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Chapter 1

Introduction

Survival data describe the duration of time from entering into the study to
the occurrence of an event of interest. These days survival data are found in
a wide range of applications in various �elds. For instance, we use survival
data to study the failure time of a system, the lifetime of cancer patients
after surgery, or the time for �nding new oil resources, etc. A feature of
survival data is that they typically cannot be fully observed, thus they of-
ten contain the information of censoring as indication of the missing data.
The most common reasons for censoring are that the event of interest has
not occurred by the end of the study, or that one is unable to follow up the
individuals. Special methods are needed to handle censored survival data.
Indeed, by using the Kaplan-Meier estimator and the Nelson-Aalen estima-
tor, we can manage to estimate the survival function and cumulative hazard
rate of survival data.

In survival analysis, we are interested in estimating the hazard rate and
survival function of individuals. By accessing survival data we are able to
investigate the impact of covariates on the survival time of individuals. The
e�ect of categorical covariates can be analyzed by grouping of the individuals
according to their values of covariates. But in practice, it is quite common
that we deal with multiple covariates which might contain numeric types.
Hence there is a demand for regression models. The most widely used re-
gression model in survival analysis is the Cox model, which assumes that the
covariates of each individual are related to its hazard rate. The regression
coe�cients can be estimated by comparing the covariates of the individual
that has experienced the event of interest with those who have not. Finally,
by using the regression coe�cients of the Cox model, we can easily assess the
relative risk of each covariate.

Two model assumptions must be satis�ed for Cox model. The �rst one
is called log-linearity, that is to say that the hazard ratio must be a linear
function of a numeric covariate on the log-scale. The other one is proportional
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2 CHAPTER 1. INTRODUCTION

hazard, which implies that the hazard ratio of two individuals must be a
constant and not depend on time. A number of methods have been developed
for checking the �t of Cox regression models for cohort data; cf. Klein and
Moeschberger (2003, chap 11). One option is to consider cumulative sums of
martingale-based residuals along the lines of Lin et al. (1993). By specifying
the cumulative residuals process properly, we can obtain the special case of
both partial-sum process and score process, which can be applied for the
checking of two model assumptions.

Sampling is a key step in the process of model checking. This is due to the fact
that by only looking at the observed curve of cumulative residuals process,
we cannot reach any conclusion about whether the model assumptions are
satis�ed or not. In other words, it is impossible to verify the randomness
of the process. However, if we can sample a great amount of replicates of
cumulative residuals, it will allow us to compare the observed curve with
the sampled ones. In the end, we may acquire a formal test and visualize
how many of the sampled processes are actually having a larger absolute
supremum value than the observed one.

The Cox regression model is not only used in cohort studies, but it has
also been extended to nested case-control studies. Generally, Cox regression
model is based on the fact that we have obtained information of the covari-
ates for all individuals. For large cohorts it may be extremely di�cult and
expensive to obtain such cohort data, especially considering that there might
be only a small proportion of individuals having experienced the event of
interest. To solve this problem, nested case-control studies turn out to be an
e�cient alternative to cohort studies. By using nested case-control methods,
we only need to choose a small number of controls at each event time. This
will reduce the workload of Cox regression greatly without missing much
information compared to the cohort data.

As a matter of fact, the methodology for model checking is much less de-
veloped when Cox's model is used to analyze nested case-control data. The
main reason for this is that the available data in a nested case-control study
do not allow for an easy generalization of the common goodness-of-�t meth-
ods that are developed for the full cohort. Therefore, the aim of the thesis
is to extend the cumulative residuals process of Lin et al. (1993) to nested
case-control data and to study its performance on real data sets as well as
on simulated data.

The outline of the thesis is as follow. In Chapter 2 we will �rst present the
German breast cancer study (GBCS) data that will be used for illustration
in Chapters 2 and 3. Then we will give some introductions about survival
analysis, counting processes and the Cox regression model. In Chapter 3,
we will discuss the model checking techniques for cohort studies. We will
start by introducing the two model assumptions, martingale residual pro-



3

cesses and martingale residuals. Then we will use GBCS data to illustrate
how the model checking using cumulative sums of martingale-based resid-
uals along the lines of Lin et al. (1993) is done for cohort data. Further,
nested case-control studies on a real data set will be discussed in Chapter 4,
it is an extension of cohort studies that follows a quite similar structure to
Chapter 3. We will start by giving a brief overview about the simple ran-
dom sampling and the counter-matched sampling methods. All formulations
regarding nested case-control data will be derived and referred to the cohort
in Chapter 3 for comparison. Later on we will use the Radiation and breast
cancer data for illustration, where both of two model assumptions will be
checked using cohort, nested case-control with simple random sampling and
counter-matched sampling respectively. In Chapter 5, we will run simulation
and study the e�ciency of model checking for nested case-control data. We
will explain how to simulate data from both a correct model and a wrong
model, followed by performing model checking for nested case-control data
in comparison with cohort data. Finally, in Chapter 6, we will summarize
our �ndings and have some further discussion about the results as well as
the problems that we have encountered.
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Chapter 2

Survival Analysis

The chapter is based on Sections 3.1, 3.2 and 4.1 in the book by Aalen, Borgan
and Gjessing (2008). In Section 2.1 we present data from the German breast
cancer study (GBCS), which is an example that we use for cohort data. In
Section 2.2 we give an introduction about survival analysis, including some
concepts, censoring and two important non-parametric estimators, followed
by Section 2.3, where we have a brief discussion about counting processes.
In Section 2.4 we focus on the Cox regression model. The model we obtain
for the GBCS study will be later used to illustrate model checking in the
next chapter. In the �nal section, we �nd an estimator for the cumulative
baseline hazard and show that how it can be used.

2.1 German breast cancer study example

We start o� by giving a brief overview about the data from German breast
cancer study (GBCS) group, provided by Sauerbrei and Royston (1999).
These data have been used to demonstrate methods for building prognostic
models. From July 1984 to December 1989, there were in total 720 patients
with primary node positive breast cancer recruited for this breast cancer
study, in which 686 observations are accessible and valid. In the study,
patients were followed from the date of breast cancer diagnosis until censoring
or dying from breast cancer. The total number of events, or the number of
deaths due to breast cancer, is 171. A summary of the data is shown in Table
2.1.

There are a total of 8 covariates on the list, with 5 of them being numeric,
including Age at diagnosis, Tumor size, Number of positive lymph nodes,
Number of progesterone receptors and Number of Estrogen Receptors, while
the remaining are categorical covariates which include Menopausal Status,
Hormone Therapy and Tumor Grade.

5
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Table 2.1: Summary of German breast cancer study data

Covariate mean(sd) Number Percentage

Age at Diagnosis 53.15(10.12)
Tumor Size 29.33(14.30)
Number of positive lymph nodes 5.01(5.48)
Number of progesterone receptors 110.00(202.33)
Number of Estrogen Receptors 96.25(153.08)
Menopausal Status
Yes 290 42.3%
No 396 57.7%
Hormone Therapy
Yes 440 64.1%
No 246 35.9%
Tumor Grade
Grade 1 81 11.8%
Grade 2 444 64.8%
Grade 3 161 23.5%

2.2 An overview of survival analysis

2.2.1 Concepts

Survival analysis is a collection of statistical methods for studying survival
times. In present-day society, survival analysis �nds a number of applications
in many di�erent �elds, especially in biology, insurance, medicine, sociology,
reliability engineering and economics. A survival time may be the lifetime of
an individual. Some other examples of survival times are:

• Period from surgical resection to death.

• Period from disease remission to relapse.

• Period from smoking to lung cancer.

• Duration from graduation to employment.

• Time from driving to car accident.

To be more general, a survival time is the time from an initial event to an
endpoint where the event of interest occurs. For illustration purpose, here we
take the German breast cancer study (GBCS) as an example. In this context,
survival times are from the very times when individuals were diagnosed of
their own breast cancer to they meet their deaths.
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The survival function S(t), which gives the probability that an individual has
not experienced the event of interest by time t, can be written in the form of

S(t) = P (T > t),

where T is a continuous random variable which indicates the survival time.
This implies that the survival function S(t) has a starting value of 1 and then
it will decrease over time, and �nally approach zero or a positive value as t
goes to in�nity.

The hazard rate α(t), which is de�ned by a conditional probability, can be
written as

α(t) = lim
∆t→0

1

∆t
P (t ≤ T < t+∆t|T ≥ t).

Note that α(t)dt indicates the probability that the event will happen before
time t + dt, given that it has not happened before time t. The hazard rate
function is a bit more complex than the survival function, since the curve
can be rising, dropping or even �uctuating as time goes by. The cumulative
hazard rate is given by

A(t) =

∫ t

0

α(s)ds.

The survival function and the hazard rate have a relation as

A′(t) = α(t) = −S ′(t)

S(t)
= − d

dt
logS(t). (2.1)

Notice that by the de�nition of the survival function we have S(0)=1, so by
integrating on both sides of (2.1) we obtain that

S(t) = exp

{
−
∫ t

0

α(s)ds

}
.

2.2.2 Censoring

In practice, due to closure of study, we will not be able to observe all survival
times. In some cases we will only know that the survival time of an individual
exceeds the follow-up time at closure. Such survival times are said to be
censored. Observations can be censored for various reasons, except the study
termination as we have mentioned. It might also be caused by withdrawal of
participants as well as observation ceases. But either way, the survival times
of those who have not experienced the event of interest by the end of the
study will be censored, which is called right-censoring.

By taking the German breast cancer study (GBCS) as an example, there are
in total 686 patients involved in the study, out of which the survival times of
515 patients are censored. Generally speaking, being unable to observe the
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event of interest is the top reason for censoring. In this case, we are mainly
interested in the patients dying from breast cancer, thus for those who were
still alive by the end of the study and those who died from other causes, their
survival times will be censored. Beyond that, being unable to track down the
status of the participants might be another reason for the censoring of obser-
vations, as it is quite often that for some reasons participants suddenly want
to drop out of the study, or they somehow lose contact with the researchers
during the course of the study.

We will now look more formally at censoring. We assume that we have
uncensored, independent survival times T 0

1 , ...T
0
n for n individuals, and let

αi(t) be the hazard rate of the i-th individual. Then what we observe is a

right-censored survival time T̃i together with the indicator Di, where Di = 1
if T̃i = T 0

i and Di = 0 if T̃i < T 0
i . Thus Di = 1 if we observe the real survival

time and Di = 0 if we observe the censored survival time. We assume
that censoring is independent. This means that individuals who have not
experienced the event of interest or been censored at time t should have the
same probability of experiencing the event in a short time interval [t, t +
dt) as in the situation without censoring. Hence the independent censoring
assumption can be written as

P (t ≤ T̃i < t+ dt,Di = 1|T̃i ≥ t, past) = P (t ≤ T 0
i < t+ dt|T 0

i ≥ t).

2.2.3 Kaplan-Meier and Nelson-Aalen estimator

We here assume that all the individuals have the same hazard, i.e. αi(t) =
α(t) for all i. The Nelson-Aalen estimator is a non-parametric estimator for
estimating the cumulative hazard rate function from censored data. It is a
sum over the observed survival times T1 < T2 < ... (i.e. the T̃i with Di = 1
in increasing order) given by

Â(t) =
∑
Tj≤t

1

Y (Tj)
,

where Y (t) is the number of individuals at risk just before time t. It can be
shown that the variance of the Nelson-Aalen estimator can be estimated by

σ̂2(t) =
∑
Tj≤t

1

Y (Tj)2
.

The Kaplan-Meier estimator is the non-parametric maximum likelihood es-
timate of the survival function from lifetime data. It takes a form of

Ŝ(t) =
∏
Tj≤t

{
1− 1

Y (Tj)

}
.
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Figure 2.1: Nelson-Aalen and Kaplan-Meier plots for the breast cancer pa-
tients according to tumor grade (upper panel) and number of positive lymph
nodes(lower panel)

The variance of the Kaplan-Meier estimator can by estimated by using the
Greenwood's formula, which takes the form

τ̂ 2(t) = Ŝ(t)2
∑
Tj≤t

1

Y (Tj) {Y (Tj)− 1}
.

By using the German breast cancer study (GBCS) data, Figure 2.1 shows
the Nelson-Aalen and Kaplan-Meier plots for the time from breast cancer
diagnosis to death. The �rst plot gives Nelson-Aalen estimates for cumula-
tive hazard of death for patients in di�erent tumor grades, with the upper
curve being the highest grade and the lower curve being lowest. By looking
at the slopes of the Nelson-Aalen plot we observe that the hazard rate for
patients with high tumor grades is larger than those with low grades, which
indicates that for high tumor grades patients, death from the breast cancer
will takes place earlier and at a higher rate. We also see that the Nelson-
Aalen plots are fairly linear, corresponding to constant hazards. From the
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Kaplan-Meier plot, we can see that low tumor grade patients have a higher
survival probability than high tumor grade patients. More speci�cally, the
estimated survival probabilities for tumor grade 1 and 2 patients three years
after breast cancer are 0.938 and 0.843 respectively. But when it comes to
tumor grade 3 patients, however, the corresponding estimate is only 0.711.

To do a similar study of marginal e�ect of number of positive lymph nodes,
we �rst use the Nelson-Aalen estimator. It can be clearly seen from Figure
2.1 that the hazard rate of patients with more than 10 nodes is stably at
a high level. While for the patients with less than 3 nodes, they seem to
be living fairly well in the �rst two years, after which their hazard rate is
kept at a low level until the end of the study. In conclusion, it shows that
patients with larger number of positive lymph nodes are much more likely to
experience death from breast cancer. Finally, the Kaplan-Meier plot indicates
that the lower number of nodes that the patients have, the higher survival
probability they will have. Indeed, by the end of the study, the estimated
survival probability for patients with less than 3 nodes, which is 0.797, is
almost three times as large as that of patients group with 10 nodes and
above (0.277).

2.3 Counting processes

A counting process records events that are occurring over time. Some exam-
ples of such events contain:

• Catching a cold.

• Going to the gym.

• Increasing of food price.

• Running into an old friend on the street.

• Replacing the batteries of the TV remote control.

Let Ni(t) be a counting process which counts the observed occurrences of the
event of interest for individual i in the time interval [0, t]. From censored
survival data, the counting process for individual i can be given as

Ni(t) = I(T̃i ≤ t,Di = 1), (2.2)

where T̃i indicates the right-censored survival time for individual i, while
Di = 1 is an indicator of observing the real survival time. Now we consider
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the aggregated counting process, which is the sum of the individual counting
processes. Thus it takes the form of

N.(t) =
n∑

i=1

Ni(t) =
n∑

i=1

I(T̃i ≤ t,Di = 1).

The intensity process of Ni(t) is denoted by λi(t), and can be written as

λi(t)dt = P (dNi(t) = 1|past),

where dNi(t) is the increment of Ni(t) in [t, t+ dt). Based on survival data,
λi(t) for the counting process takes the form

λi(t) = αi(t)Yi(t),

where
Yi(t) = I

{
T̃i ≥ t

}
.

We introduce the process

Mi(t) = Ni(t)−
∫ t

0

λi(s)ds. (2.3)

Then we have that

E(dMi(t)|past) = E(dNi(t)− λi(t)dt|past)
= P (dNi(t) = 1|past)− λi(t)dt = 0 (2.4)

This shows that Mi(t) is a martingale.

2.4 Cox regression

2.4.1 Model methods

In survival analysis, a covariate is an explanatory variable which possibly in-
�uences the hazard rate of an individual. Covariates can be either of numeric
or categorical type, and in most circumstances there is more than one covari-
ate. For instance, recall the German breast cancer study (GBCS) from Table
2.1, there are many covariates which turn out to be having a huge impact on
the hazard rate of individuals. In order to assess the e�ect of covariates, we
want to relate the hazard of an individual to its covariates.

Assume that the vector of covariates xi = (xi1, ...xip)
T for individual i is

related to the hazard rate α(t|xi) of the individual, and it is in the form of

α(t|xi) = α0(t)r(β,xi), (2.5)
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where r(β,xi) is a relative risk function with β = (β1, ...,βp)
T being the vec-

tor of regression coe�cients and α0(t) denotes a baseline hazard rate. Notice
that when xi = 0 = (0, ..., 0)T , we have r(β,0) = 1. We will throughout
consider the relative risk function

r(β,xi) = exp
{
βTxi

}
corresponding to Cox's regression model. Then the hazard ratio of two indi-
viduals becomes

α(t|x2)

α(t|x1)
=

α0(t) exp
{
βTx2

}
α0(t) exp

{
βTx1

} =
exp

{
βTx2

}
exp

{
βTx1

} .
If x1 and x2 are the same except that x2j = x1j + 1, then the hazard ratio
becomes

α(t|x2)

α(t|x1)
= exp

{
βT (x2 − x1)

}
= eβj ,

where eβj denotes the hazard rate ratio, or the relative risk of the jth co-
variate. De�ne Yl(t) as an indicator which takes the value of 1 if individ-
ual l is at risk just before time t and otherwise takes the value 0. Then
Rj = {l|Yl(Tj) = 1} is the risk set at Tj. Let ij further be the individual who
experiences an event at time Tj. Then the partial likelihood for β is given as

L(β) =
∏
Tj

r(β,xij)∑
l∈Rj

r(β,xl)
. (2.6)

The maximum partial likelihood estimator β̂ is the value of β that maximizes
L(β). Notice that β̂ is approximately multivariate normally distributed
around β, and the covariance matrix can be estimated by I(β̂)−1, where

I(β) =
{
− ∂2

∂βh∂βj
logL(β)

}
.

For testing the null hypothesis β = β0, where typically β0 = 0, there are
three di�erent types of test statistics that we can use:

• The likelihood ratio test statistic:

χ2
LR = 2

{
logL(β̂)− logL(β0)

}
• The Wald test statistic:

χ2
W = (β̂ − β0)

T I(β̂)(β̂ − β0)

• The score test statistic:

χ2
SC = U(β0)

T I(β0)
−1U(β0)

where U(β) = ∂
∂β

logL(β).

Notice that all three tests are asymptotically equivalent and approximately
χ2
p distributed under H0.
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Table 2.2: Cox regression analysis for the marginal e�ect of the tumor grade
as categorical covariates

Covariate β̂j Hazard ratio se(β̂j) z Pr(>|z|)
Tumor grade 2 1.24 3.46 0.42 2.96 0.003
Tumor grade 3 1.86 6.44 0.43 4.34 1.43e-05

2.4.2 The GBCS study

We are going to study the e�ect of some covariates using Cox regression for
the German breast cancer study (GBCS). As we mentioned before, there are
quite a lot of covariates. We start out by focusing on two of them. The tumor
grades are grouped into three di�erent levels, while the number of positive
lymph nodes is a numeric covariate. A Cox model with grade as the only
covariate has the breast cancer death rate for individual i of the form

α(t|xi) = α0(t) exp {β1xi1 + β2xi2} ,

where

xi1 =

{
1 if individual i has tumor grade 2

0 otherwise

xi2 =

{
1 if individual i has tumor grade 3

0 otherwise

From Table 2.2 we see that the estimated relative risk for tumor grade 2 is
exp(1.24)=3.46, therefore the hazard rate of this group is 246% larger than
Tumor grade 1 group, corresponding to a P-value of 0.3%. As what we have
expected, there is a clear di�erence between these two groups. Similarly we
observe that the hazard rate of Tumor grade 3 group is over 6 times larger
than Tumor grade 1 group, indicating a signi�cant di�erence.

Then we study the marginal e�ect of the number of positive lymph nodes.
If we group the lymph nodes into four groups, the breast cancer death rate
for individual i is taking the form

α(t|xi) = α0(t) exp {β1xi1 + β2xi2 + β3xi3} ,

where

xi1 =

{
1 if individual i has 3-4 positive nodes

0 otherwise

xi2 =

{
1 if individual i has 5-9 positive nodes

0 otherwise
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Table 2.3: Cox regression analysis for the marginal e�ect of positive lymph
nodes as categorical covariates

Covariate β̂j Hazard ratio se(β̂j) z Pr(>|z|)
Nodes number 3-4 0.58 1.78 0.24 2.44 0.015
Nodes number 5-9 1.04 2.84 0.21 4.88 1.08e-06
Nodes number 10 and above 1.70 5.50 0.21 8.02 9.99e-16

Table 2.4: Cox regression analysis for the marginal e�ect of positive lymph
nodes as numeric covariates

Covariate β̂j Hazard ratio se(β̂j) z Pr(>|z|)
Positive lymph nodes 0.068 1.07 0.008 8.20 2.22e-16

xi3 =

{
1 if individual i has 10 or more positive nodes

0 otherwise

According to Table 2.3, when it comes to the number of positive lymph nodes,
the estimated relative risks are 1.78, 2.84 and 5.50, indicating that the hazard
rate of 3-4 nodes, 5-9 nodes and 10 nodes and above groups exceed the below
2 nodes group by 78%, 184% and 450% respectively. Besides, the P-values
for all of the three groups are quite small, which also proves this signi�cant
di�erence. In conclusion, the tumor grade and number of positive nodes are
both highly e�ective covariates for this study. Moreover, we �nd that the
Cox regression analysis results are fairly consistent with the previous analysis
that we did using the Kaplan-Meier and Nelson-Aalen estimators.

To illustrate the di�erence between categorical and numeric covariates, we
now do a Cox regression analysis with nodes as a numeric covariate. Accord-
ing to the result given in Table 2.4, we can clearly see that positive lymph
nodes will cause the hazard rate to rise. A Cox regression �t with log base 2-
transformed positive lymph nodes as numeric covariates has also been done,
as in Table 2.5. It turns out we obtain a quite similar result, corresponding
to a hazard ratio of 1.57 and fairly signi�cant p-value, that positive lymph
nodes will trigger a higher hazard rate.

Finally, we will �t a multivariate Cox regression model with all covariates
taken into account and without grouping the numeric covariates. We �rst

Table 2.5: Cox regression analysis for the marginal e�ect of log base 2-
transformed positive lymph nodes as numeric covariates

Covariate β̂j Hazard ratio se(β̂j) z Pr(>|z|)
log(Positive lymph nodes) 0.45 1.57 0.057 7.88 3.22e-15
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Table 2.6: Cox regression analysis for all covariates

Covariate β̂j Hazard ratio se(β̂j) z Pr(>|z|)
Age at diagnosis 0.01 1.01 0.01 0.56 0.57
No menopause 0.09 1.10 0.25 0.36 0.72
No hormone -0.27 0.76 0.17 -1.59 0.11
Tumor size 0.01 1.01 0.00 2.73 0.006
Tumor grade 2 0.78 2.17 0.43 1.82 0.069
Tumor grade 3 1.13 3.09 0.44 2.55 0.011
Positive lymph nodes 0.05 1.05 0.01 5.50 3.84e-08
Progesterone receptors -0.01 0.99 0.00 -4.49 7.00e-06
Estrogen Receptors 0.00 1.00 0.00 -0.47 0.64

consider the case when no transformation is applied. The result is given
in Table 2.6. We can see that in the multivariate Cox regression model
there are many insigni�cant covariates which need to be removed to get the
best model. At this point, we will reduce those non-signi�cant covariates
one by one, starting from the covariate "Menopause", as it has a P-value
of 0.72 which indicates a high insigni�cance. Then we �t the model with
the remaining covariates, now "Estrogen Receptors" becomes the most non-
signi�cant covariate, corresponding to a P-value of 0.64. So we remove this
covariate and repeat this process until all the covariates irrelevant to the Cox
model are removed. The �nal Cox regression model is shown in Table 2.7,
with only three e�ective covariates: Tumor size, Positive lymph nodes, and
Progesterone receptors, where the �rst two will increase the hazard rate.

Then we do Cox regression �t with log-transformation on some covariates.
The numeric covariates are Tumor size, Positive lymph nodes, Progesterone
receptors and Estrogen Receptors. These have all been log base 2-transformed.
Notice that one has been added to both Progesterone receptors and Estrogen
Receptors such that their values are non-zero before applying the log trans-
formation. According to Table 2.8 and 2.9, the result is slightly di�erent
compared with non-transformation. In this case, the �nal model ends up
in three signi�cant covariates: Hormone, Positive lymph nodes and Proges-
terone receptor. It implies that both hormone therapy experience and high
number of positive lymph nodes will cause the hazard rate to rise. On the
contrary, the higher number of progesterone receptors that patients have, the
more likely they will be able to survive. Besides, it is necessary to make clear
that we do not check model assumptions at this stage, as this will be done
in later sections.



16 CHAPTER 2. SURVIVAL ANALYSIS

Table 2.7: Cox regression analysis for the best model

Covariate β̂j Hazard ratio se(β̂j) z Pr(>|z|)
Tumor size 0.01 1.01 0.005 2.94 0.003
Positive lymph nodes 0.05 1.06 0.009 5.65 1.57e-08
Progesterone receptors -0.006 0.99 0.001 -5.39 6.99e-08

Table 2.8: Cox regression analysis for all covariates with log-transformation

Covariate β̂j Hazard ratio se(β̂j) z Pr(>|z|)
Age at diagnosis 0.01 1.01 0.01 0.53 0.60
No menopause 0.07 1.07 0.25 0.29 0.77
No hormone -0.36 0.70 0.17 -2.1 0.035
Log(Tumor size) 0.20 1.22 0.12 1.62 0.11
Tumor grade 2 0.66 1.93 0.43 1.54 0.12
Tumor grade 3 0.88 2.42 0.45 1.97 0.049
Log(Positive lymph nodes) 0.37 1.45 0.06 6.18 6.29e-10
Log(Progesterone receptors) -0.19 0.83 0.04 -5.09 3.60e-07
Log(Estrogen Receptors) 0.00 1.00 0.04 0.01 0.99

Table 2.9: Cox regression analysis for the best model with log-transformation

Covariate β̂j Hazard ratio se(β̂j) z Pr(>|z|)
No hormone -0.36 0.69 0.16 -2.22 0.027
Log(Positive lymph nodes) 0.41 1.51 0.06 7.36 1.84e-13
Log(Progesterone receptors) -0.21 0.81 0.03 -7.78 7.11e-15
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2.5 Estimation of cumulative baseline hazard

In order to obtain an estimator for the cumulative baseline hazard A0(t) =∫ t

0
α0(u)du, we introduce the aggregated counting process

N.(t) =
n∑

l=1

Nl(t).

This has intensity process given by

λ.(t) =

(
n∑

l=1

Yl(t)r(β,xl)

)
α0(t).

By using a Nelson-Aalen type estimator, we �nd that the cumulative baseline
hazard can be estimated by

Â0(t) =

∫ t

0

dN.(u)∑n
l=1 Yl(u)r(β̂,xl)

=
∑
Tj≤t

1∑
l∈Rj

r(β̂,xl)
. (2.7)

This estimator is often denoted as the Breslow estimator. The cumulative
hazard for an individual with a given covariate vector x0 can be written as

A(t|x0) =

∫ t

0

α(u|x0)du = r(β,x0)A0(u),

which can be estimated by

Â(t|x0) = r(β̂,x0)Â(t).

The corresponding survival function takes the form

S(t|x0) =π
u≤t

{1− dA(u|x0)} .

The estimator is given by

Ŝ(t|x0) =π
u≤t

{
1− dÂ(u|x0)

}
=
∏
Tj≤t

{
1−△Â(Tj|x0)

}
,

which is nearly equivalent to the following estimator

Ŝ(t|x0) = exp
{
−Â(t|x0)

}
.

For illustration we will apply the above estimators for data from the German
breast cancer study (GBCS). We then consider the model with two categori-
cal covariates: Hormone Therapy status and Tumor Grade. The plots of the
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Figure 2.2: Estimated cumulative hazards curves for the breast cancer pa-
tients according to Hormone Therapy status and tumor grades
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Figure 2.3: Estimated survival curves for the breast cancer patients according
to Hormone Therapy status and tumor grades
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Figure 2.4: Estimated cumulative hazards curves for the breast cancer pa-
tients according to Hormone Therapy status, Positive lymph nodes and Pro-
gesterone receptors with log-transformation

cumulative hazards and survival curves for these covariates combinations are
shown in Figure 2.2 and Figure 2.3.

From the survival curves in Figure 2.3 we can see that the probability of
breast cancer patients with no Hormone Therapy and tumor grade 1 to sur-
vive 7 years after diagnosis is 81.2%, which is the highest one among these
four combinations. When it comes to those patients with Hormone Therapy
and tumor grade 3, however, the survival probability is only 32.8%. Finally,
the survival probabilities of the other two combinations of covariates are
77.2% and 40.9% respectively.

The cumulative hazards plots in Figure 2.2 indicates a similar result. More-
over, when covariates Hormone Therapy and Tumor grade are �tted together
for Cox regression model, the Tumor grade is having a more decisive role on
survival rate. Beyond that, we can observe that the Hormone Therapy sta-
tus shows a more signi�cant impact on survival rate in larger tumor grade
categories.

It is important to point out that we have already obtained a �nal model with
log base 2-transformed numbers. In the continuation of this section we will
use this model for further analysis. Recall that it is �tted by three covariates:
Hormone, Positive lymph nodes and Progesterone receptors. The plots are
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Figure 2.5: Estimated survival curves for the breast cancer patients according
to Hormone Therapy status, Positive lymph nodes and Progesterone recep-
tors with log-transformation

shown in Figure 2.4 and Figure 2.5, where original value 32 and 2 are used
for representing large and small number of positive lymph nodes, while 255
and 15 are for large and small number of progesterone receptors respectively.
Figure 2.5 indicates that patients with Hormone Therapy, a large number
of Positive lymph nodes and a small number of Progesterone receptors will
have the lowest survival rate which is even less than 7%, while the opposite
situation will increase the survival rate up to over 86%.

To summarize, so far we have covered some basic concepts in survival anal-
ysis, counting process and Cox model, combined with detailed illustrations
using cohort data. Consequently we are able to obtain the best Cox model
and study the e�ect of the covariates on the survival probabilities. Further,
it is important to check if both of the two assumptions of Cox model are sat-
is�ed. So in the next chapter we will discuss the model checking techniques
and demonstrate how they can be used for cohort studies.



Chapter 3

Model checking for cohort studies

The chapter is based on Section 4.1 in the book by Aalen, Borgan and Gjess-
ing (2008) and the paper by Lin et al (1993). In Section 3.1 we give a brief
overview about the two basic model assumptions in the Cox model. Then we
continue with Section 3.2, where the martingale residual processes and mar-
tingale residuals are introduced. In Section 3.3 we discuss cumulative sums
based on the martingale residual processes, which is a very useful model
checking technique for cohort studies. Further we divide the process that
we obtain in Section 3.3 into two special cases: the partial-sum process and
the score process. They are discussed separately in Sections 3.4 and 3.5. In
the meantime, examples of model checking using GBCS data are shown for
illustration.

3.1 Model assumptions

In a Cox model, there are two basic assumptions which must be satis�ed,
namely log-linearity of numeric covariates and proportional hazards. Many
methods can be used for checking whether these assumptions are violated
when �tting a Cox model. In the following sections, we will consider some
such methods. To start with, we introduce the �rst key point of the Cox
model assumption, which is the log-linearity for the hazard. That is to say
that the hazard ratio must be a linear function of a numeric covariate on the
log-scale. Hence we have that

log {α(t|x)} = log {α0(t)}+ βTx. (3.1)

Another model assumption is called proportional hazard, which suggests that
the hazard rates for two individuals must be proportional. Therefore they
must satisfy that

α(t|x2)

α(t|x1)
= exp

{
βT (x2 − x1)

}
, (3.2)

21
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where the hazard rate ratio is a constant that depends on the covariates, but
not on time.

3.2 Martingale residual processes and martin-

gale residuals

Martingale residuals are of great importance for checking the �t of the Cox
model. In order to describe the martingale residuals processes, we write the
cumulative intensity process of the ith individual at time t as

Λi(t) =

∫ t

0

λi(u)du =

∫ t

0

Yi(u)r(β,xi)α0(u)du. (3.3)

From (2.7) we have that

Â0(t) =

∫ t

0

dN.(u)∑n
l=1 Yl(u)r(β̂,xl)

=
∑
Tj≤t

1∑
l∈Rj

r(β̂,xl)

By plugging the maximum partial likelihood estimator β̂ for β and dÂ0(u)
for α0(u)du into (3.3), it follows that

Λ̂i(t) =

∫ t

0

Yi(u)r(β̂,xi)dÂ0(u) =
∑
Tj≤t

Yi(Tj)r(β̂,xi)∑
l∈Rj

r(β̂,xl)

By (2.3), the martingale residual processes can be written as

M̂i(t) = Ni(t)− Λ̂i(t),

where Ni(t) is the observed number of events for the ith individual while

Λ̂i(t) represents the expected ones. We de�ne the upper time limit for the
study as τ . Then we can obtain the martingale residuals as

M̂i = M̂i(τ) = Ni(τ)− Λ̂i(τ).

3.3 Cumulative sums of martingale based resid-

uals

We are now starting to get to grips with the model checking techniques. The
idea is to group the martingale based residuals cumulatively according to
time or covariate components. In the paper by Lin et al (1993), it has been
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shown that the general formulation of the cumulative sums of the martingale
based residuals is given by the stochastic process

W (t,x) =
n∑

i=1

f(xi)I(xi ≤ x)M̂i(t). (3.4)

Here f(xi) is a smooth function, x = (x1, ...xp)
T is a p-component upper

limit, and xi ≤ x is an indication that all the components of the covariate
vector xi are less than or equal to the corresponding components of x.

The process (3.4) is a smooth function of the maximum partial likelihood

estimator β̂. According to the studies in Lin et al. (1993), formula (3.4), we
have that

W (t,x) ≈
n∑

i=1

∫ t

0

{f(xi)I(xi ≤ x)− g(β0, u,x)} dMi(u)

−
n∑

i=1

∫ t

0

Yi(u) exp
{
β0

Txi

}
f(xi)I(xi ≤ x)

{
xi −

S(1)(β0, u)

S(0)(β0, u)

}T

α0(u)du

×I(β0)
−1

n∑
i=1

∫ τ

0

{
xi −

S(1)(β0, u)

S(0)(β0, u)

}
dMi(u).

(3.5)

Here β0 is the true value of β, and

g(β, u,x) =

∑n
i=1 Yi(u) exp

{
βTxi

}
f(xi)I(xi ≤ x)

S(0)(β, u)
,

S(0)(β, u) =
n∑

l=1

Yl(u) exp
{
βTxl

}
,

and

S(1)(β, u) =
n∑

l=1

Yl(u)xl exp
{
βTxl

}
.

The point now is that when normalized by n− 1
2 , the process W (t,x) and

the right-hand side of (3.5) asymptotically have the same distribution when
the Cox model is correctly speci�ed. However, the problem is that we are
unable to track the distribution. Therefore Lin et al (1993) suggest to �nd
the distribution by simulation, i.e. one may simulate a certain number of
realizations of a process with similar large sample properties as the right-
hand side of (3.5). To this end, on the right-hand side of (3.5), we replace

β0 by β̂ and α0(u)du by dÂ0(u). Further we replace dMi(u) by GidNi(u),
where the Gi's are independent and standard normally distributed. Thus we
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obtain the process

Ŵ (t,x) =
n∑

i=1

∫ t

0

{
f(xi)I(xi ≤ x)− g(β̂, u,x)

}
GidNi(u)

−
n∑

i=1

∫ t

0

Yi(u) exp
{
β̂

T
xi

}
f(xi)I(xi ≤ x)

{
xi −

S(1)(β̂, u)

S(0)(β̂, u)

}T

dÂ0(u)

×I(β̂)−1

n∑
i=1

∫ τ

0

{
xi −

S(1)(β̂, u)

S(0)(β̂, u)

}
GidNi(u).

(3.6)

To simulate replicates from process (3.6), we should keep the observations
�xed and only sample the G′

is from N(0, 1).

3.4 Special case of partial-sum process

3.4.1 Observation of partial-sum process

We will look at two special cases of the process (3.4). They are selected
for checking the two assumptions of Section 3.1, namely (3.1) and (3.2),
where both have distributions that can be approximated simply through the
simulation of Gaussian processes given as (3.6). We start by introducing the
special case of partial-sum process. By inserting f(xi) = 1 in (3.4), when
t = τ denotes the maximum time limit for the study, xk = ∞ for all k ̸= j,
and xji denotes the jth component of covariate vector xi corresponding to
the ith individual, it follows that

Wj(x) =
n∑

i=1

I(xji ≤ x)M̂i. (3.7)

We will use the German breast cancer study (GBCS) data to illustrate the
use of the cumulative martingale residuals (3.7). Note that for each numeric
covariate we get one such process. In reference to the Cox model without log-
transformation that we obtained in Section 2.4.2, it contains three covariates:
tumor size, number of lymph nodes and number of positive progesterone re-
ceptors. The cumulative martingale residual plots are shown in Figure 3.1.
To start with, Figure 3.1 shows that the cumulative martingale residuals for
tumor size are �uctuating around 0, indicating that the estimated hazard
is quite close to the observation. When it comes to the number of positive
lymph nodes which are smaller than 8, the estimated hazards are exceeding
the observations to a great extent. In terms of the hazards for the number of
progesterone receptors lower than 60, however, they are seen to be underes-
timated. Therefore, it suggests that a log-transformation on some covariates
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Figure 3.1: Cumulative martingale residuals against Tumor size, number
of lymph nodes and number of positive progesterone receptors in the Cox
model with Tumor size, Positive lymph nodes, and Progesterone receptors as
covariates
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Figure 3.2: Cumulative martingale residuals against log base 2-transformed
number of positive lymph nodes and number of progesterone receptors in
the Cox model with Hormone Therapy, Log(Positive lymph nodes), and
Log(Progesterone receptors) as covariates
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is necessary, which leads to the cumulative martingale residual plot in Figure
3.2. As we have obtained earlier in Section 2.4.2, there are three covari-
ates involved in this second Cox model, including hormone therapy, positive
lymph nodes, and progesterone receptors. We can see that now the cumula-
tive martingale residuals, which correspond to the number of positive lymph
nodes and the number of progesterone receptors, are both �oating around 0
without huge deviations. Obviously when log-transformation is applied, the
model �t has been much improved. But we still have no knowledge about
how much improvement we have obtained. Thus at this stage it requires that
we compare the plots of (3.7) with plots that re�ect the randomness when
the model is correctly speci�ed.

3.4.2 Simulation of partial-sum process

In order to obtain the simulated partial-sum process, we specialize the process
(3.6) to the case in (3.7). For each individual in the survival data set we have

the observations T̃i, Di and xi �xed. We �rst specialize (3.6) to situation with
f(xi) = 1, t = τ and x = (∞,∞, ..., xj,∞, ...∞)T , then specialize to censored
survival data. We then have that

Ŵj(x) =
n∑

i=1

{
I(xij ≤ x)− g(β̂, T̃i, x)

}
GiDi

−
n∑

i=1

Yi(T̃i) exp
{
β̂

T
xi

}
I(xij ≤ x)

{
xi −

S(1)(β̂, T̃i)

S(0)(β̂, T̃i)

}T

Â0(T̃i)

×I(β̂)−1

n∑
i=1

{
xi −

S(1)(β̂, T̃i)

S(0)(β̂, T̃i)

}
GiDi.

(3.8)

In the continuation of the discussion above, we will in the following example
demonstrate how to use (3.7) and (3.8) for checking log-linearity. Recall the
Cox model we obtained from the German breast cancer study (GBCS) data.
We start by checking the non-transformation case, the plot is shown in Figure
3.3, which gives (3.7) together with replicates of (3.8). The three dark lines
shown in Figure 3.3 are the observed cumulative martingale residuals, which
are the same as Figure 3.1. Those in grey color are sets of simulations of
cumulative martingale residuals using (3.8). Looking closely, we �nd that
the observation curve with respect to tumor size is quite satisfactory as it
falls within the area representing the simulations. When it comes to the
other two covariates, we see that they both have some deviations in the far
left.

To acquire a formal test, we look at the supremum over x of the absolute
value of (3.7) and (3.8). To obtain the P-value of the test, we simulate N
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Figure 3.3: Simulation of cumulative martingale residuals against tumor size,
number of lymph nodes and number of positive progesterone receptors in
the Cox model with Tumor size, Positive lymph nodes, and Progesterone
receptors as covariates
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Figure 3.4: Simulation of cumulative martingale residuals against log base 2-
transformed number of positive lymph nodes and number of progesterone re-
ceptors in the Cox model with Hormone Therapy, Log(Positive lymph nodes),
and Log(Progesterone receptors) as covariates
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replicates of (3.8), and compute the P-value as

P =
1

N

N∑
n=1

I

{
sup
x

|Ŵ n
j (x)| ≥ sup

x
|Wj(x)|

}
,

where Ŵ n
j (x) denotes the nth replicate of (3.8) from the simulation, and I

takes value 1 if the expression in the bracket is true and otherwise 0. In
fact, the P-value calculates the percentage of simulated cumulative residuals
having a larger absolute supremum value than the observed one. For instance,
if the observation plot is �oating around 0 with a fairly small supremum, and
there are 98 out of 100 simulated replicates higher than that, then P-value
should be 0.98. This is a high P-value which indicates log-linearity.

We then go back to the GBCS example. To obtain an accurate computation
for P-value, here we simulate using N = 1000. The test statistic considered
is the supremum over x of |Wj(x)|. According to the summary statistics,
the P-value with respect to tumor size is 0.772, while for the two covariates:
number of lymph nodes and number of positive progesterone receptors, they
are fairly small (0.007 and 0.005 respectively), indicating that log-linearity
is not satis�ed and hence log transformation is quite necessary. So we re-
peat the same process by using log base 2-transformation on the number
of positive lymph nodes and number of progesterone receptors, the plot is
shown in Figure 3.4. We can see that the cumulative martingale residuals
are �uctuating around 0 along the y-axis, corresponding to the P-values of
0.992 and 0.293 respectively. In this log-transformation case the log-linearity
is satis�ed, thus we conclude that the two covariates should not be kept at
the original scale and that log-transformation improves the model.

Figure 3.3 and 3.4 can be obtained in R using the timereg package, which
was developed by Thomas.H.Scheike, see pages 202-204 in Martinussen and
Scheike (2006). Note that when we use the package, the Cox model should be
�tted by the command cox.aalen with all covariates as proportional e�ects,
and then simply use the cum.residuals command to simulate replicates of
cumulative residuals.

3.5 Special case of score process

3.5.1 Observation of score process

In this part we will look at the second special case of (3.4). Considering the
situation when f(xi) = xi and x = ∞, it leads to the special case which can
be written as

U(β̂, t) =
n∑

i=1

xiM̂i(t). (3.9)
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When specifying (3.9) to the jth covariate, we have that

Uj(β̂, t) =
n∑

i=1

xjiM̂i(t). (3.10)

Now we will explain how (3.9) is related to the score based on the partial
likelihood (2.6). For Cox's regression model, the score function can be written
as

U(β) =
∂

∂β
logL(β) =

n∑
i=1

∫ τ

0

{
xi −

S(1)(β, t)

S(0)(β, t)

}
dNi(t), (3.11)

where L(β) is the partial likelihood in (2.6). By replacing τ with t in the
expression (3.11), we obtain the score process

U(β, t) =
n∑

i=1

∫ t

0

{
xi −

S(1)(β, t)

S(0)(β, t)

}
dNi(t).

Now the expression (3.9) can be written as

n∑
i=1

xiM̂i(t) =
n∑

i=1

xi

{
Ni(t)− Λ̂i(t)

}

=
n∑

i=1


∫ t

0

xidNi(u)−
∫ t

0

xi

Yi(u) exp
{
β̂

T
xi

}
S(0)(β̂, u)

dN.(u)


=

n∑
i=1

∫ t

0

xidNi(u)−
∫ t

0

S(1)(β̂, u)

S(0)(β̂, u)
dN.(u)

=
n∑

i=1

∫ t

0

{
xi −

S(1)(β̂, u)

S(0)(β̂, u)

}
dNi(u).

(3.12)

Thus we have (3.9).

We make a score process plot of (3.9) to check for proportionality. For
illustration purpose we use the German breast cancer study (GBCS) data.
What we expect to see is that if the proportionality assumption is satis�ed,
the curve corresponding to each covariate should �uctuate around 0 over the
entire course of the study. Moreover, we should notice that by de�nition
of β̂, (3.10) will take the value zero when t = τ . We start with the non-
transformation case. As we can see in Figure 3.5 three covariates: Tumor
size, Positive lymph nodes and Progesterone receptors have been used for the
�t of the Cox model. Although the plots for the �rst two covariates look �ne,
when it comes to the Progesterone receptors, the score is declining rapidly
from the very start to the middle of the study period before going back to
around zero again in the 4th year. Then we check the score process for the
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Figure 3.5: Score process against time for tumor size, number of lymph
nodes and number of positive progesterone in the Cox model with Tumor
size, Positive lymph nodes, and Progesterone receptors as covariates
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Figure 3.6: Score process against time for hormone therapy, log base 2-
transformed number of positive lymph nodes and number of progesterone re-
ceptors in the Cox model with Hormone Therapy, Log(Positive lymph nodes),
and Log(Progesterone receptors) as covariates
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Cox model using Hormone therapy, Positive lymph nodes and Progesterone
receptors as covariates, where log based 2-transformation has been applied
on the number of positive lymph nodes and the number of progesterone
receptors. As shown in Figure 3.6, we can see that the plots corresponding
to hormone therapy and positive lymph nodes are quite smooth but the
negative score trend for progesterone receptors still exist. We will later use
simulated score process to have a further check of the non-proportional e�ect.
This is needed to know how the plots may look like when proportionality is
satis�ed.

It is worth mentioning that the commands for obtaining Figures 3.5 and 3.6
are based on the Schoenfeld residuals, see page 360 in Klen and Moeschberger
(2003). The Schoenfeld residuals are the expression in curly brackets in the

last line of (3.12). When given for all T̃i with Di = 1, by the command
residuals(coxfit, type = ”schoenfeld”), where coxfit represents the Cox
model �tted earlier, we can obtain the Schoenfeld residuals matrix. It is a
three-dimensional vector, with one component for each covariate in the Cox
model. Then by using the cumsum command we can sum up the Schoenfeld
residuals for T̃i ≤ t, and hence calculate the expression (3.12) with respect
to the jth covariate.

3.5.2 Simulation of score process

We will at this stage specialize the process (3.6) to the case in (3.9), so as to
obtain the simulated score process. For each individual in the survival data
set we have the observations T̃i, Di and xi �xed. We start by specializing (3.6)
to the case when f(xi) = xi and x = (∞,∞, ...,∞, ...∞)T , then specialize to
censored survival data. Then we obtain that

Û(β̂, t) =
n∑

i=1

{
xi −

S(1)(β̂, T̃i)

S(0)(β̂, T̃i)

}
GiDi

−
n∑

i=1

Yi(T̃i) exp
{
β̂

T
xi

}
xi

{
xi −

S(1)(β̂, T̃i)

S(0)(β̂, T̃i)

}T

Â0(T̃i)

×I(β̂)−1

n∑
i=1

{
xi −

S(1)(β̂, T̃i)

S(0)(β̂, T̃i)

}
GiDi.

(3.13)

Now we will have a check of proportionality using (3.13). Considering the
German breast cancer study (GBCS) data, when using the original data
without transformation, we have the plot shown in Figure 3.7, where both
the experimental and simulated processes are given. The dark lines are the
same as in Figure 3.5. The plot for tumor size shows that the observed score is
falling within the simulation process quite nicely. Moreover, the score process
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Figure 3.7: Simulation of score process against time for tumor size, number
of lymph nodes and number of positive progesterone in the Cox model with
Tumor size, Positive lymph nodes, and Progesterone receptors as covariates
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Figure 3.8: Simulation of score process against time for hormone therapy,
log base 2-transformed number of positive lymph nodes and number of pro-
gesterone receptors in the Cox model with Hormone Therapy, Log(Positive
lymph nodes), and Log(Progesterone receptors) as covariates
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for positive lymph nodes is at the lower edge of the simulated area. By looking
at the plot corresponding to the progesterone receptors, it seems like the score
is going extremely negative when comparing with the simulated score process,
especially during the study period between the 2nd year and the 3rd year,
indicating that the �t of the Cox model in this case is not so impressive.
Note that this is also seen by the summary statistics, where the P-values
of the three covariates: Tumor size, Positive lymph nodes and Progesterone
receptors, calculated by a simulation of 1000 replicates, are 0.762, 0.388 and
0.003 respectively. When applying log based 2-transformation on the number
of positive lymph nodes and the number of progesterone receptors, we have
the results given in Figure 3.8, where the dark lines are the same as in Figure
3.6. Speci�cally, the hormone therapy has a quite proportional e�ect as it
falls right in the middle area of the simulated data. The plot with respect to
positive lymph nodes is improved after log-transformation and is continually
�uctuating around 0. But clearly there is no improvement regarding the
covariate progesterone receptors since it still departs from the simulated score
process. The same result is re�ected from the summary statistics. For the
three covariates: Hormone Therapy, Positive lymph nodes and Progesterone
receptors, the corresponding P-values are 0.754, 0.781 and 0.007. Thus there
is an obvious non-proportional e�ect of progesterone receptors.

To conclude, we have illustrated how model checking is performed for cohort
studies by using cumulative sums of martingale-based residuals. Regarding
the GBCS data example, it turns out that the best model that we obtained in
Section 2.4.2 using the original data does not satisfy both the log-linearity as-
sumption and the proportionality assumption. As a matter of fact, the model
is improved after log based 2-transformation on the covariates, nonetheless,
through model checking it reveals that there is still one covariate that violates
the proportionality assumption. It needs to make clear that this thesis work
only focuses on model checking, therefore we will not work on �nding the
�nal Cox model for the GBCS data. So far we have seen that cohort stud-
ies are always required to process all the information of individuals, which
can be quite costly. In the continuation of our studies on model checking,
we will extend the cumulative sums of martingale-based residuals to nested
case-control data with two di�erent sampling methods. Then we will verify
if the model checking for nested case-control data is able to give a similar
result with that for cohort data.
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Chapter 4

Nested case-control studies

The chapter is based on the papers by Borgan and Samuelsen (2013) and
Borgan and Langholz (2007). In Section 4.1 we introduce two methods for
sampling of controls, followed by Section 4.2 where the counting process
formulation for nested case-control data is given. In Section 4.3 we obtain
the partial likelihood of regression coe�cients in Cox model for nested case-
control data. After that we present the Radiation and breast cancer data in
Section 4.4, which is an example for nested case-control data. Then in Section
4.5, the martingale residual processes are derived in a similar manner as in
Chapter 3. Section 4.6 is the material for showing how the program for
cohort can be tricked to compute for nested case-control simulation. Finally,
in Sections 4.7 and 4.8, we specialize the processes in order to check for the
two model assumptions using nested case-control data.

In previous chapters we have covered the methods appropriate for cohort
studies. Cohort studies are taking all the information of individuals at risk
into consideration, regardless of how many of them have actually experienced
the event of interest, which gives a complete and detailed analysis. But the
drawbacks are also obvious, cohort studies can be quite costly and time-
consuming to perform.

Nested case-control studies is an useful alternative to cohort studies. The
idea is that for each case when we observe an event of interest, instead of
using data for all the individuals at risk as we did in cohort studies, now we
only select a small number of controls. Still most of the information in the
cohort is captured. This way it saves us a lot of time and e�ort in terms
of data collection and checking, thereby making the studies much more cost
e�cient.

39
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4.1 Sampling of controls

There are two important sampling designs which can be used in nested case-
control studies. We start o� by introducing the simple random sampling.
Assume that we observe an event of interest at time t. Then by simple
random sampling we pick m − 1 controls from the remaining Y (t) − 1 indi-
viduals in the risk set R(t), where m is a number that needs to be de�ned.
It is typically so that m is chosen to take a small value like 2 or 4. Now
we have obtained a sampled risk set which is denoted by R̃(t). It contains
the observed case together with the m− 1 controls. Notice that controls are
selected independently and do not contain any information of each other at
the event times.

The other method for sampling of controls is called counter-matched sam-
pling, also known as strati�ed sampling. The idea is to use the information
available for everyone in the cohort to classify each individual at risk into one
of S distinct strata. We de�ne Rs(t) as the subset of R(t) that corresponds
to stratum s, where the number at risk just before time t is Ys(t) = |Rs(t)|.
If an event of interest is observed at time t in stratum s(i), we will sample
ms di�erent controls from Rs(t) where s ̸= s(i). However, we only sample
ms(i)− 1 controls from Rs(i)(t) because the sampled risk set already contains

the observed case. Note that we obtain a total number of m =
∑S

s=1ms

individuals in the sampled risk set. In addition, it needs to be pointed out
that the classi�cation into strata may depend on time, and the information
associated with the strati�cation should be known before time t.

4.2 Counting process formulation

We will introduce the counting process formulation for nested case-control
data. Recall the counting process in (2.2) as we have described previously.
When it comes to nested case-control studies, we de�ne a potential sampled
risk set as r, let t1 < t2 < ... < td be the observed event times and ij be the
corresponding cases. Then the counting process formulation can be written
as

Ni,r(t) =
∑
j≥1

I(tj ≤ t, ij = i, R̃(tj) = r). (4.1)

Note that Ni,r(t) in (4.1) counts how many times in [0, t] that individual i has
an event and r is the sampled risk set. Referring to the Cox model in (2.5),
the intensity processes λi,r(t) of the counting process (4.1) can be written as

λi,r(t) = Yi(t)αi(t)π(r|t, i) = Yi(t)α0(t) exp
{
βTxi

}
π(r|t, i), (4.2)

where π(r|t, i) de�nes the conditional probability of selecting r as the sampled
risk set, given all the information in the past and also that individual i has
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experienced the event at time t. For a set r ⊂ R(t) of size m with i ∈ r we
may for simple random sampling write

π(r|t, i) = 1(
Y (t)−1
m−1

) =
Y (t)

m

1(
Y (t)
m

) . (4.3)

In terms of counter-matched sampling, for the sampled risk set r ⊂ R(t) with
i ∈ r, and when the size of r ∩Rs(t) is ms for s = 1, ..., S, the probability of
selecting r as the sampled risk set is given as

π(r|t, i) =


(
Ys(i)(t)− 1

ms(i) − 1

) ∏
s̸=s(i)

(
Ys(t)

ms

)
−1

=
Ys(i)(t)

ms(i)

{
S∏

s=1

(
Ys(t)

ms

)}−1

.

(4.4)

Note that we for both sampling designs may write

π(r|t, i) = wi(t)π(r|t), (4.5)

where the weights wi(t) are the leading factor on the right-hand side of (4.3)
and (4.4). The second factor π(r|t) is a probability distribution over all
possible sampled risk sets r. In other words, for the simple random sampling
design it is de�ned that wi(t) =

Y (t)
m

, π(r|t) = 1

(Y (t)
m )

, while for the counter-

matched sampling design wi(t) =
Ys(i)(t)

ms(i)
, π(r|t) =

{∏S
s=1

(
Ys(t)
ms

)}−1

.

4.3 Partial likelihood

We will derive the partial likelihood for β when it comes to nested case-
control data. Let π (i|t, r) denote the conditional probability of individual
i experiencing the event at time t, given the past information and that an
event is observed in the sampled risk set r. Thus it takes the form

π (i|t, r) = λi,r(t)∑
k∈r

λk,r(t)
. (4.6)

We �rst look at the simple random sampling case. With reference to (4.2)
and (4.3) we further obtain that

π (i|t, r) =
Yi(t) exp

{
βTxi

}
π(r|t, i)∑

k∈r
Yk(t) exp

{
βTxk

}
π(r|t, k)

=
Yi(t) exp

{
βTxi

}∑
k∈r

Yk(t) exp
{
βTxk

} , (4.7)
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where the last line is derived since the sampling probabilities π(r|t, i) and
π(r|t, k) are equal and hence can be cancelled. By multiplying (4.7) over all
event times, cases and sampled risk sets, we can obtain the partial likelihood

Lncc(β) =
d∏

j=1

π
(
ij|tj, R̃(tj)

)
=

d∏
j=1

exp
{
βTxij

}∑
k∈R̃(tj)

exp
{
βTxk

} . (4.8)

Notice that the partial likelihood in (4.8) is similar to the one for cohort
data in (2.6). But we sum over individuals in the sampled risk set instead
of everyone of risk. Now we will obtain the partial likelihood for β when

controls are selected by counter-matched sampling. Let wi(t) =
Ys(i)(t)

ms(i)
, by

plugging (4.2) and (4.4) into (4.6), we have that

π (i|t, r) =
Yi(t) exp

{
βTxi

}
π(r|t, i)∑

k∈r
Yk(t) exp

{
βTxk

}
π(r|t, k)

=
Yi(t) exp

{
βTxi

}
wi(t)∑

k∈r
Yk(t) exp

{
βTxk

}
wk(t)

,

(4.9)

where the last line is obtained by cancelling the common factor
{∏S

s=1

(
Ys(t)
ms

)}−1

of the sampling probabilities π(r|t, i) and π(r|t, k). Then it follows that the
partial likelihood is given as

Lcm(β) =
d∏

j=1

π
(
ij|tj, R̃(tj)

)
=

d∏
j=1

exp
{
βTxij

}
wij(tj)∑

k∈R̃(tj)
exp

{
βTxk

}
wk(tj)

(4.10)

At this point, we can see that the partial likelihood expressions for sim-
ple random sampling (4.8) di�er from counter-matched sampling (4.10) in
terms of the weights. To be more speci�c, counter-matched sampling gives a
weighted partial likelihood. But for simple random sampling, weights have
been cancelled since they are equal for all individuals.

4.4 Radiation and breast cancer

Here we will introduce a data set that will be used to illustrate nested case-
control sampling. Data are obtained from two hospitals in Massachusetts,
where a total of 1720 female patients with tuberculosis were receiving medi-
cal treatment during the years 1930-1956 (Hrubec et al., 1989). We will focus
on the breast cancer risk due to radiation exposure. During the course of
tuberculosis therapy, patients were examined by di�erent medical tests with
a majority that involved X-ray �uoroscopies, which was a cause of the in-
crease in radiation doses. Indeed, 1022 patients had taken lung examinations
through X-ray �uoroscopies for 101 times in average, while the remaining 698
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Table 4.1: Cox regression analysis for the e�ect of the covariate Dose in
rad for cohort design, simple random sampling design, and counter-matched
sampling design with m-1=2 controls

Covariate β̂j se(β̂j) z Wald test Pr(>|z|)
cohort 0.296 0.103 2.881 8.3 0.004
simple random 0.348 0.165 2.115 4.47 0.034
counter-matching 0.274 0.124 2.204 4.86 0.028

patients were examined by other non-�uoroscopic means that resulted in no
radiation exposure. By the end of the study in 1980, there were 75 breast
cancer cases being observed. As a matter of fact, 54 of them were identi�ed
with radiation dose. The data reveal that breast cancer risk is related to the
dose in radiation, and more than expected cases of breast cancer occurred
among those who had experienced radiation exposure in their lives.

Even though all data in this example are available for a cohort study, we
would like to sample for illustration. The reason is that we observe a small
number of events versus a high number of individuals, which is a sign that
nested case-control sampling could have been a good design. At this point
we will select samples by applying both the simple random sampling method
and the counter-matched sampling method. Then by comparing them with
the Cox model �tted with cohort data, we will be able to see how good results
we may obtain from nested case-control studies. We �rst look at the simple
random sampling design. To �t the Cox model to nested case-control data,
we use Dose in radiation (mean=0.569) as the covariate. It is suggested that
m−1 = 2 controls per case should be chosen. Therefore, at each event time we
sample two controls from the remaining individuals in the risk set. Further,
we will describe how the counter-matching is performed. For obtaining strata
we will consider the covariate: Number of �uoroscopy examinations, which
has a mean 60.15. Three strata for the data are then created according to the
number of examinations. Speci�cally, the �rst stratum contains all with no
�uoroscopy examinations, followed by the second and third stratum having
1-149, 150 and more of examinations respectively. Also, we select m− 1 = 2
controls per case to �t the Cox model, which implies m1 = m2 = m3 = 1
for the three strata. In other words, we are not sampling any controls from
the stratum which the case belongs to, but only selecting one control from
each of the other two strata. Finally, Table 4.1 shows the Cox regression
analysis for the e�ect of the covariate Dose in rad for the cohort design, the
simple random sampling design, and the counter-matched sampling design.
By looking at the P-values we see that all three designs give a signi�cant e�ect
of dose. The estimated parameters obtained from the nested case-control
models are quite close to that from the cohort. Apparently, counter-matched
sampling shows an even better result than simple random sampling. The
standard errors of the two nested case-control estimates are about 60% and
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20% larger compared with using the cohort design. In conclusion, we �nd
that nested case-control designs can be fairly e�ective approaches.

4.5 Martingale residual processes

In this section we also for nested case-control studies would like to check the
assumptions of the Cox model. Furthermore, we will study how the methods
for the cohort based on martingale residual processes may be adapted to
nested case-control data. To start with, we will derive the martingale residual
processes for nested case-control data. Recall the counting process (4.1) and
intensity process (4.2) for nested case-control data. Further, we can write
the local square integrable martingales as

Mi,r(t) = Ni,r(t)− Λi,r(t), (4.11)

where

Λi,r(t) =

∫ t

0

λi,r(u)du =

∫ t

0

Yi(u)α0(u) exp
{
βTxi

}
π(r|u, i)du. (4.12)

With reference to (2.7) we introduce

Â0r(t) =
∑

tj≤t,R̃(tj)=r

1∑
l∈r

exp
{
β̂

T
xl

}
π(r|tj)wl(tj)

. (4.13)

Here the weights wl(tj) and the π(r|tj) are given by the decomposition (4.5).
Similar with what we did earlier for cohort data, by plugging the maximum
partial likelihood estimator β̂ for β and dÂ0r(t) for α0(u)du into (4.12), it
follows that

Λ̂i,r(t) =

∫ t

0

Yi(u) exp
{
β̂

T
xi

}
π(r|u)wi(u)dÂ0r(u)

=

∫ t

0

Yi(u) exp
{
β̂

T
xi

}
π(r|u)wi(u)∑

l∈r
exp

{
β̂

T
xl

}
π(r|u)wl(u)

dNr(u)

=
∑

tj≤t,R̃(tj)=r

Yi(tj) exp
{
β̂

T
xi

}
wi(tj)∑

l∈r
exp

{
β̂

T
xl

}
wl(tj)

.

(4.14)

Note that Nr(t) is the aggregation of the counting process (4.1) over all
individuals, which can be written as

Nr(t) =
∑
i∈r

Ni,r(t) =
∑
j≥1

I(tj ≤ t, R̃(tj) = r).
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According to (4.11), the martingale residual processes can be written as

M̂i,r(t) = Ni,r(t)− Λ̂i,r(t). (4.15)

It needs to be mentioned that since the majority of the martingale residual
processes (4.15) will end up in zero, in practice it might not be working so
impressive. However, it is an important building brick of the grouped mar-
tingale residual processes where we aggregate over individuals and sampled
risk sets.

We de�ne P as the set that contains all subsets of {1, 2, ..., n}, and let Pi =
{r : r ∈ P, i ∈ r} be the sets r of P that contain individual i. Referring
to the process (3.4), where we have discussed the cumulative sums of the
martingale-based residuals for cohort data, our objective now is to generalize
it to nested case-control data. Thus we introduce the process

W̃ (t,x) =
n∑

i=1

∑
r∈Pi

f(xi)I(xi ≤ x)M̂i,r(t)

=
n∑

i=1

∑
r∈Pi

f(xi)I(xi ≤ x)
{
Ni,r(t)− Λ̂i,r(t)

}
=

n∑
i=1

∑
r∈Pi

f(xi)I(xi ≤ x)Ni,r(t)−
n∑

i=1

∑
r∈Pi

f(xi)I(xi ≤ x)Λ̂i,r(t)

=
n∑

i=1

f(xi)I(xi ≤ x)Ni(t)−
∑
r∈P

∑
i∈r

f(xi)I(xi ≤ x)Λ̂i,r(t)

=
n∑

i=1

f(xi)I(xi ≤ x)Ni(t)

−
∑
tj≤t

∑
i∈R̃(tj)

f(xi)I(xi ≤ x) exp
{
β̂

T
xi

}
wi(tj)∑

l∈R̃(tj)
exp

{
β̂

T
xl

}
wl(tj)

.

(4.16)

It is worth noting that the process (3.4) for cohort data may also be written
as

W (t,x) =
n∑

i=1

f(xi)I(xi ≤ x)
{
Ni(t)− Λ̂i(t)

}
=

n∑
i=1

f(xi)I(xi ≤ x)Ni(t)−
n∑

i=1

f(xi)I(xi ≤ x)Λ̂i(t)

=
n∑

i=1

f(xi)I(xi ≤ x)Ni(t)−
∑
Tj≤t

∑
l∈Rj

f(xi)I(xi ≤ x) exp
{
β̂,xi

}
∑

l∈Rj
exp

{
β̂,xl

} .

(4.17)
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Therefore we see that the process (4.16) for nested case-control data is similar
to the process (3.4) for cohort data. To be more speci�c, the �rst term of
both processes which represent the observations are exactly the same, the
only di�erence lies in the second term where the nested case-control process
has a sampled risk set and weight.

The approximation (3.5) may also be generalized to nested case-control data.
Following the arguments in Section 5.2 of Borgan and Langholz (2007), we
may show that the process (4.16) may be approximated as follows (Borgan,
personal communication)

W̃ (t,x) ≈
∑
r∈P

∑
i∈r

∫ t

0

{f(xi)I(xi ≤ x)− gr(β0, u,x)} dMi,r(u)

−
∑
r∈P

∑
i∈r

∫ t

0

Yi(u) exp
{
β0

Txi

}
wi(u)f(xi)I(xi ≤ x)

{
xi −

S
(1)
r (β0, u)

S
(0)
r (β0, u)

}T

π(r|u)α0(u)du× I(β0)
−1
∑
r∈P

∑
i∈r

∫ τ

0

{
xi −

S
(1)
r (β0, u)

S
(0)
r (β0, u)

}
dMi,r(u).

(4.18)

Note that here I(β) is based on partial likelihood for nested case-control
data, and we have

gr(β, u,x) =

∑
l∈r

Yi(u) exp
{
βTxi

}
f(xi)I(xi ≤ x)wi(u)

S
(0)
r (β, u)

,

S(0)
r

(β, u) =
∑
l∈r

Yi(u) exp
{
βTxi

}
wi(u),

and

S(1)
r

(β, u) =
∑
l∈r

Yi(u)xi exp
{
βTxi

}
wi(u).

It should be noted that (4.18) is similar to (3.5) for cohort data. Further,
in order to �nd the distribution of the process (4.16), similarly to cohort

data, we need to simulate W̃ (t,x). We do that by keeping all observations

�xed, replacing β0 by β̂, π(r|u)α0(u)du by π(r|u)dÂ0r(u) and dMi,r(t) by
Gi,rdNi,r(t), where the Gi,r's are independent N(0, 1). This gives us processes

Ŵ ∗(t,x) that have the same distribution as W̃ (t,x), if the model is correctly
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speci�ed. This gives

Ŵ ∗(t,x) =
∑
r∈P

∑
i∈r

∫ t

0

{
f(xi)I(xi ≤ x)− gr(β̂, u,x)

}
Gi,rdNi,r(u)

−
∑
r∈P

∑
i∈r

∫ t

0

Yi(u) exp
{
β̂

T
xi

}
wi(u)f(xi)I(xi ≤ x)

{
xi −

S
(1)
r (β̂, u)

S
(0)
r (β̂, u)

}T

π(r|u)dÂ0r(u)× I(β̂)−1
∑
r∈P

∑
i∈r

∫ τ

0

{
xi −

S
(1)
r (β̂, u)

S
(0)
r (β̂, u)

}
Gi,rdNi,r(u).

(4.19)

Now we are able to see that the process (4.19) is quite similar to (3.6) for
cohort data.

4.6 Material on computing

It is generally acknowledged that Cox regression methodology does not make
any di�erence between one individual over a time period and di�erent indi-
viduals covering the same time period. Thus the thought is that the Cox
regression program for cohort data may be tricked to do estimation from
case-control set organized data. To achieve this we create a data set that
contains all the observed cases together with the sampled controls. We also
make it so that each case and its controls are "observed" over the same pe-
riod, which is a tiny time interval just before the event time. In this way all
individuals in the risk sets will only contribute at the risk set failure time.
Due to the similarity of (4.16) and (4.17) as we mentioned earlier, by using
case-control set organized data, we can plot the observations of cumulative
martingale residuals for nested case-control data exactly the same way as for
cohort. Further, we will run the simulation processes (4.23) by using timereg
program as we did for cohort data. To make sure that the trick really works,
we need to rewrite (3.6) along the lines of (4.17), denote t1, ..., td as event
times and i1, ...ij as cases, thus it gives that

Ŵ (t,x) =
∑
tj≤t

{
f(xij)I(xij ≤ x)− g(β̂, tj,x)

}
Gij

−
∑
tj≤t

exp
{
β̂

T
xij

}
f(xij)I(xij ≤ x)

{
xij −

S(1)(β̂, tj)

S(0)(β̂, tj)

}T
1

S(0)(β̂, tj)

×I(β̂)−1
∑
tj

{
xij −

S(1)(β̂, tj)

S(0)(β̂, tj)

}
Gij .

(4.20)
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Also rewrite (4.19) along the lines of (4.16), we obtain that

Ŵ ∗(t,x) =
∑
tj≤t

{
f(xij)I(xij ≤ x)− gR̃(tj)

(β̂, tj,x)
}
Gij ,R̃(tj)

−
∑
tj≤t

exp
{
β̂

T
xij

}
wij(tj)f(xij)I(xij ≤ x)

xij −
S
(1)

R̃(tj)
(β̂, tj)

S
(0)

R̃(tj)
(β̂, tj)


T

1

S
(0)

R̃(tj)
(β̂, tj)

× I(β̂)−1
∑
tj

xtj −
S
(1)

R̃(tj)
(β̂, tj)

S
(0)

R̃(tj)
(β̂, tj)

Gij ,R̃(tj)
.

(4.21)

By comparing the expressions (4.20) with (4.21), we reach the conclusion
that two processes are taking the same form. Therefore timereg program
should be an e�ective approach for nested case-control simulation.

4.7 Specialize to partial-sum process

4.7.1 Partial-sum process for nested case-control data

In this part we will look at methods for checking log-linearity similar to those
of Section 3.4. We will present a simpli�cation to censored survival data and
the simulation process. By inserting f(xi) = 1 in (4.16), denoting t = τ as
the maximum time limit for the study, xk = ∞ for all k ̸= j, and xji as the
jth component of covariate vector xi corresponding to the ith individual, we
obtain the process

W̃j(x) =
n∑

i=1

∑
r∈Pi

I(xji ≤ x)M̂i,r(t)

=
n∑

i=1

I(xji ≤ x)Ni(t)−
∑
tj≤t

∑
i∈R̃(tj)

I(xji ≤ x) exp
{
β̂

T
xi

}
wi(tj)∑

l∈R̃(tj)
exp

{
β̂

T
xl

}
wl(tj)

.

(4.22)

Further, we will specialize the process (4.19). For each individual in the
nested case-control data set we have the observations ti, Di and xi �xed.
We �rst specialize (4.19) to situation with f(xi) = 1, t = τ and x =
(∞,∞, ..., xj,∞, ...∞)T , then specialize to censored survival data. This gives
that
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Ŵ ∗
j (x) =

∑
r∈P

∑
i∈r

{
I(xij ≤ x)− g

r
(β̂, ti, x)

}
Gi,rDi

−
∑
r∈P

∑
i∈r

Yi(ti) exp
{
β̂

T
xi

}
wi(u)I(xij ≤ x)

{
xi −

S
(1)
r (β̂, ti)

S
(0)
r (β̂, ti)

}T

π(r|ti)Â0r(ti)× I(β̂)−1
∑
r∈P

∑
i∈r

{
xi −

S
(1)
r (β̂, ti)

S
(0)
r (β̂, ti)

}
Gi,rDi.

(4.23)

By comparison we can see that the expression in (4.23) resembles the one in
(3.8) for full cohort data.

4.7.2 Check of log-linearity

In order to check the log-linearity of the Cox model for nested case-control
data, we need to plot the cumulative martingale residuals processes using
(4.22) and (4.23). To illustration how this works we will be using the Radia-
tion and breast cancer data example. The Cox model is �tted by one covari-
ate: Dose in radiation. The cumulative martingale residuals plots for cohort,
nested case-control with simple random sampling and counter-matched sam-
pling using m − 1 = 2 controls are shown in Figure 4.1, it can be seen that
the plots for both two nested case-control designs resemble the one for the
cohort though slightly smoother. Also, in terms of dose in rad which is lower
than 1, the estimated hazards are higher than the observations. To compute
P-value, we simulate N = 1000 replicates, and the result is shown in Fig-
ure 4.2. The P-values corresponding to cohort, simple random design and
counter-matching design are 0.251, 0.426 and 0.201 respectively, which is an
indication that the log-linearity is satis�ed. Besides, we �nd that both two
nested case-control designs give a very close result to cohort design. Further-
more, by repeating the same process with m−1 = 8 and m−1 = 14 controls,
we obtain the Figures 4.3 and 4.4, with the P-value of the log-linearity test
given in Table 4.2, which indicates that in nested case-control design, the
log-linearity is still satis�ed. It is quite clear that the more controls that we
choose for the nested case-control design, the closer they will approach the
cohort, but in this case 2 controls are already e�ective enough.



50 CHAPTER 4. NESTED CASE-CONTROL STUDIES

0 1 2 3 4 5 6

−
10

−
5

0
5

10

cohort

Dose in rad

C
um

ul
at

iv
e 

m
ar

tin
ga

le
 r

es
id

ua
ls

0 1 2 3 4 5 6

−
10

−
5

0
5

10

simple random

Dose in rad

C
um

ul
at

iv
e 

m
ar

tin
ga

le
 r

es
id

ua
ls

0 1 2 3 4 5 6

−
10

−
5

0
5

10

counter−matching

Dose in rad

C
um

ul
at

iv
e 

m
ar

tin
ga

le
 r

es
id

ua
ls

Figure 4.1: Cumulative martingale residuals against Dose in radiation in the
Cox model for cohort, nested case-control with simple random sampling and
counter-matched sampling using m− 1 = 2 controls

Table 4.2: The P-value of the log-linearity test of the Cox model �tted by
Dose in radiation for cohort design, simple random sampling design, and
counter-matched sampling design with di�erent number of controls

cohort 0.251
number of controls m− 1 = 2 m− 1 = 8 m− 1 = 14
simple random 0.426 0.226 0.284
counter-matching 0.201 0.371 0.310
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Figure 4.2: Simulation of cumulative martingale residuals against Dose in ra-
diation in the Cox model for cohort, nested case-control with simple random
sampling and counter-matched sampling using m− 1 = 2 controls
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Figure 4.3: Simulation of cumulative martingale residuals against Dose in ra-
diation in the Cox model for cohort, nested case-control with simple random
sampling and counter-matched sampling using m− 1 = 8 controls
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Figure 4.4: Simulation of cumulative martingale residuals against Dose in ra-
diation in the Cox model for cohort, nested case-control with simple random
sampling and counter-matched sampling using m− 1 = 14 controls
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4.8 Specialize to score process

4.8.1 Score process for nested case-control data

In the continuation of the model checking for nested case-control designs, we
will look at the specialization of (4.16) to the score process. Let f(xi) = xi

and x = ∞, we can obtain that

Ũ(β̂, t) =
n∑

i=1

∑
r∈Pi

xiM̂i,r(t)

=
n∑

i=1

xiNi(t)−
∑
tj≤t

∑
i∈R̃(tj)

xi exp
{
β̂

T
xi

}
wi(tj)∑

l∈R̃(tj)
exp

{
β̂

T
xl

}
wl(tj)

.

(4.24)

Then we specify (4.24) to the jth covariate, it follows that

Ũj(β̂, t) =
n∑

i=1

xjiNi(t)−
∑
tj≤t

∑
i∈R̃(tj)

xji exp
{
β̂

T
xi

}
wi(tj)∑

l∈R̃(tj)
exp

{
β̂

T
xl

}
wl(tj)

. (4.25)

It needs to be pointed out that (4.24) is related to the score based on the
partial likelihood of simple random sampling (4.8) and counter-matched sam-
pling (4.10). In a Cox's regression model, the score function for nested case-
control data can be expressed as

Ũ(β) =
∂

∂β
logLncc(β) =

∑
r∈P

∑
i∈r

∫ τ

0

{
xi −

S
(1)
r (β, u)

S
(0)
r (β, u)

}
dNi,r(u) (4.26)

By replacing τ with t in the expression (4.26), we obtain the score process

Ũ(β, t) =
∑
r∈P

∑
i∈r

∫ t

0

{
xi −

S
(1)
r (β, u)

S
(0)
r (β, u)

}
dNi,r(u)
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Also rewrite the expression (4.24) as

n∑
i=1

∑
r∈Pi

xiM̂i,r(t) =
n∑

i=1

∑
r∈Pi

xi

{
Ni,r(t)− Λ̂i,r(t)

}

=
∑
r∈P

∑
i∈r

∫ t

0

xidNi,r(u)−
∫ t

0

xi

Yi(u) exp
{
β̂

T
xi

}
π(r|u)wi(u)∑

l∈r
exp

{
β̂

T
xl

}
π(r|u)wl(u)

dN
r
(u)

=
∑
r∈P

∑
i∈r

∫ t

0

xidNi,r(u)−
∑
r∈P

∫ t

0

S
(1)
r (β̂, u)

S
(0)
r (β̂, u)

dNr(u)

=
∑
r∈P

∑
i∈r

∫ t

0

{
xi −

S
(1)
r (β̂, u)

S
(0)
r (β̂, u)

}
dNi,r(u).

(4.27)

Thus it can be seen that the score process (4.24) for nested case-control data
resembles the one for cohort data in (3.9).

4.8.2 Check of proportionality

In this following example we will illustrate how the score process plot of (4.24)
can be used to check for proportionality. Here we have the nested case-control
data obtained from the Radiation and breast cancer study, where only one
covariate: Dose in radiation has been used for the �t of the Cox model. The
observation of score process against time for cohort, nested case-control with
simple random sampling and counter-matched sampling using m − 1 = 2
controls is shown in Figure 4.5. We can see that the curves corresponding
to three designs are �uctuating around 0 in similar shapes over the entire
period, indicating that nested case-control designs have managed to capture
most of the information.

Note that the trick for obtaining the nested case-control plot of score pro-
cess is the same as we did earlier for the cumulative martingale residuals in
the �rst special case. When the organized case-control data set is created,
simply apply the commands for obtaining Figures 3.5 again to calculate the
Schoenfeld residuals, which is a one-dimensional vector representing the only
covariate of the Cox model.

According to the observation of score process plot, it seems like the results
obtained from all three designs are quite similar. But in order to check for
proportionality assumption, it is important to see the randomness of the
score process. Thus, we are going to run simulation to calculate P-values
and hence see if proportionality is satis�ed for one cohort design and both
nested case-control designs. To the end we specialize the process (4.19) to
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Table 4.3: The P-value of the proportionality test of the Cox model �tted
by Dose in radiation for cohort design, simple random sampling design, and
counter-matched sampling design with di�erent number of controls

cohort 0.588
number of controls m− 1 = 2 m− 1 = 8 m− 1 = 14
simple random 0.466 0.426 0.482
counter-matching 0.518 0.576 0.502

the case in (4.24). For each individual in the nested case-control data set we
have the observations ti, Di and xi �xed. We �rst specialize (4.19) to the
case when f(xi) = xi and x = (∞,∞, ...,∞, ...∞)T , then to the censored
survival data. This gives that

Û∗
j (β, t) =

∑
r∈P

∑
i∈r

{
xi −

S
(1)
r (β̂, ti)

S
(0)
r (β̂, ti)

}
Gi,rDi

−
∑
r∈P

∑
i∈r

Yi(ti) exp
{
β̂

T
xi

}
wi(u)xi

{
xi −

S
(1)
r (β̂, ti)

S
(0)
r (β̂, ti)

}T

π(r|ti)Â0r(ti)× I(β̂)−1
∑
r∈P

∑
i∈r

{
xi −

S
(1)
r (β̂, ti)

S
(0)
r (β̂, ti)

}
Gi,rDi.

(4.28)

The simulated score process plots are shown in Figure 4.6, where the up-
per panel corresponds to the full cohort while the lower two are for nested
case-control data with simple random sampling and counter-matched sam-
pling using 2 controls. The respective P-values for the plots are 0.588, 0.466
and 0.518. It is obvious that the result from both simple random sampling
and counter-matched sampling resemble the cohort, where counter-matching
gives closer result with cohort, thus the proportionality assumption is satis-
�ed. We repeat the process by adding more controls, and the plots are shown
in Figure 4.7 and 4.8. According to the plots and the P-values in Table 4.3,
we �nd that by selecting at least m−1 = 2 controls, the proportionality tests
for nested case-control data are able to give a fairly close result with cohort.

To this end, we have managed to extend the cumulative sums of martingale-
based residuals from cohort to nested case-control studies, and we have ex-
amined the result of model checking for nested case-control data with simple
sampling and counter-matched sampling. As expected they are fairly close
to cohort studies even by using a small number of controls. So far we have
only used one real data set for illustration. To make it more generalized,
in the following chapter we would like to observe the performance of model
checking for simulated nested case-control data, where the Cox models are
de�ned in di�erent forms as either good or wrong. Through various simula-
tion processes we will be able to have an extensive understanding of model
checking for nested case-control data.
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Figure 4.5: Score process against time for Dose in radiation in the Cox model
for cohort, nested case-control with simple random sampling and counter-
matched sampling using m− 1 = 2 controls
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Figure 4.6: Simulation of score process against time for Dose in radiation in
the Cox model for cohort, nested case-control with simple random sampling
and counter-matched sampling using m− 1 = 2 controls
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Figure 4.7: Simulation of score process against time for Dose in radiation in
the Cox model for cohort, nested case-control with simple random sampling
and counter-matched sampling using m− 1 = 8 controls
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Figure 4.8: Simulation of score process against time for Dose in radiation in
the Cox model for cohort, nested case-control with simple random sampling
and counter-matched sampling using m− 1 = 14 controls



Chapter 5

Nested case-control studies in

simulations

In Chapter 4 we have discussed nested case-control designs and model check-
ing techniques based on real data from the Radiation and breast cancer study.
In this chapter we are going to extend on that by simulating di�erent sit-
uations, where we can de�ne the distributions of covariates, hazard rates,
survival times and levels of censoring, etc. In this way we will see the overall
performance of model checking for nested case-control data and how it works
in practice. In Section 5.1 we look at check of the log-linearity for a good
model where data simulation method is shown, followed by model checking
results illustrated in details. In Section 5.2 we �rst simulate a non-linear
model, and then focus on checking the log-linearity for a wrong model. Fur-
ther, in Section 5.3 we move on to the check of the proportionality for a good
model by following a similar structure with Section 5.1. Finally, the check of
proportionality for a wrong model is discussed in the last section.

5.1 Check the log-linearity of a good model

5.1.1 Data simulation for a good model

In this simulation scenario, we select n = 2000 as the number of cohort
individuals, and two covariates x1, x2 are extracted for the �t of the Cox
model. Covariate x1 is a numeric type which is uniformly distributed on
(−1, 1), while x2 is binary and takes the values−1 or 1 with P = 0.5 such that
two numbers are in the same proportion. The hazard rate α(t|xi) is calculated
by (2.5), where xi = (xi1, xi2)

T , and the risk function is an exponential type.
We also choose the baseline hazard α0 as 1 and regression coe�cients as
β = (0.5, 0.5)T . Thus we obtain the simulation Cox model with covariates

61
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xi1 and xi2 for individual i that takes the form

α(t|xi) = exp {0.5xi1 + 0.5xi2} , (5.1)

where
xi1 ∼ U [−1, 1]

and

xi2 =

{
1 with probability 0.5

−1 with probability 0.5

Then we generate the survival time T 0
i and censoring time Ci by random

sampling from the exponential distribution with rate parameter α(t|xi) and
10 respectively, where α(t|xi) is the hazard rate calculated from (5.1). Fi-

nally we �nd the censored lifetime T̃i by selecting the minimum one between
survival time and censoring time, that is, T̃i = min(T 0

i , Ci). The reason why
we choose these rate parameter settings is because we want to keep the event
rate at around 10%. In addition we obtain the censoring indicator denoted
by Di = I(T̃i = T 0

i ), which takes value 1 if the event of interest has been
observed and otherwise 0 due to censoring.

5.1.2 Simple random sampling

We will use the simulation model (5.1) to plot the cumulative martingale
residuals against x1 for both the cohort and the nested case-control design
with simple random sampling of controls. We start with one simulation and
m−1 = 2 controls for simple random sampling. The result is shown in Figure
5.1. We can see that two plots are quite similar, and that the observed
cumulative martingale residuals are �uctuating around 0 and wrapped by
most of the simulated lines. We also obtain the P-values corresponding to
the two plots as 0.554 and 0.597 respectively. But at this stage we only have
one simulation of data. In order to evaluate the accuracy of model checking
for nested case-control data, we need to have more simulations where we can
�nd the distribution of the P-values and make comparison with full cohort.

We run 500 times of data simulation, and hence obtain the histograms of
P-values, as shown in Figure 5.2. We see that for both the cohort and
the nested case-control design with simple random sampling of controls, the
P-values are equally high and in the same distribution, indicating that log-
linearity is satis�ed. Further, we look at the e�ective signi�cance level, as
shown in Table 5.1, which indicates the proportion of P-values less than or
equal to 5%. It reveals that cohort and the simple random design are giving
a quite close result. But it needs to be pointed out that the approximations
of the P-values are not so perfect, since the number of P-values lower than
5% is too small, while in contrast those over 95% is too large. As a result
we may not get enough P-values below 5%. This indicates that the sampling
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Figure 5.1: One simulation of cumulative martingale residuals against x1 in
the good Cox model where β = (0.5, 0.5)T for cohort and nested case-control
data with simple random sampling using m− 1 = 2 controls

procedure does not manage to get the exact null distribution for the test
statistic, for in that case we would get uniform P-values when the model is
correctly speci�ed.

5.1.3 Counter-matched sampling

We will have a look at the performance of counter-matched sampling de-
sign. We start by applying the same simulation model (5.1) where x1 is the
variable of interest. Based on this we have the individuals strati�ed accord-
ing to x1 ≤ 0 or x1 > 0. Since x1 is uniformly distributed between -1 and
1, the number of individuals that belongs to the two strata should be ap-
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Figure 5.2: Histograms of P-values over 500 simulations of cumulative mar-
tingale residuals against x1 in the good Cox model where β = (0.5, 0.5)T

for cohort and nested case-control data with simple random sampling using
m− 1 = 1, m− 1 = 2, m− 1 = 4 controls
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Table 5.1: Proportion of P-values ≤ 5% over 500 simulations of cumulative
martingale residuals against x1 in the good Cox model where β = (0.5, 0.5)T

for cohort and nested case-control data with simple random sampling using
m− 1 = 1, m− 1 = 2, m− 1 = 4 controls

controls P-values≤ 5%
cohort 0.02
simple random m− 1 = 1 0.01
cohort 0.006
simple random m− 1 = 2 0.004
cohort 0.002
simple random m− 1 = 4 0.002

proximately the same. So we obtain the plots of the cumulative martingale
residuals against x1 for both the cohort and the counter-matching design in
Figure A.1 in the Appendix, where we do one simulation with m − 1 = 1
control for counter-matched sampling. Note that the upper plot represent-
ing cumulative martingale residuals for cohort is the same as that one in
Figure 5.1. As what we have expected, the two curves resemble each other.
The observed cumulative martingale residuals are within the area covered by
simulated lines. The P-values corresponding to the two plots are 0.520 and
0.472 respectively.

For evaluating the performance of model checking for using nested case-
control data with counter-matched sampling, we will run 500 simulations to
�nd the distribution of the P-values and then compare it with full cohort.
According to Figure A.2 in the Appendix, the P-values corresponding to
cohort and the nested case-control design with counter-matched sampling
of controls are almost identically distributed. Note that the P-values should
have been uniformly distributed when the model is correctly speci�ed. When
it comes to the e�ective signi�cance level, as in Table 5.2, we see that the
proportions of P-values less than or equal to 5% are quite small and even zero.
Although the log-linearity is satis�ed, the approximations of the P-values are
still not perfect and we do not get enough P-values below 5%.

5.2 Check the log-linearity of a wrong model

5.2.1 Data simulation for a wrong model

In the previous section we have shown that the Cox model checking for nested
case-control data works �ne when the simulated risk function satis�es log-
linearity. But we want to make sure that the model checking for nested
case-control is able to detect deviations from log-linearity. Then we need to
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Table 5.2: Proportion of P-values≤ 5% over 500 simulations of cumulative
martingale residuals against x1 in the good Cox model where β = (0.5, 0.5)T

for cohort and nested case-control data with counter-matched sampling using
m− 1 = 1, m− 1 = 3, m− 1 = 5 controls

controls P-values≤ 5%
cohort 0.002
counter-matching m− 1 = 1 0.002
cohort 0.000
counter-matching m− 1 = 3 0.004
cohort 0.000
counter-matching m− 1 = 4 0.000

simulate a non-linear risk function that ends up in a wrong model, and to
see if the failure still can be detected under the nested case-control design.
To obtain such a wrong model, it is suggested that we change the expression
(5.1) into a quadratic form with for example β = (0.1, 1.0, 0.5)T . Thus we
have

α(t|xi) = exp
{
0.1xi1 + 1.0x2

i1 + 0.5xi2

}
, (5.2)

where
xi1 ∼ U [−1, 1]

xi2 =

{
1 with probability 0.5

−1 with probability 0.5

We also try other values of β where the log-linear model fails in varying de-
grees. So we select the regression coe�cients (0.5, 0.8, 0.5)T and (0.8, 0.6, 0.8)T

for the hazard. Then we make a plot of the hazards (5.1) and (5.2) together
with these two hazards, as shown in Figure 5.3. We see that the hazard plot
of the correctly speci�ed model is a straight line on the log-scale, but the
hazards for the wrong models are obviously deviating from the straight line.
They are in parabolic shapes and hence non-linear.

5.2.2 Simple random sampling

We will now check the non-linearity of the Cox model for simulated nested
case-control data with simple random sampling. To begin with, we look at the
plot of cumulative martingale residuals with one only simulation. According
to Figure 5.4, for all Cox models with non-linear hazard settings, the log-
linearity seems to be violated since the supremums of the dark lines are higher
than most of the sampled grey lines.

Further, we will focus on the proportion of P-values below 5% to see if the
model checking for the simple random sampling design can disclose the result
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Figure 5.3: Plot of hazards (5.1) for the good model and three wrong models
on log-scale with regression coe�cients (0.1, 1.0, 0.5)T , (0.5, 0.8, 0.5)T and
(0.8, 0.6, 0.8)T

of non log-linearity. Figures 5.5, 5.6 and 5.7 give the histograms of P-values
with respect to three non-linear Cox models using di�erent number of con-
trols. The simple random design seems to be e�ective since the distributions
of the paired histograms are quite similar. Finally, from Table 5.3 we see
that in the cohort study the proportions of P-values below 5% are all greater
than 0.05. To be more speci�c, the �rst group accounts for the highest pro-
portion that is around 0.52, followed by the other two groups being around
0.16 and 0.07 respectively. When it comes to the simple random design, we
�nd that the wrong models can be detected as easily as for full cohort in the
�rst two groups of settings even with 1 control per case. For the last group
of simulations, however, due to the fact that the proportions of P-values be-
low 5% are just over 0.05 for both full cohort and simple random sampling,
the non-linearity can be equally hard to detect. To sum up, the proportion
of P-values below 5% is about the same for cohort and nested case-control
data, indicating that model checking for the simple random design works
fairly e�ective in various situations.

5.2.3 Counter-matched sampling

We are going to verify if the non log-linear model can be detected when
using nested case-control data with counter-matched sampling. Recall the
wrong model (5.2) together with two regression coe�cients (0.5, 0.8, 0.5)T and
(0.8, 0.6, 0.8)T for the hazard. By re-using these wrong models, we obtain the
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Figure 5.4: One simulation of cumulative martingale residuals against x1

in three non-linear Cox models where β = (0.1, 1.0, 0.5)T (upper panel),
β = (0.5, 0.8, 0.5)T (middle panel) and β = (0.8, 0.6, 0.8)T (lower panel)
for cohort and nested case-control data with simple random sampling using
m− 1 = 2 controls



5.2. CHECK THE LOG-LINEARITY OF A WRONG MODEL 69

cohort

pvalue.cohort

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

25
0

simple random, m−1=1

pvalue.ncc

F
re

qu
en

cy
0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

25
0

cohort

pvalue.cohort

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

25
0

simple random, m−1=2

pvalue.ncc

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

25
0

cohort

pvalue.cohort

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

25
0

simple random, m−1=4

pvalue.ncc

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

25
0

Figure 5.5: Histograms of P-values over 500 simulations of cumulative
martingale residuals against x1 in the non-linear Cox model where β =
(0.1, 1.0, 0.5)T for cohort and nested case-control data with simple random
sampling using m− 1 = 1, m− 1 = 2, m− 1 = 4 controls
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Figure 5.6: Histograms of P-values over 500 simulations of cumulative
martingale residuals against x1 in the non-linear Cox model where β =
(0.5, 0.8, 0.5)T for cohort and nested case-control data with simple random
sampling using m− 1 = 1, m− 1 = 2, m− 1 = 4 controls
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Figure 5.7: Histograms of P-values over 500 simulations of cumulative
martingale residuals against x1 in the non-linear Cox model where β =
(0.8, 0.6, 0.8)T for cohort and nested case-control data with simple random
sampling using m− 1 = 1, m− 1 = 2, m− 1 = 4 controls
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Table 5.3: Proportion of P-values≤ 5% over 500 simulations of cumulative
martingale residuals against x1 in three non-linear Cox models where β =
(0.1, 1.0, 0.5)T , (0.5, 0.8, 0.5)T and (0.8, 0.6, 0.8)T for cohort and nested case-
control data with simple random sampling using m − 1 = 1, m − 1 = 2,
m− 1 = 4 controls

controls P-values≤ 5%
cohort 0.514
simple random m− 1 = 1 0.572
cohort 0.544
simple random m− 1 = 2 0.574
cohort 0.516
simple random m− 1 = 4 0.572

cohort 0.164
simple random m− 1 = 1 0.224
cohort 0.194
simple random m− 1 = 2 0.204
cohort 0.162
simple random m− 1 = 4 0.216

cohort 0.052
simple random m− 1 = 1 0.064
cohort 0.074
simple random m− 1 = 2 0.038
cohort 0.076
simple random m− 1 = 4 0.062
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one simulation plots of cumulative martingale residuals. As shown in Figure
A.3 in the appendix, all of the observation curves are in sharp �uctuations
with high supremums. Due to the non-linear hazards, the log-linearity is
likely to have been violated.

Similar to what we did earlier for simple random sampling, we will look at
the proportion of P-values below 5% in order to evaluate the performance of
nested case-control data with counter-matched sampling. The histograms of
P-values for three non-linear Cox models using di�erent number of controls
are illustrated in Figures A.4, A.5 and A.6 in the appendix. Then, by looking
at the result collected in Table 5.4, we �nd that the proportion of P-values
below 5% is about the same for cohort and nested case-control data with
counter-matched sampling using m − 1 = 3 or m − 1 = 5 controls. This
implies that when using at least 3 controls per case, the non log-linearity
should be detected as easily as for the full cohort. However, if we only use
m − 1 = 1 control for the nested case-control data with counter-matched
sampling, though it still manages to work when the log-linearity model fails
badly, in some cases it can be di�cult to conclude exactly the same model
checking result as cohort especially when the model is at the edge of the
violating log-linearity.

5.3 Check the proportionality of a good model

5.3.1 Simple random sampling

We are at this point starting to perform the check of proportionality for
simulated nested case-control data. We use the same simulation model (5.1)
and plot the score process against time for x1 and x2 in the Cox model
for both the cohort and the nested case-control design with simple random
sampling of controls. The plots with one simulation using m−1 = 2 controls
for simple random sampling are given in Figure 5.8. We can see that both
of the two paired plots are not similar, this is due to the randomness of
sampling, it is required to have more simulations to �nd the distribution of
the P-values regarding the score processes.

We run 100 simulations of the score process, and hence obtain the histograms
of P-values, as shown in Figure 5.9. It can be seen that for both the cohort
and the nested case-control design with simple random sampling of controls,
the P-values have similar distributions. Note that here the distributions of
the P-values look quite uniform, indicating that the simulations are as good as
they should be. Further, we look at the e�ective signi�cance level, as shown
in Table 5.5, which shows the proportion of P-values less than or equal to
5%. It proves that proportionality is satis�ed and can be correctly checked
by using nested case-control data with simple random sampling. Moreover,
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Table 5.4: Proportion of P-values≤ 5% over 500 simulations of cumulative
martingale residuals against x1 in three non-linear Cox models where β =
(0.1, 1.0, 0.5)T , (0.5, 0.8, 0.5)T and (0.8, 0.6, 0.8)T for cohort and nested case-
control data with counter-matched sampling using m − 1 = 1, m − 1 = 3,
m− 1 = 5 controls

controls P-values≤ 5%
cohort 0.520
counter-matching m− 1 = 1 0.298
cohort 0.524
counter-matching m− 1 = 3 0.500
cohort 0.540
counter-matching m− 1 = 5 0.534

cohort 0.212
counter-matching m− 1 = 1 0.132
cohort 0.202
counter-matching m− 1 = 3 0.156
cohort 0.186
counter-matching m− 1 = 5 0.190

cohort 0.090
counter-matching m− 1 = 1 0.020
cohort 0.088
counter-matching m− 1 = 3 0.048
cohort 0.066
counter-matching m− 1 = 5 0.056
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Figure 5.8: One simulation of score process against time for x1 and x2 in
the good Cox model where β = (0.5, 0.5)T for cohort and nested case-control
data with simple random sampling using m− 1 = 2 controls

it ought to be mentioned here that ideally we should have chosen to run 500
simulations like we did for cumulative martingale residuals. However, these
simulations turn out to be quite slow, which is the reason for the low number
of simulations that we choose.

5.3.2 Counter-matched sampling

We will have a look at the check of proportionality for nested case-control
data with counter-matched sampling. Using the same simulation model (5.1)
with individuals strati�ed according to x1 ≤ 0 or x1 > 0. Since x1 is uni-
formly distributed, the number of individuals that belongs to two strata
should be approximately the same. So we obtain one simulation plots of
score process against time for x1 and x2 in the Cox model for cohort and
nested case-control data with counter-matched sampling using m − 1 = 1
control in Figure A.7 in the appendix. As a result, the two paired curves
resemble each other.

Then we run 100 simulations of the score process, and the distribution of the
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Table 5.5: Proportion of P-values ≤ 5% over 100 simulations of score process
against time for x1 and x2 in the good Cox model where β = (0.5, 0.5)T

for cohort and nested case-control data with simple random sampling using
m− 1 = 1, m− 1 = 2, m− 1 = 4 controls

controls x1: P-values≤ 5% x2: P-values≤ 5%
cohort 0.06 0.06
simple random m− 1 = 1 0.09 0.04
cohort 0.04 0.01
simple random m− 1 = 2 0.06 0.04
cohort 0.03 0.04
simple random m− 1 = 4 0.07 0.05
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Figure 5.9: Histograms of P-values over 100 simulations of score process
against time for x1 and x2 in the good Cox model where β = (0.5, 0.5)T

for cohort and nested case-control data with simple random sampling using
m− 1 = 1, m− 1 = 2, m− 1 = 4 controls
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Table 5.6: Proportion of P-values ≤ 5% over 100 simulations of score process
against time for x1 and x2 in the good Cox model where β = (0.5, 0.5)T for
cohort and nested case-control data with counter-matched sampling using
m− 1 = 1, m− 1 = 3, m− 1 = 5 controls

controls x1: P-values≤ 5% x2: P-values≤ 5%
cohort 0.08 0.00
counter-matching m− 1 = 1 0.06 0.03
cohort 0.01 0.05
counter-matching m− 1 = 3 0.02 0.03
cohort 0.07 0.04
counter-matching m− 1 = 5 0.08 0.03

P-values is shown in Figure A.8 in the appendix, which look quite uniform.
Overall, the P-values corresponding to cohort and the nested case-control
design with counter-matched sampling of controls are quite similar. In terms
of the e�ective signi�cance level, according to Table 5.6, we �nd that the pro-
portions of P-values less than or equal to 5% are equally small. This shows
that the proportionality assumption for Cox model is satis�ed and correctly
checked by nested case-control data with counter-matched sampling. In addi-
tion, as we have explained earlier, here we only choose to run 100 simulations
because they are fairly time-consuming, and it would be quite a challenge to
be able to run as many as 500 simulations.

5.4 Check the proportionality of a wrong model

5.4.1 Data simulation for a wrong model

We will look at the simulation for a model where proportionality fails. To do
this, we �rst select x1 and x2 the same way as in Section 5.1.1. Further, if
xi2 = −1, we draw uncensored survival time T 0

i from exponential distribution
with hazard exp {0.5xi1 + 0.5xi2}; while if xi2 = 1, we draw T 0

i from Weibull
distribution with hazard ktp exp {0.5xi1 + 0.5xi2}, where k and p are param-
eters that satisfy ktp = 1 when t = 0.05. In this case, the hazard ratio is no
longer a �xed constant, but a value that is dependent on time. The reason
why we make this choice is because we want to make sure that the event rate
on the average is kept at about the same size as the one simulated for the
good model (5.1). We make a plot of the hazards by choosing xi1 = 0 with
three groups of parameters (k, p) = (20, 1), (0.05−0.5, 0.5) and (0.05−0.2, 0.2).
As shown in Figure 5.10, we can see that all lines are intersecting at the
point where t = 0.05. The horizontal line corresponds to the hazard of the
good model while the rest of lines represent the hazards of the wrong models.



78 CHAPTER 5. SIMULATIONS

More speci�cally, the line with the highest slope where (k, p) = (20, 1) is go-
ing all the way up, which implies a strong non-proportional e�ect. The other
two lines also reveal di�erent levels of non-proportionality, with the one with
respect to (k, p) = (0.05−0.5, 0.5) being slightly stronger.

To this end we select the regression coe�cients as β = (0.5, 0.5)T , also de�ne
k = 20 and p = 1, thus we obtain a wrong model that takes the form

α(t|xi) =

{
exp {0.5xi1 − 0.5} xi2 = −1

20t exp {0.5xi1 + 0.5} xi2 = 1

where

xi1 ∼ U [−1, 1]

xi2 =

{
1 with probability 0.5

−1 with probability 0.5

Note that the censoring time Ci, censored survival time T̃i and censoring
indicator Di are generated following exactly the same steps as in Section
5.1.1. Further, we would also like to consider some situations where the
deviation from proportionality is not so clear. By de�ning k = 0.05−0.5 and
p = 0.5, the wrong model becomes

α(t|xi) =

{
exp {0.5xi1 − 0.5} xi2 = −1

0.05−0.5t0.5 exp {0.5xi1 + 0.5} xi2 = 1

Finally we also choose k = 0.05−0.2 and p = 0.2, thus we obtain a wrong
model

α(t|xi) =

{
exp {0.5xi1 − 0.5} xi2 = −1

0.05−0.2t0.2 exp {0.5xi1 + 0.5} xi2 = 1

5.4.2 Simple random sampling

We are now going to have a check of the proportionality of the wrong model
simulated in Section 5.4.1 for cohort and nested case-control data with simple
random sampling using di�erent number of controls. We start o� by obtain-
ing the plot of one simulation of score process against time for x1 and x2 in
three non-proportional Cox models. According to Figure 5.11, we observe
that for all three groups x1 seems to be proportional. However, x2 seems to
be non-proportional, especially in the �rst group, where the deviation from
proportionality for x2 is clearly stronger than the other two groups. This is
also revealed in Figures 5.12, 5.13 and 5.14, which are histograms of P-values
with respect to three wrong models using di�erent number of controls.
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Figure 5.10: Plot of hazards (5.1) for the good model and three wrong models
on log-scale where β = (0.5, 0.5)T with (k, p) = (20, 1), (0.05−0.5, 0.5) and
(0.05−0.2, 0.2)

Further we look at Table 5.7, it can be seen that for the �rst group of pa-
rameters, the proportions of P-values ≤ 5% of x1 and x2 for both cohort
and nested case-control data are hovering around 0.05 and 0.97 respectively,
thus the model checking for nested case-control data has correctly disclosed
that there is a strong non-proportional e�ect of x2 but not of x1. When it
comes to the other two groups of parameters, apparently the medium and low
non-proportional e�ect of x2 can be detected by model checking for nested
case-control data with simple random sampling as easily as cohort when at
least m− 1 = 2 controls are used.

5.4.3 Counter-matched sampling

We look at the proportionality test of a wrong Cox model for nested case-
control data with counter-matched sampling. First of all, we obtain Figure
A.9 in the appendix which illustrates one simulation of score process against
time for x1 and x2 in three non-proportional Cox models simulated in Section
5.4.1. Similarly, x1 seems to satisfy the proportionality in all three models,
but x2 has di�erent degrees of non-proportional e�ect. Histograms of P-
values for three non-proportional Cox models for cohort and nested case-
control data with counter-matched sampling are shown in Figures A.10, A.11
and A.12 in the appendix.

The �rst group of values in Table 5.8 reveals that the model check of the
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Figure 5.11: One simulation of score process against time for x1 and x2 in
three non-proportional Cox models where β = (0.5, 0.5)T with (k, p) = (20, 1)
(upper panel), (0.05−0.5, 0.5) (middle panel) and (0.05−0.2, 0.2) (lower panel)
for cohort and nested case-control data with simple random sampling using
m− 1 = 2 controls
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Figure 5.12: Histograms of P-values over 100 simulations of score process
against time for x1 and x2 in the non-proportional Cox model where β =
(0.5, 0.5)T with (k, p) = (20, 1) for cohort and nested case-control data with
simple random sampling using m− 1 = 1, m− 1 = 2, m− 1 = 4 controls
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Figure 5.13: Histograms of P-values over 100 simulations of score process
against time for x1 and x2 in the non-proportional Cox model where β =
(0.5, 0.5)T with (k, p) = (0.05−0.5, 0.5) for cohort and nested case-control data
with simple random sampling using m−1 = 1, m−1 = 2, m−1 = 4 controls
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Figure 5.14: Histograms of P-values over 100 simulations of score process
against time for x1 and x2 in the non-proportional Cox model where β =
(0.5, 0.5)T with (k, p) = (0.05−0.2, 0.2) for cohort and nested case-control data
with simple random sampling using m−1 = 1, m−1 = 2, m−1 = 4 controls
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Table 5.7: Proportion of P-values ≤ 5% over 100 simulations of score process
against time for x1 and x2 in three non-proportional Cox models where β =
(0.5, 0.5)T with (k, p) = (20, 1), (0.05−0.5, 0.5) and (0.05−0.2, 0.2) for cohort
and nested case-control data with simple random sampling using m− 1 = 1,
m− 1 = 2, m− 1 = 4 controls

controls x1: P-values≤ 5% x2: P-values≤ 5%
cohort 0.03 1
simple random m− 1 = 1 0.05 0.95
cohort 0.12 1
simple random m− 1 = 2 0.10 0.97
cohort 0.04 1
simple random m− 1 = 4 0.05 0.99

cohort 0.03 0.79
simple random m− 1 = 1 0.11 0.5
cohort 0.05 0.81
simple random m− 1 = 2 0.08 0.64
cohort 0.03 0.79
simple random m− 1 = 4 0.03 0.73

cohort 0.06 0.21
simple random m− 1 = 1 0.07 0.06
cohort 0.06 0.30
simple random m− 1 = 2 0.05 0.22
cohort 0.07 0.31
simple random m− 1 = 4 0.05 0.21
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Table 5.8: Proportion of P-values ≤ 5% over 100 simulations of score process
against time for x1 and x2 in three non-proportional Cox models where β =
(0.5, 0.5)T with (k, p) = (20, 1), (0.05−0.5, 0.5) and (0.05−0.2, 0.2) for cohort
and nested case-control data with counter-matched sampling usingm−1 = 1,
m− 1 = 3, m− 1 = 5 controls

controls x1: P-values≤ 5% x2: P-values≤ 5%
cohort 0.05 1
counter-matching m− 1 = 1 0.13 0.90
cohort 0.07 1
counter-matching m− 1 = 3 0.18 1
cohort 0.06 1
counter-matching m− 1 = 5 0.18 1

cohort 0.08 0.82
counter-matching m− 1 = 1 0.12 0.49
cohort 0.05 0.85
counter-matching m− 1 = 3 0.08 0.65
cohort 0.03 0.83
counter-matching m− 1 = 5 0.05 0.74

cohort 0.05 0.21
counter-matching m− 1 = 1 0.07 0.10
cohort 0.09 0.21
counter-matching m− 1 = 3 0.11 0.18
cohort 0.02 0.23
counter-matching m− 1 = 5 0.02 0.25

strong non-proportional Cox model for nested case-control data with counter-
matched sampling works very good. In terms of the second group where the
model is in medium non-proportionality, we �nd that the counter-matching
only gives a value 0.49 when m − 1 = 1 control is used. In contrast with
the value 0.82 that corresponds to the full cohort, it is quite obvious that
the model checking result for the counter-matching design is not accurate
enough. Despite of that, by comparing the other values in this group we are
certain that the model checking for counter-matching design works equally
good as cohort when at least m − 1 = 3 controls are chosen. Eventually,
the same problem applies to the last group as well. In the situation when
the Cox model is slightly non-proportional, the model checking for counter-
matching design cannot be able to work as well as cohort, unless there are
at a minimum m− 1 = 3 controls being selected.

To sum up, through studying the performance of the Cox model checking
for simulated nested case-control data, we can reach the conclusion that
checking both the log-linearity and proportionality of the correct Cox models
for nested case-control design is working as good as full cohort, even by using
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1 control per case. Nevertheless, when the Cox model is wrong, it is required
to use no less than 2 or 3 controls for nested case-control design in order to
correctly detect a non-linear and non-proportional e�ect.



Chapter 6

Discussion

In this �nal chapter of the thesis, we would like to give a brief summary
of the conclusion together with some further discussion about the problems
that we have encountered.

6.1 Conclusion

In Chapter 4 we have shown how the model checking methods of Lin et
al. (1993) for cohort data based on cumulative residuals processes may be
extended to nested case-control data. Further in Chapter 4 and 5 we have
studied the performance of the model checking methods using cumulative
sums of martingale-based residuals.

The model checking in Chapter 4 is based on a real data set, and the results
of the log-linearity test and proportionality test given by the full cohort and
the nested case-control studies are fairly close, indicating that model checking
for nested case-control data is quite e�cient. We also show that the larger
number of controls selected for the nested case-control design, the more they
get close to the cohort. But it is unnecessary to choose too many controls.
According to the example given in Chapter 4, we see that 2 controls are
already e�ective enough.

In Chapter 5 we generalize the model checking to simulated data sets, where
both good and wrong Cox models are available, in order to see if model check-
ing for nested case-control data is still able to give a similar result to the full
cohort. More speci�cally, for the good models which satisfy the log-linearity
and proportionality assumptions, the performance of the model checking for
nested case-control data is quite good, even with 1 control per case. In terms
of the wrong models, the model checking for nested case-control data can
detect the large deviation from log-linearity and proportionality as easy as
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for the cohort even if there is only 1 control being used. However, for those
wrong models with medium or low violation, in order to keep the e�ciency
of the model checking for nested case-control data, 2 or more controls are
required. Overall, the analysis shows that the model checking for nested
case-control data and the cohort resemble each other in many di�erent sit-
uations, which con�rms that the extension of model checking techniques to
nested case-control data is working �ne.

6.2 Problems

Now we will have some discussion about the problems that we have come
across. To begin with, in Chapter 4 we have given examples about model
checking of the Cox model for nested case-control studies. A common prob-
lem that we encounter is that when selecting only 1 or 2 controls for nested
case-control data, it is not always possible to obtain a similar P-value of the
log-linearity test or proportionality test as for the full cohort. Sometimes
they are quite close, but sometimes they look a bit di�erent. This is partly
due to the randomness of control selection. Moreover, in cases where too
many events are observed in the cohort studies, it is likely that a nested
case-control design with small number of controls will not be able to capture
enough information. A good way to solve this problem is by adding more
controls. As we see in Chapter 5, the nested case-control design turns out to
be quite e�ective when using 4 or 5 controls per case.

A second problem is in Chapter 5 where we want to simulate the data such
that the histograms of P-values in the Cox model for cohort and nested case-
control data have uniform distributions when the model is correct. As a
result we did not always manage to achieve that. To be more precise, at the
start when we simulate data for the model checking of log-linearity, we end
up in all non-uniform histograms where the majority of P-values are either
two low or two high. But in the later part of the chapter where we work on
the model checking of proportionality, the histograms look quite good and
appear to be fairly uniform. Although the simulation of data is not always
as good as expected, it still does not a�ect the conclusion since our goal in
this chapter is not to obtain the perfect simulated data, but to compare the
result of model checking for nested case-control data with that for full cohort
data in various situations by using simulation.

Another problem worth mentioning is, when we are trying to calculate the
P-values over 500 simulations of score process in Chapter 5, we �nd that it is
taking an awful lot of time to run the R program. It is estimated that a high
con�guration laptop with i7 CPU and 8G RAM requires literally 20-25 hours
to run these 500 simulations of score process. As a result, we have to adjust
that by lowering the number of simulations to 100 in order to make it faster.
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The cause of the slow running speed is that the timereg package that we used
for model checking is slightly slow, plus there are many loops and samplings
involved in the codes that we wrote. There should be some possible ways to
optimize the structure of the coding. However, considering that it is not the
goal of the thesis, at this stage we decide not to work on the enhancement of
it. Besides, when it comes to real nested control-case studies, one does not
actually need to run this R program many times. So we can imagine that in
practice the time for running the model checking program is still reasonable.
In other words, this problem might not be deserving special attention.
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Appendix A

Plots

In the appendix we list some plots for Sections 5.1.3, 5.2.3, 5.3.2 and 5.4.3
of Chapter 5 which are relevant to nested case-control studies with counter-
matched sampling. The reason why we put them here is because these plots
seem to resemble those in the simple random sampling sections, we decide
not to include them in the main text.
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Figure A.1: One simulation of cumulative martingale residuals against x1 in
the good Cox model where β = (0.5, 0.5)T for cohort and nested case-control
data with counter-matched sampling using m− 1 = 1 control
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Figure A.2: Histograms of P-values over 500 simulations of cumulative mar-
tingale residuals against x1 in the good Cox model where β = (0.5, 0.5)T for
cohort and nested case-control data with counter-matched sampling using
m− 1 = 1, m− 1 = 3, m− 1 = 5 controls
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Figure A.3: One simulation of cumulative martingale residuals against x1

in three non-linear Cox models where β = (0.1, 1.0, 0.5)T (upper panel),
β = (0.5, 0.8, 0.5)T (middle panel) and β = (0.8, 0.6, 0.8)T (lower panel) for
cohort and nested case-control data with counter-matched sampling using
m− 1 = 1 control
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Figure A.4: Histograms of P-values over 500 simulations of cumulative
martingale residuals against x1 in the non-linear Cox model where β =
(0.1, 1.0, 0.5)T for cohort and nested case-control data with counter-matched
sampling using m− 1 = 1, m− 1 = 3, m− 1 = 5 controls
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Figure A.5: Histograms of P-values over 500 simulations of cumulative
martingale residuals against x1 in the non-linear Cox model where β =
(0.5, 0.8, 0.5)T for cohort and nested case-control data with counter-matched
sampling using m− 1 = 1, m− 1 = 3, m− 1 = 5 controls
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Figure A.6: Histograms of P-values over 500 simulations of cumulative
martingale residuals against x1 in the non-linear Cox model where β =
(0.8, 0.6, 0.8)T for cohort and nested case-control data with counter-matched
sampling using m− 1 = 1, m− 1 = 3, m− 1 = 5 controls
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Figure A.7: One simulation of score process against time for x1 and x2 in
the good Cox model where β = (0.5, 0.5)T for cohort and nested case-control
data with counter-matched sampling using m− 1 = 1 control
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Figure A.8: Histograms of P-values over 100 simulations of score process
against time for x1 and x2 in the good Cox model where β = (0.5, 0.5)T for
cohort and nested case-control data with counter-matched sampling using
m− 1 = 1, m− 1 = 3, m− 1 = 5 controls
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Figure A.9: One simulation of score process against time for x1 and x2 in
three non-proportional Cox models where β = (0.5, 0.5)T with (k, p) = (20, 1)
(upper panel), (0.05−0.5, 0.5) (middle panel) and (0.05−0.2, 0.2) (lower panel)
for cohort and nested case-control data with counter-matched sampling using
m− 1 = 1 control
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Figure A.10: Histograms of P-values over 100 simulations of score process
against time for x1 and x2 in the non-proportional Cox model where β =
(0.5, 0.5)T with (k, p) = (20, 1) for cohort and nested case-control data with
counter-matched sampling using m− 1 = 1, m− 1 = 3, m− 1 = 5 controls
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Figure A.11: Histograms of P-values over 100 simulations of score process
against time for x1 and x2 in the non-proportional Cox model where β =
(0.5, 0.5)T with (k, p) = (0.05−0.5, 0.5) for cohort and nested case-control
data with counter-matched sampling using m− 1 = 1, m− 1 = 3, m− 1 = 5
controls
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Figure A.12: Histograms of P-values over 100 simulations of score process
against time for x1 and x2 in the non-proportional Cox model where β =
(0.5, 0.5)T with (k, p) = (0.05−0.2, 0.2) for cohort and nested case-control
data with counter-matched sampling using m− 1 = 1, m− 1 = 3, m− 1 = 5
controls
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