the reaction rate becomes

relevant already at slopes about 10−6 ◦C /Pa (i.e. 106 Pa/ ◦C or 10 bar/ ◦C ). Even more gentle slopes

of 10−5 ◦C /Pa (1 bar/ ◦C ) have the potential to impede reaction rate, and as a consequence reduce the

overpressure by two orders of magnitude.

4.7 Geological examples

4.7.1 Aureole fracturing

Fracturing of host-rocks in contact with magmatic intrusions provide evidence for overpressure on the

scale of tensile strength. Figure 4.12 shows fracturing in shales intruded by a 10 meter thick horizontal

sheet intrusion in the Karoo Basin, South Africa. There is a clear relation between fracturing and loss

of total organic carbon (TOC) and hydrous minerals in the contact aureole (Aarnes et al., in review).

In shales, permeabilities are generally very low, i.e. <10−18 m2 (Brace, 1980). It is therefore likely

that the overpressure generated is close to the isochoric overpressure before fracturing occurs (Fig.

4.11). Figure 4.13 illustrates the isochoric pressures calculated as a function of different wt. % of fluid

released during metamorphism, Qtotal
f = wt.%/100×ρhr, and different fluid densities. Due to the simple

relationship in Eq. 4.5.8, decreasing the compressibility with one magnitude increases the overpressure

with one magnitude.

A fluid pressure greater than ∼30 MPa above the lithostatic pressure is sufficient to cause brittle

failure of most host-rocks (Philpotts & Ague, 2009). This implies that at ∼2-3 km depth, the tensile

strength of the host-rocks is about 100 MPa. Hence, cracking of >1 wt. % TOC to methane is sufficient

to cause fracturing. This is supported by host-rock fracturing close to the contact zones (Fig. 4.12),

where the fluid generation is most extensive (Aarnes et al., in review).

4.7.2 Breccia pipe formation and venting

We utilize the exact solution to overpressure at the front (Eq. 4.5.10) to estimate when the generation

of methane in the contact aureoles can cause fracturing and venting through breccia pipes (Fig. 4.1).

Figure 4.14 shows expected venting conditions as a function of depth and permeability using a tensile

strength of 10 MPa above the lithostatic pressure. The case study represent a shale with 5 wt. % TOC or

a PV of 3×108 Pa. Lower (1 wt. %) and higher (10 wt%) TOC cases are also indicated. For shales with

initially ∼5 wt. % TOC content, venting is expected at permeabilities lower than ∼10−17 m2 at 2-3 km
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Figure 4.11: Calculated overpressure (a,b) and reaction rate (c,d) as a function of permeability and
Clapeyron-slope of the reaction, calculated from Eq. 4.6.1. The fluid overpressure can decrease up
to four magnitudes both due to fluid flow out of the reaction front and due to overpressure inhibiting
the reaction rate. (a) Fluid overpressure calculated with PV = 108 Pa. Yellow area shows isochoric
conditions. (b) Fluid overpressure calculated with PV = 109 Pa. Red area shows isochoric conditions.
(c) Reaction rate calculated with PV = 108 Pa. The red area shows where the reaction is temperature
controlled. The multi-coloured area indicates where the reaction rate is affected by overpressure. (d)
Reaction rate calculated with PV = 109 Pa. The red area shows where the reaction is temperature
controlled. The multi-coloured area indicates where the reaction rate is affected by overpressure. The
other parameters in the equation were set to: Tc-Thr = 600 ◦C ; Tr-Thr = 300 ◦C ; κT = 10−6 m2/s; μ f φβ f

= 10−12 Pas/Pa.

depth, corresponding to the paleodepth of the shale formations in the Karoo Basin in the study area (Fig.

4.1a) (Catuneanu et al., 1998). These low permeabilities are consistent with for example unfractured

shale or crystallized igneous intrusions (Brace, 1980). For shales with initially ∼10 wt. % TOC, venting

is expected at permeabilities lower than ∼10−16 m2 at 2-3 km depth. At 1 km the permeability can be as

high as ∼10−15 m2 and still cause venting in this high TOC-case. However, for shales with initially ∼1

wt. % TOC, permeabilities lower than 10−18 m2 is required for venting to occur. Note that the diagram in

Figure 4.14 assumes certain properties of the system such as reaction temperature, gas compressibility
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Figure 4.12: Examples of fracturing in shales in the contact aureole around a 10 m thick sheet intrusion
in the Karoo Basin. (a) Hand specimen of a borehole sample with initial ∼1 wt. % TOC. (b) Backscatter
Electron (BSE) image of the mineralized veins in (a). (c) BSE image of bitumen filled veins in a borehole
sample with initial >5 wt. % TOC
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Figure 4.13: Isochoric overpressure (PV ) as a function of fluid density and weight % fluid in the rock
before devolatilization occurs (wt. % H2O or TOC). Using a methane density of 200-300 kg/m3 (T =
100−350 ◦C and P = 100 MPa) (Setzmann and Wagner, 1991) we get: (1) PV ∼60-160 MPa in shales
with low wt. % TOC and release of methane. (2) PV ∼500-900 MPa in shales with high wt. % TOC
upon release of methane. (3) PV ∼50-80 MPa in average shales upon release of a H2O-fluid with a
density of 850-950 kg/m3 (Wagner and Pruss, 2002). We use ρhr = 2400 kg/m3 and φβ f = 10−9 Pa−1.

and tensile strength of the rocks given in the caption, and must be interpreted on the basis of these

assumptions.

4.8 Discussion

4.8.1 The model

Our model of significant overpressure generation during prograde contact metamorphism is in contrast

to other contact metamorphic models assuming no pressure variations, or minor fluid pressure gradients

(Baumgartner & Ferry, 1991; Léger & Ferry, 1993). The model is based on basic physical principles

with only few assumptions about our system. The coupling of physical and chemical processes is

important for the development of models describing complex geological systems (Steefel et al., 2005).

The coupled analytical solutions provide a good basis for further development of such models, but can

also be used successfully to explain a number of phenomena, among others fracturing and reaction

closure. The analytical solutions are validated by numerical modeling, and shows that the equations are

indifferent to the choice of method used for treating the source-terms.
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Figure 4.14: Depth of intrusion versus log of permeability based on Eq. 4.5.10. For a PV = 3×108 Pa
corresponding to 5 wt. % TOC venting will occur when the permeability is lower than about 10−17

m2. In the region to the right, the pressure will be reduced by fluid flow before any venting occurs.
We also indicate the tensile strength curves for PV = 108 Pa and PV = 109 Pa. The other parameters are
set to Phydrostatic = ρ f gZ,Plithostatic = ρhrgZ and Ptensile = ρhrgZ + 10 MPa, where g = 9.81 m/s2, host-
rock density is a linear function of ρhr = 2200−2600 kg/m3 for Z= 0.5-5 km, ρ f = 250 kg/m3 for 100
meters (i.e. the generated CH4) and ρ f = 1000 kg/m3 (i.e. pore-fluid H2O) for the rest of the hydrostatic
column. The other values are given in the caption of Figure 4.11.

In this paper we focus on the case of low permeability, where the thermal and hydraulic diffusivities

are comparable (cf. Appendix 4.C). In the case of a high permeability the fluid flow is more effective

than the thermal reaction front, and a steady state hydraulic gradient will develop from the dehydrating

reaction front. The analytical solutions to this high-permeability case is presented by Litvinovski et al.

(1990) who showed that the total fluid pressures (PH2O = Ptot) at the dehydrating reaction front reached

200-400 MPa for intrusions at 1-2 km depth.

We did not consider the thermal feed-back of fluid flow, i.e. heat advection, in the solution.

Podladchikov & Wickham (1994) present analytical solutions to heat and material transport, including

the advective terms. They showed that for systems with less than 10 wt. % released as a free fluid

phase, the advection of heat is negligible. This is consistent with the conclusions of Peacock (1987) and

Thompson & Connolly (1992) for pervasive fluid flow. However, if fluid is focused into widely spaced

channels with extensive fluid flow over a significant period of time, advection of heat may become an
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important factor (Peacock, 1989). Thus advection may affect the thermal regime within vent complexes.

The pressure equation (Eq. 4.3.5) can be expanded with several individual source terms, each

defining a separate process that affects the pressure, such as compaction (e.g. Connolly, 1997), thermal

stresses (e.g. Aarnes et al., 2008), or an array of different reactions involving a net volume change.

The value chosen for permeability encompass a porosity dependence on flow properties, where the

permeability commonly varies with approximately the cube of porosity (e.g. Zhang et al., 1994;

Connolly, 1997). The fluid density is dependent on the thermal expansion (α f ), which can be

incorporated by a temperature dependent density ρ f = ρ0
f (1−α f dT ).

The effect of gravitational flow due to buoyancy is incorporated through solving for pressures in

excess of the background hydrostatic pressures. The long-term influence on flow and overpressure by

host-rock compaction (e.g. Walder & Nur, 1984; Connolly, 1997) is negligible due to the relatively

brief scale of contact metamorphism (cf. Appendix 4.C). The full pressure equation including porosity

changes is derived in the Appendix 4.B (Eq. 4.B.12), and can be used for solving systems where host-

rock compaction is an important factor, but this is not treated explicitly here.

In the solution, we have considered that a major fluid-release are occurring at one temperature, for

example at 300 ◦C above the background (Fig. 4.11). In an aureole this reaction temperature isograde

comprises a variety of minerals and organic matter that release fluids. A high temperature for the reaction

front can incorporate a thermal overstep of the equilibrium conditions of devolatilization and ensure a

fast reaction rate (e.g. Lasaga, 1989; Ague et al., 1998). For example the decomposition of organic

matter to hydrocarbons initiates is about ∼85 ◦C (Tissot & Welte, 1984), so for a temperature of 350 ◦C

, the cracking will basically be instantaneous (e.g. Ungerer et al., 1988). Dehydration reactions are

usually occurring at larger temperature intervals, and major dehydration is associated with breakdown

of among others the hydrous mineral chlorite at about 350 ◦C to less hydrous phases such as biotite.

If only sparse devolatilization reactions occur, it is equivalent of having a smaller initial PV , due to a

smaller Qtotal
f -source term.

For the reaction closure we have assumed that the dehydration reactions occur at local

thermodynamic equilibrium (Fig. 4.9). There is however no conflict between this assumption and

the introduction of minor thermal overstepping of the equilibrium condition, which is assumed to be the

case for most dehydration reactions (Walther & Wood, 1984).

4.8.2 Overpressure reduction by fluid flow

Permeability is the key parameter controlling the efficiency of fluid flow, and has thus a major control on

the magnitude of overpressure. It is unfortunately a relatively difficult parameter to constrain for a full

geological system, as it can vary several orders of magnitudes (Ingebritsen & Manning, 2002). However,

unfractured shales and crystalline rocks are measured to have very low permeabilities about 10−21-10−16

m2 (Brace, 1980; Hanson, 1995), which makes significant overpressure generation in intruded shale-

systems likely. Laboratory experiments show that dehydration of gypsum can generate excess pore

pressures on the scale of 150 MPa during isochoric conditions (Wang & Wong, 2003). This corresponds

well with our estimates (Fig. 4.13).

One main result from our model is that devolatilizing systems with active fluid flow out of the
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reaction front can still create significant overpressures, although reduced relative to the isochoric

systems (Figs. 4.7 and 4.11). Even for relatively high-permeable devolatilizing systems (∼10−15 m2),

fluid overpressures of 10 MPa can be expected. This is supported by dehydration experiments with

the hydrous mineral gypsum giving pore pressures up to 93 MPa when allowing for flow out of the

dehydrating sample (Olgaard et al., 1995; Wong et al., 1997).

Although we predict that these overpressures are generated instantly at the front, the hydraulic

conductivity is of major importance for the maintenance of the overpressure (e.g. Bredehoeft &

Hanshaw, 1968; Ko et al., 1997). For high permeabilities the pressure buildup will only be transient,

and diffuse efficiently away after the devolatilization reaction has seized (e.g. Wong et al., 1997).

4.8.3 Reaction closure by fluid overpressure

A potentially important implication of increased fluid pressure is the feedback on the reaction rate for

pressure-dependent reactions (Colten-Bradley, 1987; Osborne & Swarbrick, 1997; Miller et al., 2003;

Wang & Wong, 2003). Dehydration of gypsum yields a relevant example of how elevated pore-pressures

inhibits the reaction rate until fluid flow relaxes the overpressure (Wang & Wong, 2003).

The dehydration-reaction of the clay mineral smectite to illite and water has a relatively shallow

Clapeyron-slope (∼10−5 ◦C/Pa ), and it has been shown that this reaction can terminate when the

pressure increases (Colten-Bradley, 1987). This is consistent with the results in Figure 4.10 and Figure

4.11. Similarly, brucite (Mg(OH)2) to periclase (MgO) and H2O has a dT/dP of ∼10−6 ◦C /Pa (Barnes

& Ernst, 1963), which for an overpressure of 108 Pa is equivalent of a 100 ◦C increase in the effective

reaction temperature. Also the decarbonation reaction of calcite + quartz to produce wollastonite and

CO2 can have a dT/dP of ∼4× 10−6 ◦C /Pa, depending on the CO2 content in the fluid (Philpotts &

Ague, 2009). The effect of pressure on organic cracking is minor, although there is a tendency that

above a certain pressure (∼60 MPa), the gas yield from cracking decreases with increasing pressure

(Hill et al., 1996).

Most devolatilization-reactions are mainly temperature-dependent with typical Clapeyron-slopes of

∼10−7 ◦C /Pa, at least at pressures above ∼50 MPa as calculated from thermodynamic phase equilibria

(Connolly, 2005, 2009). The influence of pressure on the effective reaction temperature is thus on the

order of 10-100 ◦C for PV of 108-109 Pa. From the two solutions in Figure 4.11 we see that the effect

of pressure has limited influence on the rate of most dehydration reactions, unless the tensile strength

of the rocks is high and the system permeability is lower than ∼10−17 m2. We can speculate that such

conditions could occur at great depths (∼30-40 km) and thus be relevant for the limited dehydration

reactions at lithostatic pressures of 800-1000 MPa, as suggested for the Southern Alps, New Zealand

(Vry et al., 2010). In any case the study by Vry et al. (2010) reveals the importance of considering the

pressure for dehydration reactions occurring below 500 ◦C, i.e. at contact metamorphic temperatures.

There are some cases of negative dT/dP where the reaction temperature decreases with increasing

pressure at higher pressures. Examples of such reactions are dehydration of kaolinite at thermodynamic

pressures above 109 Pa (1 GPa) and 350 ◦C (Chatterjee et al., 1984), and biotite + quartz + cordierite

which react to garnet + K-feldspar + H2O (Thompson, 1976). This is because the fluids at such pressures

are so compressible that they occupy less space as a fluid phase than in the mineral phase, i.e. a total
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negative volume change of the reaction, and would result in an underpressure (e.g. Delany & Helgeson,

1978). In the case of lowering the pressure on a negative Clapeyron slope, it would also require a shift

towards higher temperatures in the P−T diagram.

4.8.4 Fracturing and venting

The maximum overpressure that can be generated in a host-rock also depends on the tensile strength

of the rock. Hydraulic fracturing will therefore put an upper bound to the amount of overpressure

generated (e.g. Walther & Orville, 1982; Nishiyama, 1989; Guéguen & Palciauskas, 1994). Fracturing

of the host-rock when the overpressure exceeds the tensile strength of the rock is equivalent of increasing

the effective permeability of the rock, depending on the extent of fracturation. An increased permeability

will in turn act to reduce the maximum overpressure at the front by increased flow, as can be seen from

the Figures 4.7 and 4.11. If the permeability varies spatially in the system it is important to include it in

the derivative of Eq. 4.3.5.

Higher overpressures can by definition be sustained where the difference between the hydrostatic

pressure and the tensile strength can reach several hundred MPa. This can be seen from the slopes of

the tensile strength curves in Figure 4.14. In general, shales have low permeabilities and are therefore

subject to fracturing. This is consistent with the fractured aureoles found in the Karoo Basin, South

Africa (Fig. 4.12). It is likely to assume that venting occurs in shale formations intruded by thick,

horizontal intrusions (>100 m), where the reaction front can sweep over a larger volume of sediments

than for example around a 10 meter thick intrusion. Although the tensile strength can be reached in the

aureoles of thinner intrusions (∼10 meters) the affected volume will most likely not be enough for the

fracturing to localize into breccia pipes.

The interaction of several sills can be important for vent formation. In a volcanic basin like

the Karoo, multiple levels of magmatic intrusions into sedimentary rocks are common (e.g. Marsh

et al., 1997; Chevallier & Woodford, 1999; Galerne et al., 2008; Polteau et al., 2008). Two 100

meter thick intrusions enveloping a ∼100 meter thick shale-formation will ensure large-scale fluid

generation throughout the formation due to heating from both above and below (Aarnes et al., in review).

Furhtermore, the upper intrusion can act as a low-permeable seal, thus increasing the chance of venting

and breccia pipe formation (Fig. 4.14). This is consistent with the occurrence of several thousand

breccia pipes originating in shale formations intruded by multiple sills in the Karoo Basin (Fig. 4.1).

4.9 Conclusions

In this study we provide analytical and numerical solutions to reactive transport involving temperature,

pressure, fluid flow and devolatilization reactions. The main conclusions about devolatilization induced

overpressure and the implications for reaction rate and aureole fracturing are summarized:

• The overpressure is determined by the ratio of thermal and hydraulic diffusion and the rate of the

reaction front.

• In the limit when the fluid flow is stagnant relative to the rate of the front, the maximum
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overpressure is dictated by the amount of fluids liberated, the net volume change of the reaction,

porosity and the effective fluid compressibility.

• When fluid flow is more efficient than the reaction front, the isochoric overpressure can be reduced

by several orders of magnitude, depending on the effective permeability.

• The rate of the reaction front is controlled by the temperature at which the reaction occurs. A

reaction temperature close to the host-rock temperature requires less overheating of the sediments

for the reaction to rate, and the reaction front is efficiently moving through the aureole.

• In the case of pressure dependent reactions, the generated overpressure will shift the equilibrium

conditions towards higher pressures and temperatures. The effectively higher reaction

temperatures will slow down the reaction, and may even terminate it completely.

• The analytical solutions to overpressure constrain the conditions for fracturing and breccia-pipe

formation from fluid generation in contact aureoles. Low permeabilities (<10−17 m2) and high

content of organic material in the sediments (>5 wt%) are favourable conditions for aureole

fracturing and venting.

To conclude, this model provides a theoretical basis for several geological processes related to prograde

metamorphism, and the analytical solutions can be used for verification and further development of

reactive transport models.
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Appendix 4.A Derivation of fluxes and sources

4.A.1 Local equilibrium thermodynamics

The main goal of the following appendices is to derive a closed system of thermodynamically consistent

equations using balance of mass, energy and momentum. The starting point for the derivations is a

combination of the 1st and 2nd laws of thermodynamics,

du = T ds−Pd(1/ρ) (4.A.1)

where u is specific internal energy, s is specific entropy, 1/ρ is specific volume and ρ is density. The term

’specific’ refers to the standard extensive thermodynamic variables normalized by mass of the system,

i.e. volume, entropy and internal energy per unit mass. The advantage of this division is that all variables

used in the following derivations are intensive quantities.
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Eq. 4.A.1 is valid for spatially homogeneous systems evolving sufficiently slow to allow the quasi-

static approximation. However, in a geological system such as around a magmatic intrusion there

are large spatial gradients in for example temperature and pressure, and the system as a whole is

out of equilibrium. Following the recipe of classical non-equilibrium thermodynamics, we avoid this

problem by assuming that every infinitesimal part of the system can be approximated as being in local

thermodynamic equilibrium (e.g. Lichtner, 1988; Steefel and Lasaga, 1994; Ferry and Gerdes, 1998;

Xu and Pruess, 2001). We can write Eq. 4.A.1 in a weaker form consistent with this assumption, which

states that for non-equilibrium processes we can divide our system into infinitesimal parts changing with

time in agreement with equilibrium thermodynamics (Eq. 4.A.1),

du
dt

= T
ds
dt

+
P
ρ2

dρ
dt

(4.A.2)

where d
dt is the full material time derivative to keep track of the spatial movement of the infinitesimal

parts of our system. The second law of thermodynamics states that the change in entropy of isolated

systems is zero for equilibrium processes and positive for irreversible processes, ds ≥ 0. The following

sections are based on a simple recipe where the main goal is to make sure that we obey this second law.

4.A.2 The balance laws

Getting an expression for entropy production

The general form of a balance law for any quantity M can be written

∂
∂t

(Mρφ)+
∂
∂z

(Mρφv) = − ∂
∂z

qM +QM (4.A.3)

where φ is the volume fraction of a phase (e.g. porosity) and v is velocity (e.g. de Groot and Mazur,

1984). This quantity M changes with the difference of fluxes in and out from neighboring regions, qM,

and the rate of production or elimination of the quantity M in a unit volume, QM. In our system, M

is substituted by entropy, energy, mass and momentum. We recover the mass balance equation if we

substitute M = 1 into Eq. 4.A.3,
∂
∂t

(ρφ)+
∂
∂z

(ρφv) = Qρ (4.A.4)

where Qρ is the rate of mass production (kg/m3/s) due to phase transitions. We choose our system

velocities to be from the center of mass, implying that there will be no mass flux of fluid within the fluid

mass, and solid flux within the solid mass, i.e. ∂
∂z qρ = 0. The balance law on the form of Eq. 4.A.3

requires several repetitions of the product rule to single out an expression for the change of M with time.

For convenient substitution of the balance laws into the thermodynamic equation (Eq. 4.A.2) we utilize

a mathematically equivalent (for sufficiently smooth functions) form of the balance law (Eq. 4.A.3) that

can be obtained using the mass balance equation Eq. 4.A.4 and the product rule of differentiation,

dM
dt

= − 1
ρφ

(
∂
∂z

qM −QM +MQρ

)
. (4.A.5)
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To get the entropy balance, we simply insert M = s into Eq. 4.A.5,

ds
dt

= − 1
ρφ

(
∂
∂z

qS −QS + sQρ

)
. (4.A.6)

The change in entropy ds can be attributed to both a spatial difference in the flux qS and a local source

QS. When the second law of thermodynamics demand ds of the isolated system to be non-negative it

is equivalent of requiring non-negativity of the entropy source QS. We use Eq. 4.A.2 to substitute for

ds/dt in Eq. 4.A.6, using the assumption of local equilibrium. Solving for QS gives

QS =
ρφ
T

du
dt

− φP
T ρ

dρ
dt

+
∂qS

∂z
+ sQρ. (4.A.7)

The following sections will have the governing aim of ensuring non-negativity of this expression.

Elimination of time derivatives

The time derivatives of internal energy (u) and mass (ρ) make it difficult to ensure the non-negativity of

entropy production, because the time derivative of a variable can be both positive and negative, e.g.

density can increase and decrease with time. This problem is avoided by substitution of the time

derivatives by balance laws for mass, total energy (kinetic and internal) and specific momentum (v).
The momentum balance is required for further elimination of specific kinetic energy

(
v2/2

)
from the

energy balance.

Substitution for M into Eq. 4.A.5 gives the balance equations for total energy (E) and momentum

(v):
du
dt

= − 1
ρφ

(
∂
∂z

qE −QE +
(

u+
v2

2

)
Qρ

)
− v

dv
dt

(4.A.8)

dv
dt

= − 1
ρφ

(
∂
∂z

qv −Qv + vQρ

)
. (4.A.9)

The mass balance is already implicit in Eq. 4.A.5 which makes that expression unsuitable to find an

equation for dρ/dt. We instead continue to apply the product rule on Eq. 4.A.4 to single out ρ,

dρ
dt

=
1
φ

(
Qρ −ρ

dφ
dt

−ρφ
∂v
∂z

)
. (4.A.10)

Substitution of all the balance laws (Eqs. 4.A.8 - 4.A.10) into Eq. 4.A.7, for the corresponding material

derivatives gives after some rearrangement

QS =
1
T

(
−∂qE

∂z
+ v

∂qv

∂z
+

∂qS

∂z
+φP

∂v
∂z

+P
dφ
dt

+QE − vQv +
(
−u+

v2

2
− P

ρ
+T s

)
Qρ

)
. (4.A.11)
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Elimination of spatial derivatives

By analogy with the time derivatives, it is difficult to define the fluxes (q) that guarantee non-negativity

of their spatial derivatives and QS ≥ 0. This problem can be avoided by applying the product rule

’backwards’,

v
∂qv

∂z
=

∂qvv
∂z

−qv
∂v
∂z

(4.A.12)

T
∂qs

∂z
=

∂qsT
∂z

−qs
∂T
∂z

(4.A.13)

where we made the first step to remove the derivatives from the fluxes. Substitution of Eqs. 4.A.12 and

4.A.13 into Eq. 4.A.11 and rearranging gives,

QS =
1
T

∂
∂z

(−qE + vqv +T qs)− qs

T
∂T
∂z

+(φP−qv)
1
T

∂v
∂z

+
P
T

(
∂φ
∂t

+ v
∂φ
∂z

)
+

QE

T
− vQv

T
+

(
−P

ρ
+T s−u+

v2

2

)
Qρ

T
. (4.A.14)

From this expression for the entropy production we can find thermodynamically admissible fluxes and

sources.

4.A.3 Processes within one phase

Fluxes represent changes of a quantity in a volume through its surface and are related to changes within

one phase. Because the equations are identical for fluid and solid we treat the following equations

without specifying the phase. When we determine the fluxes, we want to choose them in such way that

they conveniently assure non-negativity of QS. This can most simply be accomplished by making the

expression associated with a flux to be always square (i.e. always positive) irreversible processes or by

eliminating it from the entropy source equation Eq. 4.A.14 (i.e. zero) for reversible processes.

We start by evaluating the expression associated with the entropy flux qs in Eq. 4.A.14, −qs
T

∂T
∂z ≥ 0,

where a simple solution for this term is to make it square by choosing

qs = − λ
T

∂T
∂z

, (4.A.15)

where λ is a positive proportionality constant with the physical meaning of thermal conductivity

(J/s/K/m). It is divided by temperature (K) to make the correct dimensions of qs (J/K/m2). The positive

contribution to QS is consistent with heat transfer being an irreversible process.

Similarly, we evaluate the term associated with momentum flux qv in Eq. 4.A.14, 1
T (φP−qv) ∂v

∂z ≥ 0.

An easy way to make the whole term zero is to choose

qv = φP (4.A.16)

. This expression implies no entropy production due to the momentum flux, i.e. a choice of an elastic

rheology by definition.

The expression related to qE is inside a derivative, which makes a choice for the flux inconvenient.
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However, by evaluating the expression 1
T

∂
∂z (−qE + vqv +T qs)≥ 0, we see that we can avoid the problem

of potential non-negative entropy source by choosing

qE = vqv +T qs (4.A.17)

which sets the whole expression to zero and gives no contribution of energy flux to the entropy

production.

Substitution of these fluxes (Eqs. 4.A.15 - 4.A.17) into Eq. 4.A.14 gives

QS =
λ

T 2

(
∂T
∂z

)2

+
(

P
T

(
∂φ
∂t

+ v
∂φ
∂z

)
+

QE

T
− vQv

T
+

(
−P

ρ
+T s−u+

v2

2

)
Qρ

T

)
, (4.A.18)

where the terms with no contribution to the entropy source are removed from the equation, and the terms

contributing to the entropy production are always positive.

4.A.4 Interaction between two phases

Total entropy production

So far we have been evaluating processes related to within a phase only, and it was sufficient to require

that QS for that phase should be always positive for those terms. However, the sources (Q) contribute

to entropy production arising from the interaction between phases, for example fluid (’ f ’) and solid

(’s’) in our system. Any exchange process between two phases must be associated with the total entropy

production that is either positive or zero Qtotal
S ≥ 0. In order to find the total entropy exchange we specify

the entropy production equation (Eq. 4.A.18) for fluid and solid, and then sum up.

Furthermore we ensure that our system of fluid and solid as a whole does satisfy fundamental laws

of nature:

QE,s = −QE, f - Conservation of energy (4.A.19a)

Qv,s = −Qv, f - Conservation of momentum (4.A.19b)

Qρ,s = −Qρ, f - Conservation of mass (4.A.19c)

For fluid and solid Eq. 4.A.18 becomes:

QS, f =
λ f

T 2
f

(
∂Tf

∂z

)2

+
Pf

Tf

d f φ f

dt
+

QE, f

Tf
− v f Qv, f

Tf
+

(
−Pf

ρ f
+Tf s f −u f +

v f
2

2

)
Qρ, f

Tf
(4.A.20a)

QS,s =
λs

T 2
s

(
∂Ts

∂z

)2

+
Ps

Ts

dsφs

dt
+

QE,s

Ts
− vsQv,s

Ts
+

(
−Ps

ρs
+Tsss −us +

vs
2

2

)
Qρ,s

Ts
(4.A.20b)

where the material derivatives for fluid and solid are

d f

dt
=

∂
∂t

+ v f
∂
∂z

and
ds

dt
=

∂
∂t

+ vs
∂
∂z

.

For a two phase media φ f = φ; φs = 1−φ and dsφs
dt = −dsφ

dt .
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Reversible equilibrium processes

We first consider equilibrium, reversible processes, where the total entropy production becomes zero.

In other words, because we assume local equilibrium between the fluid and the solid, we can set up two

conditions that come as a natural consequence:

Ts = Tf - Thermal equilibrium (4.A.21a)

gs = g f - Phase equilibrium (4.A.21b)

where g is specific Gibbs energy.

The terms in front of the source of mass can be equated to the specific Gibbs free energy between

the solid and the fluid phases,

Δg =
(

Ps

ρs
− Pf

ρ f

)
−T (ss − s f )+(us −u f )+

Δv2

2
.

According to Eq. 4.A.21b, Δg = 0 at equilibrium. Similarly, conservation of energy (Eq. 4.A.19a)

requires that there are no entropy production at equilibrium, and the energy source of fluid and solid

cancels.

Applying the relations in Eqs. 4.A.21-4.A.19 and summing up Eqs. 4.A.20a and 4.A.20b gives,

Qtotal
S =

(
λ f +λs

T 2

)(
∂T
∂z

)2

+
(Pf −Ps)

T
dsφ
dt

+
Δv
T

(
Pf

∂φ
∂z

−Qv, f

)
(4.A.22)

where Qtotal
S is the total entropy production.

Irreversible non-equilibrium processes

As a minimum requirement to generate fluid flow, we consider momentum exchange between the fluid

and solid as a non-equilibrium process. By evaluating the expression related to the momentum source,
Δv
T

(
Pf

∂φ
∂z −Qv, f

)
≥ 0, we find that a first obvious choice of momentum source is Qv, f = Pf ∂φ/∂z, which

ensures a zero contribution of momentum to the entropy production. However, relative motion between

solid and fluid can contribute to entropy production or loss of energy. Therefore we capture more

processes by choosing the momentum source as

Qv, f = Pf
∂φ
∂z

−θT Δv (4.A.23)

where θ is a positive constant of proportionality, with the physical meaning of θ = φ2μ f /k for Darcian

flow, where μ f /k is the fluid viscosity divided by permeability.

The last term remaining is the one related to total change in porosity. By evaluating the term

associated with porosity (Pf −Ps)
T

dsφ
dt ≥ 0, we can get thermodynamically applicable porosity evolution,

dsφ
dt

=
1
η

(Pf −Ps) (4.A.24)
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where η is a positive constant representing the resistance to compaction, or bulk viscosity. By

substitution of these equations (Eqs. 4.A.23 and 4.A.24) into Eq. 4.A.22, the final expression for

entropy production becomes:

Qtotal
S =

(
λ f +λs

T 2

)(
∂T
∂z

)2

+
1

ηT
(Pf −Ps)

2 +
μ f

kT
(φΔv)2 (4.A.25)

where we have successfully satisfied our goal of non-negative entropy production.

Appendix 4.B Derivation of the system of equations

4.B.1 The temperature equation

For the derivation of the thermal equation we use the entropy balance (Eq. 4.A.6) for solid and fluid,

and sum them up:

ρ f φ
d f s f

dt
+ρs (1−φ)

dsss

dt
= − ∂

∂z
qS, f − ∂

∂z
qS,s +Qtotal

S +(ss − s f )Qρ, f . (4.B.1)

Specific heat capacity is defined as the amount of heat released over a temperature interval, Cp =
ΔQ/ΔT = T ds/dT . Hence we can write the material time derivative of entropy as

ds
dt

=
ds
dT

dT
dt

=
Cp
T

dT
dt

. (4.B.2)

We eliminate the fluid velocity from the equation by using

v f = (v f − vs)+ vs = Δv+ vs. (4.B.3)

The equation for entropy flux is derived in Appendix 4.A (Eq. 4.A.15),

∂
∂z

qs = − ∂
∂z

(
λ
T

∂T
∂z

)
=

λ
T 2

(
∂T
∂z

)2

− λ
T

∂2T
∂z2 . (4.B.4)

Substitution of Eqs. 4.B.2 - 4.B.4 into Eq. 4.B.1 and rearranging gives:

(ρ f φCp f +ρs (1−φ)Cps)
(

∂T
∂t

+ vs
∂T
∂z

)
+ρ f φCp f Δv

∂T
∂z

=

(λ f +λs)
∂2T
∂z2 +T (ss − s f )Qρ, f +

1
η

(Pf −Ps)
2 +

μ f

k
(φΔv)2. (4.B.5)

The difference in solid and fluid entropy in front of the source of mass, (T ss −T s f )Qρ, f , can be equated

to specific enthalpy h in the unit J/kg,

Tf s f −Tsss =
(

u f +Pf
1

ρ f

)
−

(
us +Ps

1
ρs

)
= h f −hs. (4.B.6)
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Introducing the notations ρCp = (ρ f φCp f +ρs (1−φ)Cps) and λ = (λs +λ f ), and substituting the total

entropy production Qtotal
S (Eq. 4.A.25) and the enthalpy (Eq. 4.B.6) gives the full thermal equation:

ρCp
dsT
dt

+ρ fCp f φΔv
∂T
∂z

= λ
∂2T
∂z2 +ΔhQρ, f +

1
η

(Pf −Ps)
2 +

μ f

k
(φΔv)2. (4.B.7)

4.B.2 The fluid equation of motion

The difference in fluid and solid velocities times porosity φΔv in Eq. 4.B.7 can be related to Darcy’s

law. We derive the full fluid flow equation from general force balance of fluid (Eq. 4.A.9):

ρ f φ
(

∂
∂t

v f + v f
∂
∂z

v f

)
= − ∂

∂z
qv, f +Qv, f − v f Qρ, f (4.B.8)

where qv, f = φPf (Eq. 4.A.16) and Qv, f = Pf
∂φ
∂z −

μ f φ
k φΔv (Eq. 4.A.23) (Appendix 4.A). Applying the

product rule, − ∂(φPf )
∂z +Pf

∂φ
∂z = −φ ∂Pf

∂z and substituting the momentum flux and source yields

ρ f φ
d f v f

dt
= −φ

∂Pf

∂z
− μ f φ

k
φΔv− v f Qρ, f , (4.B.9)

which is the full equation for porous fluid flow.

4.B.3 The pressure equation

We represent our host-rock by a two-phase medium consisting of fluid and solid, with subscripts f and

s respectively. The pressure equation is derived from the mass balance law Eq. 4.A.4 specified for fluid

and solid (Eq. 4.A.4). Applying the product rule to these equation yields

φ
∂ρ f

∂t
+ρ f

∂φ
∂t

+φv f
∂ρ f

∂z
+ρ f v f

∂φ
∂z

+ρ f φ
∂v f

∂z
= Qρ, f (4.B.10)

(1−φ)
∂ρs

∂t
−ρs

∂φ
∂t

+(1−φ)vs
∂ρs

∂z
−ρsvs

∂φ
∂z

+ρs (1−φ)
∂vs

∂z
= Qρ,s (4.B.11)

where we from conservation of mass we have that Qρ,s = −Qρ, f (Eq. 4.A.19c). The total mass

conservation equation is obtained by summing up the fluid and solid equations. Using Eq. 4.B.3 we

eliminate v f from the divergence of velocity terms. In order to have similar coefficients in front of

the divergence terms, the fluid equation is multiplied with ρs (1−φ) and the solid equation with −ρ f φ.

After summation the equation is divided by ρ f φ f ρsφs for nicer coefficients, resulting in the following

φ
ρ f

d f ρ f

dt
− φ

ρs

dsρs

dt
+

1
(1−φ)

dsφ
dt

+
∂φΔv

∂z
=

(
1

ρ f
+

φ
ρs (1−φ)

)
Qρ, f . (4.B.12)

Fluid density can be related to fluid pressure evolution using the definition of isothermal compressibility,

(e.g. Turcotte and Schubert, 2002),

β =
1
ρ

dρ
dP

, (4.B.13)
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which after applying the chain rule and rearranging becomes:

1
ρ f

d f ρ f

dt
= β f

d f Pf

dt
(4.B.14)

By assuming an incompressible solid, we get

1
ρs

dsρs

dt
= 0

.

Furthermore, we can substitute the porosity evolution by considering mass balance of the solid (Eq.

4.A.4), i.e.
∂(ρs (1−φ))

∂t
+ vs

∂(ρs (1−φ))
∂z

+ρs (1−φ)
∂vs

∂z
= −Qρ, f (4.B.15)

which after applying the product rule and rearranging gives,

dsφ
dt

=
1
ρs

Qρ, f +(1−φ)
∂vs

∂z
+

(1−φ)
ρs

dsρs

dt
. (4.B.16)

Substitution of Eq. 4.B.14 and Eq. 4.B.16 into Eq. 4.B.12 gives,

φβ f
d f Pf

dt
= −∂φΔv

∂z
+

(
1

ρ f
− 1

ρs

)
Qρ, f − ∂vs

∂z
(4.B.17)

where 1/ρ f −1/ρs is the net volume change of the reaction.

Appendix 4.C Dimensional analysis of the system equations

From the derivation of the equations of temperature, fluid flow and pressure we discover that there are

several terms that in the best cases are remotely familiar to the standard equations usually solved in

geological systems. One good method to evaluate the relative importance of these terms is to non-

dimensionalize the equations and perform order of magnitude estimates.

We introduce a set of characteristic scales: zC for length, tC for time, TC for temperature and PC

for pressure and replace all variables by its dimensionless analogue denoted by ’∼’: z = z̃× zC; t =
t̃ × tC; T = T̃ ×TC; P = P̃×PC. The non-dimensional parameters will have the scale of one, thus all

coefficients that are much smaller than 1 will have negligible influence, and can be removed from the

equation. This can simplify the equations significantly.
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4.C Dimensional analysis of the system equations

4.C.1 Temperature

Substitution of the dimensional parameters in the temperature equation (Eq. 4.B.7) with the non-

dimensional expressions and rearranging, gives the following expression:

(
∂T̃
∂t̃

+
PCtC

η
ṽs

∂T̃
∂z̃

)
+

ρ fCp f

ρCp
κH

κT
φβ f PCφΔṽ

∂T̃
∂z̃

=

∂2T̃
∂z̃2 +

Δh
ρCp

Qρ, f +
PC

2tC
ηρCpTC

(
P̃f − P̃s

)2 +
κHφβ f PC

2φ2

κT ρCpTC
(Δṽ)2 (4.C.1)

We choose characteristic values compatible with a contact metamorphic setting: TC = Tm−Thr ∼ 500 ◦C

; tC ∼ 109 s (∼100 years) which is approximate crystallization time for a 100 meter thick intrusion;

zC =
√

κT tC, which is the thermal diffusion length. Using κT ∼ 10−6 m2/s we get a critical length scale

of zC ∼ 30 m. We consider a low permeability case, as justified from permeabilities of unfractured shales

k ∼ 10−18 m2 (Brace, 1980). In this case, the critical pressure scale will be high. In the opposite case,

with higher permeabilities, the characteristic pressure scale would have been correspondingly lower.

Hence we choose, PC = PV ∼ 108 Pa (isochoric pressure). For the characteristic fluid velocity we use the

scale of Darcy law, v f
C = kPC/μ f zC. For the characteristic solid velocity we use the compaction scale,

vs
C = PCzC

η . The value of the different material properties are chosen as μ f ∼ 10−4 Pas, η ∼ 1020 Pas,

ρCp ∼ 106 J/K/m3, ρ f ∼ 102 kg/m3, ρs ∼ 103kg/m3, φβ f ˜10−9 1/Pa, φ ∼ 10−2 and κH ∼ 10−5 m2/s.

Applying all of these order of magnitude estimates to the parameters in Eq. 4.C.1 using the low

permeability case, we get the following relations,

PCtC
η

∼ 10−3,
ρ fCp f

ρCp
κH

κT
φβ f PCφ ∼ 10−3,

PC
2tC

ηρCpTC
∼ 10−4 and

κHφβ f PC
2φ2

κT ρCpTC
∼ 10−5,

which are all very small relative to 1. For the latent heat effects we get

Δh
ρCp

Qρ, f ∼ 1

for ΔhQρ, f ∼ 106 J/m3/s, which is considerable. The equation for temperature (Eq. 4.C.1) thus reduces

to,
∂T̃
∂t̃

=
∂2T̃
∂z̃2 +

tC
ρCpTC

ΔhQρ, f (4.C.2)

with the first order terms contributing to temperature changes being conduction and latent heat of

crystallization. Substituted back into the dimensional form the temperature equation becomes

∂T
∂t

= κT
∂2T
∂x2 +

Δh
ρCp

Qρ, f (4.C.3)

In our model we treat latent heat of crystallization
(

Δh
ρCp Qρ, f

)
not as a source term, but rather by effective

heat capacity (numerically) and conservation of energy (analytically). The form of the temperature
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equation used in the to get these solutions thus becomes,

∂T
∂t

= κT
∂2T
∂x2 . (4.C.4)

4.C.2 Fluid flow

Using the characteristic scales found from the temperature equation gives the following result for the

fluid flow equation (Eq. 4.B.9):

φΔṽ = −∂P̃
∂z̃

− κHφβ f Qρ, f

φ
ṽ f − ρ f κHφβ f

tC

∂ṽ f

∂t̃
− ρ f PC(κHφβ f )

2

κT tC
ṽ f

∂ṽ f

∂z̃
. (4.C.5)

Evaluating the coefficient-groups for the same values as for temperature for the low permeability case

gives:
ρ f κHφβ f

tC
∼ 10−21 and

ρ f PC(κHφβ f )
2

κT tC
∼ 10−21.

With a fluid source on the order of Qρ, f ∼ 10−4 kg/m3/s, we get

κHφβ f Qρ, f

φ
∼ 10−15.

These terms are all very negligible for the system we consider, thus the equation Eq. 4.C.5 reduces to

φΔṽ = −∂P̃
∂z̃

(4.C.6)

which in the dimensional form becomes:

φΔv = − k
μ f

∂Pf

∂z
. (4.C.7)

This is also known as the Darcy law for quasi-static fluid flow in a porous media.

4.C.3 Pressure

Non-dimensionalization of the pressure equation and substituting the Darcy flux (Eq. 4.C.7) for φΔv

gives:
∂P̃f

∂t̃
+φβ f PCṽ f

∂P̃f

∂z̃
= −∂2P̃f

∂z̃2 +
tCQρ, f

φβ f PCρC

(
1

ρ̃ f
− 1

ρ̃s

)
− tC

φβ f η
∂ṽs

∂z̃
. (4.C.8)

Evaluation of the terms gives

φβ f PC ∼ 0.1 and
tC

φβ f η
∼ 10−2,

which are both small relative to 1. On the other hand,

tCQρ, f

φβ f PCρC
> 1.
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4.D Solving the system of equations

The final equation of pressure thus reduces to

φ
∂P̃f

∂t̃
=

κH

κT

∂2P̃f

∂z̃2 +
tC

φβ f PC

(
1

ρ f
− 1

ρs

)
Qρ, f (4.C.9)

which converted back to dimensional form becomes:

∂Pf

∂t
= κH

∂2Pf

∂z2 +
(

1
ρ f

− 1
ρs

)
Qρ, f

φβ f
. (4.C.10)

Appendix 4.D Solving the system of equations

4.D.1 Dimensional analysis

Another recipe of dimensional analysis is used to convert the partial differential equations to ordinary

differential equations. The first step is to make a list of parameters that determine the temperature and

pressure: T = f (t,κT ,z,Thr,Tm,L∗), Pf = f (t,κH ,z,Phr), where Thr is the host-rock temperature, Tm is

the melt temperature and Phr is the initial host-rock fluid pressure. The basic units of these parameters

are: t = [s]; κT = [m2/s]; z = [m]; T = [K]; L∗ = [−]; κH = [m2/s]; Pf = [Pa].. The next step is to go

through the list to find independent and dependent units. t is the first occurrence of seconds and is the

independent time-scale for both cases. κT and κH are the first occurrence of square meters per seconds

of both systems, and are the independent diffusion-scales. z has the dimension meter, and meter can also

be expressed by the square root of time and diffusivity,
√

m2/s× s = m. Thus, z is a dependent length

scale. In the thermal case we select the characteristic length scale as
√

κT t. In the hydraulic case we

select
√

κHt as the characteristic length scale. L∗ is already non-dimensionalized, and is the independent

scale of latent heat effects.

T,Thr and Tm are all expressed in Kelvin. We can eliminate the host-rock temperature Thr, by

subtracting all temperatures by Thr. We choose Tm −Thr as our independent temperature scale, which

implies that T −Thr is the dependent temperature scale. Similarly we can subtract the background fluid

pressure from the total fluid pressure, and only solve for the fluid overpressure, ΔPf = Pf −Phr.

The next step is to divide all parameters by their respective new independent scales:

(T −Thr)
(Tm −Thr)

= f
(

t
t
,
κT

κT
,

z√
κT t

,
Thr −Thr

Tm −Thr
,
Tm −Thr

Tm −Thr
,
L∗

L∗

)

ΔPf = f
(

t
t
,
κH

κH
,

z√
κHt

)
.

All the non-dimensional independent parameters become 1 (constant), and the non-dimensional host-

rock temperature becomes 0. The only dependency left is the non-dimensionalized length scale, T ∗ =
f (z/

√
κT t) and ΔPf = f (z/

√
κHt), where the non-dimensional temperature is defined as

T ∗ = (T −Thr)/(Tm −Thr) . (4.D.1)
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The new non-dimensional parameters are:

ξT = z/2
√

κT t (4.D.2a)

ξP = z/2
√

κHt (4.D.2b)

where the factor 1/2 is introduced to simplify the final analytical answer. It is perfectly fine to avoid

this factor, but then the alternative, twice larger ξT will be divided by a factor 2 everywhere in the final

answer. We therefore ’cheat’ and introduce 1/2 already at this stage for this cosmetic reason.

4.D.2 Analytical solutions

We have identified that T ∗ = T ∗ (ξT ) and ΔPf = ΔPf (ξP) , where ξT = ξT (t,z) and ξP = ξP (t,z). We

are now ready to transform the partial differential equations (Eq. 4.3.1 and Eq. 4.3.4) on the form T (t,z)
and Pf (t,z) into the new variables. The following procedure is identical for pressure and temperature,

and we present the transformation of temperature only.

First, we apply the chain rule of differentiation to the left hand side of Eq. 4.3.1,

∂
∂t

T (t,z) =
∂

∂ξT
T ∗ (ξT )

∂
∂t

ξT , (4.D.3)

where we from derivation of Eq. 4.D.2a with respect to t get that

∂
∂t

ξT = −z/4t
√

κT t. (4.D.4)

On the right hand side of Eq. 4.3.1, the chain rule is a bit trickier due to the double derivative,

κT
∂2

∂z2 T (t,z) = κT
∂2

∂ξT
2 T (t,z)

(
∂
∂z

ξT

)2

(4.D.5)

where we from derivation of Eq. 4.D.2a with respect to z get

(
∂
∂z

ξT

)2

= 1/4κT t. (4.D.6)

Substituting Eq. 4.D.3 to 4.D.6 into Eq. 4.3.1 gives a new form of the thermal equation:

d
dξT

T ∗ (ξT ) = − 1
2ξT

d2

dξT
2 T ∗ (ξT ) . (4.D.7)

For pressure the transformed equation becomes

d
dξP

ΔPf (ξP) = − 1
2ξP

d2

dξP
2 ΔPf (ξP) . (4.D.8)

Time t appears on both sides of the equation and cancels out.

To solve Eq. 4.D.7 we specify the boundary conditions. We define our system domain to start at the

center of the intrusion and end infinitely far into the host-rock, i.e. half of a contact metamorphic setting.
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Because temperature is differentiated twice, we need two boundary conditions: 1) The temperature at

the crystallization front (ξm
T ) is equal to the melt temperature, T ∗(ξm

T
)

= T ∗
m = 1, and 2) the temperature

infinitely far away from the intrusion (ξ∞
T ) equals the background host-rock temperature, T ∗ (ξ∞

T ) =
T ∗

hr = 0. The differential equation for temperature is solved by integration of the Eq. 4.D.7, and applying

boundary conditions to solve for the integration constants. The final analytical solution to the thermal

equation is

T ∗ (ξT ) =
erfc(ξT )

1+erf
(
ξm

T

) (4.D.9)

where the error function is by definition erf(ξ) = 2√
π

∫ ξ
0 e−τ2

dτ and erfc(ξ) = 1− erf(ξ). The equation

for pressure (Eq. 4.D.8) is solved in a similar manner. As boundary conditions we set the overpressure

infinitely far from the reaction front ξ∞
P is zero, i.e. ΔPf (ξ∞

P ) = 0. The fluid overpressure at the contact is

set to a constant contact pressure ΔPf (0) = PC. The analytical solution for overpressure becomes

ΔPf (ξP) = erfc(ξP)PC. (4.D.10)
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Chapter 5: Sandstone dikes

5.1 Abstract

Sediment dikes are common within dolerite sill intrusions in the Karoo Basin in South Africa. The

dikes are sub-vertical and up to 2 meters wide, sometimes with abundant fragments of sedimentary

rocks and dolerite. The matrix consists of contact metamorphic sandstone. There is no petrographic

evidence for melting within the sediment dikes. The maximum temperature during heating is restricted

to the plagioclase and biotite stability field, or above c. 350 ◦C. Thermal modeling of a sandstone dike

in a dolerite sill shows that a temperature of 350-450 ◦C is reached in the dike after a few hundred

years of sill cooling. The calculated pressure history of a cooling sill and its contact aureole shows that

substantial fluid pressure anomalies develop on a short timescale (1-15 years) and are maintained for

more than 100 years. Calculated pressure anomalies in the sill (-7 to -22 MPa) and the aureole (4-22

MPa) are significant and may explain sill fracturing and sediment mobilization from the aureole into

the sill. We conclude that sediment dikes represent common features of sedimentary basins with sill

intrusions in which fluid pressure gradient have been high. Sediment dikes thus signify that pore fluids

may escape from the aureoles on a short timescale, representing an intermediate situation between fluid

loss during formation of micro-fractures and fluid loss during violent vent formation.

5.2 Introduction

Subsurface sediment mobilization and fluidization has been recognized from many geological settings,

ranging from overpressured clastic reservoirs (Nichols et al., 1994; Jolly & Lonergan, 2002; Mazzini

et al., 2003) to contact metamorphism around magmatic sill intrusions (Jamtveit et al., 2004; Svensen

et al., 2006). In sedimentary basins affected by magmatic sill intrusions (i.e., volcanic basins), like

the Karoo Basin in South Africa, sediment dikes are reported from within doleritic sills (Van Biljon

& Smitter, 1956). Interestingly, these dikes comprise metamorphic sandstone, demonstrating that the

sand intruded the dolerite while the sills were still hot. The importance of these observations is that

they form direct evidence for high pore fluid pressure during sill emplacement and subsequent contact

metamorphism.

In a classic study by Walton & O’Sullivan (1950), it was suggested that pressure drop during sill

cooling and fracturing (i.e., thermal contraction) led to boiling of aureole pore fluids that ultimately led

to sediment fluidization. That study was based on field examples from a sill emplaced in sediments

during formation of the Central Atlantic Magmatic Province. The role of pore fluid boiling in causing

high aureole pressures and subsequent fluid movement was explored in more detail by Delaney (1982)

and more recently by e.g. Jamtveit et al. (2004).

Understanding sediment mobilization from contact aureoles may put important constraints on

pressure evolution of aureoles. The last decade has seen an increasing interest in degassing of volatiles

from sedimentary basins with magmatic intrusions, where high pore fluid pressure plays a key role

(Svensen et al., 2004; McElwain et al., 2005; Svensen et al., 2007; Retallack & Jahren, 2008; Ganino

& Arndt, 2009; Svensen et al., 2009). Gas venting triggered by overpressure in contact aureoles within

shale has been proposed to cause global climate changes in the end-Permian, in the Early Jurassic

(Toarcian), and at the Paleocene-Eocene boundary (Svensen et al., 2004, 2007, 2009).
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5.4 Geological setting

The aim of this study is to understand the formation of sandstone intrusions in dolerite sills. We

present several case studies of sediment dikes and sediment breccias within sills in the Karoo Basin.

However, the results can be applied to other sedimentary basins where sediments have been injected

into magmatic sheet intrusions, including the Vøring Basin offshore Norway, the Tunguska Basin of

East Siberia, and the Amazonas Basin in Brazil. The process of sediment injections is addressed by

adopting a new theoretical model for sill pressure evolution during cooling and crystallization (Aarnes

et al., 2008).

5.3 Geological setting

The Karoo Basin (Fig. 5.1) covers more than half of South Africa. The basin is bounded by the Cape

Fold Belt along its southern margin and comprises up to 6 km of clastic sedimentary strata capped by at

least 1.4 km of basaltic lava (e.g. Smith, 1990; Johnson et al., 1997). The sediments were deposited from

the Late Carboniferous to the Middle Jurassic, in an environment ranging from dominantly marine (the

Dwyka and Ecca groups) to fluvial (the Beaufort Group and parts of the Stormberg Group) and aeolian

(upper part of the Stormberg Group) (Veevers et al., 1994; Catuneanu et al., 1998). The Beaufort Group

is a thick sequence of dominantly sandstones. The overlying Stormberg Group includes the Molteno

Formation (coarse sandstone, shale, and coal), the Elliot Formation (sandstone, shale; ”red beds”), and

the Clarens Formation (sandstone with occasional siltstone horizons).

Both southern Africa and Antarctica experienced extensive volcanic activity in early Jurassic times,

starting at about 182.5 Ma. Dolerites and lavas of the Karoo-Ferrar Large Igneous Province were

emplaced within a relatively short time span. The main phase of flood volcanism lasted less than 1

m.y. (Duncan et al., 1997; Jourdan et al., 2005), although volcanism in southern Africa continued for

several million years (Jourdan et al., 2005). Sills and dikes are present throughout the sedimentary

succession in the Karoo Basin (Fig. 5.1) (Chevallier & Woodford, 1999; Polteau et al., 2008b), where

they locally comprise up to 70 % of the stratigraphy (Rowsell & De Swardt, 1976).

5.4 Methods

5.4.1 Sampling and petrography

Sediment dikes are common within thick (70-120 meter) dolerite sills within the Beaufort Group

sediments. The depth of magma emplacement is estimated to 600-1000 meters below the paleo-surface

based on present day stratigraphic levels. We have done detailed studies of three localities with sediment

dikes in dolerites, 1) the Waterdown Dam area, 2) the Elandsberg road cut (the Nico Malan Pass), and

3) the Golden Valley (Fig. 5.1). Many more localities with sediment dikes have been discovered during

our fieldwork in the Karoo Basin during the last decade e.g., south of Cathcart), but the chosen localities

are representative. One of the sediment dikes from the Waterdown Dam locality contains numerous

fragments of sediments and dolerite. It was mapped in detail by covering it with transparent A4 plastic

sheets and tracing individual clasts by hand. This method was preferred over photo analysis due to better

accuracy and the benefit of doing on-site interpretations on clast type and clast outline. The resulting
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Figure 5.1: (A) Simplified geological map of the Karoo Basin in South Africa with sill intrusions and
hydrothermal vent complexes as black dots. The three study localities are shown. One more locality
with sediment dikes in sills is shown (Cathcart) but not included in this study. (B) Geological map of the
Waterdown Dam area based on the 1:250 000 geological map of Council for Geoscience, South Africa.
Note that there is one locality with dikes that have not been included in this study.

map represents a 2D slice through the dike. We then used image analysis techniques and a Matlab

code to quantify the clast content (i.e., area). Probability densities were calculated using a smoothening

procedure, where data was binned in either ten consecutive areas (for sediment clasts) or five consecutive

areas (for dolerite clasts). The aspect ratio between the long and short axes of the fragments was also

calculated. Since our mapping analyses are done in 2D, and the fact that we only have one slice through

the dike, the results should be regarded as approximate.

Thin sections of collected samples were studied by optical and electron microscopes (SEM) at the

Department of Geology, University of Oslo. The SEM is a JEOL JSM 840, and was also utilized for

cathodoluminescence imaging.

5.4.2 Phase stability calculations

We have used Perple X (Connolly, 2005) to compute phase diagrams for rocks with a pelite composition

to predict the temperature stability of the mineral assemblages identified in the sandstone dykes. The

calculated phase diagram is projected from an average pelite composition (Caddick & Thompson,

2008), with SiO2=59.8, Al2O3=16.6, FeO=5.8, MgO=2.6, CaO=1.1, Na2O=1.7, K2O=3.53, TiO2=0.75,

H2O=5.0 (all in wt. %). We have calculated the reaction using quartz-saturation which means that

the phase assemblages obtained are not dependent upon the bulk content of quartz. Hence the phase

diagram is valid for sandstones as well as pelites as long as the ratios of the other oxides do not change

significantly.

5.4.3 Numerical modeling

We have developed a numerical model using the Finite Element Method (FEM) in Matlab. We couple

standard heat conduction to pressure (or hydraulic) diffusion using the equation for thermal stress similar

to that of Aarnes et al. (2008). We calculate the pressure anomalies arising from pore fluid expansion of
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pure water in the contact aureole, and the pressure changes related to phase transitions (melt to crystal)

in the sill. The pressure-anomalies diffuse over time according to the Darcy law. The equations are

solved on a 2D square grid with a resolution of 25 by 200 elements. Initial conditions for the thermal

solver is a host-rock temperature Thr of 35 ◦C , and a sill temperature, Tm, of 1200 ◦C . For temperature

boundary conditions we fixed both the upper and lower boundaries at initial host-rock temperature, as

the geothermal gradient is negligible on the scale of a few hundred meters. We assume a hydrostatic

pressure gradient with a fluid density of 1000 kg/m3 as initial conditions for pressure. The upper and

lower boundaries are fixed according to initial hydrostatic pressure. The boundaries do not influence the

calculations.

Model assumptions

We have developed a numerical model to quantify the first order effects associated with sill cooling

and pressure evolution. The model is conceptual and does not attempt to describe the full system. We

assume an instant emplacement model of the sill because sediment dikes are related to post-emplacement

processes occurring at sub-solidus conditions. The thermal diffusivities are equal for the sill and the

sedimentary host rock, as differences in thermal properties are negligible (see Table 5.1). However, the

hydraulic diffusion coefficients of melts and pore fluids differ by approximately one order of magnitude

in our model. We assume no heat advection by fluids either in the sill or the contact aureole. This is

justified from studies showing that heat advection by fluids is a second-order effect (Podladchikov &

Wickham, 1994; Connolly, 1997). Apart from the sandstone dikes, there are little evidence of high fluid

circulation in the intruded sediments, which makes heat advection within the intrusion negligible (cf.

Norton et al., 1984).

The major assumption concerning the equation of thermal stresses is that expansion of pore fluids

and contraction of melt due to crystallization are prevented either by the sediment matrix or the crystal

network. This assumption is valid until the expanding fluids break the sediment matrix and reduce the

overpressure either by fluidization or by pervasive flow along the overpressure-gradient. We account

for fracturing of the host-rock by resetting pressures that exceed the tensile strength of the host-rock to

hydrostatic pressure. We assume the tensile strength of our model sandstone host-rock to be on average

35 MPa (Ai & Ahrens, 2004). We expect a drop in overpressure gradients with time, depending on

how freely the mobilized sediments can move and re-equilibrate the overpressure anomalies. For the

underpressure, we expect the assumption of prevented volume change to be valid for the intrusion until

the thermal contraction produces fracturing of the sill. Tensile strength of gabbroic rocks is above 125

MPa (Ai & Ahrens, 2004). Such underpressure is not achieved in our model, which suggests that we are

using conservative values. The main equations used for the modeling are shown in Appendix 5.A.

143



Chapter 5: Sandstone dikes

Table 5.1: Symbols and values used in the numerical model.

Symbol Description Initial value Unit Ref
Z vertical system size 500 m 1

d sill thickness 100 m 1

Tm initial temperature of melt 1200 + 273 K 1

Thr initial temperature of host-rock 35 + 273 K 1

TL liquidus temperature of melt 1200 + 273 K 1

TS solidus temperature of melt 900 + 273 K 1

KT thermal diffusivity of melt (k/CP/ρ) 10−6 m2s−1 2

KHm hydraulic diffusivity of melt (χsill /μm/βm) 2.3×10−3 m2s−1 2/3

KHhr hydraulic diffusivity of host-rock (χhr/μ f /β f ) 3.7×10−2 m2s−1 2/4

β isothermal compressibility (fluid/water) 4.3×10−10 Pa−1 2

α thermal expansion coefficient (water) 4.1×10−4 K−1 2

L latent heat of crystallzation 320000 Jkg−1 4

Ste stefan number 0.27 1/4

P hydrostatic pressure 1000 × g × Z Pa 1

g standard gravity 9.81 ms−2

t time 0 s 1

1) This study; 2) Delaney (1982); 3) Hersum et al. (2005); 4) Turcotte & Schubert (2002).

5.5 Results

5.5.1 Sediment dikes in dolerite sills

Waterdown Dam

Several sediment dikes within dolerite sills are located in road cuts along the Waterdown Dam north of

the Elandsberg area in South Africa (Fig. 5.1). The main sites are numbered 1-3 in Figure 5.1B, where

thick sediment dikes are exposed close to the lower contact of a transgressive dolerite sill. The intruded

sediments are mainly sandstones, all from the Permian and Triassic Beaufort Group. An overview

of the locality is given in Figure 5.2A. At all sites, the field evidence suggests upward movement of

sediment, based on the presence of dolerite bridges. The maximum upward penetration is not known,

but is estimated to 10-15 % of the sill thickness based on the exposed dike heights and sill thickness.

At site 1 (S32◦18.2’, E26◦52.6’), a sediment breccia dike can be traced for about 150 meters

westwards from the main road, cutting vertically through at least 15 vertical meters of dolerite. The

strike is 80o east, and it pinches out in both directions. The maximum thickness is 0.5 meters and it

splits in two branches towards the west. Up to 40 cm long sediment and dolerite fragments are common,

and bridge-like portions of dolerite are present locally (Fig. 5.2E). The latter suggests an eastwards

direction of emplacement.

Several thin sandstone dikes crop out at site 2 (Fig. 5.2B). The maximum width is 0.5 meter, the

strike is 84o east, and their vertical extension can be traced for 10-15 meters in the road cut. A few

pieces of fresh dolerite are located within the dikes. These represent fragments of wall rock dolerite
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broken off during dike emplacement, as also seen at site 1.

Figure 5.2: The Waterdown Dam locality. (A) Overview of the locality, showing the transgressive
dolerite sill and the road cut along R67 with sediment dike localities. (B) Site 2, with sediment dikes
that can be traced 10-15 vertical meters. (C) Site 3, with the >2 meter thick breccia dike within the
dolerite. (D) Close-up of the dike at site 3, showing a dolerite fragment within the baked sandstone.
Note the irregular fragment in the lower right, possibly representing altered magmatic material. Coin
for scale. (E) The sediment dike at site 1. Note the sediment fragments and the dolerite ”bridge”
extending from the walls and into the dike. Hammer for scale.

At site 3, a vertical dike up to 2.2 meter in thickness crops out along the road (Fig. 5.2C), striking

78◦ east. This is, to our knowledge, the thickest sediment dike ever found in a sill intrusion. The contact

with the dolerite is sharp, although weathered, and it comprises a breccia with sedimentary fragments

up to 40 cm long. Some of the fragments show sedimentary layering. The lateral extension of the dike
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is unknown due to poor exposures, but the dike is located some 10 meters above the dolerite-sediment

contact cropping out to the west. In addition to the sedimentary clasts, the dike contains numerous

fragments of dolerite (Fig. 5.2D). The dike has been mapped in detail, and the results are presented in

Figure 5.3A. The area percentage occupied by clasts and their size distribution has been quantified (Fig.

5.3B). The results show that the sandstone matrix (including clasts less than 0.5 cm) comprises 86.4 %

of the area, sediment fragments occupy 10.6 % (320 clasts) and dolerite fragments comprise 3.0 % (70

clasts). There is a four order of magnitude variation in clast size for the sedimentary fragments, but a

lesser variation for the dolerite fragments. Note that the probability versus size relationship is similar

for both sediment and dolerite clasts. The aspect ratio of the clasts length and width is calculated and

shown in Figure 5.3C. Interestingly, the aspect ratio is independent of the clast size. The sediment clasts

are more elongated compared to the dolerite clasts (aspect ratios of 2.51 and 1.95, respectively), which

is also evident from Figure 5.3A.

Figure 5.3: (A) Graphical representation of the rock fragments in the sediment breccia dike at site 3.
The dike content was drawn on transparent plastic sheets (1:1 scale), scanned and re-drawn. Note the
abundant dolerite fragments and sedimentary fragments with preserved sedimentary layering. (B) Image
analysis shows that the rock fragments constitute 13.6 % of the dike area. (C) The figure shows a scatter
plot of the minor and major half-axis for ellipses fitted to the fragments with dolerite in red and sediment
in gray. The plot suggests a linear trend between the minor and major half-axis, hence the aspect ratio is
independent of the fragment size. The mean aspect ratios for dolerite and sediment fragments are 1.95
and 2.51 respectively. Very small fragments (less than 0.1 cm2 (ie. 10 pixels)) are disregarded.
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The Elandsberg road cut (the Nico Malan Pass)

The locality is located in the great escarpment defined by thick sill intrusions in the Beaufort Group

sediments. A sediment dike was found intruding into the lower contact of the upper sill encountered

when driving north towards the Nico Malan Pass along the R67 (S32◦30.2’, E26◦50.2’). The dike has

penetrated 2.3 meters into the inclined dolerite sill, and has a slightly curved and irregular shape (Fig.

5.4A). The maximum width is about 20 cm, and the dike pinches out upwards. No dolerite fragments

were found in the dike, and the sandstone texture was marked differently at the tip of the dike compared

to the surrounding contact aureole sandstone, becoming increasingly recrystallized. No flow structures

were observed in the sediment beds below the dike or within in the dike itself.

Figure 5.4: The Elandsberg road cut (The Nico Malan Pass). (A) Sandstone dike extending about 2.5
vertical meters from the base of a ∼100 meters thick dolerite sill. (B) SEM picture showing metamorphic
biotite, chlorite, and feldspar in the meta-sandstone from 2.3 meters into the dike.

Golden Valley

The Golden Valley sill complex (Galerne et al., 2008; Polteau et al., 2008a,b) is characterized by a flat

inner sill that is partly exposed along a small river in the southern end. Here (S31◦58.4’, E26◦16.4’), a

well-exposed part of the sill-roof hosts several small (<30 cm wide) sandstone intrusions (Fig. 5.5A).

Note that the sediment source is located above the sill contact, demonstrating downward sediment

movement. Note that in general, downward sediment movement is not unique for this location (e.g.

Vitanage, 1954; Harms, 1965; Peterson, 1968). The dikes are irregularly shaped, and are characterized

by a network-like pattern. Brownish alteration haloes are common around the dikes. The intruded

sediments are Beaufort Group sandstones and shales, where the sandstones contain abundant nodules

with radial fracture patterns (Fig. 5.5B). These nodules were originally composed of carbonate, but were

modified during metamorphism.

5.5.2 Sediment petrography and petrology

We have studied thin sections of sediment dikes from the Waterdown Dam (site 3), the Nico Malan Pass,

and Golden Valley. The main aims were to identify metamorphic minerals, characterize the texture, and
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Figure 5.5: The Golden Valley locality. (A) Network of sandstone dikes within the upper meter of a
sill in the floor of the Golden Valley saucer. (B) Reaction nodule in sandstone from 1-2 meters above
the contact with the sill. (C) SEM picture showing metamorphic plagioclase, chlorite, and apatite in a
sample from the thickest dike shown in (A). (D) SEM picture showing authigenic garnet, zeolite, quartz,
and chlorite in the nodule in (B).

to characterize the metamorphic conditions. The diagenesis of non-metamorphic sandstones located

far from sill intrusions in the Karoo Basin are characterized by authigenic minerals stable at relatively

shallow burial (clay minerals, K-feldspar, calcite, albite, and quartz) (e.g. Turner, 1972; Rowsell &

De Swardt, 1976; Svensen et al., 2008). Typically, detrital grains (like quartz and K-feldspar) get coated

and overgrown by authigenic minerals during burial without affecting the composition or texture of the

grain interiors. At one kilometer of burial in the Karoo Basin, the original sandstone porosity could

have been in the order of 10-25 %, presumably filled with low salinity pore fluids. During contact

metamorphism of sandstone within the sediment dikes, detrital quartz grains are still easily recognized

whereas feldspars (plagioclase and K-feldspar) are recrystallized in mosaic patterns. Moreover, the

porosity is negligible, and chlorite and biotite are commonly present. Further details of the effects of

contact metamorphism of sandstone from the examined localities are given below.

The sediment dike at Waterdown Dam contains metamorphic sandstone. Former grains and grain

boundaries, representing the original sedimentary components, are easily recognized (Fig. 5.6A). This

is confirmed by cathode luminescence imaging of quartz (Fig. 5.6B). Besides quartz, the dominant

minerals that recrystallized in the dike are K-feldspar, plagioclase, and chlorite. Detrital feldspar
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grains are recrystallized and contain a mosaic of K-feldspar and plagioclase. Based on the grey

scale variations on SEM backscatter images, the plagioclase is characterized by several different

compositions, apparently in textural equilibrium (Fig. 5.6C), and thus recrystallized during high

temperature metamorphic conditions. Biotite was not identified in the studied sample, but abundant

chlorite could possibly be a product of biotite retrogression. The altered dolerite fragments in the dike

are dominated by chlorite.

The Elandsberg sandstone dike contains identifiable detrital sand grains with quartz overgrowths.

A sample from 2.3 meters into the dike was studied using SEM, where cathode luminescence imaging

revealed detrital quartz cores. Of importance is the presence of metamorphic epidote and biotite. The

biotite is partly altered to chlorite, although the dominating mode of chlorite occurrence is in fresh

patches unrelated to alteration. Feldspar grains are recrystallized and comprise mixtures of K-feldspar,

albite, and plagioclase. Generally, the textures within the dike sample are tight and typical hornfels-like.

The sandstone dikes from Golden Valley have the same mineral content as the one at Waterdown

Dam. Quartz, plagioclase, and chlorite are the main minerals. One difference, however, is the

plagioclase textures. In Golden Valley, the detrital plagioclase is apparently completely recrystallized

and zoned, present as tabular crystals (Fig. 5.5C). Ilmenite and apatite are minor minerals. The chlorite

is locally present as tabular crystals, possibly suggesting biotite replacement. We have compared this

mineral assemblage with the assemblage within a former carbonate nodule with sandstone from the

same locality. The sample (Fig. 5.5B) is located about 2-3 meters above the contact with the dolerite

sill, and is characterized by radial fractures extending out from a zoned nodule. In thin section, the main

minerals are quartz (with detrital cores and overgrowths), feldspar, chlorite, and zeolite (Fig. 5.5D). The

boundaries between detrital cores and metamorphic quartz are marked by rims of metamorphic garnet.

The plagioclase is partly dissolved, and the pores filled by zeolite. Chlorite is common within the zeolite.

To conclude, the studied textures from the examined localities show that the sandstone dikes

experienced medium-temperature metamorphism following injection. Original quartz grain boundaries

and grain cores are still preserved and document that the sediment dikes did not undergo partial

melting after emplacement. This is consistent with the absence of macroscopic melt patches in the

dikes. Diagnostic peak metamorphic minerals are sparse in meta-sandstones due to the low iron

and magnesium content. Recrystallization of quartz and feldspar grains is the dominant mode of

mineralogical transformation. However, the occurrence of minerals like chlorite, biotite, plagioclase,

and epidote is typical for greenschist facies conditions. Based on the general presence of these phases

in the sediment dikes, we can use phase petrology to constrain the peak metamorphic conditions.

We have made a phase diagram projected from a pelite composition, and compared the calculated

phase assemblages with those identified in the rocks in order to determine the temperature during dike

emplacement (Fig. 5.7).

5.5.3 Fluid pressure evolution during sill cooling

We have developed a numerical model in order to calculate the pressure gradients developing between

an igneous sill and the surrounding sedimentary rocks as a function of temperature. Here we present

snapshots of the temperature and pressure state during sill cooling. The modeling is based on the
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Figure 5.6: SEM petrography from the sediment dike at Waterdown Dam, site 3. The sandstone matrix
shows well defined quartz grains (A) that have survived metamorphism. The cathode luminescence
imaging (B) demonstrates further that melting never took place, as the quartz grains have retained
their detrital core. The feldspar grains are however pervasively recrystallized, present as mosaics of
K-feldspar and plagioclase with various compositions (C).

parameters listed in Table 5.1.
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Figure 5.7: Phase diagram calculated using Perple X for a rock with a pelite composition. The
mineral assemblages are shown in between the black lines (dehydration reactions), and the position
of the sediment dike samples are indicated by star symbols (W: Waterdown Dam, G: Golden Valley, E:
Elandsberg).

Fifteen years after emplacement

At the time of instantaneous emplacement, the 100 meter thick sill is hot (1200 ◦C ) with a sharp thermal

boundary to the cold host-rock (35 ◦C ) (Fig. 5.8A). Note that the gradient will be similar even if the sill

is emplaced by continuous infilling and inflation. After fifteen years the temperature increases rapidly

in the host-rock causing thermal expansion of the pore fluids, which results in overpressure of ∼22 MPa

relative to the hydrostatic pressure gradient (∼7-8 MPa) (Figures 8A and 8B). A fracture pressure of 35

MPa is indicated by a red dashed line in Figure 5.8B. The sill is in a state of underpressure due to cooling

and crystallization of interstitial melt in a solid crystal network. The major mechanism of underpressure

within the sill (-22 MPa relative to the hydrostatic pressure gradient) is due to a density change when

interstitial melt (2600 kg/m3) is crystallizing (2900 kg/m3) within a confining crystal network during

cooling. Note that the tensile strength of a gabbroic rock is above 125 MPa (Ai & Ahrens, 2004).
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Hundred years after emplacement

After 100 years, the sill has solidified and the temperature gradients become less steep (Fig. 5.8C).

Correspondingly, the pressure gradient anomalies are reduced through diffusive fluid flow. The internal

gradient within the sill is dispersed, and the main gradient is now from the host-rock and into the sill (Fig.

5.8D). The difference between the maximum overpressure (∼4 MPa) in the host-rock and underpressure

in the sill (∼-7 MPa) is on the order of ∼10 MPa, relative to hydrostatic pressure.

5.5.4 Fluid pressure evolution during sediment heating

The fluid pressure in the aureole is increasing after sill emplacement due to the density change associated

with heating of the H2O pore fluid. Assuming a pore fluid pressure of 25 MPa at ∼1 km depth, H2O

experiences a density reduction from 1004 kg/m3 to 162 kg/m3 when heated from 35 ◦C to 400 ◦C

(Wagner and Pruss, 2002). The thermal expansion of the sediment matrix for the same temperature

interval is negligible relative to the phase transition in the fluid (i.e. boiling). The over-pressure is

released through diffusive flow, with rates depending on the permeability of the host-rock. Similarly,

the underpressure within the sill is created during cooling and crystallization. The thermal contraction

associated with the melt to crystal transition is several magnitudes larger than the thermal contraction

of the surrounding network for the same temperature interval. Hence, an underpressure will develop as

a response to the density change of interstitial melt (>55% crystals Marsh, 1996; Philpotts & Carroll,

1996). This underpressure can be relaxed through internal melt flow from the molten to the crystallizing

regions of the sill. When the sill is 100% crystals, the thermal stresses will continue to develop as long

as the thermal contraction is larger than what can be accommodated by volume change. The stresses can

be released through brittle fracturing of the rocks, which in turn can be filled in by for example fluids,

interior melt, or fluidized sediments (e.g. Norton et al., 1984).

When estimating the thermal expansion of pore fluids in the aureole, we use a conservative

coefficient value of 4.1× 10−4 (Delaney, 1982), resulting in pressure anomalies of up to ∼25 MPa.

Using the definition of thermal expansion coefficient ,

α =
1
v

(
∂v
∂T

)
P

where v is specific volume (pr unit mass, 1/ρ; ρ is density), the expansion coefficient for pore-fluid

is 2.3× 10−2K−1 where boiling occurs, and for melt-to-crystal transition it is 3.5× 10−4 K−1. The

maximum pressure anomaly by boiling and expansion of pore fluids may thus be up to two magnitudes

larger than our estimates.

5.5.5 Thermal modeling of sediment dikes

We have made a thermal model with a realistic sediment dike geometry to estimate the maximum

temperature attained within the dike at a given sill temperature. We emplace a 20 meter tall and 2 meter

thick sandstone dike with an initial temperature of 35 ◦C into a 100 meter thick sill with sill temperatures

between 1100 and 1200 ◦C (Fig. 5.9). As expected, the dike rapidly reaches peak temperature (i.e.,

within a year). Hence, the initial temperature of the sandstone dike is not important for the final
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Figure 5.8: (A) Pressure gradients developed after 15 years of sill cooling. The sill is still close to 100
% molten (see vertical dashed line). (B) There is a strong pressure gradient between the sill margins and
the aureole, where the aureole pressure is generated by thermal expansion of pore water. The arrows
indicate pressure gradients along which melt and fluids are expected flow. The tensile strength of dolerite
is indicated. (C) The sill is solidified after 100 years of cooling. The sill is now solidified. (D) Note
that there is still a strong gradient going from the underpressure at the margins to the overpressure in the
aureole, but most of the overpressure that was generated previously has diffused away.

maximum temperature recorded in the sill. If the dike is injected fifteen years after sill emplacement,

the sediment dike reaches a temperature of ∼850 ◦C . Injection at the time of sill solidification (i.e., at
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∼100 years), the peak temperature in the dike is ∼650-675 ◦C . For the sandstone dike to be heated to

a maximum of ∼450 ◦C (cf. Elandsberg), injection after 300 years of sill cooling is indicated. After

600 years the sill has cooled to such an extent that the temperature in the sediment dike never exceeds

350 ◦C (cf. Golden Valley and Waterdown Dam).
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Figure 5.9: Calculated maximum temperature of a 2×20 meter sediment dike injected into a 100 meter
(solid lines) and a 1×10 meter sediment dike injected into a 50 meter (dashed lines) sill for intrusion
temperatures of 1100-1200 ◦C as a function of injection time after sill emplacement. The grey area
indicates when the sill is still molten. By knowing the maximum temperature of the sandstone dike
we can infer that the injection time was ∼300 years after sill emplacement for the Elandsberg dike and
∼600 years for the Golden Valley and Waterdown Dam dikes. For comparison the calculated injection
time of the dikes from Walton and O’Sullivan occurred closely after sill solidification (∼150 years).

5.6 Discussion

5.6.1 Contact metamorphism in sedimentary basins

In contrast to the 30-70 m.y. time scale of fluid production and pressure buildup during regional

metamorphism and orogenesis (e.g. Walther & Orville, 1982; Connolly & Thompson, 1989), contact

metamorphism around igneous sill intrusions in sedimentary basins have dramatic and short term effects

on fluid flow. This is particularly important in basins with rapidly cooling sill intrusions compared

to settings with >100 k.y. contact metamorphism around plutons (e.g. Hanson, 1992, 1995). When

sedimentary host rocks are heated around sills, pore fluid expansion and boiling occur on timescale

of years, dominating the fluid production compared to devolatilization reactions (e.g. Delaney, 1982;

Hanson, 1995; Jamtveit et al., 2004). Overpressure related to boiling and pore fluid expansion may
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ultimately lead to hydrofracturing and the formation of hydrothermal vent complexes in the upper

kilometer in the basin (e.g. Jamtveit et al., 2004). In the Karoo Basin, the hydrothermal vent complexes

commonly crop out in the Stormberg Group sediments. In addition, numerous breccia pipes are rooted

in contact aureoles of black shale, demonstrating that high pore fluid pressures developed during rapid

cracking of organic matter to methane (Svensen et al., 2007). Thus contact metamorphism around sill

intrusions is a process that causes rapid pressure build-up and drives fluid flow on a very short timescale.

In this setting, sediment dikes represent direct evidence for the rapid release of aureole pressure and

fluids.

5.6.2 The pressure evolution of a cooling sill

Recently, it was shown that sill cooling and crystallization result in an underpressure within the sill

(Aarnes et al., 2008). The reason for underpressure generation is the following. At the earlier stages of

the sill cooling, a solid crystal network (>55% crystals) with interstitial melt will form (Marsh, 1988,

1996; Philpotts & Carroll, 1996). With further cooling the interstitial melt experiences a significant

density change due to the melt-to-crystal transition. However, a strong crystal network prevents a volume

change and causes a large underpressure to develop. It is shown through experiments that a crystal

network have considerable strength already at 35 % crystals, and effectively behaves as a solid even

with large amounts of interstitial melts (Philpotts & Carroll, 1996). Such an underpressure may induce

melt flow, have consequences for the chemistry of the magmatic system, and induce sediment injections

into the sill (Aarnes et al., 2008).

During the initial stages of sill cooling, the pore water in the aureole sediments will expand and

flow either away from the sill or into the sill depending on the pressure gradients. Melt may also flow

within the sill along the pressure gradient towards the cooling margins (c.f. Figure 5.8). The fluid flow

is a result of the developed pressure anomalies and will act to even out the pressure anomalies with

time. After 100 years the pressure gradient within the sill is reversed, going from the margins to the

center (Fig. 5.8B). However, the melt is now unable to flow as solidification is complete. At this time,

the pressure in the sedimentary host rock has effectively been diffused by fluid flow. Thus, the main

pressure gradient is now from the host rock towards the sill, both above and below the intrusion. At this

stage, heated pore fluids will flow into the sill if permeability allows the fluids to enter, i.e., if fractures

develop.

5.6.3 Aureole overpressure and sediment injections into sills

Fluidization due to heating of water-rich sedimentary rocks is most likely to occur at depths where

pressure is less than the pressure corresponding to the critical point of water (Kokelaar, 1982; Jamtveit

et al., 2004). The paleo-depth of the study areas with sediment dikes in dolerites is ∼600-900

meters, thus shallower than the critical depth. In some geological settings overpressure can cause

horizontal fracturing through fluids seeping away from the overpressurized source (e.g. Mourgues &

Cobbold, 2003; Cobbold & Rodrigues, 2007), while in the case of boiling and very high overpressures,

modeling has demonstrated that the gas release may localize vertically and eventually reach the

atmosphere (e.g. Jamtveit et al., 2004; Rozhko et al., 2007). The key requirements for pressure-
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induced sediment mobilization in the aureole are low permeabilities, high porosities and high thermal

diffusivities (Delaney, 1982; Jamtveit et al., 2004). In the case of high permeabilities in shallow

sandstones, the rate of heating must exceed the rate of pressure loss by fluid flow in order to build up

significant over-pressure. When the host-rock experience extensive pressure-buildup the sedimentary

rock may ultimately loose all cohesive strength and become fluidized and result in substantial sediment

displacement (e.g. Vitanage, 1954; Harms, 1965; Kokelaar, 1982; Ross & White, 2005). The sandstones

of the Beaufort Group in the Karoo Basin were still in the early to intermediate stages of diagenesis

(i.e., reached quartz cementation) at the time of sill emplacement. Thus the conditions were right for

fluidization to occur, at least where clay minerals limit relaxation of pressures through fluid flow (Jolly

& Lonergan, 2002), or as mentioned, if heating was rapid compared to pressure drop by fluid flow

(Jamtveit et al., 2004).

Heat-induced overpressure and subsequent fluidization of sediments in the contact aureole is here

suggested to be the main formation mechanism of sandstone dikes in magmatic intrusion. We show that

there is an additional strong gradient from the aureole into the intrusion, and that this gradient makes

sediment mobilization more likely to happen compared to injections driven by pore fluid boiling and

fracturing during thermal contraction. Still, we argue that fracturing during thermal contraction is of

lesser importance, as sediment dikes are not present in a hexagonal network even in areas with abundant

fractures developed during thermal contraction (e.g., the Golden Valley locality). The overpressure

scenario is schematically presented in Figure 5.10. Our results show pressure anomalies of up to 108 Pa

after solidification of the sill, which are in agreement with the magnitude 107 Pa overpressure commonly

found for several rock types due to expansion of pore fluids from magmatic intrusion (Delaney, 1982).

Importantly, the high pressure is sufficient to break the tensile strength of sandstones above ∼1 km depth

(e.g. Kokelaar, 1982), thus fluids can potentially flow from the aureole and into the sill.

Figure 5.10: Schematic evolution of a sill-aureole system with sediment injections. (A) Initial sill
emplacement into cold sedimentary host rocks. (B) Contact metamorphism around the molten sill, and
expansion of sedimentary pore fluids (symbolized by circles). (C) Crystallization of the sill followed by
fracturing due to the huge pressure difference between sill and aureole. The sill is still hot enough to
cause high temperature metamorphism of the injected sediments.
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We therefore argue that sandstone dikes form as a result of the difference in pressure between the

sill and the aureole (∼10 MPa) that develops during sill cooling and sediment contact metamorphism.

The pressure gradient is sufficient for fracturing the sill (pressures beyond the lithostatic) and to act as

”sucking” force on the sediments from the moment the chilled margin of the sill fractures. Once initiated,

the fracture will propagate as a result of the injected pore fluids and sediments, which also may lead to

further tensile failure (c.f. Rubin, 1993). The fracturing process may be violent, as indicated by the high

proportion of both sedimentary and doleritic rock fragments in the dikes at Waterdown Dam. Sediment

fragments comprise 86 % of the dike surface at site 3, and the size distribution between sedimentary and

dolerite clasts suggests that the same process was responsible for brecciation of both dolerite sill and

aureole sediments. The four orders of magnitude variation in clast size (Fig. 5.3B) demonstrates that

the brecciation was rapid and that bulk of the breccia was injected into the sill.

5.6.4 Sediment dike metamorphism and injection timing

The sediment dikes described in this study are all affected by contact metamorphism. Thus they were

heated while the sill intrusions were still hot, either in situ in the contact aureole prior to injection,

or within the sediment dike. Metamorphism of the sedimentary material is a common observation

from all sediment dikes in magmatic sill intrusions (Walton & O’Sullivan, 1950; Van Biljon & Smitter,

1956). Based on the metamorphic minerals in the dikes and aureoles from the Karoo Basin (chlorite,

biotite, plagioclase, and epidote, garnet), the metamorphic conditions were equivalent to those of the

greenschist facies. Based on these minerals and the presented phase diagram (Fig. 5.7), a maximum

temperature of about 450 ◦C is suggested.. There are no accurate thermometers that can be applied to the

identified mineral assemblages, so the temperature is approximate. Comparing with active hydrothermal

metamorphism of sandstone, biotite appears at ∼320 ◦C (e.g. Schiffman et al., 1985), so our estimate is

reasonable. The absence of minerals like cordierite, clinopyroxene, and muscovite furthermore suggests

temperatures below ∼450 ◦C , although the potential for generating some of these minerals depends on

the bulk rock composition. As the temperature of heated sedimentary rocks around a sill intrusion will

never exceed about half the sill temperature, a doleritic sill (∼1200 ◦C ) will commonly not be able

to melt the host sediments and maximum temperatures should be close to 600-700 ◦C depending upon

the host rock temperature at the time of emplacement. However, this situation may be different in other

geological systems (e.g. Hersum et al., 2007).

The temperature estimates from the mineralogy are of importance when assessing the timing of

sediment dike emplacement. As we have shown, an early emplacement into a hot sill will result in high

temperature metamorphism in the dike. Based on our thermal modeling, injection after 250-600 years

of sill solidification will give 325-450 ◦C in the dike. Note that reaction kinetics or significant latent

heat of vaporization may contribute to discrepancies between modeled heat from conduction and that

of a natural system. Earlier timing of sediment injection is therefore possible. To summarize, our data

suggest that the emplacement of the sediment dikes occurred after the sill was 100% crystallized, which

puts a lower boundary to the timing of injection of about 100 years. This means that sediment injection

into sills has only limited potential for contaminating the magma since the sill is 100% crystallized at

the time of sandstone injection. For contamination to happen, the sediments would have to be injected
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into a partly molten sill, which of we have no supporting observations.

Field evidence shows that sediment dikes can propagate tens of meters into dolerite sills from the

lower contact. The vertical termination of dikes has however not been found in the field. However, since

the metamorphic recrystallization led to very low permeabilities, the sediment dikes were prevented

from becoming long-lasting fluid flow pathways.

Finally, we may outline under which basin settings sediment dikes within igneous sills are not likely

to form: 1) when the overpressure difference between sill and aureole is small, as when the sill intrusion

is thin or 2) the aureole has limited potential for generating overpressure during heating, like when

the porosity is very low or the content of organic matter is negligible. Thus the presence of sediment

injections in igneous systems may provide important constraints on the pressure evolution and fluid flow

history in sedimentary basins with sill intrusions.

5.7 Conclusions

Sediment dikes have been discovered within dolerite sill intrusions at several localities in the Karoo

Basin in South Africa. The sediment dikes contain metamorphic sandstone and clasts of sediments and

dolerite. Field, petrographic, and numerical evidence suggests that:

• Both upward and downward movement of sediments into sill intrusions is common.

• The sediments intruded while the sills were hot, producing mineral assemblages typical for

>300 ◦C metamorphism.

• Thermal modeling shows that the sediment dikes were injected more than 100 years after sill

emplacement to account for the dike metamorphism, depending on sill thickness and the initial

sill temperature.

• The presence of sediment dikes in sills is a result of the coupled pressure evolution of dolerite sills

and contact aureoles. Negative pressure anomalies in the sill forms due to cooling, whereas high

pressure develops in the aureole due to thermal expansion.

• The pressure generated is of the right order of magnitude required to explain fracturing of the

solidified sill. The sediments were accordingly ’sucked’ into the sill.
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Appendix 5.A Equations

The cooling of the sill and heating of the host-rock follows the heat conduction equation,

∂T
∂t

= Keff
T

{
∂2T
∂x2 +

∂2T
∂z2

}
(5.A.1)

where T is the temperature, Keff
T is thermal diffusivity coefficient, x is lateral direction and y is vertical

direction. The effective thermal diffusivity accounts for the latent heat of fusion:

Keff
T = KT

(1+Ste) f or (TS < T < TL)

Keff
T = KT f or (TS > T ).

(5.A.2)

Non-dimensional ratio quantifying the effect of the latent heat is the Stefan number, Ste, given by

Ste =
L

(TL −TS)CP
(5.A.3)

where CP is heat capacity and L the latent heat of fusion per unit mass.

Equation 5.A.1 is coupled with pressure through thermal stresses,

dP =
α
β

dT (5.A.4)

as described by e.g. Turcotte and Schubert (2002), assuming isochoric conditions for crystallization.

Taking the partial derivative of Equation 5.A.4 with respect to time, the hydraulic equation becomes

∂P
∂t

= KH

{
∂2P
∂x2 +

∂2P
∂z2

}
+

α
β

∂T
∂t

(5.A.5)

where P is pressure, α the volumetric coefficient of thermal expansion and β the isothermal

compressibility. KH is the hydraulic diffusivity, KH = χ\μ\β and χ is matrix permeability, μ is viscosity

of fluid and β is compressibility. This modified hydraulic diffusion equation is similar to that of Delaney

(1982). The first part on the right hand side of Equation 5.A.5 describes the pressure diffusion (similar to

heat conduction Equation 5.A.1); the second part describes the development of pressure anomalies due

to changes in temperature. The initial over-pressure is zero since the flow only depends on the evolving

pressure anomalies.
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