
Quantum Monte-Carlo Studies of
Generalized Many-body Systems

by

Jørgen Høgberget

THESIS
for the degree of

MASTER OF SCIENCE

(Master in Computational Physics)

Faculty of Mathematics and Natural Sciences
Department of Physics

University of Oslo

June 2013

2

Preface

During my stay at junior high school, I had no personal interest in mathematics. When the final year was
finished, I sought an education within the first love of my life: Music. However, sadly, my application
was turned down, forcing me to fall back on general topics. This is where I had my first encounter with
physics, which should turn out not to be the last.

When high school ended, I applied for an education within structural engineering at the Norwegian
University of Science and Technology, however, again I was turned down. Second on the list was the
physics, meteorology and astronomy program at the University of Oslo. Never in my life have I been
more grateful for being turned down, as starting at the University of Oslo introduced me to the second
love of my life: Programming.

During the third year of my Bachelor I had a hard time figuring out which courses I should pick. Quite
randomly, I attended a course on computational physics lectured by Morten Hjorth-Jensen. It immedi-
ately hit me that he had a genuine interest in the well-being of his students. It did not take long before
I decided to apply for a Master’s degree within the field of computational physics.

To summarize, me being here today writing this thesis is a result of extremely random events. However,
I could not have landed in a better place, and I am forever grateful for my time here at the University of
Oslo. So grateful in fact, that I am continuing my stay as a PhD student within the field of multi-scale
physics.

I would like to thank my fellow Master students Sarah Reimann, Sigve Bøe Skattum, and Karl Leikanger
for much appreciated help and good discussions. Sigve helped me with the minimization algorithm, that
is, the darkest chapter of this thesis. A huge thanks to Karl for all those late nights where you gave me
a ride home. Finally, thank you Sarah for withstanding my horrible German phrases all these years.

My supervisor, Morten Hjorth-Jensen, deserves a special thanks for believing in me, and filling me with
confidence when it was much needed. This man is awesome.

Additionally I would like to thank the rest of the people at the computational physics research group,
especially Mathilde N. Kamperud and Veronica K. B. Olsen whom with I shared my office, Svenn-Arne
Dragly for helping me with numerous Linux-related issues, and “brochan” Milad H. Mobarhan for all the
pleasant hours spent at Nydalen Kebab. You all contribute to making this place the best it can possibly
be. Thank you!

Jørgen Høgberget

Oslo, June 2013

3

4

Contents

1 Introduction 11

I Theory 13

2 Scientific Programming 15

2.1 Programming Languages . 15

2.1.1 High-level Languages . 15

2.1.2 Low-level Languages . 16

2.2 Object Orientation . 17

2.2.1 A Brief Introduction to Essential Concepts . 18

2.2.2 Inheritance . 18

2.2.3 Pointers, Typecasting and Virtual Functions . 21

2.2.4 Polymorphism . 22

2.2.5 Const Correctness . 24

2.2.6 Accessibility levels and Friend classes . 24

2.2.7 Example: PotionGame . 25

2.3 Structuring the code . 29

2.3.1 File Structures . 29

2.3.2 Class Structures . 29

3 Quantum Monte-Carlo 31

5

6 CONTENTS

3.1 Modelling Diffusion . 31

3.1.1 Stating the Schrödinger Equation as a Diffusion Problem 32

3.2 Solving the Diffusion Problem . 34

3.2.1 Isotropic Diffusion . 35

3.2.2 Anisotropic Diffusion and the Fokker-Planck equation 35

3.2.3 Connecting Anisotropic - and Isotropic Diffusion Models 37

3.3 Diffusive Equilibrium Constraints . 39

3.3.1 Detailed Balance . 39

3.3.2 Ergodicity . 40

3.4 The Metropolis Algorithm . 40

3.5 The Process of Branching . 43

3.6 The Trial Wave Function . 45

3.6.1 Many-body Wave Functions . 45

3.6.2 Choosing the Trial Wave Function . 48

3.6.3 Selecting Optimal Variational Parameters . 51

3.6.4 Calculating Expectation Values . 52

3.6.5 Normalization . 53

3.7 Gradient Descent Methods . 54

3.7.1 General Gradient Descent . 54

3.7.2 Stochastic Gradient Descent . 55

3.7.3 Adaptive Stochastic Gradient Descent . 55

3.8 Variational Monte-Carlo . 60

3.8.1 Motivating the use of Diffusion Theory . 60

3.8.2 Implementation . 62

3.8.3 Limitations . 62

3.9 Diffusion Monte-Carlo . 63

3.9.1 Implementation . 63

3.9.2 Sampling the Energy . 63

3.9.3 Limitations . 64

CONTENTS 7

3.9.4 Fixed node approximation . 66

3.10 Estimating One-body Densities . 66

3.10.1 Estimating the Exact Ground State Density . 67

3.10.2 Radial Densities . 68

3.11 Estimating the Statistical Error . 69

3.11.1 The Variance and Standard Deviates . 69

3.11.2 The Covariance and correlated samples . 70

3.11.3 The Deviate from the Exact Mean . 71

3.11.4 Blocking . 72

3.11.5 Variance Estimators . 73

4 Generalization and Optimization 75

4.1 Underlying Assumptions and Goals . 75

4.1.1 Assumptions . 75

4.1.2 Generalization Goals . 76

4.1.3 Optimization Goals . 76

4.2 Specifics Regarding Generalization . 77

4.2.1 Generalization Goals (i)-(vii) . 77

4.2.2 Generalization Goal (vi) and Expanded bases . 78

4.2.3 Generalization Goal (viii) . 79

4.3 Optimizations due to a Single two-level Determinant . 79

4.4 Optimizations due to Single-particle Moves . 81

4.4.1 Optimizing the Slater determinant ratio . 81

4.4.2 Optimizing the inverse Slater matrix . 83

4.4.3 Optimizing the Padé Jastrow factor Ratio . 83

4.5 Optimizing the Padé Jastrow Derivative Ratios . 84

4.5.1 The Gradient . 84

4.5.2 The Laplacian . 85

4.6 Tabulating Recalculated Data . 86

4.6.1 The relative distance matrix . 87

8 CONTENTS

4.6.2 The Slater related matrices . 87

4.6.3 The Padé Jastrow gradient . 88

4.6.4 The single-particle Wave Functions . 90

4.7 CPU Cache Optimization . 93

5 Modelled Systems 95

5.1 Atomic Systems . 95

5.1.1 The Single-particle Basis . 95

5.1.2 Atoms . 97

5.1.3 Homonuclear Diatomic Molecules . 98

5.2 Quantum Dots . 99

5.2.1 The Single Particle Basis . 100

5.2.2 Two - and Three-dimensional Quantum Dots . 101

5.2.3 Double-well Quantum Dots . 101

II Results 103

6 Results 105

6.1 Optimization Results . 105

6.2 The Non-interacting Case . 109

6.3 Quantum Dots . 113

6.3.1 Ground State Energies . 113

6.3.2 One-body Densities . 115

6.3.3 Lowering the frequency . 118

6.3.4 Simulating a Double-well . 121

6.4 Atoms . 122

6.4.1 Ground State Energies . 122

6.4.2 One-body densities . 122

6.5 Homonuclear Diatomic Molecules . 125

6.5.1 Ground State Energies . 125

6.5.2 One-body densities . 126

CONTENTS 9

6.5.3 Parameterizing Force Fields . 127

7 Conclusions 129

A Dirac Notation 133

B DCViz: Visualization of Data 135

B.1 Basic Usage . 135

B.1.1 The Terminal Client . 139

B.1.2 The Application Programming Interface (API) . 139

C Auto-generation with SymPy 143

C.1 Usage . 143

C.1.1 Symbolic Algebra . 143

C.1.2 Exporting C++ and Latex Code . 144

C.1.3 Calculating Derivatives . 144

C.2 Using the auto-generation Script . 146

C.2.1 Generating Latex code . 146

C.2.2 Generating C++ code . 148

D Harmonic Oscillator Orbitals 2D 151

E Harmonic Oscillator Orbitals 3D 159

F Hydrogen Orbitals 165

Bibliography 171

10

1

Introduction

Studies of general systems demand a general solver. The process of developing code aimed at a specific
task is fundamentally different from the process of developing a general solver, simply due to the fact that
the general equations need to be implemented independent of any specific properties a modelled system
may contain. This is most commonly achieved through object oriented programming, which allows for
the code to be structured into general implementations and specific implementations. The general - and
specific implementations can then be interfaced through a functionality referred to as polymorphism. The
aim of this thesis is to use object oriented C++ to build a general and efficient Quantum Monte-Carlo
(QMC) solver, which can tackle several many-body systems, from confined electron systems, i.e. quantum
dots, to bosons.

A constraint put on the QMC solver in this thesis is that the ansatz for the trial wave function consists of
a single term, i.e. a single Slater determinant. This opens up the possibility to study systems consisting
of a large number of particles, due to efficient optimizations in the single determinant. A simple trial
wave function will also significantly ease the implementation of different systems, and thus make it easier
to develop a general framework within the given time frame.

Given the simple ansatz for the wave function, the precision of Variational Monte-Carlo (VMC) is expected
to be far from optimal, however, Diffusion Monte-Carlo (DMC) is supposed to withstand this problem,
and thus yield a good final estimate nevertheless. To study this purposed power of DMC is another main
focus of this thesis, in addition to pushing the limits regarding optimization of the code, and thus run
ab-initio simulations of a large number of particles.

The two-dimensional quantum dot was chosen as the system of reference around which the code was
planned. The reason for this is that all the current Master students are studying quantum dots at
some level, which means that we can help each other reach a collective understanding of the system.
Additionally, Sarah Reimann has studied two-dimensional quantum dots for up to 56 particles using a
non-variational method called Similarity Renormalization Group theory [1]. Providing her with precise
variational DMC benchmarks were considered to be of utmost importance. Coupled Cluster Singles
and Doubles (CCSD) results are done up to 56 particles by Christoffer Hirth [2], however, for the lower
frequencies, i.e. for higher correlations, CCSD struggles with convergence.

Depending on the success of the implementation, various additional systems could be implemented and
studied in detail, such as atomic systems, three-dimensional - and double-well quantum dots.

Apart from benchmarking DMC ground state energies, the specific aim in the case of quantum dots is
to study their behavior as the frequency is lowered. A lower frequency implies a higher correlation in
the system. Understanding these correlated systems of electrons are of great importance to many-body
theory in general. The effect of adding a third dimension is also of high interest. The advantage of DMC

11

12 CHAPTER 1. INTRODUCTION

compared to other methods is that the distribution is relatively easy to obtain.

Ground state energies for atomic systems can be benchmarked against experimental results [3–6], that
is, precise calculations which are believed to be very close to the exact result for the given Hamiltonian,
which yields an excellent opportunity to test the limits of DMC given a simple trial wave function. Going
further to molecular systems, an additional aim is to explore the transition between QMC and molecular
dynamics by parameterizing simple force field potentials [7].

Several former Master students, such as Christoffer Hirth [2] and Veronica K.B. Olsen [8], have studied
two-dimensional quantum dots in the past, and have thus generated ground state energies to which
the DMC energies can be compared. For three-dimensional quantum dots, few results are available for
benchmarking.

The structure of the thesis

• The first chapter introduces the concept of object oriented programming, with focus on the methods
used to develop the code for this thesis. The reader is assumed to have some background in pro-
gramming, hence the very fundamentals of programming are not presented. A full documentation
of the code is available in Ref. [9]. The code will thus not be covered in full detail. In addition
to concepts from C++ programming, Python scripting will be introduced. General strategies re-
garding planning and structuring of code will also be covered in detail. The two most important
Python scripts used in this thesis are documented in Appendix C and Appendix B.

• The second chapter serves as a theoretical introduction to QMC, discussing the necessary many-
body theory in detail. Important theory which is required to understand the concepts introduced
in later chapters are given the primary focus. The reader is assumed to have a basic understanding
of Quantum Wave Mechanics. An introduction to the commonly used Dirac notation is given in
Appendix A.

• Chapter 4 presents all the assumptions regarding the systems modelled in this thesis together with
the aims regarding the generalization and optimization of the code. The strategies applied to
achieve these aims will then be covered in high detail.

• Chapter 5 introduces the systems modelled in this thesis, that is, the quantum dots and atomic
systems. The single-particle wave functions used to generate the trial wave functions for the different
systems are presented together with the respective Hamiltonians.

• The results, along with the discussions and the conclusions mark the final part of this thesis. Results
for up to 56 electrons in the two-dimensional quantum dot are presented and comparisons are made
with two - and three-dimensional quantum dots for high and low frequency ranges. A brief display
of a double-well quantum dot is then given before the atomic results are presented. The ground
state energies of atoms up to krypton and molecules up to O2 are then compared to experimental
values. Concluding the results section, the molecular energies as a function of the separation of
cores are compared to the Lennard-Jones 12-6 potential [10, 11]. Final remarks are then made
regarding further work expanding on the work done in this thesis.

Part I

Theory

13

2

Scientific Programming

The introduction of the computer around World War II had a major impact on the mathematical fields
of science. Previously unsolvable problems were now solvable. The question was no longer whether or
not it was possible, but rather to what precision and with which method. The computer spawned a new
branch of physics, computational physics, redefining the limits of our understanding of nature. The first
major result of this synergy between science and computers came with the infamous atomic bombs Little
Boy and Fat Man, a product of The Manhattan Project lead by J. Robert Oppenheimer [12].

2.1 Programming Languages

Programming is the art of writing computer programs. A program is a list of instructions for the computer,
commonly referred to as code. It is in many ways similar to human-to-human instructions; for instance,
different programming languages may be used to write instructions, such as C++, Python or Java, as
long as the recipient is able to translate it. The instructions may be translated prior to the execution,
i.e the code is compiled, or it may be translated run-time by an interpreter.

The native language of the computer is binary : Ones and zeros, which corresponds to high - and low
voltage readings. Every character, number, color, etc. is on the lowest level represented by a sequence
of binary numbers referred to as bits. In other words, programming languages serve as a bridge between
the binary language of computers and a more manageable language for everyday programmers.

The closer the programming language at hand is to pure processor (CPU) instructions1, the lower the
level of the language is. This section will introduce high- and low level languages, focusing on C++ and
Python, as these are the most commonly used languages throughout this thesis.

2.1.1 High-level Languages

Scientific programming involves a vast amount of different tasks, all from pure visualization and orga-
nization of data, to efficient memory allocation and processing. For less CPU-intensive tasks, the run
time of the program is so small that the efficiency becomes irrelevant, leaving languages which prefer
simplicity and structure over efficiency the optimal tool for the job. These languages are referred to as

1The CPU is the part of the computer responsible for flipping bits.

15

16 CHAPTER 2. SCIENTIFIC PROGRAMMING

high-level languages 2.

High-level codes are often short snippets designed with a specific aim such as analyzing raw data, ad-
ministrating input and output from different tools, creating a Graphical User Interface (GUI), or gluing
different programs, which are meant to be run sequentially or in parallel, together into one. These short
specific codes are referred to as scripts, hence high-level languages designed for these tasks are commonly
referred to as scripting languages [13, 14].

Some examples of high-level languages are Python, Ruby, Perl, Visual Basic and UNIX shells. Excellent
introductions to these languages are found throughout the World Wide Web.

Python

Named after the infamous Monte Python’s flying circus, Python is an easy to learn open source interpreted
programming language invented by Guido van Rossum around 1990. Python is designed for optimized
development time by having a very clean and rigorous coding syntax [14,15].

To demonstrate the simplicity of Python, consider the following simple expression

S =

100∑
i=1

i = 5050., (2.1)

which is calculated in Python by the following expression:

1 print sum(range (101))

Executing the script yields the expected result:

~$ python Sum100Python.py

5050

For details regarding the basics of Python, see Ref. [15], or Ref. [13] for more advanced topics.

2.1.2 Low-level Languages

Scientific programming often involves solving complex equations. Complexity does not necessarily imply
that the equations themselves are hard to understand; frankly, this is often not the case. In most cases
of for example linear algebra, the problem at hand can be boiled down to solving Ax = b, however, the
complexity lies in the dimensionality of the problem at hand. Matrix dimensions often range as high as
millions. With each element being a double precision number (8 bytes or 64 bits), it is crucial to have
full control of the memory and execute operations as efficiently as possible.

This is where lower level languages excel. Hiding few to none of the details, the power is in the hand
of the programmer. This, however, comes at a price: More technical concepts such as memory pointers,
declarations, compiling, linking, etc. makes the development process slower than that of a higher-level
language.

2There are different definitions of the distinction between high- and low-level languages. Languages such as assembly
is extremely complex and close to machine code, leaving all machine-independent languages as high-level in comparison.
However, for the purpose of this thesis, the distinction will be set at a higher level than assembly.

2.2. OBJECT ORIENTATION 17

Moreover, requesting access to an uninitialized element outside the bounds of an allocated array, Python
will provide a detailed error message with proper traceback, whereas the compiled C++ code would
simply crash at run-time, leaving nothing but a “segmentation fault” for the user. The payoff comes
when the optimized program ends up running for days, in contrast to the high-level implementation
which might end up running for months.

In addition, several options to optimize compiled machine code are available by having the compiler
rearrange the way instructions are sent to the processor. Details regarding memory latency optimization
will be discussed in Section 4.7.

C++

C++ is a programming language developed by Bjarne Stroustrup in 1983. It serves as an extension to
the original C language, adding object oriented features, that is, classes etc. [16]. The following code is
a C++ implementation of the sum in Eq. 2.1:

1 // Sum100C ++.cpp

2 #include <iostream >

3

4 int main(){

5

6 int S = 0;

7 for (int i = 1; i <= 100; i++){

8 S += i;

9 }

10

11 std::cout << S << std::endl;

12

13 return 0;

14 }

~$ g++ Sum100C++.cpp -o sum100C++.x

~$./sum100C++.x

5050

Notice that, unlike Python, C++ requests an explicit declaration of S as an integer variable. This in turn
tells the compiler the exact amount of memory needed to store the variable, opening up the possibility
of efficient memory optimization.

Even though this is an extremely simply example, it illustrates the difference in coding styles between high-
and low-level languages. The next section will cover the basics needed to understand object orientation
in C++, and how it can be used to develop generalized coding frameworks.

2.2 Object Orientation

The concepts of classes and objects were introduced for the first time in the language Simula 67, developed
by the Norwegian scientists Ole-Johan Dahl and Kristen Nygaard at the Norwegian Computing Research
Center [16]. Object orientation quickly became the state-of-the-art in programming, and has ever since
enjoyed great success in numerous computational fields.

Object orientation ties everyday intuition into the programming language. Humans are object oriented
without noticing it, in the sense that the focus is around objects of classes, for instance, an animal of a
certain species, artifacts of a certain culture, people of a certain country, etc. This fact renders object

18 CHAPTER 2. SCIENTIFIC PROGRAMMING

oriented codes extremely readable compared to what is possible with standard functions and variables. In
addition to simple object structures, which in some sense can be achieved with standard C structs, classes
provide functionality such as inheritance and accessibility control. These concepts will be the focus for
the rest of the chapter, however, for the sake of completeness, a brief introduction to class syntax is given.

2.2.1 A Brief Introduction to Essential Concepts

Members

A class in its simplest representation is a collection of variables and functions unique to a specified object
of the class3. When an object is created, it is uniquely identified by its own set of member variables.

An important member of a class is the object itself. In Python, this intrinsic mirror image is called self,
and must, due to the interpreter nature of the language, be present in all function calls. In C++, it is
available in any class member function as the this pointer. Making changes to self or this inside a
function is equivalent to changing the object outside the function. It is nothing but a way for an object
to have access to itself at any time.

Constructors

The constructor is the class function responsible for initializing new objects. When requesting a new
instance of a class, a constructor is called with specific input parameters. In Python, the construc-
tor is called __init__(), while in C++, the name of the constructor must match that of the class,
e.g. someClass::someClass()4.

Creating a new object is simply done by calling the constructor

1 someClass* someObject = new SomeClass("constructor argument");

The constructor can then assign values to member variables based on the input parameters.

Destructors

Opposite to constructors, destructors are responsible for deleting an object. In Python this is auto-
matically done by the garbage collector, however, in C++ this is sometimes important in order to avoid
memory leaks. The destructor is implemented as the function someClass::~someClass(), and is invoked
by typing e.g. delete someObject;.

Reference [15] is suggested for further introduction to basic concepts of classes.

2.2.2 Inheritance

Consider the abstract idea of a keyboard: A board and keys (obviously). In object orientation terms, the
keyboard superclass describes a board with keys. It is abstract in the sense that no specific information
regarding the formation or functionality of the keys is needed in order to define the concept of a keyboard.

3Members can be shared by all class instances in C++ by using the static keyword. This will make the variables and
function obtainable without initializing an object as well.

4The double colon notation means “someClass’ member someClass()”.

2.2. OBJECT ORIENTATION 19

On the other hand, there exist different specific kinds of keyboards, e.g. computer keyboards or musical
keyboards. Although quite different in design and function, they both relate to the same concept of a
keyboard described previously: They are both subclasses of the same superclass, inheriting the basic
concepts, but overloading the abstract parts with specific implementations.

Consider the following Python implementation of a keyboard superclass:

1 class Keyboard ():

2

3 #Set member variables keys and the number of keys

4 #A subclass will override these with their own representation

5 keys = None

6 nKeys = 0

7

8 #Constructor (function called when creating an object of this class)

9 #Sets the number of keys and calls the setup function ,

10 #ensuring that no object of this abstract class can be created.

11 def __init__(self, nKeys):

12 self.nKeys = nKeys

13 self.setupKeys ()

14

15 def setupKeys(self):

16 raise NotImplementedError("Override me!")

17

18 def pressKey(self, key):

19 raise NotImplementedError("Override me!")

20

21 def releaseKey(self, key):

22 raise NotImplementedError("Override me!")

This class does not function on its own, and is clearly an abstract class meant for sub-classing. Examples
of subclasses of keyboards are as mentioned computer - and musical keyboards. An easy way to visualize
this inheritance relation is by drawing an inheritance diagram as in Figure 2.1. A python implementation
of these subclasses are given on the next page.

Keyboard
keys
nKeys

setupKeys()
pressKey()
releaseKey()

ComputerKeyboard

language

MusicalKeyboard

volume
outputDevice

Figure 2.1: Inheritance diagram for a keyboard superclass. Class members are listed below the class
name.

20 CHAPTER 2. SCIENTIFIC PROGRAMMING

1 #The (keyboard) spesifies inheritance from Keyboard

2 class ComputerKeyboard(Keyboard):

3

4 def __init__(self, language , nKeys):

5

6 self.language = language

7

8 #Use the superclass contructor to set the number of keys

9 super(ComputerKeyboard , self).__init__(nKeys)

10

11

12 def setupKeys(self):

13

14 if self.language == "Norwegian":

15 "Set up norwegian keyboard style"

16 elif ...

17

18

19 def pressKey(self, key):

20 return self.keys[key]

21

22

23

24 #Dummy import for illustration purposes

25 from myDevices import Speakers

26

27 class MusicalKeyboard(Keyboard):

28

29 def __init__(self, nKeys , volume):

30

31 #Set the ouput device to speakers implemented elsewhere

32 self.outputDevice = Speakers ()

33 self.volume = volume

34

35 super(ComputerKeyboard , self).__init__(nKeys)

36

37

38 def setupKeys(self):

39 lowest = 27.5 #Hz

40 step = 1.06 #Relative increase in Hz (neighbouring keys)

41

42 self.keys = [lowest + i*step for i in range(self.nKeys)]

43

44

45 def pressKey(self, key):

46

47 #Returns a harmonic wave with frequency and amplitude

48 #extracted from the pressed key and the volume level.

49 outout = ...

50 self.outputDevice.play(key , output)

51

52

53 #Fades out the playing tune

54 def releaseKey(self, key):

55 self.outputDevice.fade(key)

It is clear from looking at the superclass that two keyboards are differentiated by the way their keys are
set up. Not overriding the setupKeys() function would cause the generic superclass constructor to call
the function which would raise an exception and close the program. These kinds of superclass member
functions, which requires an implementation in order for the object to be constructed, are referred to as
pure virtual functions. The other two functions do not necessarily have to be implemented, and are thus
referred to as virtual functions. These topics will be discussed in more detail in the next section.

2.2. OBJECT ORIENTATION 21

2.2.3 Pointers, Typecasting and Virtual Functions

A pointer is a hexadecimal number representing a memory address where some type of object is stored,
for instance, an int at 0x7fff0882306c (0x simply implies hexadecimal). Higher level languages like
Python handles all the pointers and typesetting automatically. In low-level languages like C++, however,
you need to control everything. This is commonly referred to as type safety.

Memory addresses are global, that is, they are shared throughout the program. This implies that changes
done to a pointer to an object, e.g. Keyboard* myKeyboard, are applied everywhere the object is in use.
This is particularly handy (or dangerous) when passing a pointer as an argument to a function, as changes
applied to the given object will cause the object to remain changed after exiting the function. Passing
non-pointer arguments would only change a local copy of the object which is destroyed upon exiting the
function. The alternative would be to pass the reference to the object, e.g. &myObject, which passes the
address just as in the case of pointers.

Creating a pointer to a keyboard object in C++ can be done in several ways. Following are three
examples:

1 MusicalKeyboard* myKeyboard1 = new MusicalKeyboard (...);

2 Keyboard* myKeyboard2 = new MusicalKeyboard (...);

the second which is identical to

1 Keyboard* myKeyboard2 = (Keyboard *) myKeyboard1;

For reasons which will be explained in Section 2.2.4, the second expression is extremely handy. Technically,
the subclass object is type cast to the superclass type. This is allowed since any subclass is type-compatible
with a pointer to it’s superclass. Any standard functions implemented in the subclass will not be directly
callable from outside the object itself, and identical functions will be overwritten by the corresponding
superclass functions, unless the functions are virtual. Flagging a function as virtual in the superclass will
then tell the compiler not to overwrite this particular function when a subclass object is typecast to the
superclass type.

Python does not support virtual functions in the same strict sense as C++, since typecasting is automagic
in a language which is not type safe. The following example should bring some clarity to the current
topic:

1 #include <iostream >

2 using namespace std;

3

4 class superClass{

5 public:

6 // virtual = 0 implies pure virtual

7 virtual void pureVirtual () = 0;

8 virtual void justVirtual () {cout << "superclass virtual" << endl;}

9 void notVirtual () {cout << "superclass notVirtual" << endl;}

10 };

11

12 class subClass : public superClass{

13 public:

14 void pureVirtual () {cout << "subclass pure virtual override" << endl;}

15 void justVirtual () {cout << "subclass standard virtual override" << endl;}

16 void notVirtual () {cout << "subclass non virtual" << endl;}

17 };

18

19 // Testfunc retrieves a superClass pointer , then calls all the functions.

20 void testFunc(superClass* someObject){

21 someObject ->pureVirtual (); someObject ->justVirtual (); someObject ->notVirtual ();

22 }

22 CHAPTER 2. SCIENTIFIC PROGRAMMING

1 int main(){

2

3 cout << "-Calling subClass object of type superClass*" << endl;

4 superClass* object = new subClass (); testFunc(object);

5

6 cout << endl << "-Calling subClass object of type subClass*" << endl;

7 subClass* object2 = new subClass (); testFunc(object);

8

9 cout << endl << "-Directly calling object of type subclass*" << endl;

10 object2 ->pureVirtual (); object2 ->justVirtual (); object2 ->notVirtual ();

11

12 return 0;

13 }

Listing 2.1: This code demonstrates two different ways of creating an object of a subclass. In line 4,
the object is created as a superclass type. Passing it to the function will cause the function to access
the superclass functions unless they are declared as virtual. In line 7, the object is created as a subclass
type, however, by passing it to the function, the object is typecast to the superclass type, rendering the
two methods identical. In line 10, the functions are directly called, which ensures that only the subclass’
functions are called regardless of them being virtual or not.

Executing the above code yields

~$./virtualFunctionsC++.x

-Calling subClass object of type superClass*

subclass pure virtual override

subclass standard virtual override

superclass notVirtual

-Calling subClass object of type subClass*

subclass pure virtual override

subclass standard virtual override

superclass notVirtual

-Directly calling object of type subclass*

subclass pure virtual override

subclass standard virtual override

subclass non virtual

As introduced in the keyboard example, the superclass in this case has a pure virtual function. Creating
an object of the superclass would raise an error in the compilation, claiming that the superclass is abstract.
Implemented subclasses must overload pure virtual functions in order to compile.

2.2.4 Polymorphism

The previous example involved a concept referred to as polymorphism, which is a concept closely connected
to virtual functions and type casting. Because of the virtual nature of the superclass’ functions, the
function testFunc() does not a priori know its exact task. All it knows is that the received object has
three functions (see the previous example). Exploiting this property is referred to as polymorphism.

Using polymorphism, codes can be written in an organized and versatile fashion. To further illustrate
this, consider the following example from the Quantum Monte-Carlo (QMC) code developed in this thesis:

2.2. OBJECT ORIENTATION 23

1 class Potential {

2 protected:

3 int n_p;

4 int dim;

5

6 public:

7 Potential(int n_p , int dim);

8

9 //Pure virtual function

10 virtual double get_pot_E(const Walker* walker) const = 0;

11

12 };

13

14 class Coulomb : public Potential {

15 public:

16

17 Coulomb(GeneralParams &);

18

19 // Returns the sum 1/r_i

20 double get_pot_E(const Walker* walker) const;

21

22 };

23

24 class Harmonic_osc : public Potential {

25 protected:

26 double w;

27

28 public:

29

30 Harmonic_osc(GeneralParams &);

31

32 // return the sum 0.5*w*r_i^2

33 double get_pot_E(const Walker* walker) const;

34

35 };

36

37 ...

Listing 2.2: An example from the QMC code. The superclass of potentials is defined by a number of
particles (line 3), a dimension (line 4) and a pure virtual function for extracting the local energy of a given
walker (line 10). Specific potentials are implemented as subclasses (line 14 and 24), simply overriding
the pure virtual function with their own implementations.

Assume that an object Potential* potential is sent to an energy function. Since get_pot_E() is
virtual, the potential can take any form; the energy function only checks whether it has an implementation
or not. The code can easily be adapted to handle any combination of any potentials by storing the
potential objects in a vector and simply accumulate the contributions:

1 // Simple compiler definition to clean up the code

2 #define potvec std::vector <Potential*>

3

4 class System {

5

6 double get_potential_energy(const Walker* walker) const;

7 potvec potentials;

8 ...

9 };

10

11 double System :: get_potential_energy(const Walker* walker) const {

12 double potE = 0;

13

14 // Iterates through all loaded potentials and accumulate energies.

15 for (potvec :: iterator pot = potentials.begin (); pot != potentials.end(); ++pot) {

16 potE += (*pot)->get_pot_E(walker);

17 }

18

19 return potE;

20 }

24 CHAPTER 2. SCIENTIFIC PROGRAMMING

2.2.5 Const Correctness

In the previous Potential code example, function declarations with the const flag were used. As
mentioned in the section on pointers, passing pointers to functions are dangerous business. If an object
is flagged with const on input, e.g. void f(const x), the function itself cannot alter the value of x. If it
does, the compiler will abort. This property is referred to as const correctness, and serve as a safeguard
guaranteeing that nothing will happen to x as it passes through f. This is practical in situations where
changes to an object are unwanted.

If you declare a member function itself with const on the right hand side, e.g. void class::f(x) const,
no changes may be applied to class members inside this specific function. For instance, in the potential
energy functions, all that is requested is to evaluate a function at a given set of coordinates; there is no
need to change anything, hence the const correctness is applied to the function.

In other words: const correctness works as a safeguard preventing changes to values which should remain
unchanged. A change in such a variable is then followed by a compiler error instead of unforeseen
consequences.

2.2.6 Accessibility levels and Friend classes

When a C++ class is declared, each member needs to be related to an accessibility level. The three
accessibility levels in C++ are

(i) Public: The variable or function may be accessed from anywhere the object is available.

(ii) Private: The variable or function may be accessed only from within the class itself.

(iii) Protected: As for private, but also accessible from subclasses of the class.

As an example, any standardized application (app) needs the app::execute_app() function to be public,
i.e. accessible from the main file. On the other hand, app::dump_progress() should be controlled by
the application itself, and should thus be private, or protected in case the application has subclasses.

There is one exception to the rule of protected - and private variables. In certain situations where a class
needs to access private variables from another class, but going full public is undesired, the latter class can
friend the first class. This implies that the first class has access to the second class’ private members.

In the QMC code developed in this thesis, the distribution is calculated by a class Distrubution. In
order to achieve this, the protected members of QMC need to be made available to the Distrubution class.
This is implemented in the following fashion:

2.2. OBJECT ORIENTATION 25

1

2 class QMC {

3 protected:

4

5 arma::mat dist; //!< Matrix holding positional data for the distribution.

6 int last_inserted; //!< Index of last inserted positional data.

7 ...

8

9 public:

10 ...

11

12 //Gives Distribution access to protected members of QMC.

13 friend class Distribution;

14

15 };

16

17 void Distribution :: finalize () {

18

19 //scrap out all the over -allocated space (DMC)

20 qmc ->dist.resize(qmc ->last_inserted , dim);

21

22 if (dim == 3) {

23 generate_distribution3D(qmc ->dist , qmc ->n_p);

24 } else {

25 generate_distribution2D(qmc ->dist , qmc ->n_p);

26 }

27

28 qmc ->dist.reset();

29

30 }

Listing 2.3: An example from the QMC code. The distribution class needs access to the private members
of QMC. This is achieved in line 13 by friending the distribution class.

Codes could be developed without using const flags and with solely public members, however, in that
case it is very easy to put together a very disorganized code, with pointers going everywhere and functions
being called in all sorts of contexts. This is especially true if there are several developers on the same
project.

Clever use of accessibility levels will make codes easier to develop in an organized and intuitive fashion
Put in other words: If you have to break an accessibility level to implement a desired functionality, there
probably exists a better way of implementing it.

2.2.7 Example: PotionGame

To conclude this section on object orientation, consider the following code for a player vs. player game:

26 CHAPTER 2. SCIENTIFIC PROGRAMMING

1 #playerClass.py

2 import random

3

4 class Player:

5

6 def __init__(self, name):

7 #Player initialized at full health and full energy.

8 self.health = self.energy = 100

9

10 self.name = name

11 self.dead = False

12

13 #Player initialized with no available potions.

14 self.potions = []

15

16

17 def addPotion(self, potion):

18 self.potions.append(potion)

19

20

21 #Selects the given potion and consumes it. The potion needs to know

22 #the player it should affect , hence we send ’self’ as an argument.

23 def usePotion(self, potionIndex):

24 print "%s consumes %s." % (self.name , self.potions[potionIndex].name)

25

26 selectedPotion = self.potions[potionIndex]

27 selectedPotion.applyPotionTo(self) #Self explainatory!

28 self.potions.pop(potionIndex) #Removed the potion.

29

30

31 def changeHealth(self, amount):

32 self.health += amount

33

34 #Cap health at [0 ,100].

35 if self.health > 100: self.health = 100

36 elif self.health <= 0:

37 self.health = 0

38 self.dead = True;

39

40

41 def changeEnergy(self, amount):

42 self.energy += amount

43

44 #Cap energy at [0 ,100].

45 if self.energy > 100: self.energy = 100

46 elif self.energy < 0: self.energy = 0

47

48

49 #Lists the potions to the user.

50 def displayPotions(self):

51 if not self.potions:

52 print " No potions available"

53

54 for potion in self.potions: print " " + potion.name

55

56

57 def attack(self, targetPlayer):

58

59 energyCost = 55

60

61 if self.energy < energyCost:

62 print "%s: Insuficcient energy to attack." % self.name; return

63

64 damage = 40 + random.randint (-10, 10)

65

66 targetPlayer.changeHealth(-damage)

67 self.changeEnergy(-energyCost)

68

69 print "%s hit %s for %s using %s energy" % (self.name ,

70 targetPlayer.name ,

71 damage , energyCost)

2.2. OBJECT ORIENTATION 27

1 #potionClass.py

2

3 class Potion:

4

5 def __init__(self, amount):

6 self.amount = amount

7 self.setName ()

8

9 def applyPotionTo(self, player):

10 raise NotImplementedError("Member function applyPotion not implemented.")

11

12 #This function should be overwritten

13 def setName(self):

14 self.name = "Undefined"

15

16

17 class HealthPotion(Potion):

18

19 #Constructor is inherited

20

21 #Calls back to the player object ’s functions to change the health

22 def applyPotionTo(self, player):

23 player.changeHealth(self.amount)

24

25 def setName(self):

26 self.name = "Health Potion (%d)" % self.amount

27

28

29 class EnergyPotion(Potion):

30

31 def applyPotionTo(self, player):

32 player.changeEnergy(self.amount)

33

34 def setName(self):

35 self.name = "Energy Potion (%d)" % self.amount

The Player class keeps track of everything a player needs of personal data, such as the name (line 10),
health- and energy levels (line 8), potions etc. Bringing another player into the game is simply done by
creating another Player object. A player holds a number of Potion objects in a list (line 14). These
objects are subclass implementations of the abstract potion class, which overwrites the virtual function
describing the potion’s effect on a given player object. This is demonstrated in lines 23 and 32. This
subclass hierarchy of potions makes it incredibly easy to implement new ones.

The power of object orientation shines through in this simple example. The readability is very good, and
does not falter if numerous potions or players are brought to the table.

In this section the focus has not been solely on scientific computing, but rather on the use of object
orientation in general. The interplay between the potions and the players in the current example closely
resembles the interplay between the QMC solver and the potentials introduced previously. Whether
games or scientific programs are at hand, the methods used in the programming remain the same.

On the following page, a game is constructed using the Player and Potion classes. In lines 15-22, three
players are initialized with a set of potions, from where they battle each other one round. The syntax
is extremely transparent. Adding a fourth player is simply a matter of adding a new line of code. The
output of the game is displayed below the code.

28 CHAPTER 2. SCIENTIFIC PROGRAMMING

1 #potionGameMain.py

2

3 from potionClass import *

4 from playerClass import *

5

6 def roundOutput(n, *players):

7 header= "Round %d: " % n

8 print header.replace(’0’,’start’)

9 for player in players:

10 print " %s (hp/e=%d/%d):" % (player.name , player.health , player.energy)

11 player.displayPotions ()

12 print

13

14

15 Sigve = Player(’Sigve’);

16 Sigve.addPotion(EnergyPotion (10));

17

18 Jorgen = Player(’Jorgen ’)

19 Jorgen.addPotion(HealthPotion (20)); Jorgen.addPotion(EnergyPotion (20))

20

21 Karl = Player(’Karl’)

22 Karl.addPotion(HealthPotion (20))

23

24 #Initial output

25 roundOutput (0, Sigve , Jorgen , Karl)

26

27 #Round one: Each player empties their arsenal

28 Sigve.attack(Jorgen); Sigve.attack(Karl); Sigve.usePotion (0); Sigve.attack(Karl)

29 print

30

31 Karl.usePotion (0); Karl.attack(Sigve)

32 print

33

34 Jorgen.attack(Karl); Jorgen.usePotion (1); Jorgen.attack(Sigve)

35 print

36

37 roundOutput (1, Sigve , Jorgen , Karl)

38 #Round one end.

39 #...

Round start:
Sigve (hp/e=100/100):
Energy Potion (10)

Jorgen (hp/e=100/100):
Health Potion (20)
Energy Potion (20)

Karl (hp/e=100/100):
Health Potion (20)

Sigve hit Jorgen for 40 using 55 energy
Sigve: Insuficcient energy to attack.
Sigve consumes Energy Potion (10).
Sigve hit Karl for 35 using 55 energy

Karl consumes Health Potion (20).
Karl hit Sigve for 41 using 55 energy

Jorgen hit Karl for 44 using 55 energy
Jorgen consumes Energy Potion (20).
Jorgen hit Sigve for 47 using 55 energy

Round 1:
Sigve (hp/e=12/0):
No potions available

Jorgen (hp/e=60/10):
Health Potion (20)

Karl (hp/e=41/45):
No potions available

2.3. STRUCTURING THE CODE 29

2.3 Structuring the code

Structuring a code is a matter of making choices based on the complexity of the code. If the code is short
and has a direct purpose, for instance, to calculate the sum from Eq. (2.1), the structure is not an issue at
all, given that reasonable variable names are used. However, if the code is more complex and the methods
used are specific implementations of a more general case, e.g. potentials, code structuring becomes very
important. For details about the structuring of the code used in this thesis, see the documentation
provided in Ref. [9].

2.3.1 File Structures

Not only does the potion game example demonstrate clean object orientation, but also standard file
structuring by splitting the different classes and the main application into separate files. In a small code,
like for example the potion game, the gain of transparency is not immense, however, when the class
structures span thousands of lines, having a good structure is crucial to the development process, the
code’s readability, and the management in general.

Developing codes in scientific scenarios often involve large frameworks. For example, when coding molec-
ular dynamics, several collision models, force models etc. are implemented alongside the main solver.
In the case of Markow Chain Monte Carlo methods, different diffusion models (sampling rules) may be
selectable. Even though these models are implemented using polymorphism, the code still gets messy
when the amount of classes gets large.

In these scenarios, it is common to gather the implementations of the different classes in separate files
(as for the potion game). This would be for purely cosmetic reasons if the process of writing code was
linear, however, empirical evidence suggests otherwise: At least half the time is spent debugging, going
back and forth between files.

A standard way to organize code is to have all the source code gathered in an src folder, with one folder
per distinct class. Subclasses should appear as folders inside the superclass folder. Figure 2.2 shows an
example setup for the framework of an object oriented code.

Another gain by this structuring files this way, is that tools such as Make, QMake, etc. ensures that only
the files that actually changed will be recompiled. This saves a lot of time in the development process
once the total compilation time starts taking several minutes.

2.3.2 Class Structures

In scientific programming, the simulated process often has a physical or mathematical interpretation.
Some examples are, for instance, atoms in molecular dynamics and Bose-Einstein condensates, random
walkers in diffusion processes, etc. Implementing classes representing these quantities will shorten the
gap between the mathematical formulation of the problem and the implementation.

In addition, quantities such as the energy, entropy and temperature, are all calculated based on equations
from statistical mechanics, quantum mechanics, or similar. Having class methods representing these calcu-
lations will again shorten the gap. There is no question what is done when the system::get_potential_E
method is called, however, if some random loop appears in the main solver, an initial investigation is
required in order to understand the flow of the code.

As described in Section 2.2.4, abstracting for example the potential energy function into a system object
opens up the possibility of generalizing the code to any potential without altering the main solver.
Structure is in other words vital if readability and versatility is desired.

30 CHAPTER 2. SCIENTIFIC PROGRAMMING

Planning the code structure comes in as a key part of any large coding project. For details regarding the
planning of the code in this thesis, see Section 4.1.

Figure 2.2: An illustration of a standard way to organize source code. The file endings represent C++
code.

3

Quantum Monte-Carlo

Quantum Monte-Carlo (QMC) is a method for solving Schrödinger’s equation using statistical Markov
Chain (random walk) simulations. The statistical nature of Quantum Mechanics makes Monte-Carlo
methods the perfect tool not only for accurately estimating observables, but also for extracting interesting
quantities such as densities, i.e. probability distributions.

There are multiple strategies which can be used in order to deduce the virtual1 dynamics of QMC, some
of which are more mathematically complex than others. In this chapter the focus will be on modelling
the Schrödinger equation as a diffusion problem in complex (Wick rotated) time. Other more condensed
mathematical approaches does not need the Schrödinger equation at all, however, for the purpose of
completeness, this approach will be mentioned only briefly in Section 3.2.3.

In this chapter, Dirac Notation will be used. See Appendix A for an introduction. The equations will
be in atomic units, i.e. ~ = me = e = 4πε0 = 1, where me and ε0 are the electron mass and the vacuum
permittivity, respectively.

3.1 Modelling Diffusion

Like any phenomena involving a probability distribution, Quantum Mechanics can be modelled by a
diffusion process. In Quantum Mechanics, the distribution is given by |Φ(r, t)|2, the wave function
squared. The diffusing elements of interest are the particles in the system at hand.

The basic idea is to introduce an ensemble of random walkers, in which each walker is represented by a
position in space at a given time. Once the walkers reach equilibrium, averaging values over the paths
of the ensemble will yield average values corresponding to the probability distribution governing the
movement of individual walkers. In other words: Counting every walker’s contribution within a small
volume dr will correspond to |Φ(r, t)|2dr in the limit of infinite walkers.

Such random movement of walkers are referred to as a Brownian motion, named after the British botanist
R. Brown, originating from his experiments on plant pollen dispersed in water. Markov chains are a
subtype of Brownian motion, where a walkers next move is independent of previous moves. This is the
stochastic process in which QMC is described.

1As will be shown, the time parameter in QMC does not correspond to physical time, but rather an imaginary axis at a
fixed point in time. Whether nature operates on a complex time plane or not is not testable in a laboratory, and the origin
of the probabilistic nature of Quantum Mechanics will thus remain a philosophical problem.

31

32 CHAPTER 3. QUANTUM MONTE-CARLO

The purpose of this section is to motivate the use of diffusion theory in Quantum Mechanics, and to
derive the sampling rules needed in order to model Quantum Mechanical distributions by diffusion of
random walkers correctly.

3.1.1 Stating the Schrödinger Equation as a Diffusion Problem

Consider the time-dependent Schrödinger equation for an arbitrary wave function Φ(r, t) using an arbi-
trary energy shift E′

− ∂Φ(r, t)

i∂t
= (Ĥ− E′)Φ(r, t). (3.1)

Given that the Hamiltonian is time-independent, the formal solution is found by separation of variables
in Φ(r, t) [17]

ĤΦ(r, t0) = EΦ(r, t0), (3.2)

Φ(r, t) = exp
(
−i(Ĥ− E′)(t− t0)

)
Φ(r, t0). (3.3)

From Eq. (3.3) it is apparent that the time evolution operator is on the form

Û(t, t0) = exp
(
−i(Ĥ− E′)(t− t0)

)
. (3.4)

The time-independent equation is solved for the ground state energy through methods such as Full
Configuration Interaction [18] or similar methods based on diagonalizing the Hamiltonian. The time-
dependent equation is used by methods such as Time-Dependent Multi-Configuration Hartree-Fock [19]
in order to obtain the time-development of quantum states. However, neither of the equations originate
from, or resemble, diffusion equations.

The original Schrödinger equation, however, does resemble a diffusion equation in complex time2. It can
not be treated as a true diffusion equation, since the time evolved quantity, the wave function, is not
a probability distribution unless it is squared. However, the equation involves a time derivative and a
Laplacian, strongly indicating some sort of connection to a diffusion process.

Substituting complex time with a parameter τ and choosing the energy shift E′ equal to the true ground
state energy of Ĥ, E0, the time evolution operator in Eq. (3.4) becomes the projection operation P̂(τ),
whose choice of name will soon be apparent. In other words:

t→ it ≡ τ,

Û(t, 0)→ exp
(
−(Ĥ− E0)τ

)
≡ P̂(τ).

Consider an arbitrary wave function ΨT (r). Applying the new operator yields a new wave function Φ(r, τ)
in the following manner

2The physical time diffusion equation evolves the squared wave function, and can be deduced from the quantum continuity
equation combined with Fick’s laws of diffusion [20].

3.1. MODELLING DIFFUSION 33

Φ(r, τ) = 〈r| P̂(τ) |ΨT 〉 (3.5)

= 〈r| exp
(
−(Ĥ− E0)τ

)
|ΨT 〉 .

Expanding the arbitrary state in the eigenfunction of Ĥ, |Ψi〉, yields

Φ(r, τ) =
∑
i

Ci 〈r| exp
(
−(Ĥ− E0)τ

)
|Ψi〉

=
∑
i

CiΨi(r) exp (−(Ei − E0)τ)

= C0Ψ0(x) +

∞∑
i=1

CiΨk(x)e−δEiτ , (3.6)

where Ci = 〈Ψi|ΨT 〉 and δEi = Ei − E0 ≥ 0. In the limit where τ goes to infinity, the ground state is
the sole survivor of the expression, hence the name projection operator. In other words:

lim
τ→∞

Φ(r, τ) = lim
τ→∞

〈r| P̂(τ) |ΨT 〉

= C0Ψ0(x). (3.7)

The projection operator transforms an arbitrary wave function ΨT (r), from here on referred to as the
trial wave function, into the true ground state, given that the overlap C0 is non-zero.

In order to model the projection with Markov chains, the process needs to be split into subprocesses which
in turn can be described as transitions in the Markov chain. Introducing a time-step δτ , the projection
operator can be rewritten as

P̂(τ) =

n∏
k=1

exp
(
−(Ĥ− E0)δτ

)
, (3.8)

where n = τ/δτ . An important property to notice is that

P̂(τ + δτ) = exp
(
−(Ĥ− E0)δτ

)
P̂(τ). (3.9)

Using this relation in combination with Eq. (3.5), the effect of the projection operator during a single
time-step is revealed:

Φ(r, τ + δτ) = 〈r| P̂(τ + δτ) |ΨT 〉

= 〈r| exp
(
−(Ĥ− E0)δτ

)
P̂(τ) |ΨT 〉

= 〈r| exp
(
−(Ĥ− E0)δτ

)
|Φ(τ)〉

=

∫
r′
〈r| exp

(
−(Ĥ− E0)δτ

)
|r′〉 〈r′|Φ(τ)〉dr′

=

∫
r′
〈r| exp

(
−(Ĥ− E0)δτ

)
|r′〉Φ(r′, τ)dr′, (3.10)

34 CHAPTER 3. QUANTUM MONTE-CARLO

where a complete set of position states were introduced.

For practical purposes, E0 needs to be substituted with an approximation ET to the ground state energy,
commonly referred to as the trial energy, in order to avoid self consistency. From Eq. (3.6) it is apparent
that the projection will still converge as long as ET < E1, that is, the trial energy is less than that of the
first excitation. The resulting expression reads:

Φ(r, τ + δτ) =

∫
r′
〈r| exp

(
−(Ĥ− ET)δτ

)
|r′〉Φ(r′, τ)dr′ (3.11)

≡
∫
r′
G(r, r′; δτ)Φ(r′, τ)dr′. (3.12)

The equations above are well suited for Markov Chain models, as an ensemble of walkers can be iterated
by transitioning between configurations |r〉 and |r′〉 with probabilities given by the Green’s function,
G(r, r′; δτ).

The effect of the Green’s function from Eq. (3.12) on individual walkers is not trivial. In order to relate
the Green’s function to well-known processes, the exponential is split into two parts, one containing only
the kinetic energy operator T̂ = − 1

2∇
2, and the second containing the potential energy operator V̂ and

the energy shift. This is known as the short time approximation [21]

G(r, r′; δτ) = 〈r| exp
(
−(Ĥ− ET)δτ

)
|r′〉 (3.13)

= 〈r| e−T̂δτe−(V̂−ET)δτ |r′〉+
1

2
[V̂, T̂]δτ2 +O(δτ3). (3.14)

The first exponential describes a transition of walkers governed by the Laplacian, which is a diffusion
process. The second exponential is linear in position space and is thus a weighing function responsible
for distributing the correct weights to the corresponding walkers. In other words:

GDiff = e
1
2∇

2δτ , (3.15)

GB = e−(V̂−ET)δτ , (3.16)

where B denotes branching. The reasons for this name together with the complete process of modelling
weights by branching will be covered in detail in Section 3.5.

The flow of QMC is then to use these Green’s functions to propagate the ensemble of walkers into
the next time-step. The final distribution of walkers will correspond to that of the direct solution of
the Schrödinger equation, given that the time-step is sufficiently small, and the number of cycles n are
sufficiently large. These constraints will be covered in more detail later.

Incorporating only the effect of Eq. (3.15) results in a method called Variational Monte-Carlo (VMC).
Including the branching term as well results in Diffusion Monte-Carlo (DMC). These methods will be
discussed in Sections 3.8 and 3.9, respectively. In either of these methods, diffusion is a key process.

3.2 Solving the Diffusion Problem

The diffusion problem introduced in the previous section uses a symmetric kinetic energy operator im-
plying an isotropic diffusion, however, a more efficient kinetic energy operator can be introduced without

3.2. SOLVING THE DIFFUSION PROBLEM 35

violating the original equations, resulting in an anisotropic diffusion governed by the Fokker-Planck
equation. These models will be the topic of this section.

For details regarding the transition from isotropic to anisotropic diffusion, see Section 3.2.3.

3.2.1 Isotropic Diffusion

Isotropic diffusion is a process in which diffusing particles sees all directions as an equally probable path.
Eq. (3.17) is an example of this. The isotropic diffusion equation is

∂P (r, t)

∂t
= D∇2P (r, t). (3.17)

This is the simplest form of a diffusion equation, that is, the case with a linear diffusion constant, D, and
no drift terms.

From Eq. (3.15) it is clear that the value of the diffusion constant is D = 1
2 , originating from the term

scaling the Laplacian in the Schrödinger Equation. An important point is that closed form expressions for
the Green’s function exists. This closed form expression in the isotropic case is a Gaussian distribution
with variance 2Dδt [21]

GISO
Diff(i → j) ∝ e−|ri−rj |

2/4Dδτ . (3.18)

These equations describe the diffusion process theoretically, however, in order to achieve specific sam-
pling rules for the walkers, a connection between the time-dependence of the distribution and the time-
dependence of an individual walker’s components in configuration space is needed. This connection is
given in terms of a stochastic differential equation called The Langevin Equation.

The Langevin Equation for isotropic diffusion

The Langevin Equation is a stochastic differential equation used in physics to relate the time dependence
of a distribution to the time-dependence of the degrees of freedom in a system. For isotropic diffusion,
solving the Langevin equation using a Forward Euler approximation for the time derivative results in the
following relation:

xi+1 = xi + ξ, Var(ξ) = 2Dδt, (3.19)

〈ξ〉 = xi,

where ξ is a normal distributed number whose variance matches that of the Green’s function in Eq. (3.18).
This relation is in agreement with the isotropy of Eq. (3.17) in the sense that the displacement is symmetric
around the current position.

3.2.2 Anisotropic Diffusion and the Fokker-Planck equation

Anisotropic diffusion, in contrast to isotropic diffusion, does not see all directions as equally probable. An
example of this is diffusion according to the Fokker-Planck Equation, that is, diffusion with a drift term,
F(r, t), responsible for pushing the walkers in the direction of configurations with higher probabilities,
and thus closer to an equilibrium state. The Fokker-Planck equation reads:

36 CHAPTER 3. QUANTUM MONTE-CARLO

∂P (r, t)

∂t
= D∇ ·

[(
∇− F(r, t)

)
P (r, t)

]
. (3.20)

As will be derived in detail in Section 3.2.3, using the Fokker-Planck equation does not violate the original
Schrödinger equation, but changes the representation of the ensemble of walkers to a mixed density. This
means that QMC can be run with Fokker-Planck diffusion, leading to a more optimized way of sampling
due to the drift term.

As mentioned introductory, the goal of the Markov process is convergence to a stationary state. Using
this criteria, the expression for the drift term can be found. A stationary state is obtained when the left
hand side of Eq. (3.20) is zero. This yields:

∇2P (r, t) = P (r, t)∇ · F(r, t) + F(r, t) · ∇P (r, t).

In order to get cancellation in the remaining terms, the Laplacian term on the right-hand side must cancel
out the terms on the left. This implies that the drift term needs to be on the form F(r, t) = g(r, t)∇P (r, t).
Inserting this yields

∇2P (r, t) = P (r, t)
∂g(r, t)

∂P (r, t)

∣∣∣∇P (r, t)
∣∣∣2 + P (r, t)g(r, t)∇2P (r, t) + g(r, t)

∣∣∣∇P (r, t)
∣∣∣2.

The factors in front of the Laplacian suggests using g(r, t) = 1/P (r, t). A quick check reveals that this
also cancels the gradient terms. The resulting expression for the drift term becomes

F(r, t) =
1

P (r, t)
∇P (r, t)

=
2

|ψ(r, t)|
∇|ψ(r, t)|. (3.21)

In QMC, the drift term is commonly referred to as the quantum force. This is due to the fact that it is
responsible for pushing the walkers into regions of higher probabilities, analogous to a force in Newtonian
mechanics.

Another strength of the Fokker-Planck equation is that even though the equation itself is more compli-
cated, its Green’s function still has a closed form solution. This means that it can be evaluated efficiently.
If this was not the case, the practical value would be reduced dramatically. The reason for this will become
clear in Section 3.4. The closed form solution reads [21]

GFP
Diff(i → j) ∝ e−(xi−xj−DδτF (xi))

2/4Dδτ . (3.22)

As expected, the Green’s function is no longer symmetric.

The Langevin Equation for the Fokker-Planck equation

The Langevin equation in the case of a Fokker-Planck Equation has the following form

∂xi
∂t

= DF (r)i + η, (3.23)

3.2. SOLVING THE DIFFUSION PROBLEM 37

where η is a so-called noise term from stochastic processes. Solving this equation using the same method
as for the isotropic case yields the following sampling rules

xi+1 = xi + ξ +DF (r)iδt, (3.24)

where ξ is the same as for the isotropic case. Observe that when the drift term goes to zero, the Fokker-
Planck - and isotropic solutions are equal, just as required. For more details regarding the Fokker-Planck
Equation and Langevin equations, see Refs. [22–24].

3.2.3 Connecting Anisotropic - and Isotropic Diffusion Models

To this point, it might seem far-fetched that switching the diffusion model to a Fokker-Planck diffu-
sion does not violate the original equation, i.e. the complex time Schrödinger equation (the projection
operator). Introducing the distribution function f(r, t) = Φ(r, t)ΨT (r), restating the imaginary time
Schrödinger equation in terms of f(r, t) yields

− ∂

∂t
f(r, t) = ΨT (r)

[
− ∂

∂t
Φ(r, t)

]
= ΨT (r)

(
Ĥ− ET

)
Φ(r, t)

= ΨT (r)
(
Ĥ− ET

)
ΨT (r)−1f(r, t) (3.25)

= −1

2
ΨT (r)∇2

(
ΨT (r)−1f(r, t)

)
+ V̂f(r, t)− ET f(r, t).

Expanding the Laplacian term further reveals

K(r, t) ≡ −1

2
ΨT (r)∇2

(
ΨT (r)−1f(r, t)

)
= −1

2
ΨT (r)∇ · (∇

[
ΨT (r)−1f(r, t)

]
), (3.26)

∇
[
ΨT (r)−1f(r, t)

]
= −ΨT (r)−2∇ΨT (r)f(r, t) + ΨT (r)−1∇f(r, t). (3.27)

Combining these equations and applying the product rule numerous times yield

K(r, t) = −1

2
ΨT (r)

[(
2ΨT (r)−3 |∇ΨT (r)|2 f(r, t)

−ΨT (r)−2∇2ΨT (r)f(r, t)

−ΨT (r)−2∇ΨT (r) · ∇f(r, t)
)

+ΨT (r)−1∇2f(r, t)

−ΨT (r)−2∇ΨT (r) · ∇f(r, t)
]

= −
∣∣ΨT (r)−1∇ΨT (r)

∣∣2 f(r, t)

+
1

2
ΨT (r)−1∇2ΨT (r)f(r, t)

+ΨT (r)−1∇ΨT (r) · ∇f(r, t)

−1

2
∇2f(r, t).

38 CHAPTER 3. QUANTUM MONTE-CARLO

Introducing the following identity helps clean up the messy calculations:

−
∣∣ΨT (r)−1∇ΨT (r)

∣∣2 = ∇ ·
(
ΨT (r)−1∇ΨT (r)

)
−ΨT (r)−1∇2ΨT (r),

which inserted into the expression for K(r, t) reveals

K(r, t) = ∇ ·
(
ΨT (r)−1∇ΨT (r)

)
f(r, t)

+

(
1

2
− 1

)
ΨT (r)−1∇2ΨT (r)f(r, t)

+ΨT (r)−1∇ΨT (r) · ∇f(r, t)

−1

2
∇2f(r, t).

Inserting the expression for the quantum force F(r) = 2ΨT (r)−1∇ΨT (r) and the local kinetic energy
KL(r) = − 1

2ΨT (r)−1∇2ΨT (r) simplifies the expression dramatically

K(r, t) = −1

2
∇2f(r, t) +

1

2
[F(r) · ∇f(r, t) + f(r, t)∇ · F(r)]︸ ︷︷ ︸

∇·[Ff(r,t)]

+KL(r)f(r, t)

=
1

2
∇ · [(∇− F(r)) f(r, t)] +KL(r)f(r, t).

Inserting everything back into Eq. (3.25) yields

− ∂

∂t
f(r, t) = −1

2
∇ · [(∇− F(r)) f(r, t)] +KL(r)f(r, t) + V̂f(r, t)− ET f(r, t)

∂

∂t
f(r, t) =

1

2
∇ · [(∇− F(r)) f(r, t)]− (EL(r)− ET) f(r, t), (3.28)

which is the Fokker-Planck diffusion equation from Eq. (3.20) with a constant shift representing the
branching Green’s function in the case Fokker-Planck diffusion.

Just as in traditional importance sampled Monte-Carlo integrals, optimized sampling is obtained in QMC
by switching distributions into one which exploits known information about the problem at hand. In the
case of standard Monte-Carlo integration, the sampling distribution is substituted with one which are
similar to the original integrand, resulting in a smoother sampled function, whereas in QMC, a distribution
is constructed with the sole purpose of imitating the exact ground state in order to suggest moves more
efficiently. It is therefore reasonable to call the use of Fokker-Planck diffusion importance sampled QMC.

The energy estimated using the new distribution f(r, t) will still equal the exact energy in the limit of
convergence. This is demonstrated in the following equations:

3.3. DIFFUSIVE EQUILIBRIUM CONSTRAINTS 39

EQMC =
1

N

∫
f(r, τ)

1

ΨT (r)
ĤΨT (r)dr

=
1

N

∫
Φ(r, τ)ĤΨT (r)dr

=
1

N
〈Φ(τ)| Ĥ |ΨT 〉 ,

where

N =

∫
f(r, τ)dr

=

∫
Φ(r, τ)ΨT (r)dr

= 〈Φ(τ)|ΨT 〉 ,

which results in the following expression for the energy:

EQMC =
〈Φ(τ)| Ĥ |ΨT 〉
〈Φ(τ)|ΨT 〉

.

Assuming that the walkers have converged to the exact ground state, i.e. |Φ(τ)〉 = |Φ0〉, letting the
Hamiltonian work to the left yields

EQMC = E0
〈Φ0|ΨT 〉
〈Φ0|ΨT 〉

= E0.

Estimating the energy in QMC will be discussed in detail in Sections 3.6.4 and 3.9.

3.3 Diffusive Equilibrium Constraints

Upon convergence of a Markov process, the ensemble of walkers will on average span the system’s most
likely state. This is exactly the behavior of a system of diffusing particles described by statistical me-
chanics: It will thermalize, that is, reach equilibrium.

Once thermalization is reached, expectation values may be sampled. However, simply spawning a Markov
process and waiting for thermalization is an inefficient and unpractical scenario. This may take forever,
or it may not; either way it is not optimal. Introducing rules of acceptance and rejection on top of the
suggested transitions given by the Langevin equation in Eq. (3.19 or Eq. (3.24) will result in an optimized
sampling. Special care must be taken not to violate necessary properties of the Markov process. If any
of the conditions discussed in this section break, there is no guarantee that the system will thermalize
properly.

3.3.1 Detailed Balance

For Markov processes, detailed balance is achieved by demanding a reversible Markov process. This boils
down to a statistical requirement stating that

40 CHAPTER 3. QUANTUM MONTE-CARLO

PiW (i → j) = PjW (j → i), (3.29)

where Pi is the probability density in configuration i, and W (i → j) is the transition probability between
states i and j.

3.3.2 Ergodicity

Another requirement is that the sampling must be ergodic [25], that is, the random walkers need to be
able to reach any configuration in the space spanned by the distribution function. It is tempting to
define a brute force acceptance rule where only steps resulting in a higher overall probability is accepted,
however, this limits the path of the walker, and will thus break the requirement of ergodicity.

3.4 The Metropolis Algorithm

The Metropolis Algorithm is a simple set of acceptance/rejection rules used in order to make the ther-
malization more efficient. For a given probability distribution function P , the Metropolis algorithm will
force sampled points to follow this distribution.

Starting from the criteria of detailed balance given in Eq. (3.29, and further introducing a model for the
transition probability W (i → j) as consisting of two parts: The probability of selecting configuration j
given configuration i, g(i → j), times a probability of accepting the selected move, A(i → j), yields

PiW (i → j) = PjW (j → i),

Pig(i → j)A(i → j) = Pjg(j → i)A(j → i). (3.30)

Inserting the probability distribution as the wave function squared and the selection probability as the
Green’s function, the expression becomes

|ψi|2G(i → j)A(i → j) = |ψj |2G(j → i)A(j → i),

A(j → i)

A(i → j)
=

G(i → j)

G(j → i)

|ψi|2

|ψj |2
≡ RG(j → i)Rψ(j → i)2, (3.31)

where the defined ratios correspond to the Green’s function - and wave function ratio, respectively.

Assume now that configuration i has a higher overall probability than configuration j. The essence of
the Metropolis algorithm is that the step is automatically accepted, that is, A(i → j) = 1. In other
words, a more efficient thermalization is obtained by accepting all these moves. What saves Metropolis
from breaking the criteria of ergodicity, is the fact that suggested moves to lower probability states are
not automatically rejected. This is demonstrated by solving Eq. (3.31) for the case where A(i → j) = 1,
that is, the case where Pi < Pj . This yields

A(j → i) = RG(j → i)Rψ(j → i)2.

Combining both scenarios into one expression yield the following acceptance/rejection rules:

3.4. THE METROPOLIS ALGORITHM 41

A(i → j) =

{
RG(i → j)Rψ(i → j)2 RG(i → j)Rψ(i → j)2 < 1

1 else
. (3.32)

This equation can be simplified to

A(i → j) = min{RG(i → j)Rψ(i → j)2, 1}. (3.33)

In the isotropic diffusion case, the Green’s function ratio cancels due to symmetry, i.e. RG(i → j) = 1,
resulting in the standard Metropolis algorithm:

A(i → j) = min{Rψ(i → j)2, 1}. (3.34)

On the other hand, for Fokker-Planck diffusion, there will be no cancellation of the Green’s functions.
Inserting Eq. (3.22) into Eq. (3.32) results in the Metropolis Hastings algorithm [25]. The ratio of the
Green’s functions can be evaluated efficiently by simply subtracting the exponents of the exponentials.
This is best demonstrated by calculating the logarithm

logRFP
G (i → j) = log

(
GFP

Diff(j → i)/GFP
Diff(i → j)

)
=

1

2

(
F (xj) + F (xi)

)(1

2
Dδt(F (xj)− F (xi)) + xi − xi

)
, (3.35)

A(i → j) = min{exp
(
logRFP

G (i → j)
)
Rψ(i → j)2, 1}. (3.36)

Derived from detailed balance, the Metroplis Algorithm is an essential part of any Markov Chain Monte-
Carlo algorithm. Besides QMC, methods for solving problems such as the Ising Model greatly benefit
from these rules [26].

In practice, without the Metropolis sampling, the ensemble of walkers will not span that of the trial wave
function. This is due to the fact that the time-step used in the simulations is finite, and the trial positions
of the walkers are random. A chart flow describing the implementation of the Metropolis algorithm and
the diffusion process is given in Figure 3.1.

42 CHAPTER 3. QUANTUM MONTE-CARLO

Update
walker

Reset
walker

All particles
moved?

End

Loop particles

Suggest new
position

Compute
acceptance

ratio

Metropolis
accepted?

Yes No

No

Yes

Figure 3.1: Flow chart describing the process of iterating a walker through a single time-step, that is,
simulation the application of the Green’s function from Eq. (3.15) using the Metropolis algorithm. New
positions are suggested according to the chosen diffusion model.

3.5. THE PROCESS OF BRANCHING 43

3.5 The Process of Branching

In the previous section it became clear that the Metropolis test will guide the walkers to span a dis-
tribution representing the trial wave function. This implies that without further action, no changes to
the distribution can be made, and the point of modelling the projection operator from Eq. (3.5) is ren-
dered useless. The important fact to include is that the branching Green’s function from Eq. (3.38) and
Eq. (3.37) distribute weights to the walkers, effectively altering the spanned distribution.

The process of branching in QMC is simulated by the creation and destruction of walkers with probability
equal to that of the branching Green’s function [21]. The explicit shapes in case of isotropic - (ISO) and
anisotropic diffusion (FP) are

GISO
B (i → j) = e−(1

2 [V (xi)+V (xj)]−ET)δτ , (3.37)

GFP
B (i → j) = e−(1

2 [EL(xi)+EL(xj)]−ET)δτ , (3.38)

where EL(xi) is the energy evaluated in configuration xi (see Section 3.6.4 for details). The three different
scenarios which arise is

• GB = 1 : No branching.

• GB = 0 : The current walker is to be removed from the current ensemble.

• GB > 1 : On average GB − 1 replicas of the current walker are made.

Defining the following quantity allows for an efficient simulation of this behavior

GB = floor (GB + a) , (3.39)

where a is a uniformly distributed number on [0, 1). The probability that GB = GB + 1 is then equal
to GB − floor(GB). As an example, assume GB = 3.3. The value of GB is then either three or four,
depending on whether a < 0.7 or not. The probability that a < 0.7 is obviously 70%, implying that there
is a 30% chance that GB is equal to four, and 70% chance that is is equal to three.

There are some programming challenges due to the fact that the number of walkers is not conserved,
such as cleaning up inactive walkers and stabilizing the population across different computational nodes.
For details regarding this, see the code documentation at Ref. [9]. Isotropic diffusion is in practice never
used with branching due to the singularities in the Coulomb interaction (see Eq. (3.37)). This singularity
may cause large fluctuations in the walker population, which is far from an optimal behavior.

The process of branching is demonstrated in Figure 3.2.

44 CHAPTER 3. QUANTUM MONTE-CARLO

Figure 3.2: The process of branching illustrated. The initial walker Wi(R, τ) is branched according to
the rules of Section 3.5. The numerical value inside the nodes represents the value of GB from Eq. (3.39).
Each horizontal dashed line represent a diffusion step, i.e. a transition in time. Two lines exiting the same
node represent identical walkers. After moving through the diffusion process, no two walkers should ever
be equal, given that not all of the steps was rejected by the Metropolis test.

3.6. THE TRIAL WAVE FUNCTION 45

3.6 The Trial Wave Function

The initial condition of the QMC calculations, that is, the trial wave function ΨT (r), can in principle be
chosen to be any normalizable wave function whose overlap with the exact ground state wave function,
Ψ0(r), is non-zero.

If the overlap is zero, that is, if C0 = 0 in Eq. (3.7), the formalism breaks down, and no final state of
convergence can be reached. On the other hand, the opposite scenario implies the opposite behavior;
the closer C0 is to unity, the more rapidly the exact ground state, Ψ0(r), will become the dominant
contribution to the distribution.

In other words, the trial wave function should be chosen in such a way that the overlap is optimized,
i.e. close to unity. Since the exact ground state is unknown, this overlap has to be optimized based on
educated guesses and by forcing known properties of the exact ground state into the approximation. This
will be the focus in this section.

Before getting into specifics, a few notes on many-body theory is needed. From this point on, all particles
are assumed to be identical. For more information regarding Quantum Mechanical concepts and many-
body theory, see for example Refs. [17, 18,27].

3.6.1 Many-body Wave Functions

Many-body theory arise from the existence of many-body interactions, which in this thesis will be trun-
cated at the level of the Coulomb interaction, that is, the two-body interaction. Nature operates using
N -body interactions, however, it is overall safe to assume that the contributions beyond Coulomb de-
crease as the order of the interactions increase. If only one-body interactions were present, as is the case
for non-interacting particles, the full system would decouple into N single-particle systems, rendering
many-body theory redundant.

Finding the ground state is, not surprisingly, equivalent to solving the time-independent Schrödinger
Equation from Eq. (3.2) for the lowest energy eigenvalue, that is

ĤΨ0(r) = E0Ψ0(r), (3.40)

where r ≡ {r1, r2, ..., rN} represents the position of every particle. Exact solutions to realistic many-
body systems rarely exist, however, like in Section 3.1.1, expanding the solution in a known basis Φk(r)
is always legal, which reduces the problem into that of a coefficient hunt

Ψ0(r) =

∞∑
k=0

C ′kΦk(r), (3.41)

where the primed coefficients should not to be confused with the previous coefficients expanding an
arbitrary state in the Ψi(r) basis (see Eq. (3.6)). Different many-body methods give rise to different ways
of estimating these coefficients, however, certain concepts are necessarily common, for instance truncating
the basis at some level, K:

Ψ0(r) =

K∑
k=0

C̃ ′kΦk(r), (3.42)

46 CHAPTER 3. QUANTUM MONTE-CARLO

Figure 3.3: Three different electron configurations in an shell structure making up three different Φk(r),
i.e. constituents of the many-body basis described in Eq. (3.42). An electron (solid dot) is represented
by e.g. the orbital φ1s(r1).

where C̃ ′k 6= C ′k unless K tends to infinity, however, it is overall safe to assume that the value of the
coefficients decrease as k increase.

The many-body basis elements Φk(r) are constructed using N elements from a basis of single-particle
wave functions, or orbitals for short, where N denotes the total number of particles in the system. In
other words, these orbitals, labeled φn(ri), combined in different ways give rise to the different many-body
wave functions making up the total wave function. The process of calculating basis elements often boils
down to an exercise in combinatorics involving combinations of orbitals.

To bring some clarity to the relation between the different wave functions, consider the following example:
Imagine electrons surrounding a nucleus, i.e an atom. A single electron occupying a state with quantum
number n at a position ri is then described by the orbital φn(ri). Each unique3 configuration of electrons
(in terms of n) will give rise to one unique Φk(r). In other words, the complete basis of Φk(r) is described
by the collection of all possible excited states and the ground state. Φ0(r) is the ground state of the
atom, Φ1(r) has one electron exited to a higher shell, Φ2(x) has another, and so on. See Figure 3.3 for
a demonstration of this. The ordering of the terms in Eq. (3.42) are thus chosen to represent higher and
higher excitations, i.e. the states has higher and higher energy eigenvalues.

To summarize, constructing an approximation to an unknown many-body ground state wave function
involves three steps:

3Two wave functions are considered equal if they differ by nothing but a phase factor.

3.6. THE TRIAL WAVE FUNCTION 47

Step one Choose a basis of orbitals φn(ri), e.g. hydrogen states.
Step two Construct Φk(r) from N× φn(ri).
Step three Construct Ψ0(r) from K× φk(r).

The last step is well described by Eq. (3.42), but is seldom necessary to perform explicitly; expressions
involving the approximated ground state wave function is given in terms of the constituent Φk(r) elements
and their coefficients.

Step one in detail

The Hamiltonian of an N -particle system is

Ĥ = Ĥ0 + ĤI, (3.43)

where Ĥ0 and ĤI are the one-body - and the many-body Hamiltonian, respectively. As mentioned in the
introduction, the many-body interactions are truncated at the level of the two-body Coulomb interaction.
The one-body term consist of the external potential ûext(ri) and the kinetic term t̂(ri) for all particles.
In order words, the two Hamiltonians are written

Ĥ0 =

N∑
i=1

ĥ0(ri) (3.44)

=

N∑
i=1

t̂(ri) + ûext(ri),

and

ĤI '
N∑

i<j=1

v̂(rij) (3.45)

=

N∑
i<j=1

1

rij
,

where rij = |ri − rj | is the distance between two particles.

In order to optimize the overlap C0 with the exact wave function, the single-particle orbitals are commonly
chosen to be the eigenfunctions of the non-interacting single-particle Hamiltonian, that is

ĥ0(ri)φn(ri) = εnφn(ri). (3.46)

If no such choice can be made, choosing, free-particle solutions, Laguerre polynomials, or similar, is the
general strategy. However, for these bases, the expansion truncation K from Eq. (3.42) needs to be higher
in order to achieve a satisfying overlap.

Step two in detail

In the case of fermions, that is, half-integer spin particles like electrons, protons, etc., Φk(r) is an anti-
symmetric function4 on the form of a determinant: The so-called Slater determinant. The shape of the

4Interchanging two particles in an anti-symmetric wave function will reproduce the state changing only the sign.

48 CHAPTER 3. QUANTUM MONTE-CARLO

determinant is given in Eq. (3.47). The anti-symmetry is a direct consequence of the Pauli Exclusion
Principle: At any given time, two fermions cannot occupy the same state.

Bosons, on the other hand, have symmetric wave functions, which in many ways are easier to deal with
because of the lack of an exclusion principle. The bosonic many-body wave function is given in Eq. (3.48).
In order to keep the terminology less abstract and confusing, the focus will be on systems of fermions
from here on.

ΦAS
0 (r1, r2, ..., rN) ∝

∑
P

(−)PP̂φ1(r1)φ2(r2) ... φN (rN)

=

∣∣∣∣∣∣∣∣∣
φ1(r1) φ2(r1) · · · φN (r1)
φ1(r2) φ2(r2) · · · φN (r2)

...
...

. . .
...

φ1(rN) φ2(rN) · · · φN (rN)

∣∣∣∣∣∣∣∣∣ , (3.47)

ΦS
0(r1, r2, ..., rN) ∝

∑
P

P̂φ1(r1)φ2(r2) ... φN (rN). (3.48)

The permutation operator P̂ is simply a way of writing in any combination of particles and states, hence
the combinatoric exercise mentioned previously. Any combination of N orbital elements φn(ri) can be
used to produce different Φk(r). For illustrative purposes, and for the purpose of this thesis in general
where a single determinant ansatz is used, only the ground state has been presented.

Dealing with correlations

The contributions to the ground state on the right-hand side in Eq. (3.41) for k > 0 are referred to as
correlation terms. Given that the single-particle wave functions are chosen by Eq. (3.46), the existence
of the correlation terms, i.e. C ′k 6= 0 for k > 0, follows as a direct consequence of the electron-electron
interaction, hence the name.

As an example, imagine performing an energy calculation with two particles being infinitely close; the
Coulomb singularity will cause the energy to blow up. However, if the calculations are performed using
the exact wave function, the diverging terms will cancel out; the energy eigenvalue is independent of the
position of the state.

In other words, a necessary property of the exact wave function is that the singularities in the many-
body interactions are canceled. The basic idea is thus to make sure the trial wave function also has this
property. By doing so, it is brought closer to the exact wave function.

These criteria are called cusp conditions [26], and serve as powerful guides when it comes to selecting an
optimal trial wave function.

3.6.2 Choosing the Trial Wave Function

To recap, choosing the trial wave function boils down to optimizing the overlap C0 = 〈Ψ0|ΨT 〉 using a
priori knowledge about the system at hand. As discussed previously, the optimal choice of single-particle
basis is the eigenfunctions of the non-interacting case (given that they exist). Starting from Eq. (3.42),
from here on referred to as the spatial wave function, the first step is to make sure the cusp conditions
are obeyed.

3.6. THE TRIAL WAVE FUNCTION 49

Introducing the correlation functions f(rij), where rij is the relative distance between particle i and j,
the general ansatz for the trial wave function becomes

ΨT (r1, ..., rN) =
[K∑
k=0

CkΦk(r1, ..., rN)
] N∏
i<j

f(rij). (3.49)

The idea is now to choose f(rij) in such a way that the cusp conditions are obeyed. This should, in
light of previous discussions, reduce the amount of terms needed in the spatial wave function to obtain a
satisfying overlap.

Explicit shapes

Several models for the correlation function exist, however, some are less practical than others. An example
given in ref. [21] demonstrates this nicely: Hylleraas presented the following correlation function

f(rij)Hylleraas = e−
1
2 (ri+rj)

∑
k

dk(rij)
ak(ri + rj)

bk(ri − rj)ek , (3.50)

where all k-subscripted parameters are free. Calculating the helium ground state energy using this
correlation function with nine terms yields a four decimal precision. Eight digit precision is achieved by
including 1078 terms. For the purpose of QMC, including such vast amounts of parameters is out of the
question. The strength of QMC is that very good results can be obtained using a very simple ansatz to
the wave function.

A commonly used correlation function in studies involving few variational parameters is the Padé Jastrow
function

N∏
i<j

f(rij) = exp(U),

U =

N∑
i<j

(∑
k akr

k
ij

1 +
∑
k βkr

k
ij

)
+

N∑
i

(∑
k a
′
kr
k
i

1 +
∑
k αkr

k
i

)
.

For systems where the correlations are relatively well behaved, it is custom to drop the second sum all
together, and keep only the k = 1 term from the first. The resulting function reads

f(rij ;β) = exp

(
aijrij

1 + βrij

)
, (3.51)

where β is a variational parameter, and ak=1 ≡ aij is a constant depending on the relative spin-orientation
of particles i and j tuned in such a way that the cusp conditions are obeyed. For three dimensions,
aij = 1/4 or aij = 1/2 depending on whether or not the spins of i and j are parallell or anti parallell,
respectively [21]. For two dimensions, the values are aij = 1/3 (parallell) or aij = 1 (anti-parallel) [28].
This is the correlation function used for all systems in this thesis.

Shifting the focus back to the spatial wave function, in the case of a fermionic system, the evaluation of an
N ×N Slater determinant severely limits the efficiency of many-particle simulations. However, assuming
the Hamiltonian to be spin-independent, the eigenstates for different spin eigenvalues will be identical.

50 CHAPTER 3. QUANTUM MONTE-CARLO

This fact results in the spatial wave function being split in two: One part for each spin eigenvalue. A
detailed derivation of this is given in the appendix of Ref. [29]. The resulting wave function thus becomes

ΨT (r;β) =
[K∑
k=0

C ′kΦ̃k(r1, ..., rN
2

)Φ̃k(rN
2 −1, ..., rN)

] N∏
i<j

f(rij ;β). (3.52)

Due to the identical nature of the particles, they may be arbitrarily ordered. For simplicity, the first half
represents spin up, and the second half spin down. The spin up determinant will from here on be labeled
|S↑|, and the spin down one |S↓|, where the S matrix will be referred to as the Slater matrix. Stitching
everything together, the explicit shape of the trial wave function becomes

ΨT (r1, ..., rN ;β) =

K∑
k=0

C ′k|S↑|k|S↓|k
N∏
i<j

f(rij ;β). (3.53)

This shape is referred to as a multi-determinant trial wave function unless K = 1, in which it will be
referred to as a single-determinant trial wave function.

Limitations

Depending on the complexity of the system at hand, more complicated trial wave functions might be
needed to obtain reasonable convergence. However, it is important to distinguish between simply in-
tegrating a trial wave function, and performing the full diffusion calculation. As a reminder: Simple
integration will not be able to alter the distribution; what you have is what you get. Solving the diffusion
problem, on the other hand, will alter the distribution from that of the trial wave function (τ = 0) into
a distribution closer to the exact wave function by Eq. (3.6).

Because of this fact, limitations due to the trial wave function in full5 QMC is far less than what is
the case of standard Monte-Carlo integration. A more complex trial wave function might convergence
faster, but at the expense of being more CPU-intensive. This implies that CPU time per walker can be
traded for convergence time. For systems of many particles, the CPU time per walker needs to be as low
as possible in order to get the computation done in a reasonable amount of time. In other words, the
choice of trial wave function needs to be done in light of the system at hand, and the specific aim of the
computation.

On the other hand, when the number of particles in the system increase, it is safe to assume that the
quality of the trial wave function will decrease. This is demonstrated in Ref. [30], where calculations
for F2 (18 particles) need an increase in the number of determinants to achieve a result with the same
precision as calculations for O2 (16 particles).

Single-determinant trial wave functions

In the case of well-behaving systems, a single determinant with a simple Jastrow factor serves as a
reasonable trial wave function. This simplicity opens up the possibility of simulating large systems
efficiently. More details regarding this will be given in Section 4.3.

In order to further optimize the overlap with the exact wave function, a second variational parameter α
is introduced in the spatial wave function

5“Full” in the sense that all Green’s functions are applied. As will be revealed later, VMC corresponds to a standard
importance sampled Monte-Carlo integration by omitting the branching process.

3.6. THE TRIAL WAVE FUNCTION 51

ΨT (r1, ..., rN ;α, β) = D↑(α)D↓(α)

N∏
i<j

f(rij ;β). (3.54)

Determining the optimal values of the variational parameters will be the topic of the next section. If the
introduction of the variational parameter was redundant, optimizations would simply yield α = 1.

3.6.3 Selecting Optimal Variational Parameters

All practical ways of determining the optimal values of the variational parameters originate from the
same powerful principle: The Variational Principle. The easiest way of demonstrating the principle is
to evaluate the expectation value of the energy, using an approach similar to what used in Eq. (3.6).
Consider the following relations

Ek = 〈Ψk| Ĥ |Ψk〉 ,
E = 〈ΨT (α, β)| Ĥ |ΨT (α, β)〉

=
∑
kl

C∗kCl 〈Ψk| Ĥ |Ψl〉︸ ︷︷ ︸
Ekδkl

=
∑
k

|Ck|2Ek.

Just as with the projection operator, introducing Ek = E0 + δEk where δEk ≥ 0 will simplify the
arguments

E =
∑
k

|C2
k |(E0 + δEk)

= E0

∑
k

|C2
k |︸ ︷︷ ︸

1

+
∑
k

|Ck|2δEk︸ ︷︷ ︸
≥0

≥ E0.

The conclusion is remarkable: No matter which trial wave function is used, the resulting energy will
always be greater or equal to the exact ground state energy. This implies that the problem of choosing
variational parameters comes down to a minimization problem in the parameters space

∂〈E〉
∂αi

=
∂

∂αi
〈ΨT (αi)| Ĥ |ΨT (αi)〉 = 0 (3.55)

In order to work with Eq. (3.55) in practice, it needs to be rewritten in terms of known values. Since
the wave function depends on the variational parameter, the normalization factor needs to be included
in the expression of the expectation value. Applying the product rule numerous times yields

52 CHAPTER 3. QUANTUM MONTE-CARLO

∂〈E〉
∂αi

=
∂

∂αi

〈ΨT (αi)| Ĥ |ΨT (αi)〉
〈ΨT (αi)|ΨT (αi)〉

=

(
〈ΨT (αi)| ∂

∂αi
Ĥ |ΨT (αi)〉+ 〈ΨT (αi)| Ĥ ∂

∂αi
|ΨT (αi)〉

)
〈ΨT (αi)|ΨT (αi)〉2

〈ΨT (αi)|ΨT (αi)〉

− 〈ΨT (αi)| Ĥ |ΨT (αi)〉

(
〈ΨT (αi)| ∂

∂αi

)
|ΨT (αi)〉+ 〈ΨT (αi)|

(
∂
∂αi
|ΨT (αi)〉

)
〈ΨT (αi)|ΨT (αi)〉2

.

The Hamiltonian does not depend on the variational parameters, hence both terms in the first expansion
is equal. Cleaning up the expression yields

∂〈E〉
∂αi

= 2

(
〈ΨT (αi)| Ĥ ∂

∂αi
|ΨT (αi)〉

〈ΨT (αi)|ΨT (αi)〉
− 〈E〉

〈ΨT (αi)| ∂
∂αi
|ΨT (αi)〉

〈ΨT (αi)|ΨT (αi)〉

)

= 2

(〈
E
∂ΨT

∂αi

〉
− 〈E〉

〈
∂ΨT

∂αi

〉)
. (3.56)

In the case of ΨT (r;αi) being represented by a Slater determinant, the relationship between the variational
derivative of the determinant and the variational derivative of the single-particle orbitals φn(ri;αi) is

∂ΨT (r;αi)

∂αi
=

N∑
p=1

N/2∑
q=0

φq(rp;αi)

[
∂φq(rp;αi)

∂αi

]
S−1
qp , (3.57)

where S−1
qi is the inverse of the Slater matrix, which will be discussed in more detail in Section 4.4.1.

Using these expressions for the variational energy gradient, the derivatives can be calculated exactly the
same way the energy. The gradient can then be used to move in the direction of the variational minimum
in Eq. (3.55).

This strategy gives rise to numerous ways of finding the optimal parameters, such as using the well known
Newton’s method, conjugate gradient methods [31], steepest descent (similar to Newton’s method), and
many more. The method implemented for this thesis is called Adaptive Stochastic Gradient Descent, and
is an efficient iterative algorithm for seeking the variational minimum. The gradient descent methods
will be covered in Section 3.7.

3.6.4 Calculating Expectation Values

The expectation value of an operator Ô is obtained by sampling local values, OL(x)

3.6. THE TRIAL WAVE FUNCTION 53

〈ΨT | Ô |ΨT 〉 =

∫
ΨT (x)∗ÔΨT (x)dx

=

∫
|ΨT |2

(
1

ΨT (x)
ÔΨT (x)

)
dx

=

∫
|ΨT |2OL(x)dx. (3.58)

OL(x) =
1

ΨT (x)
ÔΨT (x). (3.59)

Discretizing the integral yields

〈ΨT | Ô |ΨT 〉 ≡ 〈O〉 '
1

n

n∑
i=1

OL(xi) ≡ O, (3.60)

where xi is a random variable taken from distribution of the trial wave function. The ensemble average,
〈O〉 will, given ergodicity, equal the estimated average O in the limit n→∞, that is

〈O〉 = lim
n→∞

O = lim
n→∞

1

n

n∑
i=1

OL(xi). (3.61)

In the case of the energy estimation, this implies that once the walkers reach equilibrium, local values can
be sampled based on their configurations ri (remember that Metropolis ensures that the walkers follow
|ΨT (r)|2). In the case of energies, the explicit expression becomes

〈E〉 ' 1

n

n∑
i=1

(
1

ΨT (ri)

(
−1

2
∇2

)
ΨT (ri) + V (ri)

)
. (3.62)

Incorporating the branching Green’s function GB into the above equation is covered in the DMC section.

3.6.5 Normalization

Every explicit calculation using the trial wave function in QMC involves taking ratios. Calculating ratios
implies a cancellation in the normalization factors. Eq. (3.32) from the Metropolis section, the quantum
force in the Fokker-Planck equation, and the sampling of local values described in the previous section
demonstrate exactly this; everything involves ratios.

Not having to normalize the wave functions does not only save a lot of CPU time, but it also removes the
need of including the normalization factors of the single-particle wave functions; any constants multiplying
φn(xi) in Eq. (3.47) and Eq. (3.48) can be taken outside the sum over permutations, and will thus cancel
when the ratio between two wave functions constituting of the same single-particle orbitals are computed.

Note, however, that this argument is valid for single determinant wave functions only.

54 CHAPTER 3. QUANTUM MONTE-CARLO

Figure 3.4: Two steps of a one dimensional Gradient Descent process. Steps are taken in the direction
of the negative gradient (indicated by dotted lines).

3.7 Gradient Descent Methods

The direction of a gradient serves as a guide to extremal values. Gradient descent, also called steepest
descent6, is a family of minimization methods using this property of gradients in order to backtrace a
local minimum in the vicinity of an initial guess.

3.7.1 General Gradient Descent

Seeking maxima or minima is simply a question of whether the positive or the negative direction of the
gradient is followed. Imagine a function f(x), with a minimum residing at x = xm. The information at
hand is then

∇f(xm) = 0 (3.63)

∇f(xm − dx) < 0 (3.64)

∇f(xm + dx) > 0 (3.65)

where dx is a infinite decimal displacement.

As an example, imagine starting from an initial guess x0. The direction of the gradient is then calculated
and followed a number of steps. From Figure 3.4 and the previous equations, it is clear that crossing the
true minimum induces a sign change in the gradient. The brute force way of minimizing is to simply end
the calculation at this point, however, this would require an extreme amount of very small steps in order
to achieve good precision.

The difference equation describing the steps from the previous paragraph is

xi+1 = xi − δ
∇f(xi)

|∇f(xi)|
. (3.66)

6In literature, steepest - and gradient descent are sometimes referred to as being different. However, for simplicity, these
will not be differentiated.

3.7. GRADIENT DESCENT METHODS 55

An improved algorithm would be to continue iterating even though the minimum is crossed, however,
this would cause the constant step-length algorithms to oscillate between two points, e.g. x1 and x2 in
Figure 3.4. To counter this, a changing step-length δi is introduced

xi+1 = xi − δi∇f(xi). (3.67)

All gradient/steepest descent methods are in principle described by Eq. (3.67)7. Some examples are

•Brute Force I δi = δ 1
|∇f(xi)|

•Brute Force II δi = δ

•Monotone Decreasing δi = δ/iN

•Newton’s Method δi = 1
∇2f(xi)

Iterative gradient methods will only reveal one local extrema, depending on the choice of x0 and δ.
In order to find several extrema, multiple unique processes can be run sequentially or in parallel with
different initial guesses.

3.7.2 Stochastic Gradient Descent

Minimizing stochastic quantities such as the variance and expectation values adds another layer of com-
plications on top of the methods introduced in the previous section. Assuming a closed form expression
for the stochastic quantity is unobtainable, the gradient needs to be calculated by using e.g. Monte-Carlo
sampling. Eq. (3.56) is an example of such a process.

A precise sampling of the stochastic quantities is expensive and unpractical. Stochastic gradient meth-
ods use different techniques in order to make the sampling more effective, such as multiple walkers,
thermalization, and more.

Using a finite difference scheme with stochastic quantities is dangerous, as uncertainties in the values
will cause the gradient to become unstable when the variations are low close to the minimum. This is
illustrated in Figure 3.5.

3.7.3 Adaptive Stochastic Gradient Descent

Adaptive Stochastic Gradient Descent (ASGD) has its roots in the mathematics of automated control
theory [32]. The automated process is that of choosing an optimal step-length δi for the current transition
xi → xi+1. This process is based on the inner product of the old and the new gradient though a variable
Xi

Xi ≡ −∇i · ∇i−1. (3.68)

The step-length from Eq. (3.67) is modelled in the following manner in ASGD:

7This fact sets the perfect scene for an object oriented implementation of gradient descent methods.

56 CHAPTER 3. QUANTUM MONTE-CARLO

Figure 3.5: A one dimensional plot of an expectation value function. Smeared lines are representing
uncertainties due to rough sampling. The direction of the local gradient (solid green line) at a point xi
is not necessarily a good estimate of the actual analytic gradient (dashed red line).

δi = γ(ti) (3.69)

γ(t) = a/(t+A) (3.70)

ti+1 = max(ti + f(Xi), 0) (3.71)

f(x) = fmin +
fmax − fmin

1− (fmax/fmin)e−x/ω
(3.72)

with fmax > 0, fmin < 0, and ω > 0. The free parameters are a, A and t0, however, Ref. [33] suggests
A = 20 and t0 = t1 = A for universal usage.

Notice that the step-length increase if ti decrease and vice-versa. A smaller step-length is sought for
regions close to the minimum. The function f(x) is responsible of altering the step-length by changing
the trend of t. Close to the minimum, a smaller step-length is sought, and hence t must increase. Being
close to the minimum implies that the gradient changes sign frequently. Crossing the minimum with
ASGD has the following consequence

• Eq. (3.68): The value of Xi will be positive.

• Eq. (3.72): f(Xi) will return a value in [0, fmax] depending on the magnitude of
Xi.

• Eq. (3.71): The value of t will increase, i.e. ti+1 > ti.

• Eq. (3.70): The step-length will decrease.

The second step regarding f(Xi) can be visualized in Figure 3.6.

Assumptions

These assumptions are selected direct citations from Ref. [33]. They are listed in order to give an
impression that the shapes of the functions used in ASGD are not selected at random, but carefully
chosen to work optimally in a stochastic space with averages estimated using very few samples.

3.7. GRADIENT DESCENT METHODS 57

Figure 3.6: Examples of f(Xi) as published in Ref. [33]. As ω → 0, f(x) approaches a step function.

• The statistical error in the sampled gradients are distributed with zero mean.

This is shown in Ref. [33]; they are normally distributed. The implication is that upon combining gradient
estimates for N different processes, the accumulative error will tend to zero quickly.

• The step-length γ(t) is a positive monotone decreasing function defined on [0,∞)
with maximum at t = 0.

With γ(t) being as in Eq (3.70), this is easily shown.

• The function f(x) is continuous and monotone increasing with fmin = lim
x→∞

f(x)

and fmax = lim
x→−∞

f(x).

This is exactly the behavior displayed in Figure 3.6.

Implementation

A flow chart of the implementation is given in Figure 3.8. For specific details regarding the implementa-
tion, see the documentation of the code in Ref. [9]. An example of minimization using ASGD is given in
Figure 3.7.

58 CHAPTER 3. QUANTUM MONTE-CARLO

Figure 3.7: Results of Adaptive Stochastic Gradient Descent used on a two-particle quantum dot with unit
oscillator frequency using 400 cycles pr. gradient sampling and 40 independent walkers. The right figure
shows the evolution of the time-step. The left figure shows the evolution of the variational parameters α
and β introduced in Section 3.6 on top, and the evolution of the gradients on the bottom. The gradients
are averaged to reveal the pattern underlying the noise. Dispite this averaging, it is apparent that they
tend to zero, β somewhat before α. The step rushes to zero with a small rebound as it attempts to cross
to negative values.

3.7. GRADIENT DESCENT METHODS 59

Finalize

Initialize
walkers

Update and
diffuse walkers

Sample
gradient

Last cycle?

Calculate step
and update
minimum

Yes

No

Figure 3.8: Chart flow of ASGD algorithm. Diffusing a walker is done as described in Figure 3.1. Updating
the walkers involves recalculating any values affected by updating the minimum. The step is calculated
by Eq. (3.70). In the case of QMC, the gradient is sampled by Eq. (3.56).

60 CHAPTER 3. QUANTUM MONTE-CARLO

3.8 Variational Monte-Carlo

As briefly mentioned in the Section 3.1.1, neglecting the branching term, i.e. setting GB = 1, corresponds
to a method called Variational Monte-Carlo (VMC). The name comes from the fact that the method is
is variational, that is, it supplies an upper bound to the exact ground state energy. The better the trial
wave function is, the closer the VMC energy is to the exact ground state energy.

The converged state of the Markov chain in VMC is controlled by the Metropolis test, and will thus equal
the trial wave function squared. From the flow chart of the VMC algorithm in Figure 3.9, it is clear that
VMC corresponds to a standard Monte-Carlo integration of the local energy sampled using a distribution
equal to the trial wave function squared.

3.8.1 Motivating the use of Diffusion Theory

An important question to answer is why e.g. the Langevin equation is so important if the result is simply
an expectation value. Statistics states that any distribution may be used when calculating an expectation
value. Why bother with a trial wave function, thermalization, and so on?

The reason is simple, yet not obvious. The quantity of interest, the local energy, depends on the trial
wave function. This is demonstrated in the following expression:

EVMC =

∫
P (r)

1

ΨT (r)
ĤΨT (r)dr

' 1

n

n∑
i=1

1

ΨT (ri)
ĤΨT (ri), (3.73)

where the points ri are drawn from the distribution P (r).

Equation (3.73) implies that the evaluation of the local energy in an arbitrary distribution P (r) is
undefined at the zeros of ΨT (r). In other words, it is not guaranteed that P (r) does not generate a
point rm in such a way that ΨT (rm) = 0.

However, if the distribution is chosen as P (r) = |ΨT (r)|2, the probability of sampling a point where the
local energy is undefined equals zero. This comes as a consequence of the following relation

ΨT (rm) = 0 =⇒ P (rm) = 0 (3.74)

In other words, the more undefined the energy is at a point, the less probable the point is. This hidden
detail is what Quantum Monte-Carlo safely takes care of that standard Monte-Carlo does not.

3.8. VARIATIONAL MONTE-CARLO 61

Finalize

Yes

Initialize
walker

Diffuse
walker

Thermalized?

Sample
energy

Last cycle?

No

No

Figure 3.9: Chart flow of the Variational Monte-Carlo algorithm. The second step, Diffuse Walker, is the
process described in Figure 3.1. Energies are sampled as described in Section 3.6.4. The thermalization
is set to a fixed number of cycles.

62 CHAPTER 3. QUANTUM MONTE-CARLO

Figure 3.10: Comparison of the VMC energy using different trial wave functions. The DMC energy is
believed to be very close to the exact ground state. It is apparent that adding a variational parameter to
the trial wave function lowers the energy substantially, however, when adding the Jastrow factor (denoted
Optimal), described in Section 3.6.2, the VMC energy gets very close to the “exact” answer. A lower
energy means a better energy when dealing with variational methods. In this example, a 12-particle
quantum dot with unit frequency is used.

3.8.2 Implementation

Beyond a given point, VMC does not benefit much from an increase of samples. It is much more important
that the system is properly thermalized, than using several walkers or many cycles. It is therefore sufficient
to use a single walker per VMC simulation.

The single walker is initialized in a normal distributed manner, and released to diffuse according to the
process in Figure 3.1. After accumulating energies, the final energy is calculated as the mean of these.
The process is described in Figure 3.9.

For more details regarding the specific implementation, see the code in Ref. [9].

3.8.3 Limitations

The only limitation in VMC is the choice of the trial wave function. This makes VMC extremely robust;
it will always produce a result. As the overlap C0 from Eq. (3.6) approach unity, the VMC energy
approaches the exact ground state energy as a monotone decreasing function. Figure 3.10 demonstrates
this effect. As more optimizations are added to the trial wave function, the lower the VMC energy gets.

3.9. DIFFUSION MONTE-CARLO 63

3.9 Diffusion Monte-Carlo

Applying the full diffusion framework introduced in Sections 3.1.1 and 3.2 results in a method known
as Diffusion Monte-Carlo (DMC)8. Diffusion Monte-Carlo results are often referred to as exact, in the
sense that DMC is overall one of the most precise many-body methods available. However, just as any
many-body method, DMC also has its limitations. These will be discussed in Section 3.9.3.

Where other many-body methods run into the curse of dimensionality, that is, the run time scales very
bad with increasing number of particles, DMC with its position basis Quantum Monte-Carlo formalism
does not. With DMC, it is simply a matter of evaluating a more complicated trial wave function, or
simulating for a longer period of cycles, in order to reach convergence to the believed “exact” ground
state in a satisfactory way.

3.9.1 Implementation

Branching is a major part of the DMC algorithm. Diffusion Monte-Carlo uses a large ensemble of walkers
to generate enormous amounts of statistics. These walkers are initialized using a VMC calculation, i.e. the
walkers are initially distributed according to the trial wave function squared.

There are three layers of loops in the DMC method implemented in this thesis, two of which are obvious:
The time-step - and walker loops. However, introducing a third block loop within the walker loop boosts
the convergence dramatically. For each walker, this loop continues until the walker is either dead (GB =
0), or has diffused nb times. Using this method, “good” walkers will have multiple offspring pr cycle,
while “bad” walkers will rarely survive the block loop. Perfect walkers will supply a ton of statistics as
they surf through all the loops without branching (GB ∼ 1).

A flow chart of the DMC algorithm is given in Figure 3.11. Comparing it the the corresponding figure
for VMC, it is apparent that DMC is by far more complicated.

3.9.2 Sampling the Energy

As mentioned in Section 3.1.1, the role of the branching Green’s function is to distribute the correct
weights to each walker. Each walker’s contribution to the cumulative energy sampling should thus be
weighed according to the value of the branching Green’s function. Let Ek denote the cumulative energy
for time-step τ = kδτ , nw be the number of walkers in the system at time-step k, ñb,i be the number of
blocks walker i survives, and let Wi(r, τ) represent walker i. The relation is then

Ek =
1

nw

nw∑
i=1

1

ñb,i

ñb,i∑
l=1

GB

(
Wi(r, τk + lδτ)

)
EL

(
Wi(r, τk + lδτ)

)
. (3.75)

As required, setting GB = nw = nb = 1 reproduces the VMC expression.

The new trial energy from Eq. (3.13) is set equal to the previous cycle’s average energy, that is

ET = Ek. (3.76)

The DMC energy is updated each cycle to be the trailing average of the trial energies:

8In literature, DMC is also known as Projection Monte-Carlo, for reasons described in Section 3.1.1.

64 CHAPTER 3. QUANTUM MONTE-CARLO

EDMC = ET =
1

n

n∑
k=1

Ek. (3.77)

3.9.3 Limitations

By introducing the branching term, DMC is a far less robust method compared to VMC. Action must be
taken in order to stabilize the iterations through tuning of parameters such as population size, time-step,
block size, etc. This is the disadvantage of DMC compared to other many-body methods such as Coupled
Cluster [2], which is far more automatic.

Time-step errors

The error introduced by the short time approximation in Eq. (3.14) goes as O(δτ2). In addition, there
is a second error related to the time-step, arising from the fact that not all steps are accepted by the
Metropolis algorithm. This introduces a effective reduction in the time-step, and is countered by scaling
the time-step with the acceptance ratio upon calculating GB [21]. However, DMC is rarely used without
importance sampling, which, due to the quantum force, has an acceptance ratio very close to one. It is
therefore common to ignore this problem, as its effect on the final result is minimal.

Selecting the time-step

Studying the branching Green’s function in equation 3.38 in more detail reveals that it’s magnitude
increases exponentially with the spread of the energies ∆E, that is

GB ∝ exp (∆Eδτ). (3.78)

As will be shown in Section 3.11.1, the spread in energy samples are higher the worse of an approximation
to the ground state the trial wave function is. In addition, the magnitude of the spread scales with the
magnitude of the energy.

Setting an upper bound to the branching function might seem like a good idea, however, each time a
walker is denied its replicas, an uncontrollable error is introduced in the distribution.

The solution is to balance out the increase in ∆E by lowering the time-step accordingly. That is

δτ ∝ 1

∆E
. (3.79)

However, having too low a time-step will hinder DMC from evolving walkers efficiently, especially if the
positional span of the distribution is large. In other words, a balance must be found. An indication of
whether the time-step was chosen too low or not is obtained by looking at the resulting DMC density. If
the density is spiky and disorganized, the time-step was too low.

Another source of error is due to the fixed node approximation. This approximation will be covered in
the next section.

3.9. DIFFUSION MONTE-CARLO 65

Last DMC
cycle?

Initialize
walkers

Diffuse and Branch
walker i

Sample
energies

Current walker
dead or last
block cycle?

Last walker?

Finalize

i = 0

i = 0

Clean-up i++

Yes

Yes

Yes

No

No

No

Figure 3.11: Chart flow of the Diffusion Monte-Carlo algorithm. The variable i represents the currently
moved walker. The second step, Diffuse and Branch Walker, is the process described in Figure 3.1 in
combination with the branching from Figure 3.2. Energies are sampled as in Eq. (3.75). Thermalization
is set to a fixed number of cycles.

66 CHAPTER 3. QUANTUM MONTE-CARLO

3.9.4 Fixed node approximation

Looking at Eq. (3.48), it is apparent that by choosing positive phases for the single-particle wave functions,
the bosonic many-body wave function is exclusively positive. For fermions however, the sign change upon
interchanging two particles introduces the possibility that the wave function will have both negative and
positive regions, independent of the choice of phases in the single-particle wave functions.

As DMC iterates, the density of walkers at a given time, P (r, τ), represents the projected wave function
from Eq. (3.6) multiplied by the trial wave function.

P (r, τ) = Φ(r, τ)ΨT (r). (3.80)

This relationship is described in high detail in Section 3.2.2.

Applying the projector operator to the distribution yields

lim
τ→∞

P (r, τ) = 〈Φ0|ΦT 〉Φ0(r)ΨT (r), (3.81)

which, if interpreted as a density, should always be greater than zero. In the case of fermions, this is not
guaranteed, as the node structure of the exact ground state and the trial wave function will generally be
different.

To avoid this anomaly in the density, Φ(r, τ) and ΨT (r) have to change sign simultaneously9. The brute
force way of solving this problem is to fix the nodes by rejecting a walker’s step if the trial wave function
changes sign:

ΨT (ri)

ΨT (rj)
< 0 =⇒ A(i → j) = 0, (3.82)

where A(i → j) is the probability of accepting the move, as described in Section 3.4. An illustrative
example is given in Figure 3.12.

3.10 Estimating One-body Densities

The one-body density is defined as

ρ(r1) =

∫∫
r2r3

...

∫
rN

|Φ(r1r2...rN)|2 dr2...drN . (3.83)

Unlike the distribution |Φ(r)|2, which describes the distribution of any of the particles in the system, the
one-body density ρ(r1) describes the simultaneous distribution of every particle in the system, that is,
ρ(r1)dr1 represents the probability of finding any of the system’s N particles within the volume element
dr1. Due to the indistinguishable nature of the particles, the fact that the first coordinate is chosen is
purely conventional; any of the N coordinates contain information about all the particles. For the same
reason, the one-body density should be normalized to the number of particles, and not to unity.

9It should be mentioned that more sophisticated methods exist for dealing with the sign problem, some of which splits
the distribution of walkers into a negative and a positive regions, however, due to the position space being infinite, this
requires an enormous amount of walkers to succeed.

3.10. ESTIMATING ONE-BODY DENSITIES 67

Figure 3.12: A one-dimensional illustration of the fixed node approximation. The dotted line represents
the exact ground state Ψ0(x). The distribution of walkers after n Monte-Carlo cycles is represented by
Φ(x, nδτ). The trial wave function ΨT (x) shares nodes with Φ(x, nδτ), making it impossible for Φ(x, nδτ)
to match Ψ0(x).

In a Monte-Carlo simulation, estimating the one-body density is done by collecting snapshots of the walk-
ers’ positions. These snapshots serve as samples to a histogram where each set of Cartesian coordinates
give rise to one histogram-count.

3.10.1 Estimating the Exact Ground State Density

It was mentioned in the section on VMC that the final state of convergence was to have to walkers span
the trial wave function. This implies that the one-body density of the trial wave function, called the
variational density, can be calculated using positional data generated from VMC.

The challenge lies in estimating the one-body density of the exact wave function given a set of DMC data.
As described in Section 3.2.2, the distribution of walkers span the mixed density f(r, τ) = Φ(r, τ)ΨT (r),
which does not correspond to the ground state distribution unless the trial wave function is indeed the
exact ground state. Hence a histogram of the DMC data does not suffice when it comes to presenting
the exact wave function.

This implies the need of a method for transforming the one-body density of f(r, τ) into the pure density
|Φ(r, τ)|2. To achieve this, the following relation is needed [21]

〈A〉0 =
〈Φ0| Â |Φ0〉
〈Φ0|Φ0〉

' 2
〈Φ0| Â |ΨT 〉
〈Φ0|ΨT 〉

− 〈ΨT | Â |ΨT 〉
〈ΨT |ΨT 〉

+O(∆2)

= 2〈A〉DMC − 〈A〉VMC +O(∆2), (3.84)

where ∆ ≡ ΨT (r)− Φ(r, τ).

Expressed in terms of density operators, the expectation values for the different methods are [34]

68 CHAPTER 3. QUANTUM MONTE-CARLO

〈A〉0 = tr(ρ̂0Â)

〈A〉VMC = tr(ρ̂VMCÂ)

〈A〉DMC = tr(ρ̂DMCÂ)

where tr denotes the trace, i.e. the sum of all eigenvalues. Inserting these equations into Eq. (3.84) yield

tr(ρ̂0Â) ' 2tr(ρ̂DMCÂ)− tr(ρ̂VMCÂ) +O(∆2)

' tr
(

(2ρ̂DMC − ρ̂VMC) Â
)

+O(∆2), (3.85)

which leads to the conclusion that the mixed density can be transformed in the following manner:

ρ̂0 ' 2ρ̂DMC − ρ̂VMC. (3.86)

It is clear that if this relation holds for regular densities, it will hold for one-body densities as well. In
other words, the resulting densities from DMC can be combined with the corresponding one from VMC
to produce the pure density.

3.10.2 Radial Densities

Integrating out every degree of freedom except one radial coordinate from the density results in the radial
one-body density times the radius (squared for three dimensions). In other words

I3D =

∫∫
ρ(r1, θ1, φ1)r2

1 sin θ1dθ1dφ1

∝ r2
1ρ(r1), (3.87)

I2D =

∫
ρ(r1, φ1)r1dφ1

∝ r1ρ(r1). (3.88)

In practice, these integrals are calculated by creating histograms H(r) of all sampled radii. Transforming
the histograms into radial one-body densities ρ(r1) are according to Eq. (3.87) and Eq. (3.88) done in
the following manner

ρ(r1) =
H(r1)

r
(d−1)
1

, (3.89)

where d denotes the number of dimensions. An example presenting two radial one-body densities is given
in Figure 3.13. Notice, however, that the radial density for certain systems such as atoms needs to be
scaled with r or r2 in order to reveal the interesting shapes.

3.11. ESTIMATING THE STATISTICAL ERROR 69

Figure 3.13: Two examples of radial one-body densities for VMC, DMC, and the pure density from
Eq. (3.86). On the left: A 12-particle two-dimensional quantum dot with frequency ω = 0.1. The density
diverges close to zero due to a “ 0

0” expression (see Eq. (3.89)). On the right: Unscaled radial density for
the beryllium atom, i.e. r2

1ρ(r1). The densities will be discussed in the result section.

3.11 Estimating the Statistical Error

As with any statistical result, the statistical errors need to be supplied in order for the result to be
considered useful. Systematic errors, that is, errors introduced due to limitations in the model, is discussed
in each method’s respective section, and is not be related to the statistical error, that is, the exact solution
does not necessarily have to be within the error. This is only true if there are no systematic errors.

Statistical errors can be estimated using several methods, some of which are naive in the sense that they
assume the dataset to be completely uncorrelated, i.e. independent of each other.

3.11.1 The Variance and Standard Deviates

Given a set of samples, e.g. local energies, their variance is a measure of their spread from the true mean
value. The definition of variance reads

Var(E) ≡
〈
(E − 〈E〉)2

〉
=

〈
E2
〉
− 2 〈E 〈E〉〉︸ ︷︷ ︸

〈E〉〈E〉

+ 〈E〉2

=
〈
E2
〉
− 〈E〉2 . (3.90)

(3.91)

A problem with this definition is that the exact mean 〈E〉 needs to be known. In a Monte-Carlo simulation,
the resulting average E is an approximation to the exact mean. Thus the following approximation has
to be done:

Var(E) ' E2 − E2
. (3.92)

70 CHAPTER 3. QUANTUM MONTE-CARLO

In the case of having the exact wave function, i.e |ΨT 〉 = |Ψ0〉, the variance becomes zero:

Var(E)Exact = 〈Ψ0| Ĥ2 |Ψ0〉 − 〈Ψ0| Ĥ |Ψ0〉2

= E2
0 − (E0)2

= 0

The variance is in other words an excellent measure of how close to the exact wave function the trial
wave function is, hence the variance minimum is sometimes used to obtain optimal variational parameters
discussed in Section 3.6.3.

A common misconception is that the numerical value of the variance can be used to compare properties
of different systems. For instance, if system A has variance equal to half of system B’s, one could easily
conclude that system A has the best fitting trial wave function. However, this is not generally true. The
variance has unit energy squared (in the case of local energies), and will thus scale with the magnitude
of the energy. One can only safely use the variance as a direct measure locally in each specific system,
e.g. in simulations of the beryllium atom.

Another misconception is that the variance is a direct numerical measure of the error. This can in no
way be true given that the units mismatch. The standard deviation, σ, is the square root of the variance,
that is

σ2(x) = Var(x), (3.93)

and has a unit equal to that of the measured value. It is therefore related to the spread in the sampled
value; zero deviation implies perfect samples, while increasing deviation means increasing spread and
statistical uncertainty. The standard deviation is in other words a useful quantity when it comes to
calculating the error, i.e. the expected deviation from the exact mean 〈E〉.

3.11.2 The Covariance and correlated samples

It was briefly mentioned in the introduction that certain error estimation techniques are too naive in
the sense that they do not account for samples being correlated. Two samples, x and y, are said to be
correlated if their covariance, Cov(x, y), is non-zero. The covariance is defined the following way:

Cov(x, y) ≡ 〈(x− 〈x〉)(y − 〈y〉)〉
= 〈xy − x 〈y〉 − 〈x〉 y + 〈x〉 〈y〉〉
= 〈xy〉 − 〈x 〈y〉〉− 〈y 〈x〉〉+ 〈〈x〉 〈y〉〉︸ ︷︷ ︸

0

= 〈xy〉 − 〈x〉 〈y〉 . (3.94)

Using this definition, whether or not the samples are correlated boils down to whether or not 〈xy〉 =
〈x〉 〈y〉. Notice that the variance is the diagonal elements of the covariance matrix, i.e Cov(x, x) = Var(x).

The consequence of ignoring the correlations is an error estimate which is generally smaller than the true
error; correlated samplings are more clustered, i.e. less spread, due to previous samples’ influence on the
value of the current sample10. Denoting the true standard deviation as σc, the above discussion can be
distilled to

10Samples in QMC are obviously correlated due to the nature of the Langevin equation (difference equation).

3.11. ESTIMATING THE STATISTICAL ERROR 71

σc(x) ≥ σ(x), (3.95)

where σ(x) is the deviation from Eq. (3.93).

3.11.3 The Deviate from the Exact Mean

There is an important difference between the deviate from the exact mean, and the deviate of a single
sample from its combined mean. In other words:

σ(x) 6= σ(x). (3.96)

Imagine doing a number of simulations, each resulting in a unique x. The quantity of interest is not
the error of single samples, but the error in the calculated mean. Let m denote the outcome of a single
Monte-Carlo calculation. That is

m =
1

n

n∑
i=1

xi. (3.97)

The error in the mean is obtained by calculating the standard deviation in m. That is, calculating

σ2(m) =
〈
m2
〉
− 〈m〉2 . (3.98)

Combining the two above equations yield

σ2(m) =

〈
1

n2

[
n∑
i=1

xi

]2〉
−

〈
1

n

n∑
i=1

xi

〉2

=
1

n2

〈 n∑
i=1

xi

n∑
j=1

xj

〉
−

〈
n∑
i=1

xi

〉〈
n∑
j=1

xj

〉
=

1

n2

n∑
i,j=1

〈xixj〉 − 〈xi〉 〈xj〉

=
1

n2

n∑
i,j=1

Cov(xi, xj). (3.99)

This result is important; the true error is given in terms of the covariance, and is, as discussed previously,
only equal to the sample variance if the samples are uncorrelated. Going back to the definition of
covariance in Eq. (3.94), it is apparent that in order to calculate the covariance as in Eq. (3.99), the true
mean 〈xi〉 needs to be known. Using m as an approximation to the exact mean yields

72 CHAPTER 3. QUANTUM MONTE-CARLO

Cov(xi, xj) = 〈(xi − 〈xi〉)(xj − 〈xj〉)〉
' 〈(xi −m)(xj −m)〉

' 1

n2

n∑
k,l=1

(xk −m)(xl −m) (3.100)

≡ 1

n
Cov(x). (3.101)

Inserting this relation into Eq. (3.99) yields

σ2(m) =
1

n2

n∑
i,j=1

Cov(xi, xj)

' 1

n2

n∑
i,j=1

1

n
Cov(x)

=
1

n3
Cov(x)

n∑
i,j=1︸︷︷︸
n2

=
1

n
Cov(x), (3.102)

which serves as an estimate of the full error including correlations.

Explicitly computing the covariance is rarely done in Monte-Carlo simulations; if the sample size is large,
it is extremely expensive. A variety of alternative methods to counter the correlations are available, the
simplest of which is to define a correlation length11, τ , which defines an interval at which points from the
sampling sets are used for actual averaging. In other words, only the points x0, xτ , ..., xnτ are used in the
calculation of the mean. In other words

m =
1

n

n∑
k=0

xk·τ . (3.103)

This implies that nτ samples are needed in order to get the same amount of samples to the average as in
Eq. (3.97); the effective sample size becomes neff = ntot/τ . In the cases where τ = 1, the sample set is
uncorrelated. For details regarding the derivations of τ based on the covariance, see Refs. [35] and [26].

3.11.4 Blocking

Introducing correlation lengths in the system solver are not an efficient option. Neither is calculating the
covariance of billions of data points. However, the error is not a value vital to the simulation process,
i.e. there is no need to know the error at any stage during the sampling. This means that the error
estimation can be done post process (given that the sample set is stored).

An efficient algorithm for calculating the error of correlated data is blocking. This method is described in
high detail in Ref. [35], however, details aside, the idea itself is quite intuitive: Given a set of N samples
from a single Monte-Carlo simulation, imagine dividing the dataset into blocks of n samples, that is, into

11In literature, this parameter is often referred to as the auto-correlation time.

3.11. ESTIMATING THE STATISTICAL ERROR 73

Figure 3.14: Left hand side: Blocking result of (approximately) uncorrelated data generated from a

uniform Monte-Carlo integration of
∫ 2

1
2xdx resulting in 3.00003 (exact is 3.0). This is in excellent

agreement with the magnitude of the error ∼ 9 · 10−5. There is no sign of a plateau, which implies fairly
uncorrelated data (the span of the spread is small and apparently random). Right hand side: Blocking
result of a DMC simulation of a 6-particle two-dimensional quantum dot with frequency ω = 0.1. The
plateau is strongly present, implying correlated data. The resulting total error is ∼ 4.5 · 10−5.

blocks of size nb = N/n. The error in each block σn calculated using Eq. (3.102) will naturally increase
as n decrease, that is

σn ∝
1√
n
. (3.104)

However, treating each block as an individual simulation, nb averages mn can be used to calculate the total
error from Eq. (3.98), that is, estimate the covariance. This is demonstrated in the following expression

mr
n ≡ 1

nb

nb∑
k=1

mr
k, (3.105)

σ2(m) =
〈
m2
〉
− 〈m〉2

' m2
n − (mn)2. (3.106)

The approximation in Eq. (3.106) should hold for a range of different block sizes, however, just as there
is no a priori way of telling the correlation length, there is no a priori way of telling how many blocks is
needed. However, what is known, is that if the system is correlated, there should be a range of different
block sizes which fulfills Eq. (3.106) to reasonable precision.

The result of a blocking analysis is therefore a series of (n, σ(mn)) pairs which can be plotted. The plot
should in light of previous arguments result in a increasing curve which stabilizes over a certain span of
block sizes. This plateau will then serve as a reasonable approximation to the covariance, that is, the
true error. See Figure 3.14 for a demonstration of blocking plots.

3.11.5 Variance Estimators

The standard intuitive variance estimator

74 CHAPTER 3. QUANTUM MONTE-CARLO

σ2(x) ' 1

n

n∑
i=1

(xi − x)2 =

(
1

n

n∑
i=1

x2
i

)
− x2, (3.107)

is just an example of a variance estimator. A more precise estimator is

σ2(x) ' 1

n− 1

n∑
i=1

(xi − x)2 =

(
1

n− 1

n∑
i=1

x2
i

)
− n

n− 1
x2, (3.108)

which is only noticeably different from Eq. (3.107) when the sample size gets small, as it does in blocking
analysis. It is therefore standard to use Eq. (3.108) for blocking errors.

4

Generalization and Optimization

There is a big difference in strategy between writing code for a specific problem, and creating a general
solver. A general Quantum Monte-Carlo (QMC) solver involves several layers of complexity, such as
support for different potentials, single-particle bases, sampling models, etc., which may easily lead to a
combinatorical explosion if the planning is not done right.

This chapter begins by introducing a list of underlying assumptions regarding the modelled systems.
Whether or not a system can be solved is then a question of whether the listed assumptions are valid
for the system or not. The next part will cover generalization, that is, the flexibility of the code and the
strategies used to obtain this flexibility. The result of a generalized code is that different systems and
algorithms can be implemented by making simple changes to the code. Finally, optimizations will be
covered. Optimizations are crucial in order to maintain efficiency for a high number of particles.

4.1 Underlying Assumptions and Goals

In large computational projects it is custom to plan every single part of the program before the actual
process of coding begins. Coding massive frameworks without planning almost exclusively result in
unforeseen consequences, rendering the code difficult to expand, disorganized, and inefficient. The code
used in this thesis has been completely restructured four times. This section will cover the assumptions
regarding the modelled systems and the goals regarding generalization and optimization made in the
planning stages preliminary to the coding process.

4.1.1 Assumptions

The code structure was designed based on the following assumptions

(i) The particles of the simulated systems are either all fermions or all bosons.

(ii) The Hamiltonian is spin - and time independent.

(iii) The trial wave function of a fermionic system is a single determinant.

(iv) A bosonic system is modelled by all particles being in the same assumed single-particle ground
state.

75

76 CHAPTER 4. GENERALIZATION AND OPTIMIZATION

As discussed in Section 3.6, the second assumption implies that the Slater determinant can be split into
parts corresponding to different spin eigenvalues. The time-independence is a requirement on the QMC
solver explained in Section 3.1.1. The assumptions listed are considered true for any system which is
implemented in the code, and will thus be applied in all of the following sections.

4.1.2 Generalization Goals

The implementation should be general for:

(i) Fermions and bosons.

(ii) Anisotropic- and isotropic diffusion, i.e. Brute Force - or Importance sampling.

(iii) Different gradient descent algorithms.

(iv) Any Jastrow factor.

(v) Any error estimation algorithm.

(vi) Any single-particle basis, including expanded single-particle bases.

(vii) Any combination of any potentials.

In addition, the following constraint is set on the solvers:

(viii)Full numerical support for all values involving derivatives.

The challenge is, despite the increase in the number of different combinations, to preserve simplicity and
structure as layers of complexity are added. Achieving generalization by the use of conditional if tests
inside the solvers is considered inefficient, and should only be used if no other solution is apparent or
exists.

4.1.3 Optimization Goals

Modern computers have a vast amount of physical memory available, which makes run time optimizations
favored over memory optimizations. The following list may appear short, but every step brings immense
amounts of complexity to the implementation

(i) Identical values should never be re-calculated.

(ii) Generalization should not be achieved through conditional if tests in repeated function calls, but
rather through polymorphism (see Section 2.2.4).

(iii) Linear scaling of run time vs. the number of processors (CPUs) for large simulations.

Goal (ii) has been the ground pillar of the code design.

4.2. SPECIFICS REGARDING GENERALIZATION 77

4.2 Specifics Regarding Generalization

This section will introduce how object orientation is used to achieve the goals regarding generalization
of the code. Several examples are discussed, however, for more details regarding the implementation of
methods, see the code in Ref. [9].

4.2.1 Generalization Goals (i)-(vii)

As discussed in Section 3.6.1, the mathematical difference between fermions and bosons (of importance
to QMC) is how the many-body wave functions are constructed from the single-particle bases. In the
case of fermions, the expression is given in terms of a Slater determinant which, due to the fact that the
Hamiltonian is spin-independent, can be split into two parts corresponding to spin up and spin down.
On the other hand, for bosons, it is simply the product of all states due to the fact that they are all
assumed to occupy the same orbital. This is demonstrated in the following code example, where the wave
functions of fermionic and bosonic systems are evaluated:

1 double Fermions :: get_spatial_wf(const Walker* walker) {

2 using namespace arma;

3

4 //Spin up times Spin down (determinants)

5 return det(walker ->phi(span(0, n2 - 1), span())) * det(walker ->phi(span(n2, n_p - 1),

span()));

6 }

7

8 double Bosons :: get_spatial_wf(const Walker* walker) {

9

10 double wf = 1;

11

12 //Using the phi matrix as a vector in the case of bosons.

13 // Assuming all particles to occupy the same single -particle state (neglecting

permutations).

14 for (int i = 0; i < n_p; i++){

15 wf *= walker ->phi(i);

16 }

17

18 return wf;

19 }

Listing 4.1: The implementation of the evaluation of fermionic and bosonic wave functions. Line 5: The
fermion class accesses the walker’s single-particle state matrix and returns the determinant of the first
half (spin up) times the determinant of the second half (spin down). Line 14-16: The boson class simply
calculates the product of all the single-particle states.

Overloaded pure virtual methods for fermions and bosons exist for all of the methods which involves
evaluating the many-body wave function, for example the spatial ratio and the sum of Laplacians. When
the QMC solver asks the System* object for a spatial ratio, depending on whether fermions or bosons are
loaded run-time, the fermion or boson spatial ratio is evaluated.

It is apparent that this way of implementing the system class takes care of optimization goal (ii) in Section
4.1.3 regarding no use of conditional if tests to determine the nature of the system.

A similar polymorphic splitting is introduced in the following classes:

78 CHAPTER 4. GENERALIZATION AND OPTIMIZATION

• Orbitals The hydrogen-like or the harmonic oscillator orbitals.

• BasisFunctions Stand-alone single-particle wave functions initialized by Orbitals.

• Sampling Brute force - or importance sampling.

• Diffusion Isotropic or Fokker-Planck diffusion. Automatically selected by Sampling.

• ErrorEstimator Simple or Blocking.

• Jastrow Padé Jastrow - or no Jastrow factor.

• QMC Variational - (VMC) or Diffusion Monte-Carlo (DMC).

• Minimizer Adaptive Stochastic Gradient Descent (ASGD).

Implementing for example a new Jastrow Factor is done by simply creating a new subclass of Jastrow.
The QMC solver does not need to change to adapt to the new implementation. For more details, see
Section 2.2. The splitting done in QMC is done to avoid rewriting a lot of general QMC code, such as
diffusing walkers.

A detailed description of the generalization of potentials, i.e. generalization goal (vii), is given in Section
2.2.4.

4.2.2 Generalization Goal (vi) and Expanded bases

An expanded single-particle basis is implemented as a subclass of the Orbitals superclass. It wraps
around an Orbitals implementation, e.g. the harmonic oscillator orbitals, containing basis elements
φα(rj). In addition to these elements, the expanded basis class has a set of expansion coefficients Cγα

from which the new basis elements are constructed in the following manner:

ψExp.
γ (rj) =

B−1∑
α=0

Cγαφα(rj), (4.1)

where B is the size of the expanded basis. The following code snippet presents the vital members of the
expanded basis class:

1 class ExpandedBasis : public Orbitals {

2

3 ...

4

5 protected:

6

7 int basis_size;

8 arma::mat coeffs;

9 Orbitals* basis;

10

11 void calculate_coefficients ();

12

13 };

Listing 4.2: The declaration of the expanded basis class. The vital members are the size of the basis, the
expansion coefficients and another basis in which the new are expanded. A method for calculating the
coefficients is present, but the actual implementation has not been a focus of this thesis.

The implementation of Eq. (4.1) into the expanded basis class is achieved by overloading the original
Orbitals::phi virtual member function as shown in the following example

4.3. OPTIMIZATIONS DUE TO A SINGLE TWO-LEVEL DETERMINANT 79

1 double ExpandedBasis ::phi(const Walker* walker , int particle , int q_num) {

2

3 double value = 0;

4

5 // Dividing basis_size by half assuming a two -level system.

6 for (int m = 0; m < basis_size /2; m++) {

7 value += coeffs(q_num , m) * basis ->phi(walker , particle , m);

8 }

9

10 return value;

11

12 }

Listing 4.3: The explicit implementation of the expanded basis single-particle wave function. The wave
function is evaluated by expanding a given basis in a set of expansion coefficients (see the previous code
example).

Expanded bases has not been a focus for the thesis, thus explicit algorithms for calculating the coefficients
will not be covered. The reason the implementation has been presented, is to lay the foundation in case
future Master students are to expand upon the code.

4.2.3 Generalization Goal (viii)

Support for evaluating derivatives numerically is important for two reasons; the first being debugging, the
second being the cases where no closed-form expressions for the derivatives can be obtained or become
too expensive to evaluate.

As an example, the orbital class implementation responsible for the gradient of the single-particle states,
Orbitals::del_phi, is virtual. This implies that it can be overloaded to call the numerical derivative
implementation Orbitals::num_diff. The same goes for the Laplacian, the Jastrow factor derivatives,
and the variational derivatives in the minimizer. An alternative to numerically evaluating the derivatives
of the single-particle wave functions would be to perform the derivative on the full many-body wave
function, however, this would not fit naturally into the code design.

The implemented numerical derivatives are finite difference schemes with an error proportional to the
square of the chosen step length.

4.3 Optimizations due to a Single two-level Determinant

Assuming the trial wave function to consist of a single term unlocks several optimizations involving the
Slater determinant. Similar optimizations for bosons are considered trivial in comparison and will not be
covered in detail. See the code in [9] for details regarding bosons.

Writing the Slater determinant as the determinant of the Slater matrix S, the expression for the trial
wave function in Eq. (3.54) becomes

ΨT = |S↑||S↓|J, (4.2)

where the splitting of the Slater determinant into parts corresponding to spin up and spin down from
Eq. (3.52) has been applied. The Jastrow-factor, J , is described in Section 3.6.2. Function arguments
are skipped to clean up the expressions.

Several quantities involve evaluating the trial wave function, one of which is the quantum force from
Section 3.2.2. The expression for the quantum force of particle i is

80 CHAPTER 4. GENERALIZATION AND OPTIMIZATION

Fi = 2
∇i
(
|S↑||S↓|J

)
|S↑||S↓|J

= 2

(
∇i|S↑|
|S↑|

+
∇i|S↓|
|S↓|

+
∇iJ
J

)
.

(4.3)

The important part to realize now, is that particle i either has spin up or spin down. This implies that
one of the derivatives in the last expression is zero due to the fact that the spins are opposite. Denoting
the spin of particle i as α and the opposite spin as α, the expressions for the quantum force reads

Fi = 2

(
∇i|Sα|
|Sα|

+
∇i|Sα|
|Sα|

+
∇iJ
J

)
, (4.4)

where

∇i|Sα| = 0, (4.5)

due to the fact that there is no trace of particle i in |Sα|. The resulting expression involves evaluating
the Slater matrix for a single spin configuration only

Fi = 2

(
∇i|Sα|
|Sα|

+
∇iJ
J

)
.

The expression for the local energy from Section 3.6.4 can be simplified in a similar manner. Starting
from the original expression

EL = −1

2

∑
i

1

ΨT
∇2
iΨT +

∑
i

Vi, (4.6)

the Laplacian can be expanded in the same way as was done for the quantum force

1

ΨT
∇2
iΨT =

1

|Sα||Sα|J
∇2
i |Sα||Sα|J

=
∇2
i |Sα|
|Sα|

+
∇2
i |Sα|
|Sα|

+
∇2
iJ

J

+ 2
(∇i|Sα|)

(
∇i|Sα|

)
|Sα||Sα|

+ 2
(∇i|Sα|) (∇iJ)

|Sα|J
+ 2

(
∇i|Sα|

)
(∇iJ)

|Sα|J

=
∇2
i |Sα|
|Sα|

+
∇2
iJ

J
+ 2
∇i|Sα|
|Sα|

∇iJ
J

, (4.7)

where half of the terms vanish due to Eq. (4.5).

The last expression involving the Slater matrix is the spatial ratio, Rψ, used in the Metropolis algorithm
from Section 3.4. The expression reads

4.4. OPTIMIZATIONS DUE TO SINGLE-PARTICLE MOVES 81

Rψ =
Ψnew
T

Ψold
T

=
|S↑|new|S↓|newJnew

|S↑|old|S↓|oldJold
, (4.8)

(4.9)

where the old and new superscript denotes the wave function prior to and after moving one particle,
respectively. Let again i be the currently moved particle with spin α. As discussed previously, the part
of the trial wave function representing the opposite spin of α, |Sα|, is independent of particle i. This
implies that moving particle i does not change the value of |Sα|, that is

|Sα|new = |Sα|old. (4.10)

Inserting this into Eq. (4.8) in addition to the spin parameters α and α gives

Rψ =
|Sα|new

|Sα|old︸ ︷︷ ︸
1

|Sα|new

|Sα|old

Jnew

Jold
=
|Sα|new

|Sα|old

Jnew

Jold
. (4.11)

From the expressions deduced in this section it is clear that the dimensionality of the calculations is halved
by splitting the Slater determinant into two parts. Calculating the determinant of an N × N matrix
costs O(N2) floating point operations (flops), which yields a speedup of four times when estimating the
determinants.

4.4 Optimizations due to Single-particle Moves

Moving one particle at the time implies that only a single row in the Slater determinant from Eq. (3.47)
will be changed between the calculations. Changing a single row implies that many co-factors remain
unchanged. Since all of the expressions deduced in the previous section contain ratios of the spatial wave
functions, expressing these determinants in terms of their co-factors should reveal a cancellation of terms.

Expressing the cancellation mathematically presents the possibility to optimize the calculations by im-
plementing only the parts which do not cancel.

In the previous section it became apparent that only the determinant whose spin level matches that of
the moved particle needs to be calculated explicitly. In the following sections, the spin indication on the
Slater matrix |Sα| will be skipped in order to clean up the equations.

4.4.1 Optimizing the Slater determinant ratio

The inverse of the Slater matrix introduced in the previous section is given in terms of its adjugate by
the following relation [36]

S−1 =
1

|S|
adjS.

82 CHAPTER 4. GENERALIZATION AND OPTIMIZATION

The adjugate of a matrix is the transpose of the cofactor matrix C, that is

S−1 =
CT

|S|
, (4.12)

S−1
ij =

Cji

|S|
. (4.13)

Moreover, the determinant can be expressed as a cofactor expansion around row j (Kramer’s rule) [36]

|S| =
∑
i

SjiCji, (4.14)

where

Sji = φi(rj). (4.15)

The spatial part of the Rψ ratio is obtained by inserting Eq. (4.14) into Eq. (4.11)

RS =

∑
i S

new
ji Cnew

ji∑
i S

old
ji Cold

ji

. (4.16)

Let j represent the moved particle. The j’th column of the cofactor matrix is unchanged when the particle
moves (column j depends on every column but its own). In other words

Cnew
ji = Cold

ji = (Sold
ij)−1|Sold|, (4.17)

where the inverse relation of Eq. (4.13) has been used. Inserting this into Eq. (4.16) yields

RS =
|Sold|
|Sold|

∑
i S

new
ji (Sold

ij)−1∑
i S

old
ji (Sold

ij)−1

=

∑
i S

new
ji (Sold

ij)−1

Ijj
.

The diagonal element of the identity matrix is by definition unity. Inserting this fact combined with the
relation from Eq. (4.15), an optimized expression for the ratio is obtained:

RS =
∑
i

φi(r
new
j)(Sold

ij)−1, (4.18)

where j is the currently moved particle. The sum over i spans the Slater matrix whose spin value matches
that of particle j, i.e either S↑ or S↓, i.e. Sα introduced in the previous section.

Similar reductions can be applied to all the Slater ratio expressions from the previous section [21,26]:

4.4. OPTIMIZATIONS DUE TO SINGLE-PARTICLE MOVES 83

∇i|S|
|S|

=
∑
k

∇iφk(rnew
i)(Snew

ki)−1, (4.19)

∇2
i |S|
|S|

=
∑
k

∇2
iφk(rnew

i)(Snew
ki)−1, (4.20)

where the sum k spans the Slater matrix whose spin values match that of the moved particle.

Closed form expressions for the derivatives and Laplacians of the single-particle wave functions can be
implemented in order to avoid expensive numerical calculations. See Appendices D, E and F for a
tabulation of closed form expressions used in this Thesis. Appendix C presents an efficient strategy for
obtaining these expressions.

4.4.2 Optimizing the inverse Slater matrix

One might question the efficiency of calculating inverse matrices compared to brute force estimation
of the determinants. The efficiency of the inverse becomes apparent, as with the ratio in Eq. (4.18),
by co-factor expanding the expression; an updating algorithm which dramatically decreases the cost of
calculating the inverse of the new Slater matrix can be implemented.

Let i denote the currently moved particle. The new inverse is given in terms of the previous by the
following expression [21,26]

Ĩij =
∑
l

Snew
il (Sold

lj)−1, (4.21)

(Snew
kj)−1 = (Sold

kj)−1 − 1

RS
(Sold
ji)−1Ĩij j 6= i, (4.22)

(Snew
ki)−1 =

1

RS
(Sold
ki)−1 else. (4.23)

This reduces the cost of calculating the inverse by an order of magnitude down to O(N2) flops.

Further optimization can be achieved by calculating the Ĩ vector for particle i prior to performing the loop
over k and j. Again, this loop should only update the inverse Slater matrix whose spin value correspond
to that of the moved particle.

4.4.3 Optimizing the Padé Jastrow factor Ratio

Such as was done with the Green’s function ratio in Eq. (3.36), the ratio between two Jastrow factors are
best expressed in terms of the logarithm

log
Jnew

Jold
=

N∑
k<j=1

[
akjr

new
kj

1 + βrnew
kj

−
akjr

old
kj

1 + βrold
kj

]
(4.24)

≡
N∑

k<j=1

[
gnew
kj − gold

kj

]
. (4.25)

84 CHAPTER 4. GENERALIZATION AND OPTIMIZATION

The relative distances rkj behave much like the cofactors in Section 4.4.1: Changing ri changes only rij ,
that is

rnew
kj = rold

kj k 6= i, (4.26)

which inserted into Eq. (4.25) yields

log
Jnew

Jold
=

∑
k<j 6=i

[
gold
kj − gold

kj

]︸ ︷︷ ︸
0

+

N∑
j=1

[
gnew
ij − gold

ij

]

=

N∑
j=1

aij

(
rnew
ij

1 + βrnew
ij

−
rold
ij

1 + βrold
ij

)
. (4.27)

Exponentiating both sides reveals the final optimized ratio

Jnew

Jold
= exp

 N∑
j=1

aij

(
rnew
ij

1 + βrnew
ij

−
rold
ij

1 + βrold
ij

) , (4.28)

where i denotes the currently moved particle.

4.5 Optimizing the Padé Jastrow Derivative Ratios

The shape of the Padé Jastrow factor is general in the sense that it is independent of the system at hand.
Calculating closed form expressions for the derivatives can then be done once and for all.

Closed form expressions are not only very efficient compared to a numerical evaluation, but also exact
to machine precision. These facts render closed form expressions of high interest to any Monte-Carlo
implementation.

4.5.1 The Gradient

Using the notation of Eq. (4.25), the x-component of the Padé Jastrow gradient ratio for particle i is

1

J

∂J

∂xi
=

1∏
k<l exp gkl

∂

∂xi

∏
k<l

exp gkl. (4.29)

Using the product rule, the above product will be transformed into a sum, where only the terms which
has k or l equal to i survive the differentiation. In addition, the terms independent of i will cancel the
corresponding terms in the denominator. Performing this calculation yields

4.5. OPTIMIZING THE PADÉ JASTROW DERIVATIVE RATIOS 85

1

J

∂J

∂xi
=

∑
k 6=i

1

exp gik

∂

∂xi
exp gik

=
∑
k 6=i

1

exp gik

∂gik
∂xi

exp gik

=
∑
k 6=i

∂gik
∂xi

=
∑
k 6=i

∂gik
∂rik

∂rik
∂xi

, (4.30)

where

∂gik
∂rik

=
∂

∂rik

(
aikrik

1 + βrik

)
=

aik
1 + βrik

− aikrik
(1 + βrik)2

β

=
aik(1 + βrik)− aikβrik

(1 + βrik)2

=
aik

(1 + βrik)2
, (4.31)

and

∂rik
∂xi

=
∂

∂xi

√
(xi − xk)2 + (yi − yk)2 + (zi − zk)2

=
1

2
2(xi − xk)/

√
(xi − xk)2 + (yi − yk)2 + (zi − zk)2

=
xi − xk
rik

. (4.32)

Combining these expressions yield

1

J

∂J

∂xi
=
∑
k 6=i

aik
rik

xi − xk
(1 + βrik)2

. (4.33)

Changing the Cartesian variable in the differentiation changes only the numerator of Eq. (4.33). In other
words, generalizing to the full gradient is done by substituting the Cartesian difference with the position
vector difference. The expression for the gradient becomes

∇iJ
J

=

N∑
k 6=i=1

aik
rik

ri − rk
(1 + βrik)2

. (4.34)

4.5.2 The Laplacian

The same strategy used to obtain the closed form expression for the gradient in the previous section can
be applied to the Laplacian. The full calculation is done in Ref. [26]. The expression becomes

86 CHAPTER 4. GENERALIZATION AND OPTIMIZATION

∇2
iJ

J
=

∣∣∣∣∇iJJ
∣∣∣∣2 +

N∑
k 6=i=1

(
d− 1

rik

∂gik
∂rik

+
∂2gik
∂r2
ik

)
, (4.35)

where d is the number of dimensions arising due to the fact that the Laplacian, unlike the gradient, is a
summation over the contributions from all dimensions. A simple differentiation of Eq. (4.31) with respect
to rik yields

∂2gik
∂r2
ik

= − 2aikβ

(1 + βrik)3
(4.36)

Inserting Eq. (4.31) and Eq. (4.36) into Eq. (4.35) further reveal

∇2
iJ

J
=

∣∣∣∣∇iJJ
∣∣∣∣2 +

N∑
k 6=i=1

(
d− 1

rik

aik
(1 + βrik)2

− 2aikβ

(1 + βrik)3

)

=

∣∣∣∣∇iJJ
∣∣∣∣2 +

N∑
k 6=i=1

aik
(d− 1)(1 + βrik)− 2βrik

rik(1 + βrik)3
,

which when cleaned up results in

∇2
iJ

J
=

∣∣∣∣∇iJJ
∣∣∣∣2 +

∑
k 6=i

aik
(d− 3)(βrik + 1) + 2

rik(1 + βrik)3
. (4.37)

The local energy calculation needs the sum of the Laplacians for all particles (see Eq. (4.6)). In other
words, the quantity of interest becomes

∑
i

∇2
iJ

J
=
∑
i

∣∣∣∣∇iJJ
∣∣∣∣2 +

N∑
k 6=i

aik
(d− 3)(βrik + 1) + 2

rik(1 + βrik)3

 . (4.38)

Due to the symmetry of rik, the second term count equal values twice. Further optimization can thus
be achieved by calculating only the terms where k > i, and multiply the sum by two. Bringing it all
together yields

∑
i

∇2
iJ

J
=
∑
i

∣∣∣∣∇iJJ
∣∣∣∣2 + 2

∑
k>i

aik
(d− 3)(βrik + 1) + 2

rik(1 + βrik)3
. (4.39)

4.6 Tabulating Recalculated Data

The expressions introduced so far in this chapter contain terms which are identical. Explicitly calculating
these terms every time they are countered in the code would waste a lot of CPU time in contrast to the
optimal scenario where they are calculated only once.

Tabulating data is crucial in order for the code to remain efficient for an increased number of particles.

4.6. TABULATING RECALCULATED DATA 87

4.6.1 The relative distance matrix

In the discussions regarding the optimization of the Jastrow ratio in Section 4.4.3, it became clear that
moving one particle only changed N of the relative distances. Tabulating these distances in a matrix rrel,
which then can be updated when a particle is moved, will ensure that the relative distances are calculated
once and for all. The matrix is set up in the following manner:

rrel = rTrel =

0 r12 r13 · · · r1N

r21 0 r23 · · · r2N

. . .
. . .

...
· · · 0 r(N−1)N

0

 , (4.40)

where the first equality expresses that the matrix is symmetric, that is, equal to its own transpose. The
following code presents the updating of the matrix when a particle is moved

1 void Sampling :: update_pos(const Walker* walker_pre , Walker* walker_post , int particle)

const {

2

3 ...

4

5 // Updating the part of the r_rel matrix which is changed by moving the [particle]

6 for (int j = 0; j < n_p; j++) {

7 if (j != particle) {

8 walker_post ->r_rel(particle , j) = walker_post ->r_rel(j, particle)

9 = walker_post ->calc_r_rel(particle , j);

10 }

11 }

12

13 ...

14

15 }

Listing 4.4: The code used to update the relative distance matrix of a walker when a particle is moved.
In line 8, the symmetry of the matrix is exploited to further decrease the number of calls to the relative
distance function in line 9.

Functions such as Coulomb::get_potential_energy and all of the Jastrow functions can then simply
access these matrix elements without having to perform any explicit calculations.

A similar updating algorithm has been implemented for the squared distance vector and the absolute
value of the distance vector.

4.6.2 The Slater related matrices

Apart from the inverse, whose optimization was covered in Section 4.4.2, calculating the single-particle
wave functions and their gradients are the most expensive operations in the QMC algorithm.

Storing these function values in matrices representing the Slater matrices S↑ and S↓ introduced in Section
4.3, ensures that these values never become recalculated. The following expression describes how the
Slater matrix is represented in the code

88 CHAPTER 4. GENERALIZATION AND OPTIMIZATION

S ≡ join
(
S↑, S↓

)
=

φ1(r0) φ1(r1) · · · φ1(rN)
φ2(r0) φ2(r1) · · · φ2(rN)

...
...

...
φN/2(r0) φN/2(r1) · · · φN/2(rN)

 , (4.41)

where join(A,B) denotes joining the columns of the matrices A and B, i.e. concatenating the matrices
[36]. Similarly for the gradient terms, the following matrix is responsible for storing the gradient of all
the elements in Eq. (4.41)

dS ≡

∇φ1(r0) ∇φ1(r1) · · · ∇φ1(rN)
∇φ2(r0) ∇φ2(r1) · · · ∇φ2(rN)

...
...

...
∇φN/2(r0) ∇φN/2(r1) · · · ∇φN/2(rN)

 . (4.42)

The inverse Slater matrices are implemented this way as well:

S−1 ≡ join
(
(S↑)−1 , (S↓)−1

)
. (4.43)

In the code, these matrices are stored as walker.phi, walker.del_phi and walker.inv. When one
particle is moved, only a single row in the two first matrices needs to be recalculated, and only half of
the concatenated inverse needs to be updated.

This concatenation of matrices ensures that no conditional tests are needed in order to access the correct
matrix for a given particle.

4.6.3 The Padé Jastrow gradient

Just as for the Jastrow Laplacian, there are symmetries in the expression for the gradient in Eq. (4.34),
which implies the existence of an optimized way of calculating it. However, unlike the Laplacian, the
gradient is split into components, which makes the exploitation of symmetries a little less straight-forward.

Defining

dJik ≡
aik
rik

ri − rk
(1 + βrik)2

, (4.44)

it is apparent that

dJik = −dJki. (4.45)

Since the gradient can be written in terms of this quantity, that is,

∇iJ
J

=

N∑
k 6=i=1

dJik, (4.46)

the code can be optimized by exploiting this antisymmetry. Consider the following matrix

4.6. TABULATING RECALCULATED DATA 89

dJ ≡

0 dJ12 dJ13 · · · dJ1N

−dJ12 0 dJ23 · · · dJ2N

. . .
. . .

...
(−) 0 dJ(N−1)N

0

 . (4.47)

In the same way that the relative distance matrix was equal to its transpose, the matrix above is equal
to the negative of its transpose. In other words:

dJ = −dJT . (4.48)

Additionally, just as for the relative distances, moving a single-particle only changes one row and one
column in the matrix. This implies that a similar updating algorithm as the one discussed in Section
4.6.1 can be implemented. This is demonstrated in the following code snippet:

1 void Pade_Jastrow :: get_dJ_matrix(Walker* walker , int moved_particle) const {

2

3 int i = moved_particle;

4 for (int j = 0; j < n_p; j++) {

5 if (j == i) continue;

6

7 b_ij = 1.0 + beta * walker ->r_rel(i, j);

8 factor = a(i, j) / (walker ->r_rel(i, j) * b_ij * b_ij);

9 for (int k = 0; k < dim; k++) {

10 walker ->dJ(i, j, k) = (walker ->r(i, k) - walker ->r(j, k)) * factor;

11 walker ->dJ(j, i, k) = -walker ->dJ(i, j, k);

12 }

13 }

14 }

Listing 4.5: The updating algorithm for the three-dimensional matrix used in the Padé Jastrow gradient.
In line 11, the symmetry property is exploited by setting the transposed term equal to the negative of
the already calculated term.

Calculating the new gradient is now only a matter of summing over the rows of the matrix in Eq. (4.47):

∇iJnew

Jnew
=

N∑
k 6=i=1

dJnew
ik . (4.49)

Further optimization can be achieved by realizing that the function which calculates the new gradient
also has access to the gradient of the previous iteration

∇iJold

Jold
=

N∑
k 6=i=1

dJold
ik . (4.50)

As mentioned previously, moving a particle, p, only a single row and column in dJ. For all other particles
i 6= p, only a single term from the new matrix is required to update the old gradient, that is

∇i 6=pJnew

Jnew
=

N∑
k=1

dJnew
ik =

∑
k 6=p

dJold
ik

+ dJnew
ip . (4.51)

90 CHAPTER 4. GENERALIZATION AND OPTIMIZATION

Adding and subtracting the term missing from the sum to make it equal to the old gradient from Eq. (4.50)
gives

∇i 6=pJnew

Jnew
=

∑
k 6=p

dJold
ik + dJold

ip

− dJold
ip + dJnew

ip (4.52)

=
∇iJold

Jold
− dJold

ip + dJnew
ip , (4.53)

which effectively reduces the calculation to two flops. For the case with i = p, the entire sum must be
calculated as in Eq. (4.49). This process is demonstrated in the following code

1 void Pade_Jastrow :: get_grad(const Walker* walker_pre , Walker* walker_post , int p) const {

2 double sum;

3

4 for (int i = 0; i < n_p; i++) {

5 if (i == p) {

6

7 //for i == p the entire sum needs to be calculated

8 for (int k = 0; k < dim; k++) {

9

10 sum = 0;

11 for (int j = 0; j < n_p; j++) {

12 sum += walker_post ->dJ(p, j, k);

13 }

14

15 walker_post ->jast_grad(p, k) = sum;

16 }

17

18 } else {

19

20 //for i != p only one term differ from the old and the new matrix

21 for (int k = 0; k < dim; k++) {

22 walker_post ->jast_grad(i, k) = walker_pre ->jast_grad(i, k)

23 + walker_post ->dJ(i, p, k) - walker_pre ->dJ(i, p, k);

24 }

25 }

26 }

27 }

Listing 4.6: The implementation of the Padé Jastrow gradient using the matrix from Eq. (4.47). Lines
18-25 describe the case for gradients not equal to the moved particle, i.e. Eq. (4.53). Lines 5-18 describe
the case for the gradient of the moved particle, where the full sum is calculated as in Eq. (4.49).

The dimensions of dJ are N ×N × d, where N is the number of particles and d is the dimension. This
implies that the optimizations in the Jastrow gradient discussed in this section scale very well with N .
See Section 6.1 for a demonstration of the speedup in a N = 30, d = 2 case.

4.6.4 The single-particle Wave Functions

For systems of many particles, the function call Orbitals::phi(walker, i, qnum) needs to figure out
which expression is related to which quantum number. The brute force implementation is to simply
perform a test on the quantum number, and use this to return the corresponding expression. This is
demonstrated in the following code:

4.6. TABULATING RECALCULATED DATA 91

1 double AlphaHarmonicOscillator ::phi(const Walker* walker , int particle , int q_num) {

2

3 // Ground state of the harmonic oscillator

4 if (q_num == 0){

5 return exp(-0.5*w*walker ->get_r_i2(i));

6 }

7

8 ...

9

10 }

For a low number of particles this is quite efficient, however, this is not the case for a large number of
particles.

A more efficient implementation is to represent the single-particle wave functions as BasisFunctions

objects. These objects hold only one pure virtual member function BasisFunctions::eval() which
takes on input the particle number i and the walker and returns the evaluated single-particle wave
function. The object itself is defined by a quantum number q.

The following is an example of a two-dimensional harmonic oscillator single-particle wave function for
quantum number q = 1

1 double HarmonicOscillator_1 ::eval(const Walker* walker , int i) {

2

3 y = walker ->r(i, 1);

4

5 //y*exp(-k^2*r^2/2)

6

7 H = y;

8 return H*exp(-0.5*w*walker ->get_r_i2(i));

9

10 }

These objects representing single-particle wave functions can be loaded into an array in such a way that
element q corresponds to the BasisFunctions object representing this quantum number, e.g.
basis_functions[1] = new HarmonicOscillator_1(). The new Orbitals::phi implementation then
simply becomes a call to an array. This is demonstrated in the following code

1 double Orbitals ::phi(const Walker* walker , int particle , int q_num) {

2 return basis_functions[q_num]->eval(walker , particle);

3 }

Listing 4.7: The implementation of the single-particle basis used in the code. It is simply a call to an
array holding all the different single-particle wave functions. The quantum number is used as an index,
and the corresponding evaluation function is called with the supplied walker for the given particle.

All discussed optimizations thus far are general in the sense that they are independent of the explicit
shape of the single-particle wave functions. There should, however, be room for optimizations within the
basis functions themselves, as long as these are applied locally within each class where the explicit shape
of the orbitals are absolute.

As discussed previously, only a single column in the Slater related matrices from Section 4.6.2 needs to
be updated when a particle is moved. This implies that the terms which are independent of the quantum
numbers can be calculated once for every particle instead of once for every quantum number and every
particle.

These terms often come in the shape of exponential factors, which are conserved in derivatives, implying
that these terms appear in both the gradients and the Laplacians as well as in the single-particle wave
functions.

92 CHAPTER 4. GENERALIZATION AND OPTIMIZATION

Looking at the harmonic oscillator - and the hydrogen-like wave functions listed in Appendix D - F, the
exponential factors are indeed independent of the quantum numbers in all of the terms. Referring to the
quantum number independent terms as Qi, the expressions are

Q
H.O.

i = e−
1
2αωr

2
i (4.54)

Q
Hyd.

i = e−
1
nαZri (4.55)

The hydrogen eigenstates have a dependence on the principal quantum number n in the exponential,
however, several expressions share this exponential factor. Calculating for example the n = 2 expo-
nentials beforehand saves 19 exponential calls per particle every cycle, resulting in a dramatic speedup
nevertheless.

The implementation is very simple; the virtual function Orbitals::set_qnum_indie_terms is called
whenever a particle is moved, which updates the value of the exp_factor pointer shared by all the loaded
BasisFunctions objects and the Orbitals class. The following code snippet presents implementations
of the function in case of the harmonic oscillator - and the hydrogen-like basis

1 void AlphaHarmonicOscillator :: set_qnum_indie_terms(const Walker * walker , int i) {

2

3 //k2 = alpha*omega

4 *exp_factor = exp(-0.5 * (*k2) * walker ->get_r_i2(i));

5 }

6

7 void hydrogenicOrbitals :: set_qnum_indie_terms(Walker* walker , int i) {

8

9 //waler:: calc_r_i () calculates |r_i| such that walker :: get_r_i () can be used

10 walker ->calc_r_i(i);

11

12 //k = alpha*Z

13 double kr = -(*k) * walker ->get_r_i(i);

14

15 // Calculates only the exponentials needed based on the number of particles

16 *exp_factor_n1 = exp(kr);

17 if (n_p > 2) *exp_factor_n2 = exp(kr / 2);

18 if (n_p > 10) *exp_factor_n3 = exp(kr / 3);

19 if (n_p > 28) *exp_factor_n4 = exp(kr / 4);

20

21 }

Listing 4.8: Implementation of the function handling the calculation of the quantum number independent
terms. Lines 1-5 describe the harmonic oscillator case, where the exponential factor exp(−αωr2

i) is the
independent factor. Lines 7-21 describe the hydrogen-like case, where the calculated exponential factor
exp(−αZ|ri|/n) has a dependence on the principal quantum number n. One factor is thus calculated per
n, however, if no particles occupy states with a given n, the corresponding factor is not calculated (see
lines 17-19).

The BasisFunctions objects share the pointer to the correct exponential factor with the orbital class.
These exponential factors can then simply be accessed instead of being recalculated numerous times. The
following code demonstrates accessing the exponential factor calculated in the previous code example

1 double HarmonicOscillator_1 ::eval(const Walker* walker , int i) {

2

3 y = walker ->r(i, 1);

4

5 //y*exp(-k^2*r^2/2)

6

7 H = y;

8 return H*(* exp_factor);

9

4.7. CPU CACHE OPTIMIZATION 93

10 }

Listing 4.9: The implementation of a single-particle wave function. The pointer to the previously
calculated exponential factor is simply accessed in line 8.

For two-dimensional quantum dots, 112 BasisFunctions objects are needed for a 56-particle simulation.
Applying the currently discussed optimization reduces the number of exponential calls needed to calculate
every wave function from 112 to 1, which for an average DMC calculation results in 6 · 1011 saved
exponential calls. Generally, the number of exponential calls are reduced by a factor N

2 (N + 1), where
N is the number of particles.

4.7 CPU Cache Optimization

The CPU cache is a limited amount of memory directly connected to the CPU, designed to reduce the
average time to access memory. Simply speaking, standard memory is slower than the CPU cache, as
bits have to travel through the motherboard before it can be fed to the CPU (a so called bus).

Which values are held in the CPU cache is controlled by the compiler, however, if programmed poorly,
the compiler will not be able to handle the cache storage optimally. Optimization tools such as O3 exist in
order to work around this, however, keeping the cache in mind from the beginning of the coding process
may result in a much faster code. In the case of the QMC code, the most optimal use of the cache would
be to have all the active walkers in the cache at all times.

The memory is sent to the cache as arrays, which means that storing walker data sequentially in memory
is the way to go in order to make take full use of the processor cache. If objects are declared as pointers,
which is the case for matrices of general sizes, the memory layout is uncontrollable, that is, it is not given
that matrices which are declared sequentially will end up sequentially in the memory. This fact renders
a QMC solver for a general number of particles hard to optimize with respect to the cache.

94

5

Modelled Systems

The systems modelled in this thesis are exclusively systems which have closed form solutions when the
electron-electron interaction is removed, i.e. in the non-interacting case. As discussed in Section 3.6,
these closed form solutions are used to construct an optimal trial wave function in the form of a single
Slater determinant. Without such an optimal basis, a single Slater determinant is not sufficient in
Quantum Monte-Carlo (QMC) simulations. It is therefore not random that the focus of this thesis has
been on various kinds of quantum dots and atomic systems, resembling the analytically solvable harmonic
oscillator and the hydrogen atom, respectively.

In this chapter atomic units will be used, that is, ~ = e = me = 4πε0 = 1, where me and e0 is the electron
mass and vacuum permittivity, respectively.

5.1 Atomic Systems

Atomic systems are described as a number of electrons surrounding oppositely charged nuclei. As an
approximation, the position of the nucleus is fixed. Due to the fact that the mass of the core is several
orders of magnitude larger than the mass of the electrons, this serves as a very good approximation. In
literature this is referred to as the Born-Oppenheimer Approximation [27].

5.1.1 The Single-particle Basis

The single-particle basis used to construct the trial wave functions for atomic systems originates from
the closed form solutions for the hydrogen atom, i.e. one electron surrounding a single nucleus.

Given a nucleus with charge Z, the external potential between the electron and the core is

v̂ext(r) = −Z
r
, (5.1)

which results in the following single-particle Hamiltonian:

ĥ0(r) = −1

2
∇2 − Z

r
. (5.2)

95

96 CHAPTER 5. MODELLED SYSTEMS

Figure 5.1: The one-dimensional version of the single-particle potential of hydrogen from Eq. (5.1). The
potential is spherically symmetric for three dimensions and can be visualized by rotating the figure around
all axes. The potential has a strong singularity at the origin, which originates from the fact that the
nucleus (located at the origin) and the electrons have opposite charge, that is, they feel an attractive
force.

The external potential is displayed in Figure 5.1. The strong singularity in the center is a result of the
strong attraction between the electron and the oppositely charged proton. The eigenfunctions of the
Hamiltonian are [17]

φnlm(r, θ, φ;Z) ∝ rle−Zr/n
[
L2l+1
n−l−1

(
2r

n
Z

)]
Y ml (θ, φ), (5.3)

where Lpq−p(x) are the associated Laguerre polynomials and Y ml (θ, φ) are the spherical harmonics. The
spherical harmonics are related to the associated Legendre functions Pml in the following manner:

Y ml (θ, φ) ∝ Pml (cos θ)eimφ, (5.4)

In the current model, the principal quantum number n together with Z control the energy level of the
atom,

E(n;Z) = − Z2

2n2
, (5.5)

which implies that the energy levels are degenerate for all combinations of l and m. For a given value of
n, the allowed levels of the azimuthal quantum number l and the magnetic quantum number m are

n = 1, 2, ...

l = 0, 1, ... , n− 1.

m = −l,−l + 1, ... , l − 1, l.

5.1. ATOMIC SYSTEMS 97

Different values for l and m for a given n define the shell structure of the hydrogen atom.

A problem with the single-particle basis of hydrogen is the complex terms in Eq. (5.4), i.e. the spherical
harmonics. The introduction of the solid harmonics Sml (r, θ, φ) allows for using real-valued eigenfunctions
in the QMC simulations. The solid harmonics are related to the spherical harmonics through [37]

Sml (r, θ, φ) ∝ rl
[
Y ml (θ, φ) + (−1)mY −ml (θ, φ)

]
(5.6)

∝ rlP |m|l (cos θ)

{
cosmφ m ≥ 0

sin |m|φ m < 0
, (5.7)

which results in the following real eigenfunctions

φnlm(r, θ, φ; k) ∝ e−kr/n
[
L2l+1
n−l−1

(
2r

n
k

)]
Sml (r, θ, φ) ≡ φH

nlm(r), (5.8)

where k = αZ is a scaled charge with α as a variational parameter chosen by the methods described in
Section 3.6.3.

One should also keep in mind that the hydrogen-like wave functions yield only bound states. For atoms
where the least bound electrons are weakly bound, a coupling to states in the continuum may be necessary.
In quantum chemistry calculations, so-called Slater orbitals are used routinely in order to account for this
deficiency [38]. In this thesis however, the aim has been to use the given basis without tailoring it to a
specific system. This opens up the possibility to test the reliability of the basis without any fine tuning.

A set of quantum numbers nlm is mapped to a single index i. A listing of all the single-particle wave
functions and their closed form derivatives are given in Appendix F.

5.1.2 Atoms

An atom is described as N electrons surrounding a fixed nucleus of charge Z = N . The Hamiltonian
consists of N single-particle hydrogen Hamiltonians in addition to the Coulomb interaction, which results
in

ĤAtoms(r) =

N∑
i=1

ĥ0(ri) +
∑
i<j

1

rij
(5.9)

=

N∑
i=1

[
−1

2
∇2
i −

Z

ri

]
+
∑
i<j

1

rij
, (5.10)

where rij = |ri−rj |. Excluding the Coulomb term, the Hamiltonian can be decoupled into single-particle
terms with a total ground state energy

E0 = −Z
2

2

N∑
i=1

1

n2
i

. (5.11)

The Slater determinant is set up to fill the N lowest lying states, that is, the N states with lowest n
without breaking the Pauli principle, using the single-particle orbitals from Eq. (5.8). The degeneracy of
level n in an atom is given by the following expression:

98 CHAPTER 5. MODELLED SYSTEMS

Figure 5.2: The model for the diatomic molecule used in this thesis. The two largest circles represent
the atoms. An electron at position ri gets a potential energy contribution from both the cores equal to
Z/|ri+R/2| and Z/|ri−R/2|, where Z is the charge of the nuclei (homonuclear). The diatomic molecular
wave functions are set up as a superposition of two hydrogen-like wave functions, one at position ri+R/2
and the second at position ri −R/2.

g(n) = 2

n−1∑
l=0

l∑
m=−l

1 = 2n2. (5.12)

5.1.3 Homonuclear Diatomic Molecules

A homonuclear diatomic molecule consists of two atoms (diatomic molecule) of the same element (homonu-
clear) with charge Z = N/2, separated by a distance R. The origin is set between the atoms, which are
fixed at positions ±R/2. An electron at position ri gets a contribution from both the cores as displayed
in Figure 5.2. In addition, there is a repulsive Coulomb potential between the two cores equal to Z2/R,
from here on referred to as the atomic nucleus potential. The resulting Hamiltonian becomes

ĤMol.(r,R) =

N∑
i=1

[
−1

2
∇2
i +

Z

|ri + R/2|
+

Z

|ri −R/2|

]
+
Z2

R
+
∑
i<j

1

rij
. (5.13)

In order to transform the hydrogen eigenstates φH
nlm(r), which are symmetric around a single nucleus,

into molecular single-particle states φ±nlm(ri), a superposition of the two mono-nucleus wave functions
are used:

φ+
nlm(ri,R) = φH

nlm(ri + R/2) + φH
nlm(ri −R/2), (5.14)

φ−nlm(ri,R) = φH
nlm(ri + R/2)− φH

nlm(ri −R/2), (5.15)

which reads “electron surrounding first nucleus combined with electron surrounding second nucleus”.
From Figure 5.2 it is easy to see that the two function arguments represent the electron position in the
reference frames of the two nuclei.

5.2. QUANTUM DOTS 99

As seen from the equations above, there are necessarily two ways of doing this superposition: Adding
and subtracting the states. It is easy to show that

〈
φ−n′l′m′ |φ+

nlm

〉
= 0, (5.16)

which implies that these states form an expanded complete set of single-particle states for the molecular
system, resulting in a four-fold degeneracy in each set of quantum numbers nlm. It is necessary to use
both the positive and negative states in order to fit e.g. four electrons into n = 0 for the case of the
lithium molecule (N = 6). Using only the positive or only the negative states would result in a singular
Slater determinant.

Using R = (Rx, Ry, Rz) as the vector separating the atoms, j = (0, 1, 0) as the unit vector in the y-
direction, ri = (xi, yi, zi) as the electron position, and the chain rule of derivation, the gradient in the
j-direction becomes

j · ∇iφ±nlm(ri,R) =
∂(yi +Ry/2)

∂yi︸ ︷︷ ︸
1

∂φH
nlm(ri + R/2)

∂(yi +Ry/2)

± ∂(yi −Ry/2)

∂yi︸ ︷︷ ︸
1

∂φH
nlm(ri −R/2)

∂(yi −Ry/2)

=
∂φH

nlm(ri + R/2)

∂(yi +Ry/2)
± ∂φH

nlm(ri −R/2)

∂(yi −Ry/2)

=
∂φH

nlm(R̃+
i)

∂Ỹ +
i

±
∂φH

nlm(R̃−i)

∂Ỹ −i
, (5.17)

where R̃±i = ri ± R/2 = (X̃±i , Ỹ
±
i , Z̃

±
i) represents the electron position in the reference frame of the

two nuclei. Equation (5.17) demonstrates that the closed form expressions used in simulations of single
atoms can be reused in the case of diatomic molecules. In other words, the functions in Appendix F can
simply be called with R̃±i instead of ri and then be either subtracted or added. This result holds for the
Laplacian as well.

The non-interacting energy is equal to that of the regular atoms in the limit R→∞, however, now with
a four-fold degeneracy and a charge equal to N/2. This four-foulding also implies that the degeneracy of
level n becomes g(n) = 4n2.

5.2 Quantum Dots

Quantum dots are electrons confined within a potential well. This potential well can be broadened and
narrowed in such a way that the material properties of the quantum dot can be tuned to desired values.
Such manufactured quantum dots have practical applications in for example solar cells [39], lasers [40],
medical imaging [41], and quantum computing [42], however, the focus on quantum dots in this thesis
has been purely academic.

Understanding the physics behind strongly and weakly confined electrons are of great importance when
it comes to understanding many-body theory in general. The purpose of studying quantum dots from an
academic point of view is to investigate the behavior of the system a function of the level of confinement
and the number of electrons.

100 CHAPTER 5. MODELLED SYSTEMS

Figure 5.3: A one-dimensional version of the single-particle potential of quantum dots. In two - and
three dimensions, the potential is rotationally/spherically symmetric and equal along all axes. Just as
the hydrogen potential in Figure 5.1, the electrons are drawn to the center.

The model for the quantum dot used in this thesis is electrons trapped in a harmonic potential with
frequency ω, which in the case of no electron-electron interaction can be solved analytically.

5.2.1 The Single Particle Basis

Just as the hydrogen potential was used to describe atoms, the harmonic oscillator potential is used to
describe quantum dots. The potential is on the form

v̂ext(r) =
1

2
ω2r2, (5.18)

where ω is the oscillator frequency representing the strength of the confinement. The potential for different
ω is presented in Figure 5.3. As for atoms, the potential has its minimum in the center, however, with no
singularity. Note also that no matter how low the frequency becomes, the electrons will always be bound
as long as the frequency is non-zero. The single-particle Hamiltonian is

ĥ0(r) = −1

2
∇2 +

1

2
ω2r2. (5.19)

The eigenfunctions of the Hamiltonian for two and three dimensions are [27]

φnx,ny (r) = Hnx(
√
wx)Hny (

√
wy)e−

1
2wr

2

(5.20)

φnx,ny,nz
(r) = Hnx

(
√
wx)Hny

(
√
wy)Hnz

(
√
wz)e−

1
2wr

2

, (5.21)

where Hn(x) is the n’th level Hermite polynomial. The shell structure of a quantum dot arises from
different combinations of nx, ny, and for three dimensions nz, which yield the same total n.

5.2. QUANTUM DOTS 101

The variational parameter α is introduced by letting ω → αω, just as Z → αZ for atoms. Defining
k ≡
√
αω, the eigenfunctions which are used as the single-particle orbitals for quantum dots in this thesis

are

φnx,ny
(r) = Hnx

(kx)Hny
(ky)e−

1
2k

2r2 , (5.22)

φnx,ny,nz (r) = Hnx(kx)Hny (ky)Hnz (kz)e−
1
2k

2r2 . (5.23)

As for the hydrogen states, a set of quantum numbers are mapped to an integer i. A listing of all
the single-particle wave functions and their closed form derivatives are given in Appendix D for two
dimensions and Appendix E for three dimensions.

5.2.2 Two - and Three-dimensional Quantum Dots

The quantum dot used in this thesis is described as N interacting electrons confined in an oscillator
potential with frequency ω. The Hamiltonian is

ĤQ.D.(r) =

N∑
i=1

ĥ0(ri) +
∑
i<j

1

rij
(5.24)

=

N∑
i=1

[
−1

2
∇2
i +

1

2
ω2r2

i

]
+
∑
i<j

1

rij
, (5.25)

where rij = |ri−rj |. Excluding the Coulomb term, the Hamiltonian can be decoupled into single-particle
terms with a total ground state energy [17]

E0 = ω

N∑
i=1

(
ni +

d

2

)
, (5.26)

where d is the number of dimensions, ni = nx + ny + nz ≥ 0 for three dimensions and ni = nx + ny ≥ 0
for two dimensions. The degeneracy of level n in a quantum dot is g(n) = 2n for two dimensions and
g(n) = (n+ 2)(n+ 1) for three dimensions.

The Slater determinant is set up to fill the N lowest lying states, that is, the N states with lowest n
without breaking the Pauli principle, using the single-particle orbitals from Eq. (5.8).

5.2.3 Double-well Quantum Dots

The same strategy used to transform an atomic system into a homonuclear diatomic molecular system
can be applied to two-dimensional quantum dots, resulting in a double-well quantum dot. Double-well
quantum dots are used as a practical quantum dot system in experiments [43].

The model for the double-well potential used in this thesis is [44]

v̂ext(r) =
1

2
m∗ω2

0

[
r2 +

1

4
R2 −R|x|

]
, (5.27)

102 CHAPTER 5. MODELLED SYSTEMS

Figure 5.4: The external potential for a double-well quantum dot from Eq. (5.27)
with R = 2 and m∗ω2

0 = 1, where R is the distance between the well centers and m∗ and ω0 are
material constants.

where R is the distance between the wells, m∗ is a material parameter and ω0 is the confinement strength.
For simplicity, the wells are separated in the x-direction. The potential is presented in Figure 5.4.

The full Hamiltonian becomes

ĤQDDW(r,R) =

N∑
i=1

(
− 1

2m∗
∇2
i +

1

2
m∗ω2

0

[
r2 +

1

4
R2 −R|xi|

])
+
∑
i<j

1

rij
, (5.28)

which can be simplified to fit the standard form of the previous Hamiltonians by letting ri →
√
m∗ri.

Applying this transformation of coordinates yields

ĤQDDW(r,R)→ ĤQDDW(
√
m∗r,

√
m∗R) (5.29)

=

N∑
i=1

(
−1

2
∇2
i +

1

2
ω2

0

[
r2 +

1

4
R2 −R|xi|

])
+
√
m∗
∑
i<j

1

rij
. (5.30)

The eigenstates are, as for the homonuclear diatomic molecules in Eq. (5.14) and (5.15), given as positive
and negative superpositions of the standard harmonic oscillator eigenstates. As shown for molecules in
Eq. (5.17), the closed form expressions for the single-well quantum dot can be reused in the case of a
double-well quantum dot.

The degeneracy of the n’th level is g(n) = 4n. The non-interacting single-particle energies are identical
to those of the single-well in the limit R→∞, that is, in the case of two decoupled potential wells.

Part II

Results

103

6

Results

The results were produced using atomic units, i.e ~ = e = me = 4πε0 = 1, where me and e0 is the electron
mass and vacuum permittivity, respectively. This implies that all listed energies are given in Hartrees,
i.e. scaled with ~2/mea

2
0, and all lengths are given in Bohr radii, i.e. scaled with a0 = 4πε0~2/mee

2.

6.1 Optimization Results

The optimization results listed in this section are estimated using a 30-particle two-dimensional quantum
dot as reference system.

Profiling the code revealed that ∼ 99% of the run time was spent diffusing the particles, that is, spent
in the function QMC::diffuse_walker. Variational Monte-Carlo (VMC), Diffusion Monte-Carlo (DMC),
and Adaptive Stochastic Gradient Descent (ASGD) all rely heavily on the diffusion of particles, hence
the parts of the code which do not involve diffusion walkers were neglected in the optimization process;
it is a waste of time to optimize something which accounts for less than one percent of the run time.

The profiling tool of choice was KCacheGrind, which is available for free at the Ubuntu Software Center.
KCacheGrind lists relative time spent in functions graphically in blocks whose sizes are proportional to
the time spent inside the functions, much like standard hard drive listing software does with files and file
sizes.

Optimizations discussed in Chapter 4 which are not mentioned in the following sections were considered
standard implementations, and were thus implemented prior to the optimization process.

Storing the Slater matrix

This optimization is described in detail in Section 4.6.2. In addition to storing the Slater matrix, the
calculation of Ĩ from the inverse updating algorithm in Eq. (4.22) was taken outside of the main loops.

The percentages listed in the following table represent the ratio between the total time spent inside the
given function and the total run time.

105

106 CHAPTER 6. RESULTS

Orbitals::phi

Relative run time used prior to optimization 80.88%
Relative run time used after optimization 8.2%
Relative function speedup 9.86

The speedup comes not as a result of optimizations within the function itself, but rather as a result of
far less calls to the function. If Ĩ was calculated outside of the main loops in the first place, the speedup
would be far less significant.

Optimized Jastrow gradient

The optimization described in this section is discussed in detail in Section 4.6.3.

The percentages listed in the following table represent the ratio between the total time spent inside the
given functions and the total run time.

Jastrow::get_grad & Jastrow::calc_dJ

Relative run time used prior to optimization 40%
Relative run time used after optimization 5.24%
Relative function speedup 7.63

Exploiting the symmetries of the Padé Jastrow gradient, in addition to calculating the new gradient based
on the old, are in other words extremely efficient. Keep in mind that these results are for a high number
of particles. For two particles, this optimization would not matter at all.

Storing the orbital derivatives

This optimization is covered in detail in Section 4.6.2. Much like for the Slater matrix, the optimization
in this case comes from the fact that the function itself is called fewer times, rather than being faster.

The percentages listed in the following table represent the ratio between the total time spent inside the
given function and the total run time.

Orbitals.dell_phi

Relative run time used prior to optimization 56.27%
Relative run time used after optimization 7.31%
Relative function speedup 7.70

Storing quantum number independent terms

This optimization is covered in detail in Section 4.6.4. The result of the optimization is a reduction in
the number of exponential function calls, which means a more efficient calculation of single-paticle states,
their gradients and Laplacians.

The percentages listed in the following table represent the ratio between the total time spent inside the
given functions and the total run time.

Orbitals::phi & Orbitals::dell_phi

Relative run time used prior to optimization 5.85%
Relative run time used after optimization 0.13%
Relative function speedup 45

6.1. OPTIMIZATION RESULTS 107

This result is not surprisingly equal to 15 · 3, since a 30-particle quantum dot has 15 unique quantum
numbers. One set is used by the orbitals, and two by their gradients (the Laplacian is not a part of the
diffusion). Prior to this optimization, 45 exponential calls were needed to fill a row in the Slater matrix
and the derivative matrix; this has been reduced to one.

Overall optimization and final scaling

Combining all the optimizations listed in this section, the final run time was reduced to 5% of the original.
The final scaling is presented in Figure 6.1.

Figure 6.1: Scaling of the code with respect to the number of particles N based on VMC calculations
with 106 cycles with 105 thermalization steps run on eight processors. The figures are split into a low N
region and a high N region. Only two-dimensional quantum dots and atoms are displayed in the high N
figure. The figures to the right contain the same data as the figures to the left, however, displayed using
logarithmic axes. As expected, the two-dimensional quantum dots (denoted Qdots 2D) are lowest on run
time and the homonuclear diatomic molecules are highest (denoted Molecules). The logarithmic figures
clearly show a linear trend, implying a underlying power law.

The following power laws are deduced based on linear regression of the above figures for N > 2

System Scaling
Two dimensional quantum dots N2.1038

Three dimensional quantum dots N2.1008

Atoms N1.8119

Homonuclear diatomic molecules N1.8437

As the number of particles N increases, the scaling with respect to the number of spatial dimensions d
becomes negligible compared to the scaling with N , rendering two-dimensional quantum dots and atoms
similar in run time. This is expected since there are far more matrices in the code of dimensions N ×N
than N × d.

The Jastrow factor, inverse updating, etc., all involve the same computations for all systems, hence the
reason why the atomic systems scale better than the quantum dots has to originate from the efficiency
of the single-paticle wave functions. Consider for example the third single-paticle wave function for the
hydrogen-like orbitals (omitting exponential factors):

φ3 = x. (6.1)

The corresponding expression for a two-dimensional quantum dot is

108 CHAPTER 6. RESULTS

φ3 = 2k2y2 − 1. (6.2)

It is obvious that the orbital for quantum dots contains a higher computational cost for the processor
than the one for atoms. Comparing the expressions listed for quantum dots in Appendix E and Appendix
D with those for atoms in Appendix F, it is apparent that this trend is consistent.

The fact that the difference in the cost of the single-paticle wave functions govern the scaling demonstrates
the efficiency in the general framework. Moreover, having the molecular system scaling almost identically
to the atomic one demonstrates the efficiency of the system’s implementation.

Both Variational Monte-Carlo and Adaptive Stochastic Gradient Descent scale linearly with the number
of processors, due to the fact that the processes do not require any communication besides adding the
final results. Diffusion Monte-Carlo, on the other hand, is parallelized by spreading the original walker
population across multiple nodes. Depending on whether some nodes have more deaths or newborns
than others, there is a high communication cost. What is seen in practice, however, is that as long as the
average number of walkers per node does not go below ∼ 250, the scaling is approximately linear.

6.2. THE NON-INTERACTING CASE 109

6.2 The Non-interacting Case

In the case of non-interacting particles, that is, the case with no electron-electron interaction, the trial
wave function represents the exact wave function both in case of quantum dots and atoms. For molecules
and the double-well quantum dot, the additional requirement that R→∞ should also be applied, where
R is the distance between the atoms in the case of molecules, and the distance between the well centers
in the case of the quantum dot. All of the presented systems are covered in detail in Chapter 5.

Exact solutions serve as powerful guides, since results can be benchmarked against these, that is, the
code can be validated. In the non-interacting case, Adaptive Stochastic Gradient Descent (ASGD) should
always provide a variational parameter equal to unity, i.e. α = 1. Variational Monte-Carlo (VMC) and
Diffusion Monte-Carlo (DMC) should reproduce the exact solutions from Eq. (5.26) in the case of quantum
dots and Eq. (5.11) in the case of atomic systems to machine precision.

In Table 6.1, validation runs for the three lowest lying closed-shell quantum dots are run for both two and
three dimensions. Figure 6.2 shows ASGD finding the exact minimum. Table 6.3 shows similar results
for atoms. As required, the closed form energies are reproduced to machine precision.

The double-well quantum dots results reproduce the non-interactive energies when the wells are placed
far enough apart. This is demonstrated in Table 6.2. A separation equal to R = 20 was sufficient. For
molecules, on the other hand, the atomic nuclei interactions are very strong, implying the need for a
greater separation of the atoms than what was needed for the wells. Table 6.4 shows this effect; the
convergence is nice for H2, however, for the heavier molecules, where the atomic nuclei interaction is
stronger, the convergence to the non-interacting limit is slower.

DMC should in the case of an exact wave function be perfectly stable. The trial energy should equal the
ground state energy through all time steps and zero fluctuations in the number of walkers should occur.
This trend is shown for the neon atom in Figure 6.3.

A final non-interacting case is run for DMC without the exact wave function. As discussed in Chapter
3, DMC should result in a better estimate of the ground state energy than VMC in the cases where the
trial wave function does not equal the exact ground state. A test case demonstrating this is presented in
Figure 6.4.

2D 3D
ω N EVMC EDMC α E0 N EVMC EDMC α E0

0.5 2 1.0 1.0 1.0 1 2 3.0 3.0 1.0 3
1.0 2.0 2.0 1.0 2 1.5 1.5 1.0 1.5
0.5 6 5.0 5.0 1.0 5 8 18.0 18.0 1.0 18
1.0 10.0 10.0 1.0 10 9.0 9.0 1.0 9
0.5 12 14.0 14.0 1.0 14 20 60.0 60.0 1.0 60
1.0 28.0 28.0 1.0 28 30.0 30.0 1.0 30

Table 6.1: Validation results for N -particle quantum dots with no electron-electron interaction and fre-
quency ω. The left-hand side shows the results for two dimensions, while the results for three dimensions
are listed on the right-hand side. The last column for each dimension lists the exact energies E0 calculated
from Eq. (5.26). The exact solution to α is unity. As required, all methods reproduce the exact results.
The variance is zero to machine precision for all listed results.

110 CHAPTER 6. RESULTS

ω N EVMC EDMC α E0(R→∞)
0.5 4.0 4.0 1.0 4
1 4 2.0 2.0 1.0 2

0.5 20.0 20.0 1.0 20
1 12 10.0 10.0 1.0 10

0.5 28.0 28.0 1.0 28
1 24 56.0 56.0 1.0 56

Table 6.2: Validation results forN -particle double-well quantum dots with no electron-electron interaction
and frequency ω. The exact energy E0, calculated from Eq. (5.26), is listed in the last column. The
calculations were run with the wells separated at a distance R = 20 in the x-direction. The exact
solution to α is unity. As for the single-well quantum dots in Table 6.1, all methods reproduce the exact
solutions. The variance is zero to machine precision for all listed results.

Atom N EVMC EDMC α E0

He 2 -4.0 -4.0 1.0 -4
Be 4 -20.0 -20.0 1.0 -20
Ne 10 -200.0 -200.0 1.0 -200

Table 6.3: Validation results for different atoms consisting of N electrons with no electron-electron
interaction. The exact energies E0 are calculated from Eq. (5.11). The exact solution of the variational
parameter α is unity. As required, all methods reproduce the exact solutions. The variance is zero to
machine precision for all listed results.

Molecule N R EVMC EDMC E0(R→∞)
H2 2 10 -0.847 -0.9968 -1

100 -0.979 -0.995
325 -1.000 -1.000

Be2 8 10 -41.596 -41.608 -40
100 -40.298 -40.231
325 -40.123 -40.112

Ne2 20 10 -409.999 -410.010 -400
100 -401.390 -401.049
325 - -

Table 6.4: Validation results for homonuclear diatomic molecules separated at a distance R with no
electron-electron interaction. The last column lists the exact energies E0 calculated from Eq. (5.11) for
R → ∞. Choosing R too high results in a singular Slater determinant due to finite machine precision.
This happens already for R = 325 in the case of Ne2. It is apparent that increasing R brings the solutions
closer to the exact energy. The statistical errors are skipped.

6.2. THE NON-INTERACTING CASE 111

Figure 6.2: Adaptive Stochastic Gradient Descent (ASGD) results for a two-particle two-dimensional
quantum dot with frequency ω = 0.5 and no electron-electron interaction. The exact energy E0 = 1 is
reached after approximately 1000 cycles, where the variational parameter α has converged close to unity.
Due to enormous fluctuations, the variational derivative is plotted as an accumulated average. The
gradient is approximately zero after ∼ 1000 cycles, which is in agreement with the behavior of the energy.
The variational principle described in Section 3.6.3 is governing the trend of the energy convergence,
however, a lot of statistical noise is present in the first 1000 cycles due to a high variance and a small
number of samples.

Figure 6.3: Illustration of the Diffusion Monte-Carlo (DMC) energy convergence for the neon atom with
no electron-electron interaction listed in Table 6.3. The trial energy is fixed at the exact ground state
energy as required. The number of walkers are constant, implying an approximately zero variance in the
samples.

112 CHAPTER 6. RESULTS

Figure 6.4: Illustration of the Diffusion Monte-Carlo (DMC) energy convergence for a two-particle two-
dimensional quantum dot with frequency ω = 1. The calculations are done with a variational parameter
α = 0.75, whereas the exact wave function is given for α = 1. Unlike the case with the exact wave
function presented in Figure 6.3, the trial energy oscillates around the exact value E0 = 2.0. The final
result reveals a DMC energy of 2.00000(2), where the original Variational Monte-Carlo (VMC) energy
was 2.0042(3). This illustrates the power of DMC contra VMC in the interesting cases where the exact
wave function is unknown. The calculation was done using 10000 random walkers.

6.3. QUANTUM DOTS 113

6.3 Quantum Dots

The focus regarding quantum dots has been on studying the electron distribution as a function of the
level of confinement. In addition, ground state energies are provided and compared to other many-body
methods to demonstrate the efficiency and precision of Variational Monte-Carlo (VMC) and Diffusion
Monte-Carlo (DMC). In the case of two-dimensional quantum dots, there are multiple published results,
however, for three dimensions this is not the case. An introduction to quantum dots is given in Section
5.2.

The double-well quantum dot has not been a focus in this thesis, however, some simple results are provided
to demonstrate the flexibility of the code.

6.3.1 Ground State Energies

Two-dimensional quantum dots

Table 6.5 presents the calculated ground state energies for two-dimensional quantum dots in addition
to corresponding results from methods such as Similarity Renormalization Group theory (SRG), Cou-
pled Cluster Singles and Doubles (CCSD) and Full Configuration Interaction (FCI). In addition, some
previously published DMC results are supplied. The references are listed in the table caption.

In light of the variational nature of DMC and VMC, the results show that DMC provides a more precise
estimate for the ground state energy than VMC, both in terms of lower energies and lower errors. The
exact energy in the case of two electrons with ω = 1 has been calculated in Ref. [45] and is E0 = 3, which
is in excellent agreement with the presented results.

The statistical errors in the DMC energies calculated in this thesis are lower than those provided in
Ref. [46]. This may only be due to the fact that the calculations in this thesis have been run on a
super computer. Running smaller simulations on fewer processors result in larger errors. Both the
implementations successfully agree with the FCI result for two particles, which strongly indicates that
the disagreements in results are a result of systematic errors.

In the case of two particles, DMC and FCI agree up to five decimals, which leads to the conclusion
that DMC indeed is a very precise method. The SRG method is not variational in the sense that it can
undershoot the exact energy. The DMC result should thus not be read as less precise in the cases where
SRG provides a lower energy estimate. Diffusion Monte-Carlo and SRG are in excellent agreement for a
large number of particles compared to FCI and CCSD, which drift away from the DMC results as their
basis sizes shrink.

For high frequencies, the VMC energy is higher than the CCSD energy. The fact that both the methods
are variational implies that CCSD performs better than VMC in this frequency range. However, looking
at the results the lower frequency range, it is clear that VMC performs better than CCSD. This is due to
the fact that CCSD struggles with convergence as the correlations within the system increase, indicated
by the decrease in number of shells used to perform the calculations.

The DMC energy is overall smaller than the CCSD energy, which, due to the variational nature of the
methods, implies that DMC performs better than CCSD. Nevertheless, the results for 56 particles are in
excellent agreement.

114 CHAPTER 6. RESULTS

N ω EVMC EDMC E
(a)
ref E

(b)
ref E

(c)
ref E

(d)
ref

2 0.01 0.07406(5) 0.073839(2) - - 0.0738 {23} 0.07383505 {19}
0.1 0.44130(5) 0.44079(1) - - 0.4408 {23} 0.44079191 {19}
0.28 1.02215(5) 1.02164(1) - 0.99263 {19} 1.0217 {23} 1.0216441 {19}
0.5 1.66021(5) 1.65977(1) 1.65975(2) 1.643871 {19} 1.6599 {23} 1.6597723 {19}
1.0 3.00030(5) 3.00000(1) 3.00000(3) 2.9902683 {19} 3.0002 {23} 3.0000001 {19}

6 0.1 3.5690(3) 3.55385(5) - 3.49991 {18} 3.5805 {22} 3.551776 {9}
0.28 7.6216(4) 7.60019(6) 7.6001(1) 7.56972 {18} 7.6254 {22} 7.599579 {6}
0.5 11.8103(4) 11.78484(6) 11.7888(2) 11.76228 {18} 11.8055 {22} 11.785915 {6}
1.0 20.1902(4) 20.15932(8) 20.1597(2) 20.14393 {18} 20.1734 {22} 20.160472 {8}

12 0.1 12.3162(5) 12.26984(8) - 12.2253 {17} 12.3497 {21} 12.850344 {3}
0.28 25.7015(6) 25.63577(9) - 25.61084 {17} 25.7095 {21} 26.482570 {2}
0.5 39.2343(6) 39.1596(1) 39.159(1) 39.13899 {17} 39.2194 {21} 39.922693 {2}
1.0 65.7905(7) 65.7001(1) 65.700(1) 65.68304 {17} 65.7399 {21} 66.076116 {3}

20 0.1 30.0729(8) 29.9779(1) - 29.95345 {16} 30.2700 {8} 34.204867 {1}
0.28 62.0543(8) 61.9268(1) 61.922(2) 61.91368 {16} 62.0676 {20} 67.767987 {1}
0.5 94.0236(9) 93.8752(1) 93.867(3) 93.86145 {16} 93.9889 {20} 100.93607 {1}
1.0 156.062(1) 155.8822(1) 155.868(6) 155.8665 {16} 155.9569 {20} 164.61280 {1}

30 0.1 60.584(1) 60.4205(2) - 60.43000 {15} 61.3827 {9} -
0.28 124.181(1) 123.9683(2) - 123.9733 {15} 124.2111 {9} -
0.5 187.294(1) 187.0426(2) - 187.0408 {15} 187.2231 {19} -
1.0 308.858(1) 308.5627(2) - 308.5536 {15} 308.6810 {19} -

42 0.1 107.881(1) 107.6389(2) - - 111.7170 {8} -
0.28 220.161(1) 219.8426(2) - 219.8836 {14} 222.1401 {8} -
0.5 331.002(1) 330.6306(2) - 330.6485 {14} 331.8901 {8} -
1.0 544.2(8) 542.9428(8) - 542.9528 {14} 543.1155 {18} -

56 0.1 176.269(2) 175.9553(7) - - 186.1034 {9} -
0.28 358.594(2) 358.145(2) - - 363.2048 {9} -
0.5 538.5(6) 537.353(2) - - 540.3430 {9} -
1 880.2(7) 879.3986(6) - - 879.6386 {17} -

Table 6.5: Ground state energy results for two-dimensional N -electron quantum dots with frequency ω.
Refs. (a): F. Pederiva [46] (DMC), (b): S. Reimann [47] (Similarity Renormalization Group theory),
(c): C. Hirth [2] (Coupled Cluster Singles and Doubles), (d): V. K. B. Olsen [8] (Full Configuration
Interaction). The numbers inside curly brackets denote the number of shells used above the last filled
shell, i.e. above the so-called Fermi-level [18], to construct the basis for the corresponding methods.

6.3. QUANTUM DOTS 115

N ω EVMC EDMC Eref

2 0.01 0.07939(3) 0.079206(3) -
0.1 0.50024(8) 0.499997(3) 0.5
0.28 1.20173(5) 1.201725(2) -
0.5 2.00005(2) 2.000000(2) 2.0
1.0 3.73032(8) 3.730123(3) -

8 0.1 5.7130(6) 5.7028(1) -
0.28 12.2040(8) 12.1927(1) -
0.5 18.9750(7) 18.9611(1) -
1.0 32.6842(8) 32.6680(1) -

20 0.1 27.316(2) 27.2717(2) -
0.28 56.440(2) 56.3868(2) -
0.5 85.714(2) 85.6555(2) -
1.0 142.951(2) 142.8875(2) -

Table 6.6: Ground state energy results for three-dimensional N -electron quantum dots with frequency ω.
The values in the fifth column is exact calculations taken from Ref. [45]. The VMC result is as expected
always higher than the corresponding DMC result.

Three-dimensional quantum dots

The results for three-dimensional quantum dots are presented in Table 6.6. Three-dimensional quantum
dots do not have the same foothold in literature as the two-dimensional ones, hence no results are listed
except for some exact solutions taken from Ref. [45].

As expected, DMC reproduces the exact results for two particles. Compared to the exact results for two
dimensions, which was reproduced with five digit precision, the exact results are reproduced with six
decimal precision for three dimensions. However, for higher number of particles, the errors are of the
same order of magnitude as for two dimensions, leading to the conclusion that DMC performs equally
good in either case.

6.3.2 One-body Densities

The one-body densities are calculated using the methods described in Section 3.10.

Figure 6.5 presents the one-body densities for two-dimensional quantum dots. It is clear that the distri-
butions are following a trend: The densities in the left column, that is, the densities for N = 2, 12, and 30
particles, are all similar in shape. The shape for the N = 2 density can be seen as the top of the N = 12
density, which in turn can be seen as the top of the N = 30 density. A physical explanation to this is
that the shapes are conserved due to the fact that they represent energetically favorable configurations.

The same trend is present for the distributions in the right column, that is, the densities for N = 6, 20,
and 42 particles. Viewing the distributions as a sequence of images, from the lowest number of particles
to the highest, it is apparent that the shape propagates very much like water ripples. It is remarkable
how the solutions to the most complex of equations can come in the form of simple patterns found all
around nature.

116 CHAPTER 6. RESULTS

N = 2 N = 6

N = 12 N = 20

N = 30 N = 42

Figure 6.5: Diffusion Monte-Carlo one-body densities for two-dimensional quantum dots with frequency
ω = 1. The number of particles N are listed below each density. It is apparent that the density behaves
much like water ripples as the number of particles increase, conserving the shape in an oscillatory manner.

6.3. QUANTUM DOTS 117

Figure 6.6: Left and middle column: One-body densities for quantum dots in three dimensions with
frequency ω = 1. A quarter of the spherical density is removed to present a better view of the core. Red
and blue color indicate a low and high electron density, respectively. From top to bottom, the number
of particles are 2, 8 and 20. Right column: One-body densities for two-dimensional quantum dots for
N = 2, 6 and 12 electrons (from the top) with ω = 1. It is apparent that the shape of the density is
conserved as the third dimension is added. The radial densities are not normalized. Normalizing the
densities would only change the vertical extent.

Due to the electron-electron interaction, the Schrödinger equation is not separable in Cartesian coordi-
nates. It is therefore not given that the insights from two dimensions can be transferred to the three-
dimensional case. Nevertheless, by looking at the one-body densities for three dimensions in Figure 6.6,
it is apparent that the general density profile is independent of the dimension. The only thing separating
two - and three-dimensional quantum dots is the number of electrons in the closed shells.

Note however, that this similarity only holds when the number of closed shells are equal. Comparing the
two-dimensional density for N = 20 electrons from Figure 6.5 with the three-dimensional one for N = 20
electrons given above, it is apparent that the shape of the densities are not conserved with respect to the
number of particles N alone.

118 CHAPTER 6. RESULTS

ω
=

1
ω

=
0.

01

Figure 6.7: Comparison of the one-body densities for quantum dots in three dimensions for N = 8
electrons for a high - and low frequency ω displayed in the left column. It is apparent that the distribution
becomes more narrow as the frequency is reduced. Red and blue color indicate a low and high electron
density, respectively. A quarter of the spherical density is removed to present a better view of the core.

6.3.3 Lowering the frequency

An interesting effect of lowering the frequency is that the two - and three-dimensional densities no longer
match. For example, the radial density for the three-dimensional 8-particle quantum dot from Figure
6.6 was a near perfect match to the two-dimensional one for N = 6 electrons, however, comparing the
same densities for ω = 0.01 from Figures 6.7 and 6.8, it is apparent that this is no longer the case; the
two-dimensional density has a peak in the center region, whereas the three-dimensional density is zero in
the center region.

From Figure 6.7 it is apparent that lowering the frequency increases the radial extent of the quantum
dot, and thus lowers the electron density. Moreover, Figure 6.8 reveals that the electron density becomes
similar in height and more localized across the quantum dot, which implies that the electrons on average
are spread evenly in shell structures. The localization of the electrons is further verified in Figure
6.9, where is is clear that the expectation value of the total potential energy becomes larger than the
corresponding kinetic energy.

In other words, an evenly spread and localized electron density give rise to crystallization1. The idea of
an electron crystal was originally proposed by Wigner [48], hence the currently discussed phenomenon is
referred to as a Wigner molecule or a Wigner crystal, which is expected for quantum dots in the limit of
low electron densities where the total average potential energy becomes dominant over the corresponding
kinetic energy [49–53]. These electronic crystals have been observed in experiments with for example
liquid helium [54] and semiconductors [55].

1Unless at least one particle is frozen in the QMC simulations, the quantum dot densities should always be rotationally
symmetric. Crystallization in a QMC perspective comes thus not in the form of actual “crystals”, but rather as a rotated
crystallized state.

6.3
.

Q
U

A
N

T
U

M
D

O
T

S
119

ω
=

0.
2
8

ω
=

0.
1

ω
=

0.
0
1

N = 2 N = 6 N = 12 N = 20

Figure 6.8: DMC One-body densities for Quantum Dots for decreasing oscillator frequencies ω and increasing number of particles N . Each row represents a given ω,
and each column represents a given N . Notice that the densities for ω = 1 (from Figure 6.5) are indistinguishable from those of ω = 0.28 except for their radial extent.
This trend has been verified in the case of N = 30, 42 and 56 electrons as well as for ω = 0.5, however, for the sake of transparency, these results are left out of the
current figure.

120 CHAPTER 6. RESULTS

N = 6 N = 42

Figure 6.9: The relative magnitude of the expectation value of the different energy sources as a function
of the frequency ω (left) together with the magnitude of the sources’ energy contributions scaled with the
oscillator frequency (right). The plots are supplied with legends to increase the readability. The different
energy sources are the kinetic energy denoted Ekin, the oscillator potential energy denonted Eosc, and
the electron-electron interaction energy denoted Ecol. Note that all given energies are expectation values.
The values are calculated using two-dimensional quantum dots. The number of electrons N is displayed
beneath each respective plot. It is apparent that the kinetic energy contribution is approximately constant
in both cases. Moreover, the oscillator potential contribution is more or less constant for the relative
energies (left sub-figures). The figure clearly indicates that the potential energy contributions from
the oscillator and the electron-electron interaction tends to dominate over the kinetic energy at lower
frequencies.

It is expected that the QMC Wigner crystal corresponds to the electrons localizing around the equilibrium
positions of the classical Wigner crystal [49]. These classical Wigner crystals for two dimensional quantum
dots given in Ref. [56] match the QMC densities for two-dimensional quantum dots at ω = 0.01 given in
Figure 6.8 very well.

It was mentioned previously that the Wigner crystallization of quantum dots came as a consequence of
the average total potential energy being larger than the corresponding kinetic energy. This relationship
between kinetic - and potential energy is closely related to the virial theorem from classical mechanics.
The quantum mechanical version of the virial theorem was proven by Fock in 1930 [57] and reads

V̂(r) ∝ rγ −→ 〈T̂〉 =
γ

2
〈V̂〉, (6.3)

where T̂ and V̂ denote the kinetic - and total potential energy operators, respectively. The important
conclusion which can be drawn from this is that if two systems have an equal ratio of kinetic - to total
potential energy, the systems behave identically in the sense that they follow the same effective potential,
and thus have similar eigenstates.

From Figure 6.10 it is apparent that there is a remarkably constant slope for two different regions in the
case of quantum dots, namely high - and low kinetic energy, which by looking at Figure 6.9 corresponds to
high - and low frequencies. In light of previous discussions, one may suggest that the change in the slopes
of Figure 6.10 corresponds to the quantum dot system making a transition into a Wigner crystallized
state.

6.3. QUANTUM DOTS 121

N = 6 N = 42

Figure 6.10: The total kinetic energy vs. the total potential energy of two-dimensional quantum dots. The
linear lines are included as visual aids. The number of electrons N are displayed beneath each respective
plot. The axes are scaled with a power of N to collapse the data to the same axis span. Once the kinetic
energy drops below a certain energy dependent on the number of particles, the slope changes, which in
light of the virial theorem from Eq. (6.3) indicates that the overall system changes properties. The data
is fitted to linear lines with resulting slopes a displayed in the legend. The parameter r2 indicates how
well the data fits a linear line. An exact fit yields r2 = 1.

6.3.4 Simulating a Double-well

Figure 6.11: A countour plot of the trial wave function for a two-particle double-well quantum dot with
the wells separated at a distance R = 2 in the x-direction using m∗ = ω0 = 1. See Section 5.2 for an
introduction to the double well potential. It is apparent that there is one electron located in each well,
however, with a slight overlap in the middle region.

Figure 6.11 shows the distribution for a two-particle simulation. It is apparent that despite the wells
being separated, their local distributions overlap, indicating that the electrons can tunnel, that is, they
have a non-zero probability of appearing on the other side of the barrier. Comparing the distribution to
the potential in Figure 5.4, it is clear that they match very well.

The DMC result is EDMC = 2.3496(1), whereas the non-interacting energy is E0 = 2, and the single-well
energy is E0 = 3.0. It is expected that the energy lies in between these, as R = 0 corresponds to the
single well and R→∞ corresponds to the non-interacting case.

122 CHAPTER 6. RESULTS

Atom EVMC EDMC Expt. εrel

He -2.8903(2) -2.9036(2) −2.9037 3.44 · 10−5

Be -14.145(2) -14.657(2) −14.6674 7.10 · 10−4

Ne -127.853(2) -128.765(4) −128.9383 1.34 · 10−3

Mg -197.269(3) -199.904(8) −200.054 7.50 · 10−4

Ar -524.16(7) -527.30(4) −527.544 4.63 · 10−4

Kr -2700(5) -2749.9(2) −2752.054976 7.83 · 10−4

Table 6.7: Ground state energies for Atoms calculated using Variational - and Diffusion Monte-Carlo.
Experimental energies are listed in the last column. As we see, DMC is rather close to the experimental
energy. The relative error εrel = |EDMC−Expt.|/|Expt.| is as expected lowest in the case of helium. The
experimental energies, that is, the best possible results available, are taken from Ref. [5] for He through
Ar, and [6] for Kr.

6.4 Atoms

The focus regarding atoms has been on simulating heavy atoms using a simple ansatz for the trial wave
function, and thus test its limits. Due to the importance of atoms in nature, precise calculations which
are believed to be very close to the exact result for the given Hamiltonian are done. These results will
be featured as experimental results in the following discussions. For heavier atoms, relativistic effects
become important due to the high energies of the valance electrons. Hence atoms heavier than krypton
have not been studied. The specifics regarding the model used for atoms are given in Section 5.1.

6.4.1 Ground State Energies

Table 6.7 presents the ground state energy results for different atoms together with the experimental
results. As expected, helium has the best match with the corresponding experimental result out of all
the atoms. The relative precision of the heavier atoms are in the range 10−3 - 10−4, indicating that DMC
performs equally well in all cases. However, the error in the calculations increases as the atoms become
heavier. The calculations were done on a single node; running the calculations on several nodes with an
increased number of walkers could reduce the errors somewhat.

In comparison to quantum dots, where the VMC and DMC results were relatively similar, it is evident
that VMC performs rather poorly compared to DMC for atoms. Unlike quantum dots, the atomic
systems allow for unbound states. This implies that the atomic systems in this thesis have an additional
approximation in the trial wave function due to the fact that all the orbitals represent bound states.
Nevertheless, this only further demonstrate the strengths of DMC to predict accurate results without
much knowledge of the system at hand.

6.4.2 One-body densities

The one-body densities for the noble gases, that is, the closed shell atoms, are presented in Figure 6.13.
Comparing these to the one-body densities for the alkaline earth metals, i.e. Be, Mg, etc., in Figure 6.12,

6.4. ATOMS 123

Figure 6.12: Three dimensional one-body densities (left column) and radial densities (right column) for
alkaline earth metals; beryllium (top) and magnesium (bottom). A quarter of the spherical density is
removed to present a better view of the core. Notice that the radial one-body densities in the right
column are multiplied by the radius squared. This is done in order to reveal the characteristics behind a
density which otherwise is a generic peak around the origin. Compared to the noble gases in Figure 6.13,
the alkaline earth metals have a surrounding dispersed probability cloud due to having easily excitable
valence electrons. The element is thus more unstable and potent for chemical reactions and molecular
formations through covalent - and ionic bonds [58]. Red and blue color indicate a low and high electron
density, respectively.

it is clear that the noble gases have a more confined electron distribution. This corresponds well to the
fact that noble gases do not form compound materials, i.e. molecules [58]. The alkaline earth metals,
on the other hand, are found naturally as parts of compound materials. The one-body densities of the
alkaline earth metals spreading out in space are thus in excellent agreement with what is expected.

It is apparent that the VMC distribution and the pure distribution differ more in the case of alkaline
earth metals than for noble gases. This implies that the trial wave function is better in the case of noble
gases. To explain this phenomenon, it is important to realize that for closed shell systems, which is the
case of noble gases, the energy needed to excite an electron into the next n-shell is higher than the energy
needed to excite an electron to the next l-level in an open shell system such as the alkaline earth metals.
The result of this is that the contributions from the exited states to the total wave function in Eq. (3.53)
are higher for the alkaline earth metals than for the noble gases. This is exactly the same scenario as for
high and low frequency quantum dots.

The approximation made in this thesis is that the trial wave function consists of a single determinant,
thus neglecting the contribution from excited states. In light of the above discussion, this approximation
is in other words better for noble gases than for the alkaline earth metals.

124 CHAPTER 6. RESULTS

Figure 6.13: One-body densities for noble gases. Counting top to bottom: Helium, neon, argon and
krypton. A quarter of the spherical density is removed to present a better view of the core. Red and blue
color indicate a low and high electron density, respectively. Notice that the radial one-body densities in
the right column are multiplied by the radius squared. This is done in order to reveal the characteristics
behind a density which otherwise is a generic peak around the origin.

6.5. HOMONUCLEAR DIATOMIC MOLECULES 125

Molecule R EVMC EDMC Expt. εrel

H2 1.4 -1.1551(3) -1.1745(3) −1.1746 8.51 · 10−5

Li2 5.051 -14.743(3) -14.988(2) −14.99544 4.96 · 10−4

Be2 4.63 -28.666(5) -29.301(5) −29.33854(5) 1.28 · 10−3

B2 3.005 -47.746(7) -49.155(5) −49.4184 5.33 · 10−3

C2 2.3481 -72.590(8) -74.95(1) −75.923(5) 1.28 · 10−2

N2 2.068 -102.78(1) -106.05(2) −109.5423 3.19 · 10−2

O2 2.282 -143.97(2) -148.53(2) −150.3268 1.2 · 10−2

Table 6.8: Ground state energies for homonuclear diatomic molecules calculated using VMC and DMC.
The distance between the atoms R are taken from Ref. [3] for H2 and from Ref. [30] for Li2 to O2. The
experimental energies, that is, the best possible results available, are taken from Ref. [3] for H2 and from
Ref. [4] for Li2 to O2. As expected DMC is closer to the experimental energy than VMC. Moreover, the
relative error εrel = |EDMC − Expt.|/|Expt.| is as expected lowest in the case of H2, and increases with
atomic number.

6.5 Homonuclear Diatomic Molecules

The focus regarding homonuclear diatomic molecules, from here on referred to as molecules, has been
similar to the focus on atoms, with the exception of parameterizing atomic force fields which can be
applied in molecular dynamics simulations. The implementation of molecular systems was achieved by
adding ∼ 200 lines of code. This fact by itself represents a successful result regarding the code structure.
As for atoms, the optimal calculations are referred to as experimental results. Details regarding the
transformation from atomic to molecular systems are given in Section 5.1.3.

6.5.1 Ground State Energies

Table 6.8 lists the VMC and DMC results with the corresponding experimental energies for H2 through
O2. As expected, the two-particle result is very close to the experimental value with the same precision
as the result for the helium atom in Table 6.7. The relative error from the experimental energy increases
with atomic number, and is far higher than the errors in the case of pure atoms. This comes as a result
of the trial wave function being less optimal due to the fact that it does not account for the atomic nuclei
interaction term in the molecular Hamiltonian. Nevertheless, taking the simple nature of the trial wave
function into consideration, the calculated energies are satisfyingly close to the experimental ones.

As with atoms, the energies were calculated on a single node, resulting in a rather big statistical error
in DMC. Doing the calculations on a supercomputer with an increase in the number of walkers should
decrease the errors.

126 CHAPTER 6. RESULTS

6.5.2 One-body densities

Figure 6.14 presents the one-body densities of Li2, Be2 and O2. The densities have strong peaks located
at a distance equal to half of the listed core separation R, indicating that the atomic nuclei interaction
still dominates the general shape of the distributions. Moreover, it is clear by looking at the figure that
most of the electrons are on the side facing the opposite nucleus, leading to the conclusion that the
molecules share a covalent bond [58]. This is especially clear in the case of the oxygen molecule, where
there is a small formation of electrons on the inner side of the nuclei.

Figure 6.14: One-body densities of Li2 (top), Be2 (middle) and O2 (bottom). The figures to the left are
spherical densities sliced through the middle to better reveal the core structure. The figures to the right
are radial one-body densities projected on the nucleus-nucleus axis. Red and blue color indicate a high
and low electron density, respectively. The right-hand figures are symmetric around the origin.

6.5. HOMONUCLEAR DIATOMIC MOLECULES 127

6.5.3 Parameterizing Force Fields

In molecular dynamics, it is custom to use the Lennard Jones 12-6 potential as an ansatz to the interaction
between pairs of atoms [10,11]

V (R) = 4ε

((σ
R

)12

−
(σ
R

)6
)
, (6.4)

where ε and σ are parameters which can be fit to a given system.

However, the force field can be parameterized in greater detail using QMC calculations, resulting in a
more precise molecular dynamics simulation [7]. The quantity of interest is the force, that is, the gradient
of the potential. The classical potential in molecular dynamics does not correspond to the potential in
the Schrödinger equation, due to the fact that the kinetic energy contribution from the electrons is not
counted as part of the total kinetic energy in the molecular dynamics simulation. Hence it is the total
energy of the Schrödinger equation which corresponds to the potential energy in molecular dynamics. In
the case of diatomic molecules this means that

FMD =
d〈E〉
dR

. (6.5)

Expressions for this derivative can be obtained in ab-initio methods by using the Hellmann-Feynman
theorem [7]. However, the derivative can be approximated by the slope of the energy in Figure 6.15. The
figure shows that there are clear similarities between the widely used Lennard-Jones 12-6 potential and
the results of QMC calculations done in this thesis, leading to the conclusion that the current state of
the code can in fact produce approximations to atomic force fields for use in molecular dynamics.

For more complicated molecules, modelling the force using a single parameter R does not serve as a good
approximation. However, the force can be found as a function of several angles, radii, etc., which in turn
can be used to parameterize a more complicated molecular dynamics potential. An example of such a
potential is the ReaxFF potential for hydrocarbons [59].

128 CHAPTER 6. RESULTS

(a) H2 (b) Li2

Figure 6.15: Top figures: The distance between the atoms R vs. the potential and total energy calculated
using QMC. To the left: H2. To the right: Li2. It is evident that there exists a well-defined energy
minimum in the case of hydrogen. For lithium this is not the case, which is expected since lithium
does not appear naturally in a diatomic gas phase, but rather as an ionic compound in other molecules
[58]. Bottom figure: The general shape of the Lennard-Jones potential commonly used in molecular
dynamics simulations as an approximation to the potential between atoms. The top figures clearly
resemble the Lennard-Jones 12-6 potential, leading to the conclusion that QMC calculations can be used
to parameterize a more realistic potential.

(c) The Lennard-Jones 12-6 potential with σ = ε = 1.

7

Conclusions

The focus of this thesis was to develop an efficient and general Quantum Monte-Carlo (QMC) solver
which could simulate various systems with a large number of particles. This was achieved by using
object oriented C++, resulting in ∼ 15000 lines of code. The code was redesigned a total of four times.
The final structure was carefully planned in advance of the coding process. The linear algebra library
Armadillo [60] was used in order to have a structured and easy code regarding all the matrices related
to the walkers and the system in general.

It became apparent that in order to maintain efficiency for a high number of particles, closed form
expressions for the single-particle wave function derivatives were necessary. For two-dimensional quantum
dots, 112 of these expressions were needed to simulate the 56-particle system. Needless to say, this process
had to be automated. This was achieved by using SymPy, an open source symbolic algebra package for
Python, wrapped in a script which generated all the C++ necessary code within seconds. This task is
described in detail in Appendix C. A total of 252 expressions were generated.

As the solver became more and more flexible, the dire need of a control script arose. Hence the current
state of the code is 100% controlled by a Python script. The script translates configuration files to
instructions which are fed to the pre-compiled C++ program. In addition, the script sets up the proper
environment for the simulation, that is, it makes sure the simulation output is stored in a folder stamped
with the current date and time, as well as with a supplied name tag. All in all, this made it possible to
run an immense amount of different simulations without loosing track of the data.

In order to handle the increase in data, a script which automatically converted the output files to Latex
tables were written. However, this would not uncover whether or not the simulations had converged. An
additional script was thus written, which made the process of visualizing immense amounts of data very
simple. Moreover, the data could be analyzed real-time, which meant that failing simulations could be
detected and aborted before they were complete, saving a lot of time. Expanding the script to handle
new output files was by design unproblematic. This script is covered in high detail in Appendix B.

Several Master projects over the years have involved QMC simulations of some sort, like Variational
Monte-Carlo (VMC) calculations of two-dimensional quantum dots up to 42 particles [28], and VMC
calculations of atoms up to Silicon (14 particles) [61]. In this thesis, the step was taken to full Diffusion
Monte-Carlo (DMC) studies of both systems, adding three-dimensional - and double-well quantum dots
in addition to homonuclear diatomic molecules. Additionally, the simulation sizes were increased to 56
electrons and krypton (36 particles) for two-dimensional quantum dots and atoms, respectively.

The optimization of the code was done by profiling the code, focusing on the parts which took the most
time. Due to the general structure of the code, the function responsible for diffusing the particles was
responsible for almost all of the run time. This function is at the core of Adaptive Stochastic Gradient

129

130 CHAPTER 7. CONCLUSIONS

Descent (ASGD), VMC and DMC. In other words, the task of optimization the full code decreased down
to the task of optimizing this specific function. By optimizing one part of the diffusion process at the
time, the final run time was successfully reduced to 5% of the original.

Having successfully implemented five different systems demonstrates the code’s generality. The implemen-
tation of molecules and the double-well was done by adding no more than 200 lines of code. Additionally,
implementing three-dimensional quantum dots was done in an afternoon. Overall the code has lived up
to every single one of the initial aims, with the exception of simulating bosons. Studying new fermionic
systems were considered more interesting, hence specific implementations for bosons were abandoned.

For quantum dots, both VMC and DMC perform very well. The results from Full Configuration Inter-
action [8] for two particles, which are believed to be very close to the exact solution, are reproduced
to five digits using DMC, with the VMC result being a little higher (2-3 digits). For atomic systems,
the difference in results in VMC and DMC increase. This is expected since the trial wave function does
not include the unbound states of the atoms. Nevertheless, DMC performs very well, reproducing the
experimental results for two particles with an error at the level of 10−4. For heavier atoms, the error
increases somewhat, however, taking into consideration the simple trial wave function, the results are
remarkably good.

Moreover, it was found that the radial distributions of two - and three-dimensional quantum dots with the
same number of closed shells were remarkably similar. This, however, is only the case at high frequencies.
For lower frequencies, both systems were found to transition into Wigner crystallized states, however, the
distributions were no longer similar. This breaking of symmetry is an extremely interesting phenomenon,
which can be studied in greater detail in order to say something general about how the number of spatial
dimensions affect systems of confined electrons. The Wigner crystallization is covered in high detail in
the literature [49–53], however, a new approach using the virial theorem was investigated in order to
describe the transition.

It is clear that the energy of H2 graphed as a function of the core separation resembles the Lennard-Jones
12-6 potential. This demonstrates that the code can be used to parameterize potential energies for use in
molecular dynamics simulations, however, to produce realistic potentials, support for more complicated
molecules must be implemented.

Prospects and future work

Shortly after handing in this thesis, I will focus my effort on studying the relationship between two - and
three-dimensional quantum dots in higher detail. The goal is to publish my findings, and possibly say
something general regarding how the number of dimensions affect a system of confined electrons.

Additionally, the double-well quantum dot will be studied in higher detail using realistic values for the
parameters. These results can then be benchmarked with the results of Sigve Bøe Skattum and his
Multi-configuration Time Dependent Hartree-Fock solver [19].

My supervisor and I will at the same time work with implementing a momentum space version of QMC.
This has the potential of describing nuclear interactions in great detail [62].

I will continue my academic career as a PhD student in the field of multi-scale physics. The transition
from QMC to molecular dynamics will thus be of high interest. The plan is to expand the code to general
molecules. However, in order to maintain a reasonable precision, the single-particle wave functions
need to be optimized. Hence implementing a Hartree-Fock solver [18] or using a Coupled Cluster wave
function [63] will be prioritized.

Appendices

131

A

Dirac Notation

Calculations involving sums over inner products of orthogonal states are common in Quantum Mechanics.
This due to the fact that eigenfunctions of Hermitian operators, which is the kind of operators which
represent observables [17], are necessarily orthogonal [31]. These inner-products will in many cases
result in either zero or one, i.e. the Kronecker-delta function δij ; explicitly calculating the integrals is
unnecessary.

Dirac notation is a notation in which quantum states are represented as abstract components of a Hilbert
space, i.e. an inner product space. This implies that the inner-product between two states are represented
by these states alone, without the integral over a specific basis, which makes derivations a lot cleaner and
general in the sense that no specific basis is needed.

Extracting the abstract state from a wave function is done by realizing that the wave function can be
written as the inner product between the position basis eigenstates |x〉 and the abstract quantum state
|ψ〉

ψ(x) = 〈r, ψ〉 ≡ 〈x|ψ〉 = 〈x| × |ψ〉 .

The notation is designed to be simple. The right hand side of the inner product is called a ket, while the
left hand side is called a bra. Combining both of them leaves you with an inner product bracket, hence
Dirac notation is commonly referred to as bra-ket notation.

To demonstrate the simplicity introduced with this notation, imagine a coupled two-level spin- 1
2 system

in the following state

|χ〉 = N
[
|↑↓〉 − i |↓↑〉

]
(A.1)

〈χ| = N
[
〈↑↓|+ i 〈↓↑|

]
(A.2)

Using the fact that both the |χ〉 state and the two-level spin states should be orthonormal, the normal-
ization factor can be calculated without explicitly setting up any integrals

133

134 APPENDIX A. DIRAC NOTATION

〈χ|χ〉 = N2
[
〈↑↓|+ i 〈↓↑|

][
|↑↓〉 − i |↓↑〉

]
= N2

[
〈↑↓ | ↑↓〉+ i 〈↓↑ | ↑↓〉 − i 〈↑↓ | ↓↑〉+ 〈↓↑ | ↓↑〉

]
= N2

[
1 + 0− 0 + 1

]
= 2N2

= 1,

This implies the trivial solution N = 1/
√

2. With this powerful notation at hand, important properties
such as the completeness relation of a set of states can be shown. A standard strategy is to start by
expanding one state |φ〉 in a complete set of different states |ψi〉:

|φ〉 =
∑
i

ci |ψi〉

〈ψk|φ〉 =
∑
i

ci 〈ψk|ψi〉︸ ︷︷ ︸
δik

= ck

|φ〉 =
∑
i

〈ψi|φ〉 |ψi〉

=

[∑
i

|ψi〉 〈ψi|

]
|φ〉

which implies that

∑
i

|ψi〉 〈ψi| = 1 (A.3)

for any complete set of orthonormal states |ψi〉. Calculating the corresponding identity for a continuous
basis like e.g. the position basis yields

∫
|ψ(x)|2dx = 1 (A.4)∫
|ψ(x)|2dx =

∫
ψ∗(x)ψ(x)dx

=

∫
〈ψ|x〉 〈x|ψ〉dx

= 〈ψ|
[∫
|x〉 〈x| dx

]
|ψ〉 . (A.5)

Combining eq. A.4 and eq. A.5 with the fact that 〈ψ|ψ〉 = 1 yields the identity

∫
|x〉 〈x| dx = 1. (A.6)

Looking back at the introductory example, this identity is exactly what is extracted when a wave function
is described as an inner product instead of an explicit function.

B

DCViz: Visualization of Data

With a code framework increasing in complexity comes an increasing need for tools to ease the interface
between the code and the developer(s). In computational science, a must-have tool is a tool for efficient
visualization of data; there is only so much information a single number can hold. To supplement the
QMC code, a visualization tool named DCViz (Dynamic Column data Visualizer) has been developed.

The tool is written in Python, designed to plot data stored in columns. The tool is not designed explicitly
for the QMC framework, and has been successfully applied to codes by several Master students at the
time of this thesis. The plot library used is Matplotlib [64] with a graphical user interface coded using
PySide [65]. The data can be plotted dynamically at a specified interval, and designed to be run parallel
to the main application, e.g. DMC.

DCViz is available at https://github.com/jorgehog/DCViz

B.1 Basic Usage

The application is centered around the mainloop() function, which handles the extraction of data, the
figures and so on. The virtual function plot() is where the user specifies how the data is transformed into
specified figures by creating a subclass which overloads it. The superclass handles everything from safe
reading from dynamically changing files, efficient and safe re-plotting of data, etc. automatically. The
tool is designed to be simple to use by having a minimalistic interface for implementing new visualization
classes. The only necessary members to specify in a new implementation is described in the first three
sections, from where the remaining sections will cover additional support.

The figure map

Represented by the member variable figMap, the figure map is where the user specifies the figure setup,
that is, the names of the main-figures and their sub-figures. Consider the following figure map:

1 figMap = {"mainFig1": ["subFig1", "subFig2"], "mainFig2": []}

This would cause DCViz to create two main-figures self.mainFig1 and self.mainFig2, which can be
accessed in the plot function. Moreover, the first main-figure will contain two sub-figures accessible
through self.subFig1 and self.subFig2. These sub-figures will be stacked vertically if not stack="H"
is specified, in which they will be stacked horizontally.

135

https://github.com/jorgehog/DCViz

136 APPENDIX B. DCVIZ: VISUALIZATION OF DATA

The name tag

Having to manually combine a data file with the correct subclass implementation is annoying, hence
DCViz is designed to automate this process. Assuming a dataset to be specified by a unique pattern
of characters, i.e. a name tag, this name tag can be tied to a specific subclass implementation, allowing
DCViz to automatically match a specific filename with the correct subclass. Name tags are

1 nametag = "DMC_out_\d+\.dat"

The name tag has regular expressions (regex) support, which in the case of the above example allows
DCViz to recognize any filename starting with “DMC out ” followed by any integer and ending with
“.dat” as belonging to this specific subclass. This is a necessary functionality, as filenames often differ
between runs, that is, the filename is specified by e.g. a time step, which does not fit an absolute generic
expression. The subclasses must be implemented in the file DCViz_classes.py in order for the automagic
detection to work.

To summarize, the name tag invokes the following functionality

1 import DCvizWrapper , DCViz_classes

2

3 #DCViz automagically executes the mainloop for the

4 #subclass with a nametag matching ’filename ’

5 DCVizWrapper.main(filename)

6

7 #This would be the alternative , where ’specific_class ’ needs to be manually selected.

8 specificClass = DCViz_classes.myDCVizClass #myDCVizClass matches ’filename ’

9 specificClass(filename).mainloop ()

The plot function

Now that the figures and the name tag has been specified, all that remains for a fully functional DCViz
instance is the actual plot function

1 def plot(self, data)

where data contains the data harvested from the supplied filename. The columns can then be accessed
easily by e.g.

1 col1 , col2 , col3 = data

which can then in turn be used in standard Matplotlib functions with the figures from figMap.

Additional (optional) support

Additional parameters can be overloaded for additional functionality

nCols The number of columns present in the file. Will be automatically detected unless the data is
stored in binary format.

skipRows The number of initial rows to skip. Will be automatically detected unless the data is stored as a
single column.

skipCols The number of initial columns to skip. Defaults to zero.
armaBin Boolean flag. If set to true, the data is assumed to be stored in Armadillo’s binary format

(doubles). Number of columns and rows will be read from the file header.
fileBin Boolean flag. If set to true, the data is assumed to be stored in binary format. The number of

columns must be specified.

The LATEXsupport is enabled if the correct packages are installed.

B.1. BASIC USAGE 137

An example

1 #DCViz_classes.py

2

3 from DCViz_sup import DCVizPlotter #Import the superclass

4

5 class myTestClass(DCVizPlotter): #Create a new subclass

6 nametag = ’testcase\d\.dat’ #filename with regex support

7

8 #1 figure with 1 subfigure

9 figMap = {’fig1’: [’subfig1 ’]}

10

11 #skip first row (must be supplied since the data is 1D).

12 skipRows = 1

13

14 def plot(self, data):

15 column1 = data [0]

16

17 self.subfig1.set_title(’I have \LaTeX support!’)

18

19 self.subfig1.set_ylim ([-1,1])

20

21 self.subfig1.plot(column1)

22

23 #exit function

Families

A specific implementation can be flagged as belonging to a family of similar files, that is, files in the same
directory matching the same name tag. Flagging a specific DCViz subclass as a family is achieved by
setting the class member variable isFamilyMember to true. When a family class is initialized with a file,
DCViz scans the file’s folder for additional matches to this specific class. If several matches are found,
all of these are loaded into the data object given as input to the plot function. In this case data[i]

contains the column data of file i.

To keep track of which file a given data-set was loaded from, a list self.familyFileNames is created,
where element i is the filename corresponding to data[i]. To demonstrate this, consider the following
example

1 isFamilyMember = True

2 def plot(self, data)

3

4 file1 , file2 = data

5 fileName1 , fileName2 = self.familyFileNames

6

7 col1_1 , col_2_1 = file1

8 col1_2 , col_2_2 = file2

9 #...

A class member string familyName can be overridden to display a more general name in the auto-detection
feedback.

Families are an important functionality in the cases where the necessary data is spread across several files.
For instance, in the QMC library, the radial distributions of both VMC and DMC are needed in order to
generate the plots shown in Figure 6.6 of the results chapter. These results may be generated in separate
runs, which implies that they either needs to be loaded as a family, or be concatenated beforehand.
Which dataset belongs to VMC and DMC can be extracted from the list of family file names.

All the previous mentioned functionality is available for families.

138 APPENDIX B. DCVIZ: VISUALIZATION OF DATA

Family example

1 #DCViz_classes.py

2

3 from DCViz_sup import DCVizPlotter

4

5 class myTestClassFamily(DCVizPlotter):

6 nametag = ’testcaseFamily\d\.dat’ #filename with regex support

7

8 #1 figure with 3 subfigures

9 figMap = {’fig1’: [’subfig1 ’, ’subfig2 ’, ’subfig3 ’]}

10

11 #skip first row of each data file.

12 skipRows = 1

13

14 #Using this flag will read all the files matching the nametag

15 #(in the same folder .) and make them aviable in the data arg

16 isFamilyMember = True

17 familyName = "testcase"

18

19 def plot(self, data):

20

21 mainFig = self.fig1

22 mainFig.suptitle(’I have \LaTeX support!’)

23 subfigs = [self.subfig1 , self.subfig2 , self.subfig3]

24

25 #Notice that fileData.data is plotted (the numpy matrix of the columns)

26 #and not fileData alone , as fileData is a ’dataGenerator ’ instance

27 #used to speed up file reading. Alternatively , data [:] could be sent

28 for subfig , fileData in zip(subfigs , data):

29 subfig.plot(fileData.data)

30 subfig.set_ylim ([-1,1])

loading e.g. testcaseFamily0.dat would automatically load testcaseFamily1.dat etc. as well.

Dynamic mode

Dynamic mode in DCViz is enabled on construction of the object

1 DCVizObj = myDCVizClass(filename , dynamic=True)

2 DCVizObj.mainloop ()

This flag lets the mainloop know that it should not stop after the initial plot is generated, but rather keep
on reading and plotting the file(s) until the user ends the loop with either a keyboard-interrupt (which
is caught and safely handled), or in the case of using the GUI, with the stop button.

In order to make this functionality more CPU-friendly, a delay parameter can be adjusted to specify a
pause period in between re-plotting.

Saving figures to file

The generated figures can be saved to file by passing a flag to the constructor

1 DCVizObj = myDCVizClass(filename , toFile=True)

2 DCVizObj.mainloop ()

In this case, dynamic mode is disabled and the figures will not be drawn on screen, but rather saved in
a subfolder of the supplied filename’s folder called DCViz_out.

B.1. BASIC USAGE 139

B.1.1 The Terminal Client

The DCVizWrapper.py script is designed to be called from the terminal with the path to a datafile
specified as command line input. From here it automatically selects the correct subclass based on the
filename:

jorgen@teleport:~$ python DCVizWrapper.py ./ASGD_out.dat

[Detector] Found subclasses ’myTestClass’, ’myTestClassFamily’, ’EnergyTrail’,

’Blocking’, ’DMC_OUT’, ’radial_out’, ’dist_out’,

’R_vs_E’, ’E_vs_w’, ’testBinFile’, ’MIN_OUT’

[DCViz] Matched [ASGD_out.dat] with [MIN_OUT]

[DCViz] Press any key to exit

If the option -d is supplied, dynamic mode is activated:

jorgen@teleport:~$ python DCVizWrapper.py ./ASGD_out.dat -d

[Detector] Found subclasses

[DCViz] Matched [ASGD_out.dat] with [MIN_OUT]

[DCViz] Interrupt dynamic mode with CTRL+C

^C[DCViz] Ending session...

Saving figures through the terminal client is done by supplying the flag -f to the command line together
with a folder aDir, whose content will then be traversed recursively. For every file matching a DCViz
name tag, the file data will be loaded and its figure(s) saved to aDir/DCViz_out/. In case of family
members, only one instance needs to be run (they would all produce the same image), hence “family
portraits” are taken only once:

jorgen@teleport:~$ python DCVizWrapper.py ~/scratch/QMC_SCRATCH/ -f

[Detector] Found subclasses

[DCViz] Matched [ASGD_out.dat] with [MIN_OUT]

[DCViz] Figure(s) successfully saved.

[DCViz] Matched [dist_out_QDots2c1vmc_edge3.05184.arma] with [dist_out]

[DCViz] Figure(s) successfully saved.

[DCViz] Matched [dist_out_QDots2c1vmc_edge3.09192.arma] with [dist_out]

[DCViz] Family portait already taken, skipping...

[DCViz] Matched [radial_out_QDots2c1vmc_edge3.05184.arma] with [radial_out]

[DCViz] Figure(s) successfully saved.

[DCViz] Matched [radial_out_QDots2c1vmc_edge3.09192.arma] with [radial_out]

[DCViz] Family portait already taken, skipping...

The terminal client provides extremely efficient and robust visualization of data. When e.g. blocking data
from 20 QMC runs, the automated figure saving functionality is gold.

B.1.2 The Application Programming Interface (API)

DCViz has been developed to interface nicely with any Python script. Given a path to the data file, all
that is needed in order to visualize it is to include the wrapper function used by the terminal client:

140 APPENDIX B. DCVIZ: VISUALIZATION OF DATA

1 import DCVizWrapper as viz

2 dynamicMode = False #or true

3

4 ...

5 #Generate some data and save it to the file myDataFile (including path)

6

7 #DCVizWrapper.main() automatically detects the subclass implementation

8 #matching the specified file. Thread safe and easily interruptable.

9 viz.main(myDataFile , dynamic=dynamicMode , toFile=toFile)

If on the other hand the data needs to be directly visualized without saving it to file, the pure API
function rawDataAPI can be called directly with a numpy array data. If the plot should be saved to
file, this can be enabled by supplying an arbitrary file-path (e.g. /home/me/superDuper.png) and setting
toFile=True.

1 from DCViz_classes import myDCVizClass

2

3 #Generate some data

4 myDCVizObj = myDCVizClass(saveFileName , toFile=ToFile)

5 myDCVizObj.rawDataAPI(data)

The GUI

The script DCVizGUI.py sets up a GUI for visualizing data using DCViz. The GUI is implemented using
PySide (python wrapper for Qt), and is designed to be simple. Data files are loaded from an open-file
dialog (Ctrl+s for entire folders or Ctrl+o for individual files), and will appear in a drop-down menu
once loaded labeled with the corresponding class name. The play button executes the main loop of the
currently selected data file. Dynamic mode is selected though a check-box, and the pause interval is
set by a slider (from zero to ten seconds). Dynamic mode is interrupted by pressing the stop button.
Warnings can be disabled through the configuration file. A screenshot of the GUI in action is presented
in Figure B.1.

The GUI can be opened from any Python script by calling the main function (should be threaded if used
as part of another application). If a path is supplied to the function, this path will be default in all file
dialogues. Defaults to the current working directory.

The following is a tiny script executing the GUI for a QMC application. If no path is supplied at the
command line, the default path is set to the scratch path.

1 import sys , os

2 from pyLibQMC import paths #contains all files specific to the QMC library

3

4 #Adds DCVizGUI to the Python path

5 sys.path.append(os.path.join(paths.toolsPath , "DCViz", "GUI"))

6

7 import DCVizGUI

8

9 if __name__ == "__main__":

10

11 if len(sys.argv) > 1:

12 path = sys.argv [1]

13 path = paths.scratchPath

14

15 sys.exit(DCVizGUI.main(path))

The python script responsible for starting the QMC program and setting up the environments for simula-
tions in this thesis automatically starts the GUI in the simulation main folder, which makes the visualizing
the simulation extremely easy.

B.1. BASIC USAGE 141

Figure B.1: Two consequent screen shots of the GUI. The first (top) is taken directly after the detector
is finished loading files into the drop-down menu. The second is taken directly after the job is started.

Alternatively, DCVizGUI.py can be executed directly from the terminal with an optional default path as
first command line argument.

The following is the terminal feedback supplied from opening the GUI

.../DCViz/GUI$ python DCVizGUI.py

[Detector]: Found subclasses ’myTestClass’, ’myTestClassFamily’, ’EnergyTrail’,

’Blocking’, ’DMC_OUT’, ’radial_out’, ’dist_out’, ’testBinFile’, ’MIN_OUT’

[GUI]: Data reset.

Selecting a folder from the open-folder dialog initializes the detector on all file content

[Detector]: matched [DMC_out.dat] with [DMC_OUT]

[Detector]: matched [ASGD_out.dat] with [MIN_OUT]

[Detector]: matched [blocking_DMC_out.dat] with [Blocking]

[Detector]: ’blocking_MIN_out0_RAWDATA.arma’ does not match any DCViz class

[Detector]: ’blocking_DMC_out_RAWDATA.arma’ does not match any DCViz class

[Detector]: matched [blocking_VMC_out.dat] with [Blocking]

Executing a specific file selected from the drop-down menu starts a threaded job, hence several non-
dynamic jobs can be ran at once. The limit is set to one dynamic job pr. application due to the high
CPU cost (in case of a low pause timer).

The terminal output can be silenced through to configuration file to not interfere with the standard
output of an application. Alternatively, the GUI thread can redirect its standard output to file.

142

C

Auto-generation with SymPy

“SymPy is a Python library for symbolic mathematics. It aims to become a full-featured computer algebra
system (CAS) while keeping the code as simple as possible in order to be comprehensible and easily
extensible. SymPy is written entirely in Python and does not require any external libraries.”

- The SymPy Home Page [66]

Thie aim of this appendix will be on using SymPy to calculate closed form expressions for single-particle
wave functions needed to optimize the calculations of the Slater gradient and Laplacian. For systems of
many particles, it is crucial to have these expressions in order for the code to remain efficient.

Calculating these expressions by hand is a waste of time, given that the complexity of the expressions is
proportional to the magnitude of the quantum number, which again scales with the number of particles,
and little new insights are gained from doing the calculations. In the case of a 56 particle Quantum Dot,
the number of unique derivatives involved in the simulation is 112.

C.1 Usage

SymPy is, as described in the introductory quote, designed to be simple to use. This section will cover
the basics needed to calculate gradients and Laplacians, auto-generating C++ - and Latex code.

C.1.1 Symbolic Algebra

In order for SymPy to recognize e.g. x as a symbol, that is, a mathematical variable, special action must be
made. In contrast to programming variables, symbols are not initialized to a value. Initializing symbols
can be done in several ways, the two most common are listed below

1 In [1]: from sympy import Symbol , symbols

2

3 In [2]: x = Symbol(’x’)

4

5 In [3]: y, z = symbols(’y z’)

6

7 In [4]: x*x+y

8 Out [4]: ’x**2 + y’

143

144 APPENDIX C. AUTO-GENERATION WITH SYMPY

The Symbol function handles single symbols, while symbols can initialize several symbols simultaneously.
The string argument might seem redundant, however, this represents the label displayed using print
functions, which is neat to control. In addition, key word arguments can be sent to the symbol functions,
flagging variables as e.g. positive, real, etc.

1 In [1]: from sympy import Symbol , symbols , im

2

3 In [2]: x2 = Symbol(’x^2’, real=True , positive=True) #Flagged as real. Note the label.

4

5 In [3]: y, z = symbols(’y z’) #Not flagged as real

6

7 In [4]: x2+y #x2 is printed more nicely given a describing label

8 Out [4]: ’x^2 + y’

9

10 In [5]: im(z) #Imaginary part cannot be assumed to be anything.

11 Out [5]: ’im(z)’

12

13 In [6]: im(x2) #Flagged as real , the imaginary part is zero.

14 Out [6]: 0

C.1.2 Exporting C++ and Latex Code

Exporting code is extremely simple: SymPy functions exist in the sympy.printing module, which simply
takes a SymPy expression on input and returns the requested code-style equivalent. Consider the following
example

1 In [1]: from sympy import symbols , printing , exp

2

3 In [2]: x, x2 = symbols(’x x^2’)

4

5 In [3]: printing.ccode(x*x*x*x*exp(-x2*x))

6 Out [3]: ’pow(x, 4)*exp(-x*x^2)’

7

8 In [4]: printing.ccode(x*x*x*x)

9 Out [4]: ’pow(x, 4)’

10

11 In [5]: print printing.latex(x*x*x*x*exp(-x2))

12 \frac{x^{4}}{e^{x^{2}}}

The following expression is the direct output from line five compiled in Latex

x4

ex2

C.1.3 Calculating Derivatives

The 2s orbital from hydrogen (not normalized) is chosen as an example for this section

φ2s(~r) = (Zr − 2)e−
1
2Zr (C.1)

r2 = x2 + y2 + z2 (C.2)

Calculating the gradients and Laplacian is very simply by using the sympy.diff function

C.1. USAGE 145

1 In [1]: from sympy import symbols , diff , exp , sqrt

2

3 In [2]: x, y, z, Z = symbols(’x y z Z’)

4

5 In [3]: r = sqrt(x*x + y*y + z*z)

6

7 In [4]: r

8 Out [4]: ’(x**2 + y**2 + z**2) **(1/2) ’

9

10 In [5]: phi = (Z*r - 2)*exp(-Z*r/2)

11

12 In [6]: phi

13 Out [6]: ’(Z*(x**2 + y**2 + z**2) **(1/2) - 2)*exp(-Z*(x**2 + y**2 + z**2) **(1/2) /2)’

14

15 In [7]: diff(phi , x)

16 Out [7]: ’-Z*x*(Z*(x**2 + y**2 + z**2) **(1/2) - 2)*exp(-Z*(x**2 + y**2 + z**2) **(1/2) /2)

/(2*(x**2 + y**2 + z**2) **(1/2)) + Z*x*exp(-Z*(x**2 + y**2 + z**2) **(1/2) /2)/(x**2 +

y**2 + z**2) **(1/2) ’

Now, this looks like a nightmare. However, SymPy has great support for simplifying expressions through
factorization, collecting, substituting etc. The following code demonstrated this quite nicely

1 ...

2

3 In [6]: phi

4 Out [6]: ’(Z*(x**2 + y**2 + z**2) **(1/2) - 2)*exp(-Z*(x**2 + y**2 + z**2) **(1/2) /2)’

5

6 In [7]: from sympy import factor , Symbol , printing

7

8 In [8]: R = Symbol(’r’) #Creates a symbolic equivalent of the mathematical r

9

10 In [9]: diff(phi , x).factor () #Factors out common factors

11 Out [9]: ’-Z*x*(Z*(x**2 + y**2 + z**2) **(1/2) - 4)*exp(-Z*(x**2 + y**2 + z**2) **(1/2) /2)

/(2*(x**2 + y**2 + z**2) **(1/2))’

12

13 In [10]: diff(phi , x).factor ().subs(r, R) #replaces (x^2 + y^2 + z^2) ^(1/2) with r

14 Out [10]: ’-Z*x*(Z*r - 4)*exp(-Z*r/2) /(2*r)’

15

16 In [11]: print printing.latex(diff(phi , x).factor ().subs(r, R))

17 - \frac{Z x \left(Z r -4\right)}{2 r e^{\ frac {1}{2} Z r}}

This version of the expression is much more satisfying to the eye. The output from line 11 compiled in
Latex is

−Zx (Zr − 4)

2re
1
2Zr

SymPy has a general method for simplifying expressions sympy.simplify, however, this function is
extremely slow and does not behave well on general expressions. SymPy is still young, so nothing can
be expected to work perfectly. Moreover, in contrast to Wolfram Alpha and Mathematica, SymPy is
open source, which means that much of the work, if not all of the work, is done by ordinary people on
their spare time. The ill behaving simplify function is not really a great loss; full control for a Python
programmer is never considered a bad thing, whether it is enforced or not.

146 APPENDIX C. AUTO-GENERATION WITH SYMPY

Estimating the Laplacian is just a matter of summing double derivatives

1 ...

2

3 In [12]: (diff(diff(phi , x), x) +

4: diff(diff(phi , y), y) +

5: diff(diff(phi , z), z)).factor ().subs(r, R)

6 Out [12]: ’Z*(Z**2*x**2 + Z**2*y**2 + Z**2*z**2 - 10*Z*r + 16)*exp(-Z*r/2) /(4*r)’

7

8 In [13]: (diff(diff(phi , x), x) + #Not quite satisfying.

9: diff(diff(phi , y), y) + #Let’s collect the ’Z’ terms.

10: diff(diff(phi , z), z)).factor ().collect(Z).subs(r, R)

11 Out [13]: ’Z*(Z**2*(x**2 + y**2 + z**2) - 10*Z*r + 16)*exp(-Z*r/2) /(4*r)’

12

13 In [14]: (diff(diff(phi , x), x) + #Still not satisfying.

14: diff(diff(phi , y), y) + #The r^2 terms needs to be substituted as well.

15: diff(diff(phi , z), z)).factor ().collect(Z).subs(r, R).subs(r**2, R**2)

16 Out [14]: ’Z*(Z**2*r**2 - 10*Z*r + 16)*exp(-Z*r/2) /(4*r)’

17

18 In [15]: (diff(diff(phi , x), x) + #Let’s try to factorize once more.

19: diff(diff(phi , y), y) +

20: diff(diff(phi , z), z)).factor ().collect(Z).subs(r, R).subs(r**2, R**2).factor ()

21 Out [15]: ’Z*(Z*r - 8)*(Z*r - 2)*exp(-Z*r/2) /(4*r)’

Getting the right factorization may come across as tricky, but with minimal training this poses no real
problems.

C.2 Using the auto-generation Script

The superclass orbitalsGenerator aims to serve as an interface with the QMC C++ BasisFunctions

class, automatically generating the C++ code containing all the implementations of the derivatives for
the given single-particle states. The single-particle states are implemented in the generator by subclasses
overloading system specific virtual functions which will be described in the following sections.

C.2.1 Generating Latex code

The following methods are user-implemented functions used to calculate the expressions which are in turn
automagically converted to Latex code. Once they are implemented, the following code can be executed
in order to create the latex output

1 orbitalSet = HO_3D.HOOrbitals3D(N=40) #Creating a 3D harm. osc. object

2 orbitalSet.closedFormify ()

3 orbitalSet.TeXToFile(outPath)

The constructor

The superclass constructor takes on input the maximum number of particles for which expressions should
be generated and the name of the orbital set, e.g. hydrogenic. Calling a superclass constructor from a
subclass constructor is done in the following way

1 class hydrogenicOrbitals(orbitalGenerator):

2

3 def __init__(self, N):

4

5 super(hydrogenicOrbitals , self).__init__(N, "hydrogenic")

6 #...

C.2. USING THE AUTO-GENERATION SCRIPT 147

makeStateMap

This function takes care of the mapping of a set of quantum numbers, e.g. nlm to a specific index
i. The Python dictionary self.stateMap must be filled with values for every unique set of quantum
numbers (not counting spin) in order for the Latex and C++ files to be created successfully. For the
three-dimensional harmonic oscillator wave functions, the state map looks like this

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
nx 0 0 0 1 0 0 0 1 1 2 0 0 0 0 1 1 1 2 2 3
ny 0 0 1 0 0 1 2 0 1 0 0 1 2 3 0 1 2 0 1 0
nz 0 1 0 0 2 1 0 1 0 0 3 2 1 0 2 1 0 1 0 0

setUpOrbitals

Within this function, the orbital elements corresponding to the quantum number mappings made in
makeStateMap needs to be implemented in a matching order. The quantum numbers from self.stateMap

are calculated prior to this function being called, and can thus be accessed in case they are needed, as is
the case for the n-dependent exponential factor of the hydrogen-like orbitals.

The i’th orbital needs to be implemented in self.orbitals[i], using the x, y and z variables defined
in the superclass. For the three-dimensional harmonic oscillator, the function is simply

1 def setupOrbitals(self):

2

3 for i, stateMap in self.stateMap.items():

4 nx, ny , nz = stateMap

5

6 self.orbitals[i] = self.Hx[nx]*self.Hy[ny]*self.Hz[nz]*self.expFactor

where self.Hx and the exponential factor are implemented in the constructor. After the orbitals are cre-
ated, the gradients and Laplacians cam be calculated by calling the closedFormify() function, however,
unless the following member function is implemented, they are going to look messy.

simplifyLocal

As demonstrated in the previous example, SymPy expressions are messy when they are fresh out of the
derivative functions. Since every system needs to be treated differently when it comes to cleaning up
their expressions, this function is available. For hydrogen-like wave functions, the introductory example’s
strategy can be applied up to the level of neon. Going higher will require more advanced strategies for
cleaning up the expressions.

The expression and the corresponding set of quantum numbers are given on input. In addition, there is
an input argument subs, which if set to false should make the function return the expression in terms of
x, y and z without substituting e.g. x2 + y2 = r2.

genericFactor

The method serves as convenient function for describing generic parts of the expressions, e.g. the expo-
nentials, which are often reused. A set of quantum numbers are supplied on input in case the generic
expression depends on these. In addition, a flag basic is supplied on input, which if set to true should,
as in the simplify function, return the generic factor in Cartesian coordinates. This generic factor can

148 APPENDIX C. AUTO-GENERATION WITH SYMPY

then easily be taken out of the Latex expressions and mentioned in the caption in order to clean up the
expression tables.

str

This method is invoked by calling str(obj) on an arbitrary Python object obj. In the case of the orbital
generator class, this string will serve as an introductory text to the latex output.

C.2.2 Generating C++ code

A class CPPbasis is constructed to supplement the orbitals generator class. This objects holds the empty
shells of the C++ constructors and implementations. After the functions described in this section are
implemented, the following code can be executed to generate the C++ files

1 orbitalSet = HO_3D.HOOrbitals3D(N=40) #Creating a 3D harm. osc. object

2 orbitalSet.closedFormify ()

3 orbitalSet.TeXToFile(outPath)

4 orbitalSet.CPPToFile(outPath)

initCPPbasis

Sets up the variables in the CPPbasis object needed in order to construct the C++ file, such as the
dimension, the name, the constructor input variables and the C++ class members. The following function
is the implementation for the two-dimensional harmonic oscillator

1 def initCPPbasis(self):

2

3 self.cppBasis.dim = 2

4

5 self.cppBasis.setName(self.name)

6

7 self.cppBasis.setConstVars(’double* k’, #sqrt(k2)

8 ’double* k2’, #scaled oscillator freq.

9 ’double* exp_factor ’) #The exponential

10

11 self.cppBasis.setMembers(’double* k’,

12 ’double* k2’,

13 ’double* exp_factor ’,

14 ’double H’, #The Hermite polynomial part

15 ’double x’,

16 ’double y’,

17 ’double x2’, #Squared Cartesian coordinates

18 ’double y2’)

getCPre and getCreturn

The empty shell of the BasisFunctions::eval functions in the CPPbasis class is implemented as below

1 self.evalShell = """

2 double __name__ ::eval(const Walker* walker , int i) {

3

4 __necessities__

5

6 // __simpleExpr__

C.2. USING THE AUTO-GENERATION SCRIPT 149

7

8 __preCalc__

9 return __return__

10

11 }

12 """

where __preCalc__ is a generated C++ expression returned from getCpre(), and __return__ is the
returned C++ expression from getCreturn(). The commented __simpleExpr__ will be replaced by the
expression in nicely formatted SymPy output code. __necessities__ is automatically detected by the
script, and represents the Cartesian variable expressions needed by the expressions.

The functions take a SymPy generated expression on input, i.e. an orbital, gradient or Laplacian, and
the corresponding index of the expression i. The reason these functions are split into a precalculation
and a return expression is purely cosmetic. Consider the following example output for the hydrogen-like
wave functions:

1 double dell_hydrogenic_9_y ::eval(const Walker* walker , int i) {

2

3 y = walker ->r(i, 1);

4 z = walker ->r(i, 2);

5

6 z2 = z*z;

7

8 //-y*(k*(-r^2 + 3*z^2) + 6*r)*exp(-k*r/3) /(3*r)

9

10 psi = -y*((*k)*(-walker ->get_r_i2(i) + 3*z2) + 6*walker ->get_r_i(i))/(3* walker ->

get_r_i(i));

11 return psi*(* exp_factor);

12

13 }

The *exp_factor is the precalculated n = 3 exponential which is then simply multiplied by the non-
exponential terms before being returned. The commented line is a clean version of the full expression.
The required Cartesian components are retrieved prior to the evaluation.

The full implementation of getCpre() and getCreturn() for the hydrogen-like wave functions are given
below

1 def getCReturn(self, expr , i):

2 return "psi*(* exp_factor);"

3

4 def getCPre(self, expr , i):

5 qNums = self.stateMap[i]

6 return " psi = %s;" % printing.ccode(expr/self.genericFactor(qNums))

makeOrbConstArg

Loading the generated BasisFunctions objects into the Orbitals object in the QMC code is rather
a dull job, and is not designed to be done manually. The function makeOrbConstArg is designed to
automate this process. This is best demonstrated by an example: Consider the following constructor of
the hydrogen-like wave function’s orbital class

1 basis_functions [0] = new hydrogenic_0(k, k2, exp_factor_n1);

2 basis_functions [1] = new hydrogenic_1(k, k2, exp_factor_n2);

3 //...

4 basis_functions [5] = new hydrogenic_5(k, k2, exp_factor_n3);

5 //..

150 APPENDIX C. AUTO-GENERATION WITH SYMPY

6 basis_functions [14] = new hydrogenic_14(k, k2, exp_factor_n4);

7 //..

8 basis_functions [17] = new hydrogenic_17(k, k2, exp_factor_n4);

where exp_factor_nk represents exp(−Zr/k), which is saved as a pointer reference for reasons explained
in Section 4.6.4. The same procedure is applied to the gradients and the Laplacians as well, leaving a
total of 90 sequential initializations. Everything needed in order to auto-generate the code is the following
implementation

1 def makeOrbConstArgs(self, args , i):

2 n = self.stateMap[i][0]

3 args = args.replace(’exp_factor ’, ’exp_fa -ctor_n%d’ % n)

4 return args

which ensures that the input arguments to e.g. element 1 is (k, k2, exp_factor_n2), since the single-
particle orbital self.phi[1] has a principle quantum number n = 2. The input argument args is the
default constructor arguments set up the the initCPPbasis, and is in the case of hydrogen-like wave
functions (k, k2, exp_factor).

The tables listed in Appendix D, E and F are all generated within seconds using this framework. The
generated C++ code for these span 8975 lines not counting blank ones.

D

Harmonic Oscillator Orbitals 2D

Orbitals are constructed in the following fashion:

φ(~r)nx,ny
= Hnx

(kx)Hny
(ky)e−

1
2k

2r2

where k =
√
ωα, with ω being the oscillator frequency and α being the variational parameter.

H0(kx) 1
H1(kx) 2kx
H2(kx) 4k2x2 − 2
H3(kx) 8k3x3 − 12kx
H4(kx) 16k4x4 − 48k2x2 + 12
H5(kx) 32k5x5 − 160k3x3 + 120kx
H6(kx) 64k6x6 − 480k4x4 + 720k2x2 − 120
H0(ky) 1
H1(ky) 2ky
H2(ky) 4k2y2 − 2
H3(ky) 8k3y3 − 12ky
H4(ky) 16k4y4 − 48k2y2 + 12
H5(ky) 32k5y5 − 160k3y3 + 120ky
H6(ky) 64k6y6 − 480k4y4 + 720k2y2 − 120

Table D.1: Hermite polynomials used to construct orbital functions

151

152 APPENDIX D. HARMONIC OSCILLATOR ORBITALS 2D

φ0 → φ0,0

φ(~r) 1
~i · ∇φ(~r) −k2x
~j · ∇φ(~r) −k2y

∇2φ(~r) k2
(
k2r2 − 2

)
Table D.2: Orbital expressions HOOrbitals : 0, 0. Factor e−

1
2k

2r2 is omitted.

φ1 → φ0,1

φ(~r) y
~i · ∇φ(~r) −k2xy
~j · ∇φ(~r) − (ky − 1) (ky + 1)

∇2φ(~r) k2y
(
k2r2 − 4

)
Table D.3: Orbital expressions HOOrbitals : 0, 1. Factor e−

1
2k

2r2 is omitted.

φ2 → φ1,0

φ(~r) x
~i · ∇φ(~r) − (kx− 1) (kx+ 1)
~j · ∇φ(~r) −k2xy

∇2φ(~r) k2x
(
k2r2 − 4

)
Table D.4: Orbital expressions HOOrbitals : 1, 0. Factor e−

1
2k

2r2 is omitted.

φ3 → φ0,2

φ(~r) 2k2y2 − 1
~i · ∇φ(~r) −k2x

(
2k2y2 − 1

)
~j · ∇φ(~r) −k2y

(
2k2y2 − 5

)
∇2φ(~r) k2

(
k2r2 − 6

) (
2k2y2 − 1

)
Table D.5: Orbital expressions HOOrbitals : 0, 2. Factor e−

1
2k

2r2 is omitted.

φ4 → φ1,1

φ(~r) xy
~i · ∇φ(~r) −y (kx− 1) (kx+ 1)
~j · ∇φ(~r) −x (ky − 1) (ky + 1)

∇2φ(~r) k2xy
(
k2r2 − 6

)
Table D.6: Orbital expressions HOOrbitals : 1, 1. Factor e−

1
2k

2r2 is omitted.

153

φ5 → φ2,0

φ(~r) 2k2x2 − 1
~i · ∇φ(~r) −k2x

(
2k2x2 − 5

)
~j · ∇φ(~r) −k2y

(
2k2x2 − 1

)
∇2φ(~r) k2

(
k2r2 − 6

) (
2k2x2 − 1

)
Table D.7: Orbital expressions HOOrbitals : 2, 0. Factor e−

1
2k

2r2 is omitted.

φ6 → φ0,3

φ(~r) y
(
2k2y2 − 3

)
~i · ∇φ(~r) −k2xy

(
2k2y2 − 3

)
~j · ∇φ(~r) −2k4y4 + 9k2y2 − 3

∇2φ(~r) k2y
(
k2r2 − 8

) (
2k2y2 − 3

)
Table D.8: Orbital expressions HOOrbitals : 0, 3. Factor e−

1
2k

2r2 is omitted.

φ7 → φ1,2

φ(~r) x
(
2k2y2 − 1

)
~i · ∇φ(~r) − (kx− 1) (kx+ 1)

(
2k2y2 − 1

)
~j · ∇φ(~r) −k2xy

(
2k2y2 − 5

)
∇2φ(~r) k2x

(
k2r2 − 8

) (
2k2y2 − 1

)
Table D.9: Orbital expressions HOOrbitals : 1, 2. Factor e−

1
2k

2r2 is omitted.

φ8 → φ2,1

φ(~r) y
(
2k2x2 − 1

)
~i · ∇φ(~r) −k2xy

(
2k2x2 − 5

)
~j · ∇φ(~r) − (ky − 1) (ky + 1)

(
2k2x2 − 1

)
∇2φ(~r) k2y

(
k2r2 − 8

) (
2k2x2 − 1

)
Table D.10: Orbital expressions HOOrbitals : 2, 1. Factor e−

1
2k

2r2 is omitted.

φ9 → φ3,0

φ(~r) x
(
2k2x2 − 3

)
~i · ∇φ(~r) −2k4x4 + 9k2x2 − 3
~j · ∇φ(~r) −k2xy

(
2k2x2 − 3

)
∇2φ(~r) k2x

(
k2r2 − 8

) (
2k2x2 − 3

)
Table D.11: Orbital expressions HOOrbitals : 3, 0. Factor e−

1
2k

2r2 is omitted.

154 APPENDIX D. HARMONIC OSCILLATOR ORBITALS 2D

φ10 → φ0,4

φ(~r) 4k4y4 − 12k2y2 + 3
~i · ∇φ(~r) −k2x

(
4k4y4 − 12k2y2 + 3

)
~j · ∇φ(~r) −k2y

(
4k4y4 − 28k2y2 + 27

)
∇2φ(~r) k2

(
k2r2 − 10

) (
4k4y4 − 12k2y2 + 3

)
Table D.12: Orbital expressions HOOrbitals : 0, 4. Factor e−

1
2k

2r2 is omitted.

φ11 → φ1,3

φ(~r) xy
(
2k2y2 − 3

)
~i · ∇φ(~r) −y (kx− 1) (kx+ 1)

(
2k2y2 − 3

)
~j · ∇φ(~r) −x

(
2k4y4 − 9k2y2 + 3

)
∇2φ(~r) k2xy

(
k2r2 − 10

) (
2k2y2 − 3

)
Table D.13: Orbital expressions HOOrbitals : 1, 3. Factor e−

1
2k

2r2 is omitted.

φ12 → φ2,2

φ(~r)
(
2k2x2 − 1

) (
2k2y2 − 1

)
~i · ∇φ(~r) −k2x

(
2k2x2 − 5

) (
2k2y2 − 1

)
~j · ∇φ(~r) −k2y

(
2k2x2 − 1

) (
2k2y2 − 5

)
∇2φ(~r) k2

(
k2r2 − 10

) (
2k2x2 − 1

) (
2k2y2 − 1

)
Table D.14: Orbital expressions HOOrbitals : 2, 2. Factor e−

1
2k

2r2 is omitted.

φ13 → φ3,1

φ(~r) xy
(
2k2x2 − 3

)
~i · ∇φ(~r) −y

(
2k4x4 − 9k2x2 + 3

)
~j · ∇φ(~r) −x (ky − 1) (ky + 1)

(
2k2x2 − 3

)
∇2φ(~r) k2xy

(
k2r2 − 10

) (
2k2x2 − 3

)
Table D.15: Orbital expressions HOOrbitals : 3, 1. Factor e−

1
2k

2r2 is omitted.

φ14 → φ4,0

φ(~r) 4k4x4 − 12k2x2 + 3
~i · ∇φ(~r) −k2x

(
4k4x4 − 28k2x2 + 27

)
~j · ∇φ(~r) −k2y

(
4k4x4 − 12k2x2 + 3

)
∇2φ(~r) k2

(
k2r2 − 10

) (
4k4x4 − 12k2x2 + 3

)
Table D.16: Orbital expressions HOOrbitals : 4, 0. Factor e−

1
2k

2r2 is omitted.

155

φ15 → φ0,5

φ(~r) y
(
4k4y4 − 20k2y2 + 15

)
~i · ∇φ(~r) −k2xy

(
4k4y4 − 20k2y2 + 15

)
~j · ∇φ(~r) −4k6y6 + 40k4y4 − 75k2y2 + 15

∇2φ(~r) k2y
(
k2r2 − 12

) (
4k4y4 − 20k2y2 + 15

)
Table D.17: Orbital expressions HOOrbitals : 0, 5. Factor e−

1
2k

2r2 is omitted.

φ16 → φ1,4

φ(~r) x
(
4k4y4 − 12k2y2 + 3

)
~i · ∇φ(~r) − (kx− 1) (kx+ 1)

(
4k4y4 − 12k2y2 + 3

)
~j · ∇φ(~r) −k2xy

(
4k4y4 − 28k2y2 + 27

)
∇2φ(~r) k2x

(
k2r2 − 12

) (
4k4y4 − 12k2y2 + 3

)
Table D.18: Orbital expressions HOOrbitals : 1, 4. Factor e−

1
2k

2r2 is omitted.

φ17 → φ2,3

φ(~r) y
(
2k2x2 − 1

) (
2k2y2 − 3

)
~i · ∇φ(~r) −k2xy

(
2k2x2 − 5

) (
2k2y2 − 3

)
~j · ∇φ(~r) −

(
2k2x2 − 1

) (
2k4y4 − 9k2y2 + 3

)
∇2φ(~r) k2y

(
k2r2 − 12

) (
2k2x2 − 1

) (
2k2y2 − 3

)
Table D.19: Orbital expressions HOOrbitals : 2, 3. Factor e−

1
2k

2r2 is omitted.

φ18 → φ3,2

φ(~r) x
(
2k2x2 − 3

) (
2k2y2 − 1

)
~i · ∇φ(~r) −

(
2k2y2 − 1

) (
2k4x4 − 9k2x2 + 3

)
~j · ∇φ(~r) −k2xy

(
2k2x2 − 3

) (
2k2y2 − 5

)
∇2φ(~r) k2x

(
k2r2 − 12

) (
2k2x2 − 3

) (
2k2y2 − 1

)
Table D.20: Orbital expressions HOOrbitals : 3, 2. Factor e−

1
2k

2r2 is omitted.

φ19 → φ4,1

φ(~r) y
(
4k4x4 − 12k2x2 + 3

)
~i · ∇φ(~r) −k2xy

(
4k4x4 − 28k2x2 + 27

)
~j · ∇φ(~r) − (ky − 1) (ky + 1)

(
4k4x4 − 12k2x2 + 3

)
∇2φ(~r) k2y

(
k2r2 − 12

) (
4k4x4 − 12k2x2 + 3

)
Table D.21: Orbital expressions HOOrbitals : 4, 1. Factor e−

1
2k

2r2 is omitted.

156 APPENDIX D. HARMONIC OSCILLATOR ORBITALS 2D

φ20 → φ5,0

φ(~r) x
(
4k4x4 − 20k2x2 + 15

)
~i · ∇φ(~r) −4k6x6 + 40k4x4 − 75k2x2 + 15
~j · ∇φ(~r) −k2xy

(
4k4x4 − 20k2x2 + 15

)
∇2φ(~r) k2x

(
k2r2 − 12

) (
4k4x4 − 20k2x2 + 15

)
Table D.22: Orbital expressions HOOrbitals : 5, 0. Factor e−

1
2k

2r2 is omitted.

φ21 → φ0,6

φ(~r) 8k6y6 − 60k4y4 + 90k2y2 − 15
~i · ∇φ(~r) −k2x

(
8k6y6 − 60k4y4 + 90k2y2 − 15

)
~j · ∇φ(~r) −k2y

(
8k6y6 − 108k4y4 + 330k2y2 − 195

)
∇2φ(~r) k2

(
k2r2 − 14

) (
8k6y6 − 60k4y4 + 90k2y2 − 15

)
Table D.23: Orbital expressions HOOrbitals : 0, 6. Factor e−

1
2k

2r2 is omitted.

φ22 → φ1,5

φ(~r) xy
(
4k4y4 − 20k2y2 + 15

)
~i · ∇φ(~r) −y (kx− 1) (kx+ 1)

(
4k4y4 − 20k2y2 + 15

)
~j · ∇φ(~r) −x

(
4k6y6 − 40k4y4 + 75k2y2 − 15

)
∇2φ(~r) k2xy

(
k2r2 − 14

) (
4k4y4 − 20k2y2 + 15

)
Table D.24: Orbital expressions HOOrbitals : 1, 5. Factor e−

1
2k

2r2 is omitted.

φ23 → φ2,4

φ(~r)
(
2k2x2 − 1

) (
4k4y4 − 12k2y2 + 3

)
~i · ∇φ(~r) −k2x

(
2k2x2 − 5

) (
4k4y4 − 12k2y2 + 3

)
~j · ∇φ(~r) −k2y

(
2k2x2 − 1

) (
4k4y4 − 28k2y2 + 27

)
∇2φ(~r) k2

(
k2r2 − 14

) (
2k2x2 − 1

) (
4k4y4 − 12k2y2 + 3

)
Table D.25: Orbital expressions HOOrbitals : 2, 4. Factor e−

1
2k

2r2 is omitted.

φ24 → φ3,3

φ(~r) xy
(
2k2x2 − 3

) (
2k2y2 − 3

)
~i · ∇φ(~r) −y

(
2k2y2 − 3

) (
2k4x4 − 9k2x2 + 3

)
~j · ∇φ(~r) −x

(
2k2x2 − 3

) (
2k4y4 − 9k2y2 + 3

)
∇2φ(~r) k2xy

(
k2r2 − 14

) (
2k2x2 − 3

) (
2k2y2 − 3

)
Table D.26: Orbital expressions HOOrbitals : 3, 3. Factor e−

1
2k

2r2 is omitted.

157

φ25 → φ4,2

φ(~r)
(
2k2y2 − 1

) (
4k4x4 − 12k2x2 + 3

)
~i · ∇φ(~r) −k2x

(
2k2y2 − 1

) (
4k4x4 − 28k2x2 + 27

)
~j · ∇φ(~r) −k2y

(
2k2y2 − 5

) (
4k4x4 − 12k2x2 + 3

)
∇2φ(~r) k2

(
k2r2 − 14

) (
2k2y2 − 1

) (
4k4x4 − 12k2x2 + 3

)
Table D.27: Orbital expressions HOOrbitals : 4, 2. Factor e−

1
2k

2r2 is omitted.

φ26 → φ5,1

φ(~r) xy
(
4k4x4 − 20k2x2 + 15

)
~i · ∇φ(~r) −y

(
4k6x6 − 40k4x4 + 75k2x2 − 15

)
~j · ∇φ(~r) −x (ky − 1) (ky + 1)

(
4k4x4 − 20k2x2 + 15

)
∇2φ(~r) k2xy

(
k2r2 − 14

) (
4k4x4 − 20k2x2 + 15

)
Table D.28: Orbital expressions HOOrbitals : 5, 1. Factor e−

1
2k

2r2 is omitted.

φ27 → φ6,0

φ(~r) 8k6x6 − 60k4x4 + 90k2x2 − 15
~i · ∇φ(~r) −k2x

(
8k6x6 − 108k4x4 + 330k2x2 − 195

)
~j · ∇φ(~r) −k2y

(
8k6x6 − 60k4x4 + 90k2x2 − 15

)
∇2φ(~r) k2

(
k2r2 − 14

) (
8k6x6 − 60k4x4 + 90k2x2 − 15

)
Table D.29: Orbital expressions HOOrbitals : 6, 0. Factor e−

1
2k

2r2 is omitted.

158

E

Harmonic Oscillator Orbitals 3D

Orbitals are constructed in the following fashion:

φ(~r)nx,ny,nz
= Hnx

(kx)Hny
(ky)Hnz

(kz)e−
1
2k

2r2

where k =
√
ωα, with ω being the oscillator frequency and α being the variational parameter.

H0(kx) 1
H1(kx) 2kx
H2(kx) 4k2x2 − 2
H3(kx) 8k3x3 − 12kx
H0(ky) 1
H1(ky) 2ky
H2(ky) 4k2y2 − 2
H3(ky) 8k3y3 − 12ky
H0(kz) 1
H1(kz) 2kz
H2(kz) 4k2z2 − 2
H3(kz) 8k3z3 − 12kz

Table E.1: Hermite polynomials used to construct orbital functions

159

160 APPENDIX E. HARMONIC OSCILLATOR ORBITALS 3D

φ0 → φ0,0,0

φ(~r) 1
~i · ∇φ(~r) −k2x
~j · ∇φ(~r) −k2y
~k · ∇φ(~r) −k2z

∇2φ(~r) k2
(
k2r2 − 3

)
Table E.2: Orbital expressions HOOrbitals3D : 0, 0, 0. Factor e−

1
2k

2r2 is omitted.

φ1 → φ0,0,1

φ(~r) z
~i · ∇φ(~r) −k2xz
~j · ∇φ(~r) −k2yz
~k · ∇φ(~r) − (kz − 1) (kz + 1)

∇2φ(~r) k2z
(
k2r2 − 5

)
Table E.3: Orbital expressions HOOrbitals3D : 0, 0, 1. Factor e−

1
2k

2r2 is omitted.

φ2 → φ0,1,0

φ(~r) y
~i · ∇φ(~r) −k2xy
~j · ∇φ(~r) − (ky − 1) (ky + 1)
~k · ∇φ(~r) −k2yz

∇2φ(~r) k2y
(
k2r2 − 5

)
Table E.4: Orbital expressions HOOrbitals3D : 0, 1, 0. Factor e−

1
2k

2r2 is omitted.

φ3 → φ1,0,0

φ(~r) x
~i · ∇φ(~r) − (kx− 1) (kx+ 1)
~j · ∇φ(~r) −k2xy
~k · ∇φ(~r) −k2xz

∇2φ(~r) k2x
(
k2r2 − 5

)
Table E.5: Orbital expressions HOOrbitals3D : 1, 0, 0. Factor e−

1
2k

2r2 is omitted.

φ4 → φ0,0,2

φ(~r) 4k2z2 − 2
~i · ∇φ(~r) −2k2x

(
2k2z2 − 1

)
~j · ∇φ(~r) −2k2y

(
2k2z2 − 1

)
~k · ∇φ(~r) −2k2z

(
2k2z2 − 5

)
∇2φ(~r) 2k2

(
k2r2 − 7

) (
2k2z2 − 1

)
Table E.6: Orbital expressions HOOrbitals3D : 0, 0, 2. Factor e−

1
2k

2r2 is omitted.

161

φ5 → φ0,1,1

φ(~r) yz
~i · ∇φ(~r) −k2xyz
~j · ∇φ(~r) −z (ky − 1) (ky + 1)
~k · ∇φ(~r) −y (kz − 1) (kz + 1)

∇2φ(~r) k2yz
(
k2r2 − 7

)
Table E.7: Orbital expressions HOOrbitals3D : 0, 1, 1. Factor e−

1
2k

2r2 is omitted.

φ6 → φ0,2,0

φ(~r) 4k2y2 − 2
~i · ∇φ(~r) −2k2x

(
2k2y2 − 1

)
~j · ∇φ(~r) −2k2y

(
2k2y2 − 5

)
~k · ∇φ(~r) −2k2z

(
2k2y2 − 1

)
∇2φ(~r) 2k2

(
k2r2 − 7

) (
2k2y2 − 1

)
Table E.8: Orbital expressions HOOrbitals3D : 0, 2, 0. Factor e−

1
2k

2r2 is omitted.

φ7 → φ1,0,1

φ(~r) xz
~i · ∇φ(~r) −z (kx− 1) (kx+ 1)
~j · ∇φ(~r) −k2xyz
~k · ∇φ(~r) −x (kz − 1) (kz + 1)

∇2φ(~r) k2xz
(
k2r2 − 7

)
Table E.9: Orbital expressions HOOrbitals3D : 1, 0, 1. Factor e−

1
2k

2r2 is omitted.

φ8 → φ1,1,0

φ(~r) xy
~i · ∇φ(~r) −y (kx− 1) (kx+ 1)
~j · ∇φ(~r) −x (ky − 1) (ky + 1)
~k · ∇φ(~r) −k2xyz

∇2φ(~r) k2xy
(
k2r2 − 7

)
Table E.10: Orbital expressions HOOrbitals3D : 1, 1, 0. Factor e−

1
2k

2r2 is omitted.

φ9 → φ2,0,0

φ(~r) 4k2x2 − 2
~i · ∇φ(~r) −2k2x

(
2k2x2 − 5

)
~j · ∇φ(~r) −2k2y

(
2k2x2 − 1

)
~k · ∇φ(~r) −2k2z

(
2k2x2 − 1

)
∇2φ(~r) 2k2

(
k2r2 − 7

) (
2k2x2 − 1

)
Table E.11: Orbital expressions HOOrbitals3D : 2, 0, 0. Factor e−

1
2k

2r2 is omitted.

162 APPENDIX E. HARMONIC OSCILLATOR ORBITALS 3D

φ10 → φ0,0,3

φ(~r) z
(
2k2z2 − 3

)
~i · ∇φ(~r) −k2xz

(
2k2z2 − 3

)
~j · ∇φ(~r) −k2yz

(
2k2z2 − 3

)
~k · ∇φ(~r) −2k4z4 + 9k2z2 − 3

∇2φ(~r) k2z
(
k2r2 − 9

) (
2k2z2 − 3

)
Table E.12: Orbital expressions HOOrbitals3D : 0, 0, 3. Factor e−

1
2k

2r2 is omitted.

φ11 → φ0,1,2

φ(~r) y
(
2k2z2 − 1

)
~i · ∇φ(~r) −k2xy

(
2k2z2 − 1

)
~j · ∇φ(~r) − (ky − 1) (ky + 1)

(
2k2z2 − 1

)
~k · ∇φ(~r) −k2yz

(
2k2z2 − 5

)
∇2φ(~r) k2y

(
k2r2 − 9

) (
2k2z2 − 1

)
Table E.13: Orbital expressions HOOrbitals3D : 0, 1, 2. Factor e−

1
2k

2r2 is omitted.

φ12 → φ0,2,1

φ(~r) z
(
2k2y2 − 1

)
~i · ∇φ(~r) −k2xz

(
2k2y2 − 1

)
~j · ∇φ(~r) −k2yz

(
2k2y2 − 5

)
~k · ∇φ(~r) − (kz − 1) (kz + 1)

(
2k2y2 − 1

)
∇2φ(~r) k2z

(
k2r2 − 9

) (
2k2y2 − 1

)
Table E.14: Orbital expressions HOOrbitals3D : 0, 2, 1. Factor e−

1
2k

2r2 is omitted.

φ13 → φ0,3,0

φ(~r) y
(
2k2y2 − 3

)
~i · ∇φ(~r) −k2xy

(
2k2y2 − 3

)
~j · ∇φ(~r) −2k4y4 + 9k2y2 − 3
~k · ∇φ(~r) −k2yz

(
2k2y2 − 3

)
∇2φ(~r) k2y

(
k2r2 − 9

) (
2k2y2 − 3

)
Table E.15: Orbital expressions HOOrbitals3D : 0, 3, 0. Factor e−

1
2k

2r2 is omitted.

φ14 → φ1,0,2

φ(~r) x
(
2k2z2 − 1

)
~i · ∇φ(~r) − (kx− 1) (kx+ 1)

(
2k2z2 − 1

)
~j · ∇φ(~r) −k2xy

(
2k2z2 − 1

)
~k · ∇φ(~r) −k2xz

(
2k2z2 − 5

)
∇2φ(~r) k2x

(
k2r2 − 9

) (
2k2z2 − 1

)
Table E.16: Orbital expressions HOOrbitals3D : 1, 0, 2. Factor e−

1
2k

2r2 is omitted.

163

φ15 → φ1,1,1

φ(~r) xyz
~i · ∇φ(~r) −yz (kx− 1) (kx+ 1)
~j · ∇φ(~r) −xz (ky − 1) (ky + 1)
~k · ∇φ(~r) −xy (kz − 1) (kz + 1)

∇2φ(~r) k2xyz
(
k2r2 − 9

)
Table E.17: Orbital expressions HOOrbitals3D : 1, 1, 1. Factor e−

1
2k

2r2 is omitted.

φ16 → φ1,2,0

φ(~r) x
(
2k2y2 − 1

)
~i · ∇φ(~r) − (kx− 1) (kx+ 1)

(
2k2y2 − 1

)
~j · ∇φ(~r) −k2xy

(
2k2y2 − 5

)
~k · ∇φ(~r) −k2xz

(
2k2y2 − 1

)
∇2φ(~r) k2x

(
k2r2 − 9

) (
2k2y2 − 1

)
Table E.18: Orbital expressions HOOrbitals3D : 1, 2, 0. Factor e−

1
2k

2r2 is omitted.

φ17 → φ2,0,1

φ(~r) z
(
2k2x2 − 1

)
~i · ∇φ(~r) −k2xz

(
2k2x2 − 5

)
~j · ∇φ(~r) −k2yz

(
2k2x2 − 1

)
~k · ∇φ(~r) − (kz − 1) (kz + 1)

(
2k2x2 − 1

)
∇2φ(~r) k2z

(
k2r2 − 9

) (
2k2x2 − 1

)
Table E.19: Orbital expressions HOOrbitals3D : 2, 0, 1. Factor e−

1
2k

2r2 is omitted.

φ18 → φ2,1,0

φ(~r) y
(
2k2x2 − 1

)
~i · ∇φ(~r) −k2xy

(
2k2x2 − 5

)
~j · ∇φ(~r) − (ky − 1) (ky + 1)

(
2k2x2 − 1

)
~k · ∇φ(~r) −k2yz

(
2k2x2 − 1

)
∇2φ(~r) k2y

(
k2r2 − 9

) (
2k2x2 − 1

)
Table E.20: Orbital expressions HOOrbitals3D : 2, 1, 0. Factor e−

1
2k

2r2 is omitted.

φ19 → φ3,0,0

φ(~r) x
(
2k2x2 − 3

)
~i · ∇φ(~r) −2k4x4 + 9k2x2 − 3
~j · ∇φ(~r) −k2xy

(
2k2x2 − 3

)
~k · ∇φ(~r) −k2xz

(
2k2x2 − 3

)
∇2φ(~r) k2x

(
k2r2 − 9

) (
2k2x2 − 3

)
Table E.21: Orbital expressions HOOrbitals3D : 3, 0, 0. Factor e−

1
2k

2r2 is omitted.

164

F

Hydrogen Orbitals

Orbitals are constructed in the following fashion:

φ(~r)n,l,m = L2l+1
n−l−1

(2r

n
k
)
Sml (~r)e−

r
nk

where n is the principal quantum number, k = αZ with Z being the nucleus charge and α being the
variational parameter.

l = 0, 1, ..., (n− 1)

m = −l, (−l + 1), ..., (l − 1), l

165

166 APPENDIX F. HYDROGEN ORBITALS

φ0 → φ1,0,0

φ(~r) 1
~i · ∇φ(~r) −kxr
~j · ∇φ(~r) −kyr
~k · ∇φ(~r) −kzr
∇2φ(~r) k(kr−2)

r

Table F.1: Orbital expressions hydrogenicOrbitals : 1, 0, 0. Factor e−kr is omitted.

φ1 → φ2,0,0

φ(~r) kr − 2
~i · ∇φ(~r) −kx(kr−4)

2r
~j · ∇φ(~r) −ky(kr−4)

2r
~k · ∇φ(~r) −kz(kr−4)

2r

∇2φ(~r) k(kr−8)(kr−2)
4r

Table F.2: Orbital expressions hydrogenicOrbitals : 2, 0, 0. Factor e−
1
2kr is omitted.

φ2 → φ2,1,0

φ(~r) z
~i · ∇φ(~r) −kxz2r
~j · ∇φ(~r) −kyz2r
~k · ∇φ(~r) −kz2+2r

2r

∇2φ(~r) kz(kr−8)
4r

Table F.3: Orbital expressions hydrogenicOrbitals : 2, 1, 0. Factor e−
1
2kr is omitted.

φ3 → φ2,1,1

φ(~r) x
~i · ∇φ(~r) −kx2+2r

2r
~j · ∇φ(~r) −kxy2r
~k · ∇φ(~r) −kxz2r

∇2φ(~r) kx(kr−8)
4r

Table F.4: Orbital expressions hydrogenicOrbitals : 2, 1, 1. Factor e−
1
2kr is omitted.

167

φ4 → φ2,1,−1

φ(~r) y
~i · ∇φ(~r) −kxy2r
~j · ∇φ(~r) −ky2+2r

2r
~k · ∇φ(~r) −kyz2r

∇2φ(~r) ky(kr−8)
4r

Table F.5: Orbital expressions hydrogenicOrbitals : 2, 1, -1. Factor e−
1
2kr is omitted.

φ5 → φ3,0,0

φ(~r) 2k2r2 − 18kr + 27

~i · ∇φ(~r) −kx(2k2r2−30kr+81)
3r

~j · ∇φ(~r) −ky(2k2r2−30kr+81)
3r

~k · ∇φ(~r) −kz(2k2r2−30kr+81)
3r

∇2φ(~r)
k(kr−18)(2k2r2−18kr+27)

9r

Table F.6: Orbital expressions hydrogenicOrbitals : 3, 0, 0. Factor e−
1
3kr is omitted.

φ6 → φ3,1,0

φ(~r) z (kr − 6)
~i · ∇φ(~r) −kxz(kr−9)

3r
~j · ∇φ(~r) −kyz(kr−9)

3r
~k · ∇φ(~r) 3kr2−kz2(kr−9)−18r

3r

∇2φ(~r) kz(kr−18)(kr−6)
9r

Table F.7: Orbital expressions hydrogenicOrbitals : 3, 1, 0. Factor e−
1
3kr is omitted.

φ7 → φ3,1,1

φ(~r) x (kr − 6)

~i · ∇φ(~r) 3kr2−kx2(kr−9)−18r
3r

~j · ∇φ(~r) −kxy(kr−9)
3r

~k · ∇φ(~r) −kxz(kr−9)
3r

∇2φ(~r) kx(kr−18)(kr−6)
9r

Table F.8: Orbital expressions hydrogenicOrbitals : 3, 1, 1. Factor e−
1
3kr is omitted.

168 APPENDIX F. HYDROGEN ORBITALS

φ8 → φ3,1,−1

φ(~r) y (kr − 6)
~i · ∇φ(~r) −kxy(kr−9)

3r

~j · ∇φ(~r) 3kr2−ky2(kr−9)−18r
3r

~k · ∇φ(~r) −kyz(kr−9)
3r

∇2φ(~r) ky(kr−18)(kr−6)
9r

Table F.9: Orbital expressions hydrogenicOrbitals : 3, 1, -1. Factor e−
1
3kr is omitted.

φ9 → φ3,2,0

φ(~r) −r2 + 3z2

~i · ∇φ(~r) −x(k(−r
2+3z2)+6r)
3r

~j · ∇φ(~r) −y(k(−r
2+3z2)+6r)

3r

~k · ∇φ(~r) − z(k(−r
2+3z2)−12r)

3r

∇2φ(~r)
k(−r2+3z2)(kr−18)

9r

Table F.10: Orbital expressions hydrogenicOrbitals : 3, 2, 0. Factor e−
1
3kr is omitted.

φ10 → φ3,2,1

φ(~r) xz

~i · ∇φ(~r) − z(kx
2−3r)
3r

~j · ∇φ(~r) −kxyz3r

~k · ∇φ(~r) −x(kz
2−3r)
3r

∇2φ(~r) kxz(kr−18)
9r

Table F.11: Orbital expressions hydrogenicOrbitals : 3, 2, 1. Factor e−
1
3kr is omitted.

φ11 → φ3,2,−1

φ(~r) yz
~i · ∇φ(~r) −kxyz3r

~j · ∇φ(~r) − z(ky
2−3r)
3r

~k · ∇φ(~r) −y(kz
2−3r)
3r

∇2φ(~r) kyz(kr−18)
9r

Table F.12: Orbital expressions hydrogenicOrbitals : 3, 2, -1. Factor e−
1
3kr is omitted.

169

φ12 → φ3,2,2

φ(~r) x2 − y2

~i · ∇φ(~r) −x(k(x
2−y2)−6r)

3r

~j · ∇φ(~r) −y(k(x
2−y2)+6r)

3r

~k · ∇φ(~r) −kz(x
2−y2)
3r

∇2φ(~r)
k(x2−y2)(kr−18)

9r

Table F.13: Orbital expressions hydrogenicOrbitals : 3, 2, 2. Factor e−
1
3kr is omitted.

φ13 → φ3,2,−2

φ(~r) xy

~i · ∇φ(~r) −y(kx
2−3r)
3r

~j · ∇φ(~r) −x(ky
2−3r)
3r

~k · ∇φ(~r) −kxyz3r

∇2φ(~r) kxy(kr−18)
9r

Table F.14: Orbital expressions hydrogenicOrbitals : 3, 2, -2. Factor e−
1
3kr is omitted.

φ14 → φ4,0,0

φ(~r) k3r3 − 24k2r2 + 144kr − 192

~i · ∇φ(~r) −kx(k
3r3−36k2r2+336kr−768)

4r

~j · ∇φ(~r) −ky(k
3r3−36k2r2+336kr−768)

4r

~k · ∇φ(~r) −kz(k
3r3−36k2r2+336kr−768)

4r

∇2φ(~r)
k(kr−32)(k3r3−24k2r2+144kr−192)

16r

Table F.15: Orbital expressions hydrogenicOrbitals : 4, 0, 0. Factor e−
1
4kr is omitted.

φ15 → φ4,1,0

φ(~r) z
(
k2r2 − 20kr + 80

)
~i · ∇φ(~r) −kxz(kr−20)(kr−8)

4r
~j · ∇φ(~r) −kyz(kr−20)(kr−8)

4r
~k · ∇φ(~r) 4k2r3−80kr2−kz2(kr−20)(kr−8)+320r

4r

∇2φ(~r)
kz(kr−32)(k2r2−20kr+80)

16r

Table F.16: Orbital expressions hydrogenicOrbitals : 4, 1, 0. Factor e−
1
4kr is omitted.

170 APPENDIX F. HYDROGEN ORBITALS

φ16 → φ4,1,1

φ(~r) x
(
k2r2 − 20kr + 80

)
~i · ∇φ(~r) 4k2r3−80kr2−kx2(kr−20)(kr−8)+320r

4r
~j · ∇φ(~r) −kxy(kr−20)(kr−8)

4r
~k · ∇φ(~r) −kxz(kr−20)(kr−8)

4r

∇2φ(~r)
kx(kr−32)(k2r2−20kr+80)

16r

Table F.17: Orbital expressions hydrogenicOrbitals : 4, 1, 1. Factor e−
1
4kr is omitted.

φ17 → φ4,1,−1

φ(~r) y
(
k2r2 − 20kr + 80

)
~i · ∇φ(~r) −kxy(kr−20)(kr−8)

4r

~j · ∇φ(~r) 4k2r3−80kr2−ky2(kr−20)(kr−8)+320r
4r

~k · ∇φ(~r) −kyz(kr−20)(kr−8)
4r

∇2φ(~r)
ky(kr−32)(k2r2−20kr+80)

16r

Table F.18: Orbital expressions hydrogenicOrbitals : 4, 1, -1. Factor e−
1
4kr is omitted.

Bibliography

[1] S. Reimann, J. Høgberget, M. Hjorth-Jensen, and S. K. Bogner.
In-medium similarity renormalization group approach studies of
quantum dots. In preparation, 2013.

[2] Christoffer Hirth. Studies of quantum dots: Ab initio coupled-
cluster analysis using OpenCL and GPU programming. Master’s
thesis, University of Oslo, 2012.

[3] Moskowitz Kalos. A new Look at Correlations in Atomic and
Molecular Systems. Application of Fermion Monte Carlo Varia-
tional Method. Int. J. Quant. Chem., XX:1107, 1981.

[4] S. Datta, S. A. Alexander, and R. L. Coldwell. Properties of
selected diatomics using variational Monte Carlo methods. J.
Chem. Phys., 120:3642, 2004.

[5] Matthias Degroote. Faddeev random phase approximation ap-
plied to molecules. Eur. Phys. J. ST, 218:1, 2013.

[6] Harry Partridge. Near Hartree–Fock quality GTO basis sets for
the first- and third-row atoms. J. Chem. Phys., 90:1043, 1989.

[7] A Badinski, P D Haynes, J R Trail, and R J Needs. Methods
for calculating forces within quantum Monte Carlo simulations.
J. Phys.: Condens. Matter, 22:074202, 2010.

[8] Veronica K. B. Olsen. Full Configuration Interaction Simulation
of Quantum Dots. Master’s thesis, University of Oslo, 2012.

[9] Jørgen Høgberget. Git Repository: LibBorealis, 2013.
http://www.github.com/jorgehog/QMC2.

[10] Murat Barisik and Ali Beskok. Equilibrium molecular dynam-
ics studies on nanoscale-confined fluids. Microfluid Nanofluid,
11(3):269, September 2011.

[11] Karl P. Travis and Keith E. Gubbins. Poiseuille flow of Lennard-
Jones fluids in narrow slit pores. J. Chem. Phys, 112:1984, 2000.

[12] Charles J. Murray. The SUPERMEN. New York: Wiley, 1997.

[13] Hans Petter Langtangen. Python Scripting for Computational
Science. Springer, 3rd edition, 2008.

171

172 BIBLIOGRAPHY

[14] Mark Lutz. Programming Python - powerful object-oriented pro-
gramming. O’Reilly, 3rd edition, 2006.

[15] Hans Petter Langtangen. A primer on scientific programming
with Python. Springer, Berlin; Heidelberg; New York, 2011.

[16] Gerard O’Regan. A Brief History of Computing, Second Edition.
Springer, 2012.

[17] David Griffiths. Introduction to Quantum Mechanics. Pearson,
2nd edition edition, 2005.

[18] I. Shavitt and R. J. Bartlett. Many-Body Methods in Chemistry
and Physics. Cambridge University Press, Cambridge, 2009.

[19] Sigve B. Skattum. Time Evolution of Quantum Dots. Master’s
thesis, University of Oslo, 2013.

[20] J. J. Mares et al. Periodic reactions and quantum diffusion.
http://www.fzu.cz/ sestak/yyx/periodic%20reactions.pdf.

[21] B.L. Hammond, Jr. W. A. Lester, and P. J. Reynolds. Monte
Carlo Methods in Ab Initio Quantum Chemistry. World Scien-
tific Publishing Co., 1994.

[22] C. W Gardiner. Handbook of stochastic methods for physics,
chemistry, and the natural sciences. Springer-Verlag, Berlin, 3rd
edition, 2004.

[23] H. Risken and H. Haken. The Fokker-Planck Equation: Methods
of Solution and Applications Second Edition. Springer, 1989.

[24] W. T Coffey, Y. P Kalmykov, and J. T Waldron. The Langevin
Equation: With Applications to Stochastic Problems in Physics,
Chemistry, and Electrical Engineering. . World Scientific, Sin-
gapore, 2004.

[25] C.P. Robert and G. Casella. Monte Carlo Statistical Methods.
Springer Verlag, 2004.

[26] Morten Hjorth-Jensen. Computational Physics. 2010.

[27] J. J. Sakurai. Modern Quantum Mechanics. Addison-Wesley,
New York, Revised ed edition, 1994.

[28] Lars Eivind Lerv̊ag. VMC Calculations of Two-dimensional
Quantum Dots. Master’s thesis, University of Oslo, 2010.

[29] Daniel Andres Nissenbaum. The stochastic gradient approxima-
tion: an application to li nanoclusters. PhD thesis, Northeastern
University, 2008.

[30] Claudia Filippi and C. J. Umrigar. Multiconfiguration wave
function for quantum Monte Carlo calculations of first-row di-
atomic molecules. J. Chem. Phys, 105:213, July 1996.

[31] G.H. Golub and C.F. Van Loan. Matrix computations, volume 3.
Johns Hopkins Univ Press, 1996.

[32] A. Harju, B. Barbiellini, S. Siljamäki, R. M. Nieminen,
and G. Ortiz. Stochastic Gradient Approximation: An
Efficient Method to Optimize Many-Body Wave Functions.
Phys. Rev. Lett., page 1173, August 1997.

BIBLIOGRAPHY 173

[33] Stefan Klein, Josien P. W. Pluim, Marius Staring, and Max A.
Viergever. Adaptive Stochastic Gradient Descent Optimisation
for Image Registration. Int. J. Comput. Vision, page 227, 2009.

[34] Jon Magne Leinaas. Non-Relativistic Quantum Mechanics. lec-
ture notes FYS4110.

[35] H. Flyvbjerg and H. G. Petersen. Error estimates on averages
of correlated data. J. Chem. Phys, 91:461, 1989.

[36] David C. Lay. Linear Algebra and its Applications. Pearson, 4
edition, 2012.

[37] Jaime Fernández Rico, Rafael López, Ignacio Ema, and
Guillermo Ramı́rez. Translation of real solid spherical harmon-
ics. Int. J. Quant. Chem., 113:1544, 2013.

[38] T. Helgaker, P. Jørgensen, and J. Olsen. Molecular Electronic-
Structure Theory. Wiley, Chichester, 2000.

[39] A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V.
Kamat. Quantum dot solar cells. Tuning photoresponse through
size and shape control of CdSe-TiO2 architecture. J. Am. Chem.
Soc., 130:4007, March 2008.

[40] G. Park, O.B. Shchekin, D.L. Huffaker, and D.G. Deppe. Low-
threshold oxide-confined 1.3- micrometer quantum-dot laser.
IEEE Photon. Technol. Lett., 12:230, 2000.

[41] E.T. Ben-Ari. Nanoscale quantum dots hold promise for cancer
applications. J. Natl. Cancer Inst., 90:502, 2003.

[42] D. Loss and D. P. Vincenzo. Quantum computation with quan-
tum dots. Phys. Rev. A, 57:120, 1998.

[43] R. V. Shenoi, J. Hou, Y. Sharma, J. Shao, T. E. Vandervelde,
and S. Krishna. Low strain quantum dots in a double well in-
frared detector. pages 708207–708207–6, 2008.

[44] Yang Min Wang. Coupled-Cluster Studies of Double Quantum
Dots. Master’s thesis, University of Oslo, 2011.

[45] M. Taut. Two electrons in an external oscillator potential:
Particular analytic solutions of a Coulomb correlation problem.
Phys. Rev. A, 48:3561, Nov 1993.

[46] M. Pedersen Lohne, G. Hagen, M. Hjorth-Jensen, S. Kvaal, and
F. Pederiva. Ab initio computation of the energies of circular
quantum dots. Phys. Rev. B, 84:115302, Sep 2011.

[47] Sarah Reimann. Quantum-mechanical systems in traps and Sim-
ilarity Renormalization Group theory. Master’s thesis, Univer-
sity of Oslo, 2013.

[48] E. Wigner. On the Interaction of Electrons in Metals. Phys.
Rev., 46:1002, Dec 1934.

[49] F Cavaliere, U De Giovannini, M Sassetti, and B Kramer. Trans-
port properties of quantum dots in the Wigner molecule regime.
New J. Phys., 11:123004, 2009.

174 BIBLIOGRAPHY

[50] Lang Zeng, W. Geist, W. Y. Ruan, C. J. Umrigar, and M. Y.
Chou. Path to Wigner localization in circular quantum dots.
Phys. Rev. B, 79:235334, Jun 2009.

[51] Constantine Yannouleas and Uzi Landman. Symmetry breaking
and Wigner molecules in few-electron quantum dots. phys. stat.
sol. (a), 203:1160, 2006.

[52] S.A. Mikhailova and K. Ziegler. Floating Wigner molecules and
possible phase transitions in quantum dots. Eur. Phys. J. B,
28:117, 2002.

[53] N. Akman and M. Tomak. The Wigner molecule in a 2D quan-
tum dot. physica e., 4:277, 1999.

[54] C. C. Grimes and G. Adams. Evidence for a Liquid-to-Crystal
Phase Transition in a Classical, Two-Dimensional Sheet of Elec-
trons. Phys. Rev. Lett., 42:795, Mar 1979.

[55] Jongsoo Yoon, C. C. Li, D. Shahar, D. C. Tsui, and M. Shayegan.
Wigner Crystallization and Metal-Insulator Transition of Two-
Dimensional Holes in GaAs at B = 0. Phys. Rev. Lett., 82:1744,
Feb 1999.

[56] F. Bolton and U. Rössler. Classical model of a Wigner crystal in
a quantum dot. Superlattices and Microstructures, 13:139, 1993.

[57] V Fock. Bemerkung zum Virialsatz. Z. Phys., 63:855, November
1930.

[58] H. D. Young, R.A. Freedman, and L.A. Ford. Sears and Zeman-
sky’s University Physics. Pearson, Addison-Wesley, 12 edition,
2008.

[59] Adri C. T. van Duin, Siddharth Dasgupta, Francois Lorant, and
William A. Goddard. ReaxFF: A Reactive Force Field for Hy-
drocarbons. J. Phys. Chem. A, 105:9396, 2001.

[60] Conrad Sanderson. Armadillo: An Open Source C++ Linear
Algebra Library for Fast Prototyping and Computationally In-
tensive Experiments. Technical report, NICTA, 2010.

[61] H̊avard Sandsdalen. Variational Monte Carlo studies of Atoms.
Master’s thesis, University of Oslo, 2010.

[62] Aurel Bulgac and Michael McNeil Forbes. Use of the discrete
variable representation basis in nuclear physics. Phys. Rev. C,
87:051301, May 2013.

[63] A. Roggero, F. Pederiva, and A. Mukherjee. Quantum Monte
Carlo with Coupled-Cluster wave functions. arXiv:1304.1549
[nucl-th].

[64] Matplotlib website, May 2013. http://matplotlib.org.

[65] PySide website, May 2013.
qt-project.org/wiki/Category:LanguageBindings::PySide.

[66] SymPy website, May 2013. http://sympy.org.

	Introduction
	I Theory
	Scientific Programming
	Programming Languages
	High-level Languages
	Low-level Languages

	Object Orientation
	A Brief Introduction to Essential Concepts
	Inheritance
	Pointers, Typecasting and Virtual Functions
	Polymorphism
	Const Correctness
	Accessibility levels and Friend classes
	Example: PotionGame

	Structuring the code
	File Structures
	Class Structures

	Quantum Monte-Carlo
	Modelling Diffusion
	Stating the Schrödinger Equation as a Diffusion Problem

	Solving the Diffusion Problem
	Isotropic Diffusion
	Anisotropic Diffusion and the Fokker-Planck equation
	Connecting Anisotropic - and Isotropic Diffusion Models

	Diffusive Equilibrium Constraints
	Detailed Balance
	Ergodicity

	The Metropolis Algorithm
	The Process of Branching
	The Trial Wave Function
	Many-body Wave Functions
	Choosing the Trial Wave Function
	Selecting Optimal Variational Parameters
	Calculating Expectation Values
	Normalization

	Gradient Descent Methods
	General Gradient Descent
	Stochastic Gradient Descent
	Adaptive Stochastic Gradient Descent

	Variational Monte-Carlo
	Motivating the use of Diffusion Theory
	Implementation
	Limitations

	Diffusion Monte-Carlo
	Implementation
	Sampling the Energy
	Limitations
	Fixed node approximation

	Estimating One-body Densities
	Estimating the Exact Ground State Density
	Radial Densities

	Estimating the Statistical Error
	The Variance and Standard Deviates
	The Covariance and correlated samples
	The Deviate from the Exact Mean
	Blocking
	Variance Estimators

	Generalization and Optimization
	Underlying Assumptions and Goals
	Assumptions
	Generalization Goals
	Optimization Goals

	Specifics Regarding Generalization
	Generalization Goals (i)-(vii)
	Generalization Goal (vi) and Expanded bases
	Generalization Goal (viii)

	Optimizations due to a Single two-level Determinant
	Optimizations due to Single-particle Moves
	Optimizing the Slater determinant ratio
	Optimizing the inverse Slater matrix
	Optimizing the Padé Jastrow factor Ratio

	Optimizing the Padé Jastrow Derivative Ratios
	The Gradient
	The Laplacian

	Tabulating Recalculated Data
	The relative distance matrix
	The Slater related matrices
	The Padé Jastrow gradient
	The single-particle Wave Functions

	CPU Cache Optimization

	Modelled Systems
	Atomic Systems
	The Single-particle Basis
	Atoms
	Homonuclear Diatomic Molecules

	Quantum Dots
	The Single Particle Basis
	Two - and Three-dimensional Quantum Dots
	Double-well Quantum Dots

	II Results
	Results
	Optimization Results
	The Non-interacting Case
	Quantum Dots
	Ground State Energies
	One-body Densities
	Lowering the frequency
	Simulating a Double-well

	Atoms
	Ground State Energies
	One-body densities

	Homonuclear Diatomic Molecules
	Ground State Energies
	One-body densities
	Parameterizing Force Fields

	Conclusions
	Dirac Notation
	DCViz: Visualization of Data
	Basic Usage
	The Terminal Client
	The Application Programming Interface (API)

	Auto-generation with SymPy
	Usage
	Symbolic Algebra
	Exporting C++ and Latex Code
	Calculating Derivatives

	Using the auto-generation Script
	Generating Latex code
	Generating C++ code

	Harmonic Oscillator Orbitals 2D
	Harmonic Oscillator Orbitals 3D
	Hydrogen Orbitals
	Bibliography

