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INTRODUCTION 

Background 

Cell growth and development depends on regulatory molecules, such as growth factors. 

Growth factors bind to growth factor receptors at the surface of cells. One of the first 

growth factors to be isolated and described was shown to stimulate proliferation of 

epidermal cells and was thus named epidermal growth factor (EGF) (4). A decade later, 

the EGF receptor (EGFR) was identified (5). EGFR is part of the ErbB family of 

proteins, which includes 4 members: the EGFR (ErbB1), ErbB2 (HER2/Neu), ErbB3 and 

ErbB4. The importance of the ErbB proteins during embryogenesis and growth control is 

exemplified by studies of knock-out mice. Mice lacking EGFR die prematurely due to 

respiratory failure (6), while embryos lacking ErbB2 die due to defective cardiac 

development (7). Besides their normal physiological role,  the ErbB proteins are linked to 

cancer, and there is sequence homology between the EGFR and the viral oncogene v-

ErbB (8). Several studies have reported overexpression of ErbB proteins in tumors (9-

14). Consequently, ErbB proteins are molecular targets for cancer therapy. Over 20 years 

of drug development has resulted in the clinical approval of several ErbB inhibitors. 

Unfortunately, only a subgroup of cancer patients responds to anti-ErbB therapeutics 

(reviewed in (1)). Gaining insight into processes underlying ErbB protein function  

should result in development of new drugs. 

ErbB protein architecture 

Like most growth factor receptors, the ErbBs are single-pass transmembrane proteins 

with an approximate size of 180-kDa. They are expressed in various cells of epithelial, 

mesenchymal and neuronal origin (15). Due to their enzymatic capacity, the transfer of 

phosphate groups to tyrosine residues, the ErbB proteins (ErbB1-4) are categorized as the 

subclass I of the receptor tyrosine kinase superfamily. All members of the ErbB family 

have a common molecular architecture comprising an extracellular ligand binding region, 

a transmembrane region and an intracellular region with a tyrosine kinase domain flanked 

by a juxtamembrane domain and a cytoplasmic tail (C-tail) (Figure 1). The modular 
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structure of the extracellular part can be described with an I-II-III-IV nomenclature 

reflecting four distinct protein domains of two different types; leucine rich repeat (LRR) 

domains I and III and 

cysteine rich (CR) 

domains II and IV. 

LRR motifs are 

generally involved in 

protein-protein 

interactions (16). 

Accordingly, domains 

I and III each 

contribute with a 

ligand binding surface, 

with low and high 

ligand interaction 

affinities, respectively. 

Disulfide-bonded 

cysteines in domain II 

expose a loop (a �-

hairpin termed the 

“dimerization arm”) 

that reaches across the dimer interface in order to interact with the domain II-loop of 

another ErbB (reviewed in (17)). At the intracellular level, the kinase domain has a 

bilobular structure (N- and C-terminal lobes). A regulatory loop within the kinase can 

adopt an open configuration permitting access to adenosine triphosphate (ATP) in a cleft 

enclosed by the two lobes, enabling transfer of phosphate to acceptor tyrosines (18). The 

C-tail is a regulatory region, targeted for phosphorylation at tyrosine residues either by 

intrinsic (autophosphorylation) or neighbouring N-terminal lobes (transphosphorylation).  

Figure 1. General structure and conformational states of ErbB 
proteins. All ErbB proteins, except ErbB2, can adopt the tethered receptor 
conformation. Ligand binding stabilizes the extended conformation, where 
the dimerization arm is exposed and the receptors can transphosphorylate 
each other upon homo- or heterodimerization.  P=phosphotyrosine 

  

ErbB proteins may adopt distinct conformational states. In the tethered (also called 

inactive) conformation, the extracellular domains II and IV form an intramolecular tether 
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where the dimerization arm is occluded. This closes the intracellular ATP-regulatory 

loop, forming a kinase domain with moderate catalytic activity (19, 20). In the extended 

(active) conformation, domains II and IV do not form contacts, the dimerization arm is 

exposed, and the kinase domain becomes accessible to activation. Once two monomers 

are in the extended conformation, dimerization (pairing) can occur between two receptors 

of the same type (homodimerization) or between two different ErbB members 

(heterodimerization). Extracellular dimerization leads to asymmetric kinase interactions: 

the C-terminal lobe of one kinase domain interacts with the N-terminal lobe of the other. 

This stabilizes the asymmetric kinase dimer and elevates the catalytic activity (20). The 

activated kinase can then transphosphorylate the dimerizing partners C-tail (see Figure 1).

 The active and inactive conformations are in equilibrium on the cellular surface, 

where up to ~20% of EGFRs have been reported to exist in an extended conformation in 

the absence of added ligand (21), and several reports have demonstrated a basal level of 

ligand-independent ErbB activity. This especially applies to cells overexpressing ErbB 

proteins (22-25). Binding of ligand, however, strongly shifts the equilibrium towards the 

extended conformation.  

 Structural variations exist between ErbB proteins. For the “orphan” receptor 

ErbB2, no known ligand has yet been identified. Crystallization studies revealed the 

presence of specific residues in domains I and III of ErbB2, interfering with ligand 

binding (26). Additionally, the disulfide-bonded cysteines in domain II have a different 

orientation in ErbB2 (26). The dimerization arm of ErbB2 is therefore constantly 

projected outwards, “locking” the orphan ErbB2 in an extended conformation. ErbB3, on 

the other hand, has been suggested to be unable to bind ATP due to amino acid 

substitutions in the tyrosine kinase domain (27).  

 Sequence variation between the ligand binding regions of EGFR, ErbB3, and 

ErbB4 results in binding to specific sets of extracellular ligands. The EGF family of 

ligands includes EGF, transforming growth factor-� (TGF�) and amphiregulin, which 

bind to EGFR. �-cellulin, heparin-binding EGF (HB-EGF) and epiregulin interacts with 

both EGFR and ErbB4. The neuregulins (NRGs) (NRG1 and NRG2) bind both ErbB3 

and ErbB4, while NRG3 and NRG4 bind to ErbB4 only (28).  
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Signaling 

Activation of ErbB proteins may result in a variety of biological outcomes, both 

physiological and pathological. Activated ErbB dimers generate cellular responses by 

initiating intracellular signaling pathways. Accumulating knowledge has transformed the 

view on the ErbB network from a simple linear pathway into a complex multilayered 

network, tightly regulated by positive and negative feedback (29, 30). The specificity and 

magnitude of ErbB-mediated signaling is determined by several factors: cellular context, 

the identity of the ligand, the identity of the dimerization partners, positive and negative 

regulators of the receptors, and most importantly the various proteins which use 

phosphotyrosines in the C-tail as docking sites to associate with and recruit a series of 

downstream signal transducers (31).  

 The two key signaling pathways activated by the ErbB proteins are the mitogen-

activated protein kinase (MAPK) (also named Erk 1/2) pathway, controlling gene 

transcription, cell-cycle progression, and cell proliferation as well as the 

phosphatidylinositol 3` kinase B (PI3K) pathway, which promotes anti-apoptotic 

signaling and cell survival (1) (Figure 2A). It was recently suggested that activated 

EGFRs may also induce apoptosis, reflecting the complexity of the ErbB network (32).   
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Figure 2. A) Signal transduction pathways controlled by 
activation of ErbB proteins. The two major intracellular 
pathways are the RAS-RAF-MEK-MAPK pathway, and the 
PI3K-Akt pathway. The result of ErbB-dependent 
intracellular signaling is the activation of the transcription of 
specific genes which induce cell proliferation, block 
apoptosis, activate invasion and metastasis and stimulate 
tumor-induced angiogenesis. Basic fibroblast growth factor 
(bFGF) and Vascular endothelial growth factor (VEGF) are 
also important. Reproduced with permission from (1), 
Copyright Massachusetts Medical Society. B) Tyrosine (Y) 
phosphorylation in the C-terminus. Biological effects of 
phosphorylation of each tyrosine are noted. Adapted by 
permission from Macmillan Publishers Ltd: [Nature 
Reviews Clinical Oncology] (3), copyright (2010). The 
figure legends are modified.  

Phosphorylation of the C-tail dictates the specificity of the cellular response by binding 

various adaptor proteins (3) (Figure 2B). Phosphorylation of tyrosine 1068 or 1086 in the 

EGFR, for example, recruits the adaptor protein Growth factor receptor-bound protein 2 

(GRB2) which activates the Ras exchange factor Son of Sevenless (Sos) to initiate a 
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signal amplification cascade (RAS-RAF-MEK-MAPK) leading to MAPK (Erk 1/2) 

activation. Phosphorylation of tyrosine residue 1173, in contrast, activates a negative 

feedback loop by binding the protein-tyrosine phosphatase 1 (SHP1), leading to 

attenuation of ErbB-mediated MAPK (Erk 1/2) activity (33). 

Endocytosis 

Sustained ErbB-signaling can lead to carcinogenesis (reviewed in (28, 34)). An important 

way by which cells regulate ErbB signaling is endocytosis; the uptake of extracellular 

material and membrane components into the cell interior. Reducing the number of 

receptors from the surface desensitizes the cell to external stimuli. Endocytosis is 

therefore a major negative feedback loop that prevents excessive ligand-induced 

signaling. It is becoming evident that receptor signaling and endocytosis are interactive 

processes (reviewed in (35)). The former initiates the latter, but endocytosis also 

regulates the type and intensity of signaling. Accumulation of activated receptors in 

intracellular compartments is sometimes necessary to achieve full signal activation. The 

compartments can act as signaling platforms, switching on and off various signals 

(reviewed in (36)). 

 Multiple pathways of endocytosis have been identified and classified according to 

the cellular proteins that control them, their morphological characteristics, sensitivity to 

chemical inhibitors, and their functional difference of internalizing and routing specific 

cargo (reviewed in (37)). Common to all pathways is the ability to internalize membrane 

proteins, lipids, nutrients, extracellular fluid or ligands by invagination of the plasma 

membrane into a budding structure pinching off to form vesicle (Figure 3). Vesicles 

derived from the various pathways fuse with sorting compartments called early 

endosomes. These structures are characterized by an acidic environment due to proton 

pumps in the membrane and are highly dynamic, being capable of undergoing homotypic 

fusion (reviewed in (38)). Further sorting of receptors to other compartments is mediated 

by key protein and lipid components present in early endosomes, such as the Ras-

associated binding (Rab) proteins (39). These GTPases bind in their active state to 

intracellular membranes and recruit Rab effectors to exert their roles in budding, fusion 

and motility of intracellular vesicles. One such effector is the Early Endosomal Antigen-1 
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(EEA1) which mediates fusion between early endosomes. Because of its specific 

localization, EEA1 is the most common marker used for early endosomes (38). If the 

receptors are to be sorted for recycling, the membranes of early endosomes undergo 

extensive tubulation, and receptors are inserted into such tubuli and sent back to the 

plasma membrane (37). Routing of receptors for degradation, on the other hand, requires 

the presence of specific sorting signals conjugated to the C-tails (reviewed in (40)). These 

signals promote the generation of microdomains that concentrate the receptors into inner 

vesicles in endosomes, instead of delivery to the tubulating, recycling membranes. The 

inner vesicles are formed by inward budding of the limiting endosomal membrane, thus 

named intralumenal vesicles. Cargo is delivered to intralumenal vesicles via a series of 

Endosomal Sorting Complexes Required for Transport (ESCRT) complexes (ESCRT-I to 

–III) (reviewed in (41)). ESCRT-0 is the first protein recruited to early endosomes by 

interaction with sorting signals of receptors, leading to retention of cargo within 

microdomains in early endosomes. ESCRT-I-III complexes are then sequentially 

recruited (42). Sorting signals recruit ESCRT-I to late endosomal membranes, where 

ESCRT-II and ESCRT-III subsequently bind, leading to intralumenal vesicle formation 

and generation of multivesicular bodies (MVBs). Fusion of MVBs with lysosomes 

completes the receptor degradation route. 
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 The two major ways by which ErbB proteins can internalize are clathrin-

dependent and clathrin-independent endocytosis (2) (see Figure 3 for an overview). 

 

Figure 3.  
Clathrin-dependent and -
independent internalization 
pathways. Internalized cargo 
is trafficked into early 
endosomes, where it is sorted 
either back to the cell surface 
(via recycling endosomes) or 
into other compartments for 
degradation. Endosomes that 
are not recycled mature into 
late endosomes and 
multivesicular bodies 
(MVBs), which fuse with 
lysosomes harboring 
proteolytic enzymes, 
resulting in degradation of 
internalized cargo. Figure 
legend is modified. Reprinted 
with permission from 
Macmillan Publishers Ltd: 
[Nature Reviews Molecular 
Cell Biology] (2), copyright 
(2011). 

    Clathrin-dependent endocytosis 

Membrane invagination during clathrin-mediated endocytosis is characterized and driven 

by oligomerization of the structural protein clathrin into a protein coat (Figure 3). 

Formation of the budding structure, called a clathrin-coated pit (CCP), is initiated by 

adaptor proteins which interact both with cargo and clathrin to promote CCP assembly 

(43). The adaptor protein complex 2 (AP2) is recruited to the plasma membrane to 

function as a key mediator of cargo selection and coat formation (reviewed in (44)). 

Binding motifs in AP2 interact with and recruit clathrin to initiate polymerization of the 

clathrin triskelia. AP2 is a heterotetrameric complex consisting of four subunits: � and �2 

adaptins, �2 and �2 (45). It interacts with signaling receptors by binding to tyrosine-

based and dileucine motifs (46). Tyr974 has been identified as the AP2 binding motif in 

EGFR (see Figure 2B), but interaction of these motifs with AP2 does not seem to be  

important for clathrin-dependent endocytosis of the EGFR (47).  

11 
 



Since the plasma membrane is rigid and stabilized by the cytoskeleton, invagination is an 

energetically demanding process. Actin polymerization is considered to be necessary to 

modulate membrane curvature. So is the presence of additional adaptor proteins, 

including Epsin and Eps15 (48, 49). Epsin and Eps15 can link cargo, such as modified 

EGFR, to clathrin, and thereby aid in curving the membrane into a CCP (48). As the CCP 

invaginates further, the GTPase dynamin is recruited to the vesicle neck by BAR domain-

containing proteins (reviewed in (50)). Dynamin pinches off the vesicle from the 

membrane upon GTP hydrolysis, releasing it into the cell as a clathrin-coated vesicle 

(CCV) (2). The final step of CCV progression involves vesicle uncoating. The ATPase 

heat shock cognate 70 (HSC70) releases clathrin and the adaptor proteins into the cytosol, 

ready to be reused (51). The naked vesicle and its cargo fuse with, or mature into, early 

endosomes. 

    Clathrin-independent endocytosis 

Clathrin-independent endocytosis was first suggested to exist over 20 years ago (52). 

Since then, several clathrin-independent pathways have been characterized. It should be 

noted that the endocytic routes of internalization are closely related and are often hard to 

separate. Some studies even imply that similar cellular proteins control the different 

pathways (53-55). The different routes are not mutually exclusive, but rather interact with 

each other. Inhibition of one route may result in upregulation of another in the same cell. 

They can act in parallel, with the relative proportions of each depending on cell type and 

cargo context. Ligand-bound EGFR is primarily internalized clathrin-dependently, 

however, increase in ligand concentration can lead to a substantial fraction of receptors 

being endocytosed through a clathrin-independent route (56). Some characteristics, 

including morphological traits and protein dependency, are considered as specific 

markers for the different pathways.    

Caveolin-dependent endocytosis 

Caveolae means small caves, and these structures are flask-shaped invaginations of the 

plasma membrane. The vesicles are enriched with and dependent on the protein caveolin, 

whose expression itself is sufficient do drive formation of the typical flask-shaped 
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caveolae (57). Formation and function of caveolae is also dependent on the cytoplasmic 

coat component cavin (58). The model predicts that caveolin initially oligomerizes to 

form membrane domains enriched in phosphatidylserine and cholesterol. Cavin then 

recognizes and binds these domains, stabilizing the membrane curvature of caveolae. The 

requirement for actin and the vesicle scission GTPase dynamin has been implicated in 

caveolin-dependent endocytosis (reviewed in (59)). Whether caveolae may or may not 

pinch off from the membrane is currently unclear, and it is suggested that they normally 

are immobile structures at the plasma membrane (reviewed in (52)). 

Clathrin- and caveolin-independent endocytosis 

Endocytosis can also take place in the absence of clathrin and caveolin, as exemplified by 

viral entry of SV40 into cells (60). Several subtypes of this pathway have been identified, 

but the common denominator is cholesterol for clustering of lipid-anchored proteins into 

lipid microdomains at the plasma membrane. These highly ordered domains are often 

called “lipid rafts” and are considered to play a role in receptor trafficking and signaling 

(61). While cholesterol depletion disrupts this pathway in general, some of the subtypes 

can be distinguished by dynamin dependence. The CLIC/GEEC pathway, for example, is 

not inhibited by overexpression of mutant dynamin (59). It is hypothesized that 

membrane scission is driven by a synergy between cholesterol and actin instead of 

dynamin to produce vesicles from either tubular or vesicular budding structures (Figure 

3). 

Macropinocytosis 

Macropinocytosis is bulk uptake whereby large areas of the plasma membrane, 

extracellular fluid, nutrients and antigens are internalized. This pathway is associated 

with numerous processes, such as cell migration, tumor progression, antigen presentation, 

and pathogen entry (reviewed in (62)). It is initiated when the actin cytoskeleton 

rearranges to form ruffled membrane extensions that fuse with themselves or back with 

the plasma membrane, trapping cargo and extracellular components between these sites. 

The entire region is then internalized into vesicles that are considerably larger than 

CCVs. They are called macropinosomes and represent an early endosomal stage also 

positive for EEA1 (63). Although the uptake of cargo is considered to be non-selective, 
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the process occurs in response to specific stimuli, such as growth factors (64). 

Stimulation with high concentrations of EGF initiates macropinocytosis in the human 

epidermoid carcinoma cell line A431 (65-67). Also in other cell types circular dorsal 

membrane ruffles, typical for macropinocytosis, are formed in response to strong EGFR 

stimulation. This has been shown to concentrate EGFRs at these regions and induce rapid 

internalization of a large portion of the receptors from the surface, independently of 

traditional vacuoles such as CCVs and caveolae (68). 

 Although internalization by macropinocytosis was discovered early, the 

molecules that control it and its relation to other pathways are not clear. Membrane 

ruffling, mediated by rearrangement of actin filaments, is considered a prerequisite for 

macropinocytosis. However, several studies indicate that ruffling and EGF-stimulated 

macropinocytosis are independent cellular processes (reviewed in (37)).  

    Ubiquitin in receptor endocytosis 

The processes that underlie down-regulation of ErbB proteins include internalization by 

any of the endocytic pathways described above and subsequent subcellular degradation. 

The best characterized sorting signal for routing receptors to the degradation pathway is 

ubiquitin (Ub), a 76-amino acid protein that can affect a variety of cellular processes (69). 

Ub is conjugated to the �-amino group of a lysine residue in a target protein in a three-

step cascade called ubiquitination. First, an Ub-activating enzyme (E1) activates Ub in an 

ATP-dependent reaction. Ub is then transferred to the active site of a Ub-conjugating 

enzyme (E2). Finally, a Ub-protein ligase (E3) catalyzes the transfer of Ub from E2 to the 

substrate. As Ub itself carries several conserved acceptor lysines (Lys6-11-27-29-33-48-

63), Ub can itself be ubiquitinated, and different Ub-conjugation patterns can arise 

(reviewed in (70)). The distinct ubiquitination patterns imply specific consequences for 

the modified substrate. Conjugation of a single Ub to a protein (monoubiquitination), or 

conjugation of multiple single Ubs to several lysines in the substrate (multiple 

monoubiquitination), can regulate endocytosis, lysosomal routing, meiosis and chromatin 

remodeling. The substrate can also be modified with Ub chains of various length and 

linkages (polyubiquitination) (reviewed in (71)). Lys48-linked polyubiquitination, 

consisting of a minimal unit of four Ubs, targets proteins for degradation in the 26S 
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proteasome. Lys63-linked Ub-chains are among others implicated in kinase activation, 

endocytosis and DNA-repair (70). 

 Ubiquitinated receptors are recognized by proteins harboring ubiquitin-interaction 

motifs (UIMs). The adaptor proteins epsin1 and Eps15 contain UIMs and thereby 

efficiently interact with and recruit ubiquitinated ErbB proteins to CCPs (72). Ubiquitin 

chains are recognized by ESCRT sorting complexes, and it is well-known that 

ubiquitination is required as sorting signal for routing ErbB proteins to intralumenal 

vesicles and lysosomes (40). However, it is still debated whether ubiquitination is 

necessary for the internalization step of receptor endocytosis (73-75). Our group has 

recently demonstrated that polyubiquitination of the EGFR is sufficient to induce 

constitutive endocytosis of the EGFR (76). For the other ErbB-members, the effect of Ub 

on receptor internalization and endocytosis is less well characterized. A recent study has 

however demonstrated that Lys48- and Lys63-linked polyubiquitination is important in 

trafficking and degradation of ErbB2 (77).  

 

Functional differences between ErbB proteins 

EGFR is the prototypical member of the ErbB family. Upon binding ligand, it readily 

adopts the extended conformation, it forms homo- or hetero- dimers, activates the 

intracellular kinase and is endocytosed. Important functional differences do however 

exist between the ErbB proteins. 

 ErbB2 has a constantly exposed dimerization arm and is the preferred 

dimerization partner of the other ErbB members (78). But it is unclear whether ErbB2 is 

capable of forming homodimers. While some papers suggest that ErbB2 cannot 

participate in homodimerization (79), others show ErbB2 in homodimers upon receptor 

overexpression (80). ErbB2 is capable of dimerizing with any of the other receptors and 

once activated upon dimerization, it serves as a potent amplifier of the PI3K and the 

MAPK pathways (81). ErbB2 seems to interact with more phosphotyrosine binding 

proteins than the other members (82). Furthermore, ErbB2 is generally considered to be 

endocytosis deficient and is normally concentrated at the plasma membrane in 

nonmanipulated cells (83, 84). When overexpressed, it is also shown to retain dimerizing 
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partners at the plasma membrane (85). Receptors that heterodimerize with ErbB2, 

including EGFR, have inhibited endocytosis (85-87). These functional characteristics 

cause sustained proliferative signaling, making ErbB2 an important target for 

pharmaceutical inhibition.  

 ErbB3s catalytical activity is severely reduced when compared to the other ErbBs. 

It has been suggested to be either “kinase dead” due to its inability to bind ATP and its 

lack of intrinsic tyrosine kinase activity (27, 88), or to be capable of nucleotide binding 

with weak kinase activity (89). However, its C-terminal kinase lobe readily interacts in an 

asymmetric manner to activate the N-terminal kinase activity of the dimerization partner. 

One such binary relationship between the orphan ErbB2 and the kinase-impaired ErbB3 

is suggested to be the most active ErbB pair with respect to proliferative potential (90). 

 ErbB4 is the least studied member of the ErbB proteins. It has a complex biology, 

as compared to the other ErbBs. It can exist as four alternatively spliced variants, with the 

four isoforms displaying different functional properties (91). ErbB4 readily forms 

heterodimers and promotes MAPK/PI3K signaling.   

ErbB proteins in cancer initiation, progression and treatment 

Cancer is a multi-step process, initiated when genetic changes transform normal cells into 

neoplastic cells. Such alterations are termed “driver mutations”, driving the induction of 

oncogene functions or the loss of tumor suppressor functions. The resulting subclone of 

abnormal cells has a growth advantage in the local tissue environment. Although ErbB 

proteins are often mutated in tumors, driver mutations directly affecting ErbB genes are 

rare (92). ErbB proteins play important roles during tumor progression. 

 Tumor progression occurs when some of the neoplastic cells acquire additional 

mutations, giving them selective advantages for expansion and growth. Expansion of the 

mutant clones is a step which occurs repetitively, with each round being triggered by 

acquired genetic or epigenetic alterations (93). Genome instability is therefore a hallmark 

of cancer which enables a normal cell to develop the characteristic traits of a cancer cell, 

as described by Hanahan et al (34, 94). Sustained proliferative signaling, mediated 

primarily by growth factors and their receptors, is essential for clonal expansion and is 

claimed to be the most fundamental trait of a cancer cell (94). In order to sustain the 
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accelerated growth and expansion of tumor cells, many cancers increase their growth-

promoting signaling by several alternative mechanisms, such as activation of autocrine 

loops, overexpression of growth factor receptors which induces ligand-independent 

signaling (22), or constitutive signaling in absence of ligands upon mutations in receptors 

or downstream mediators. Autocrine production of NRG1, TGF� or EGF is associated 

with increased cancer cell proliferation and reduced patient survival (95-97). 

Overexpression of EGFR is found in head and neck squamous-cell carcinomas (HNSCC), 

non-small cell lung cancer (NSCLC), ovarian and other tumor types and is correlated 

with higher proliferation and reduced survival (98). Overexpression of ErbB2 is reported 

in breast, ovarian, gastric, bladder, and other carcinomas (99-101) and is suggested to 

result in an excess of ErbB2-mediated signalling by inducing formation of ErbB2 

heterodimers and the spontaneous formation of ErbB2 homodimers (102). Co-expression 

of ErbB3 promotes cell survival in tumors overexpressing ErbB2, where ErbB2 activates 

the PI3K pathway by interaction with GRB2 (102, 103). EGFR is often mutated in 

glioblastomas (104). The most common EGFR mutation is the constitutively active 

EGFRvIII variant (105), which is also reported in breast, lung and ovarian tumors (106). 

EGFR with mutations in the kinase domain is shown to activate anti-apoptotic pathways 

in cancer cells, such as the PI3K pathway (107). ErbB2 mutation has been reported in 

NSCLC (108), and associated with constitutive phosphorylation and activation of ErbB2 

and EGFR (109). Mutations in the ErbB downstream signal transducer RAS (K-RAS 

mutations) is found in up to 25% of human cancers (92). 

 Increased proliferative signaling and mutations associated with elevated growth 

normally triggers cellular death by apoptosis. Cancer cells evade this barrier by resisting 

apoptosis. The most common strategy is by mutations in the tumor suppressor gene p53, 

leading to a loss of DNA damage sensor function which would otherwise initiate 

apoptosis (34, 110). Another strategy is anti-apoptotic signaling via the PI3K pathway, 

which can be activated by the ErbB proteins (see Figure 2A). 

 

Following clonal expansion, some neoplastic cells have the capability of detaching from 

the primary tumor mass and entering nearby lymphatic and blood vessels (local 

invasion). These cells harbor metastatic potential; spreading of cells from the primary 
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tumor to distant organs, and their continuous growth (111). Several mechanisms underlie 

the hallmark of invasion. These are: loss of the cell- cell adhesion, increased motility and 

secretion of proteases aiding in penetration of vessel walls (94). It has been suggested 

that growth factors and their receptors play critical roles during this step of cancer 

progression in carcinomas. EGF promotes the expression of E-cadherin repressors, while 

overexpression of ErbB2 potentiates cellular invasion by enhancing secretion of proteases 

and down-regulating protease inhibitors (reviewed in (92)).  

 

Some malignant cells survive the circulation and adhere to vascular endothelial cells of 

distant organs. They penetrate the vessel walls by mechanisms similar to invasion, and 

enter the parenchyma of the distant tissue (extravasation). Here, the cancer cells adapt to 

the foreign microenvironment and form micrometastases. The continued growth of 

micrometastases into secondary tumors completes the process of cancer progression, 

which again relies on sustained proliferation by the production of growth factors and their 

receptors (111). It also depends on the supply of oxygen and nutrients by the growth of 

new blood vessels- the capability of inducing angiogenesis. In tumors, EGFR signaling 

can activate production of the proangiogenic factor VEGF (112, 113) (see Figure 2A). 

    Molecular targeting of ErbB proteins in cancer 

Increased knowledge in the field of cancer research has changed clinical oncology with 

respect to improved prognosis and therapy. Many of the molecules involved in cancer 

progression have been pin-pointed and used as pharmaceutical targets, ranging from 

DNA itself to proteins (reviewed in (94)). The development and approval of molecular 

targeted therapeutics, has resulted in clinical use along with classical treatment modalities 

such as surgery, chemotherapy and radiotherapy. Some examples of early and recently 

developed molecular drugs are growth factor receptor inhibitors (114) and epigenetically 

acting drugs (such as azacytidine) (115). Human carcinomas frequently express active 

ErbB proteins, and EGFR was the first growth factor receptor to be used as molecular 

target in cancer therapy (116). 
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Inhibitors targeting ErbB proteins are generally categorized in two major groups: 

monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKIs). Many of these 

agents have already been approved for treatment of metastatic cancers by several 

agencies worldwide, including the Food and Drug Administration (FDA) and the 

European Medicines Evaluation Agency (EMEA), (summarized in Table 1, table based 

on (3, 102, 117-119)). Several new classes of anti-ErbB drugs are currently undergoing 

clinical trials, such as heat-shock protein (HSP) inhibitors (17-AAG) and antibody-

chemotherapy conjugates (see Table 1). Other strategies are also underway, some of 

which are targeting other components of the ErbB network besides the receptors 

themselves (120). 
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 Table 1: ErbB targeting inhibitors 

Inhibitor Type Target Mechanism Approval/Clinical trial 

mAbs     

Cetuximab  
C225  
Erbitux®

Human 
-mouse 
Chimeric 
mAb 

ErbB1 Inhibits 
ligand binding,  
activation of  
ADCC 

Metastatic colorectal cancer that is 
refractory to chemotherapy 
(irinotecan) 
Locally or regionally advanced 
HNSCC in combination with 
radiotherapy 

Nimotuzumab 
h-R3 
TheraCIM®

Human 
mAb 

ErbB1 Inhibits ligand 
binding, 
activation of 
ADCC 

Not yet approved by FDA/EMEA 
Ongoing phase II/III trials for 
HNSCC, NSCLC, glioblastoma and 
pancreatic cancer  

Panitumumab 
ABX-EGF  
Vectibix®

Human 
mAb 

ErbB1 Inhibits ligand 
binding, 
activation of 
ADCC 

Metastatic colorectal cancer in 
combination with or following 
chemotherapy (fluoropyrimidine, 
oxaliplatin and irinotecan) 

Trastuzumab 
Herceptin®

Human 
mAb 

ErbB2  Inhibits receptor 
signaling, 
activation of 
ADCC 

Metastatic breast cancer 

Trastuzumab-DM1 mAb-
cytotoxic 
conjugate 

ErbB2 Targeted 
delivery of a 
antimicrotubule 
agent (DM1) 

Ongoing phase III trial for breast 
cancer 

Pertuzumab 
2C4 
Omnitarg®

Human 
mAb 

ErbB2 Inhibits receptor 
dimerization, 
activation of 
ADCC 

Ongoing phase II/III trials for ovarian 
and breast cancer 
Completed trial for breast cancer in 
combination with trastuzumab and 
chemotherapy (docetaxel) 

TKIs     

Erlotinib 
OSI-774 
Tarceva®

ATP mimic ErbB1 Inhibits receptor 
kinase activity 

NSCLC 
Advanced pancreatic cancer in 
combination with chemotherapy  
(gemcitabine) 

Gefitinib 
ZD1839 
Iressa®

ATP mimic ErbB1 Inhibits receptor 
kinase activity 

Locally advanced metastatic NSCLC 

Lapatinib 
GW572016 
Tykerb®

ATP mimic ErbB1 
ErbB2 

Inhibits receptor 
kinase activity 

Metastatic breast cancer in 
combination with chemotherapy 
(capecitabine) 

HSP inhibitors     

17-AAG 
Tanespimycin®

Ansamycin  
derivative 

HSP90 Inhibits ErbB2 
stability, 
degradation 

Phase II/III trials for breast cancer 
and multiple myeloma 

 

Abbreviations: mAb monoclonal antibody, ADCC antibody-dependent cellular cytotoxicity, TKI 
tyrosine kinase inhibitor, Hsp heat shock protein. 
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Monoclonal antibodies 

Multiple mechanisms underlie the antitumor activity of anti-ErbB mAbs (reviewed in 

(1)). First, the antibody can suppress receptor signaling by inhibition of ligand binding or 

interference with receptor dimerization. Second, the Fragment crystallizable (Fc) region 

can recruit and initiate immune effector functions such as antibody-dependent cellular 

cytotoxicity (ADCC), leading to tumor cell lysis. Third, binding of the antibody can 

induce receptor internalization and degradation. This can be strongly enhanced upon 

using pairs of noncompetitive mAbs (121). The combination of two mAbs presumably 

forms large receptor-antibody complexes at the cell surface that internalize into the 

cytosol and are eventually routed to lysosomes for degradation (114, 122). The rate of 

internalization has been suggested to be proportional to the size of the complex, but the 

endocytic pathway by which mAb combinations internalize ErbBs has not been clearly 

described (123). The effect of antibody combination, however, has been confirmed to 

synergistically inhibit tumor growth (124, 125).   

Cetuximab 

Cetuximab is a chimeric mouse-human IgG1 mAb. The mouse progenitor of Cetuximab, 

M225, was one of the first anti-ErbB antibodies to be developed (126). Cetuximab was 

later found to be capable of inducing all the antitumor characteristics described above for 

anti-ErbB mAbs, and was approved for treatment of metastatic colorectal cancer in 2004. 

It specifically interacts with the ligand-binding surface of EGFR with higher affinity than 

EGF and TGF�, thereby antagonizing ligands (127). An additional consequence upon 

binding to domain III, is that the Fab region of the antibody is clashing with domain I, 

thereby sterically preventing the receptor from adopting the active conformation (128). 

This counteracts ligand-independent dimerization and downstream signaling (129), which 

usually occurs in cells that overexpress EGFR. Another important consequence of 

Cetuximab binding is that it induces internalization of EGFR (130). This is demonstrated 

to happen in a different manner than ligand-induced internalization and trafficking of 

EGFR. The process itself was slower, and it occurred without stimulating receptor 

phosphorylation. Furthermore, the antibody-receptor complex was primarily recycled 

instead of routed to lysosomes (131). Cetuximab was also demonstrated to relocalize the 
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EGFR to the nucleus (132). Unfortunately, such receptor routing could have negative 

consequences, since nuclear EGFR has been associated with poor clinical outcome (133, 

134). Finally, Cetuximab has also been demonstrated to induce ADCC (135, 136). 

 The most common side effect associated with inhibition of EGFR activity is skin 

rash. This reaction is considered to be a marker of clinical response to the specific drug 

and probably reflects the extent of EGFR blockade achieved in the tumor (137-139). 

Nimotuzumab  

Another example of a mAb targeting EGFR is the humanized IgG1 Nimotuzumab. Like 

Cetuximab, Nimotuzumab binds the EGFR domain III and displays similar mechanisms 

of action by blocking ligand binding and oncogenic signaling. Also, the similar effects 

were observed with respect to increased apoptosis, and inhibition of proliferation and 

angiogenesis (140, 141). Like Cetuximab, Nimotuzumab also has the capacity of 

activating ADCC, which is not surprising since the Fc-region of both antibodies is human 

IgG1 (142). However, it shows unique functional characteristics, some of which seem 

beneficial compared to Cetuximab. These include the absence of skin rash (143). One 

explanation for this could be that its clinical dose is lower than its toxic dose based on the 

ten times lower affinity compared to Cetuximab (144). Another explanation for the lack 

of skin rash is based on a structural difference: while Cetuximab binds in a way that 

inhibits domain I from approaching domain III and thereby interferes with the active 

EGFR conformation, X-ray crystallography suggested that Nimotuzumab could allow 

domain I to approach domain III and therefore permit the EGFR to adopt the active 

conformation while simultaneously blocking EGF binding (145). Nimotuzumab could 

therefore be less toxic because it could allow basal levels of ligand-independent EGFR 

signaling.  

 Another difference between the antibodies is that Cetuximab is a human-mouse 

chimera, while Nimotuzumab is a fully humanized mAb. The mouse component of 

Cetuximab could provoke a more general allergic reaction and thereby contribute to the 

severe skin rash which  was not observed in case of humanized Nimotuzumab (146, 147). 

Indeed, the murine progenitor of Nimotuzumab (Ior/egf/r3) has been shown to provoke 

allergic reactions (147). However, the systemic inhibition by anti-EGFR inhibitors is 
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considered to provoke skin rash due to specific EGFR inhibition (28). Also anti-EGFR 

TKIs were shown to negatively affect cells of the human epidermis upon specific 

inhibition of EGFR activity (148), again arguing that it is the difference in the level of 

EGFR inhibition that is primarily responsible for the different side effects observed for 

Nimotuzumab and Cetuximab. 

 Such mechanistic and functional differences are important to clarify when 

evaluating the therapeutic potential of new drugs. Nimotuzumab is currently not 

approved by the FDA nor the EMEA, but is undergoing late clinical trials (see Table 1) 

and is approved by several countries for treatment of HNSCC and glioblastoma (117). 

Trastuzumab 

Trastuzumab is a humanized mAb that binds the extracellular region of ErbB2 at domain 

IV (149). It is approved by the FDA for treatment of metastatic breast cancer (see Table 

1). Trastuzumab was also demonstrated to inhibit signaling pathways (PI3K), 

angiogenesis and cause cell cycle arrest (102, 150). It was suggested to also inhibit ErbB2 

signaling by interfering with ErbB2-EGFR dimerization (151). In addition, the antibody 

causes ADCC (152). 

Pertuzumab 

ErbB2 overexpression provides strong growth advantage to tumor cells and promotes 

spontaneous formation of active ErbB2 homo- and hetero –dimers (31). The resulting 

signaling units are potent (90) and associated with poor clinical outcome (153). Besides 

Trastuzumab, several other ErbB2 targeting antibodies are being tested. Pertuzumab is a 

fully humanized mAb that binds domain II of ErbB2 (154). Many of the contact residues 

that Pertuzumab occludes are homologous to EGFR and ErbB3 residues necessary for 

receptor dimerization. Binding of Pertuzumab sterically prevents interaction between the 

dimerization arms (154). Pertuzumab therefore prevents ErbB2 from engaging in 

dimerization and signaling with the other ErbBs (155). It has also been suggested to 

affect ligand-independent dimerization in cancer cells overexpressing ErbB2 (156). The 

ability to initiate immune effector mechanisms is also important for the antitumor activity 

of Pertuzumab (157). Pertuzumab is currently in the end of a Phase III breast cancer trial. 

In combination with Trastuzumab and chemotherapy, it was demonstrated to significantly 
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extend the progression-free survival (158, 159). One possible contribution to the 

promising results of combining Trastuzumab and Pertuzumab could be enhanced down-

regulation of ErbB2. As described above, two mAbs targeting distinct epitopes 

(Trastuzumab binding to domain IV and Pertuzumab binding to domain II), could form 

large receptor-antibody complexes that again could be internalized and degraded. 

Tyrosine kinase inhibitors 

TKIs are low molecular weight synthetic compounds that are designed to mimic ATP and 

to bind the kinase domain of ErbB proteins. These inhibitors compete with ATP binding 

and thereby block the magnesium-ATP-binding cleft, either reversibly or irreversibly. 

The outcome is block of signal transduction of both the MAPK and the PI3K pathways. 

Erlotinib and Gefitinib are anilinoquinazoline-based reversible inhibitors specific for 

EGFR, while Lapatinib is a thiazolylquinazoline-based reversible inhibitor with dual 

specificity (for EGFR and ErbB2 (3)). The quinazoline AG1478 is another TKI that could 

have therapeutic potential (160, 161). It binds to EGFR and has been shown to 

constitutively inhibit the active EGFR kinase (162, 163). 

Heat shock protein (HSP) inhibitors 

Another class of anti-ErbB agents is the HSP inhibitors. HSPs are molecular chaperones 

that are necessary for the conformational folding and maturation of various proteins. 

ErbB2 is a client of the chaperone HSP90 which recognizes the receptor as hyperactive 

and conformationally unstable. It stabilizes the active conformation of ErbB2 at the 

plasma membrane. HSP90 stabilizes the mature form of the receptor, probably by 

stabilizing its association with the kinase domain (164, 165). Disrupted interaction with 

HSP90 leads to endocytosis and down-regulation of ErbB2 (166, 167). The naturally 

occurring Ansamycin Geladanamycin, has been found to interrupt the interaction of 

HSP90 with ErbB2 by association with the ATP/ADP-binding pocket of HSP90. It then 

adopts a shape similar to that of ADP and prevents the chaperone from adopting its 

stabilizing conformation. Since Geldanamycin is toxic and displays chemical instability, 

the less toxic derivative, 17-AAG, was developed, and is currently in clinical trials (168). 

17-AAG induces degradation of ErbB2, growth arrest and apoptosis (169). The exact 

mechanism involved in HSP90 disruption of ErbB2 degradation is not yet clear. It is 
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however well established that Geldanamycin or 17-AAG treatment leads to ubiquitination 

of ErbB2 (170, 171). ErbB2 may then undergo clathrin-dependent endocytosis and be 

routed to lysosomes for degradation (172). The Ub ligases CHIP (carboxyl terminus 

Hsc70-interacting protein) and/or Cullin5 are probably involved in this process (173, 

174). It is still debated whether the ubiquitination is required as a signal for receptor 

endocytosis, or whether it serves as a signal for proteasomal degradation of ErbB2. 

Resistance to ErbB-targeted therapeutics 

It should be noted that most anti-ErbB drugs show modest cancer cell toxicity when 

administered alone (monotherapy) (reviewed in (1)). Instead, their antitumor efficiency 

becomes evident when combined with the classical cancer treatment modes (combination 

therapy). They sensitize tumors to cytotoxic agents or to radiotherapy by several 

functions (reviewed in (3)); blocking prosurvival pathways and activation of autocrine 

loops  which may otherwise enable micrometastases to develop clones resistant to radio-

/chemo-therapy (92), inducing cell cycle arrest, (140, 175), preventing cancer cells from 

evading apoptosis by inhibition of anti-apoptotic signaling (176), and sensitize cancer 

cells to radiotherapy by suppressing radiation-induced DNA repair (134). 

 

Several mechanisms are responsible for the low responsiveness to ErbB targeting drugs 

as monotherapy (1, 28, 177). Aberrant signaling due to intrinsic or acquired mutations 

mediates resistance to ErbB antagonists. K-RAS mutations cause resistance to 

Cetuximab, Panitumumab, Gefitinib and Erlotinib due to constitutive activation of the 

MAPK pathway independently of EGFR (1). An acquired mutation in the EGFR kinase 

domain (T90M) causes a conformational change in the ATP-binding cleft, interfering 

with binding of Erlotinib and Gefitinib (3). This again leads to resistance in patients that 

initially respond to the TKIs. 

 An additional mechanism that explains resistance is positive and negative 

feedback regulation. Cancer cells can resist an ErbB specific inhibitor by activation of 

positive feedback loops, including up-regulation of an alternative ErbB member or 

initiation of autocrine loops. By doing so they compensate for the signaling dependency 

of one ErbB protein, to which the drug is targeted, via activation of alternative ErbB 
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dimers. A recent study reported that resistance to Cetuximab can be acquired through 

increased ErbB2 signaling (178). The cancer cells bypass EGFR by amplification of 

ErbB2 or up-regulation of heregulin, which can result in increased ErbB2-ErbB3 

heterodimerization. The authors further demonstrated that colorectal cancer patients that 

have acquired resistance to Cetuximab have ErbB2 amplification or high levels of 

heregulin. Nonfunctioning of negative feedback loops is another way to overcome the 

effect of inhibitors. Endocytosis, a major negative feedback regulatory mechanism that 

normally prevents excessive signaling, is often defective in cancer (reviewed in (114)). 

Cancer cells can also negatively affect endocytosis of ErbB proteins by ErbB2 

overexpression. As previously described, ErbB2 is endocytosis deficient and promotes 

spontaneous heterodimerization upon overexpression. The resulting dimers are retained at 

the plasma membrane and cause increased proliferative signaling. 

 The recent insight into how cancer cells resist ErbB targeted therapeutics explains 

the need for new strategies (3). One emerging strategy is to simultaneously target 

multiple receptors and pathways. This can be obtained by using combinations of anti-

ErbB mAbs and/or TKIs (28, 114). An obvious drawback is the limited knowledge and 

availability of inhibitors to ErbB3 and ErbB4, when compared to the more well 

characterized inhibitors of EGFR and ErbB2 (see Table 1). 

 Dimerization between ErbB3 and ErbB2 is believed to form the strongest 

signaling unit of all ErbB pairs (90). ErbB3 is expressed in breast and ovarian tumors and 

is implicated in the tumorigenesis of lung and prostate tumors (reviewed in (102)). It is 

involved in both ligand-independent and ligand-dependent oncogenic signaling by 

interaction with ErbB2, EGFR and/or heregulin (179). However, no therapeutics that 

specifically target ErbB3 have yet been approved for clinical use. The lack of ErbB3 

inhibition may contribute to the resistance to TKIs and mAbs that target EGFR and/or 

ErbB2 in lung and breast cancer cells (102). Activation of ErbB3 to compensate for 

EGFR/ErbB2 inhibition is another example of positive feedback regulation, representing 

major challenges for the use of drugs targeting single pathways.. 

 ErbB4 is reported to be mutated in various carcinomas, including gastric, 

colorectal, NSCLC and breast cancers (reviewed in (91, 180)). ErbB4  is further reported 

to have oncogenic effects in malignant melanomas (180). However, ErbB4 expression in 
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breast cancer patients was demonstrated to be associated with favorable outcome (91). 

ErbB4 has also been suggested to function as a tumor suppressor in certain cancers. The 

contradictory roles of ErbB4 expression/activity may also be explained by the four 

alternatively spliced variants of ErbB4, with the four isoforms displaying different 

biological functions (91). A few experimental mAbs towards the ErbB4 isoforms have 

been developed and demonstrated to block cancer cell growth in vitro. However, the 

physiological and pathological role of ErbB4 needs further study. 
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AIMS OF THE STUDY 

Members of the ErbB family of growth factor receptors are expressed in various tissues, 

where they mediate cellular proliferation, differentiation and migration during 

embryogenesis and adulthood. Receptor activation occurs via ligand binding and receptor 

dimerization, which leads to cellular responses by initiation of intracellular signaling 

cascades that control genetic expression. The process of ErbB activation is tightly 

regulated by both positive and negative feedback mechanisms. Upon activation, the 

receptors become subject to covalent modifications, including phosphorylation and/or 

ubiquitination, to precisely regulate the level of signaling. Endocytosis is an example of a 

negative feedback mechanism that primarily shuts down signaling by down-regulating 

the receptors. Aberrant ErbB activity has been linked to carcinogenesis and is associated 

with poor patient survival. EGFR is often mutated in glioblastomas or overexpressed in 

HNSCC, NSCLC, and ovarian cancer, while ErbB2 is found to be overexpressed in 

breast, ovarian, gastric, bladder, and other carcinomas (92). Mutations and 

overexpression of the ErbB proteins leads to elevated receptor activation by several 

mechanisms; increased ligand affinity, spontaneous dimerization in absence of ligand, 

and constitutive kinase activity. ErbB2 is particularly efficient in formation of 

spontaneous dimers upon overexpression. Since ErbB2 is considered to be endocytosis 

deficient (84), ErbB2 also increases receptor signaling by retaining dimerization partners 

at the plasma membrane (85). This is an example of how the feedback loops that control 

normal ErbB protein signaling are frequently dysregulated in cancers. Consequently, the 

ErbB proteins have become attractive molecular targets for drugs that specifically inhibit 

each of the events necessary for receptor activation. Several types of ErbB antagonists 

have shown promising in vitro effects by blocking receptor activation or inducing 

receptor down-regulation. However, most of them show limited in vivo anti-tumor effects 

when administered alone, and are therefore mainly used in combination with cytotoxic 

compounds or radiotherapy. This warrants the need for novel strategies that could 

increase the ability of existing drugs to down-regulate carcinogenic ErbB proteins. Three 

antibodies that target EGFR or ErbB2 are currently approved, and multiple new ones are 

being evaluated in clinical trials. Similarly, three kinase inhibitors that block EGFR 
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and/or ErbB2 are approved for treatment of metastatic cancers. A main problem of using 

such molecular targeted therapeutics is that systemic inhibition of EGFR produces toxic 

side effects. This has been proposed to be due to inhibition of the physiological role of 

the EGFR (28). Skin rash is the most common side effect of EGFR antagonists, but the 

extent of this varies between the employed inhibitors. Insight into mechanism underlying 

reduced systemic toxicity that has been observed for some of the novel anti-ErbB agents 

is necessary for evaluating the use of such new agents. Yet another category of anti-ErbB 

drugs are the HSP inhibitors, where the Geldanamycin derivate 17-AAG is in clinical 

trials. We have in the present study used monoclonal antibodies with the aim to compare 

the ability of two mAbs to counteract ligand binding and signaling of EGFR. Mechanism 

responsible for mAb-induced endocytic down-regulation of EGFR and investigations of 

how mAbs target ErbB2 and affect ErbB2 dimerization and endocytic down-regulation of 

EGFR should clearly be better defined. The role of ubiquitination in endocytosis and 

down-regulation of ErbB2 by HSP inhibitors, such as 17-AAG has to some extent been 

investigated, and it should be clarified whether ubiquitination itself is sufficient to induce 

endocytosis of ErbB2 and whether 17-AAG-induced down-regulation of ErbB2 is due to 

ubiquitination. In particular, the aim of the present study was set to investigate whether; 

 

� Cetuximab differs from Nimotuzumab with respect to inhibition of EGF binding, 

EGFR dimerization and EGFR signaling in cells that overexpress EGFR. 

 

� Cetuximab in combination with a secondary antibody can efficiently down-

regulate EGFR by increased endocytosis in cells that overexpress the EGFR. 

 

� Pertuzumab disrupts dimerization of ErbB2-EGFR heterodimers and 

consequently affects down-regulation of EGFR in cells overexpressing EGFR and 

ErbB2. 

 

� Ubiquitination itself is sufficient to induce endocytic down-regulation of ErbB2, 

by using a chimeric preubiquitinated ErbB2 that is compared to wild-type ErbB2 

targeted with 17-AAG. 

29 
 



SUMMARY OF PAPERS 

Paper I 

Nimotuzumab and Cetuximab block ligand-independent EGF receptor signaling 

efficiently at different concentrations 

 

An antibody depends on sufficient binding affinity/avidity to exert inhibition of cancer 

cell proliferation. Effective binding may block ligand binding and/or receptor 

dimerization, induce receptor down-regulation by endocytosis and activate ADCC. The 

two monoclonal antibodies Nimotuzumab and Cetuximab both bind the extracellular 

region of EGFR and inhibit kinase activation by blocking ligand binding. Previous 

studies had demonstrated that Nimotuzumab has lower binding affinity than Cetuximab, 

and this was proposed to explain the low clinical side effects observed for 

Nimotuzumab,which provokes a lower degree of skin rash, a typical marker for systemic 

inhibition of EGFR signaling. In addition to the different binding affinities, a structural 

difference was recently suggested to be responsible for the different in vivo effects, 

arguing that both antibodies block ligand binding efficiently, but that Nimotuzumab does 

so while permitting the active receptor conformation and thereby allowing a basal level 

of downstream signaling. In paper I we investigated if Nimotuzumab functionally differs 

from Cetuximab in cells overexpressing EGFR. The antibodies were compared with 

respect to their ability to block EGF binding, EGFR-ErbB2 dimerization, and 

downstream Erk activation. Our data showed that Nimotuzumab inhibits basal EGFR 

dimerization as well as downstream signaling, but only at concentrations above those 

needed in case of Cetuximab. The different concentrations required corresponded to the 

previously described differences in binding affinity, again supporting the view that it is 

the low binding of Nimotuzumab that is responsible for the small side effects and not the 

difference in the ability to inhibit basal level of dimerization and signaling. 

 

30 
 



Paper II 

Cetuximab in combination with anti-human IgG antibodies efficiently down-regulates the 

EGF receptor by macropinocytosis 

 

Cetuximab increases the antitumor efficiency of radiotherapy and chemotherapy and is 

approved for combination therapy in colorectal cancer and head and neck squamous-cell 

carcinomas. Cetuximab binds specifically to EGFR and inhibits binding of ligands to the 

EGFR. An additional mechanism of action that has been demonstrated for Cetuximab is 

induction of EGFR endocytosis. The antibody-induced internalization is slow, and only 

small amounts of receptor are degraded. Recently, several studies have focused on 

enhancing antibody induced down-regulation of ErbB proteins by combination with other 

monoclonal antibodies. This was shown to synergistically inhibit tumor growth.  

However, the effect that a combination of antibodies has on EGFR activation, 

endocytosis, trafficking and degradation remains unclear. In paper II we tested whether a 

secondary antibody that binds Cetuximab increased Cetuximab-induced endocytosis of 

EGFR in cells overexpressing the receptor. The combination of antibodies resulted in 

efficient EGFR degradation, which was more rapid when compared to degradation by 

high levels of EGF. The antibodies induced EGFR phosphorylation and ubiquitination, 

but kinase activity was not required for antibody-induced internalization of the EGFR. In 

contrast to EGF, the antibody combination induced EGFR down-regulation in absence of 

Erk activation. Furthermore, internalization induced by the antibodies was dependent on 

actin, but not clathrin and dynamin. We demonstrated that the internalization could be 

blocked upon disruption of actin filaments by using latrunculin B or by the 

macropinocytosis inhibitor amiloride. In conclusion, we demonstrate that a combination 

of antibodies can induce rapid and efficient endocytic down-regulation of EGFR by 

macropinocytosis, in the absence of proliferative signaling. 

 

31 
 



Paper III 

Pertuzumab increases epidermal growth factor receptor down-regulation by 

counteracting epidermal growth factor receptor-ErbB2 heterodimerization 

 

Overexpression of ErbB2 is frequently found in human breast cancer and other 

carcinomas. When overexpressed, ErbB2 promotes spontaneous formation of active 

ErbB2 heterodimers. The dimers mediate strong and uncontrolled signaling that is 

associated with poor patient survival. Our group has previously shown that ErbB2 retains 

EGFR at the plasma membrane. Pertuzumab is a humanized monoclonal antibody 

directed against ErbB2s dimerization arm. In paper III we studied the effect of 

Pertuzumab on EGFR-ErbB2 dimerization and on endocytic down-regulation of the 

EGFR. Our results showed that in cells over-expressing EGFR and ErbB2, we could 

detect formation of spontaneous ligand-independent EGFR-ErbB2 dimers as well as of 

ligand-induced EGFR-ErbB2 heterodimers. Interestingly, this dimerization was 

efficiently counteracted upon incubation with Pertuzumab. The amount of EGF-induced 

EGFR homodimers was increased upon treatment with Pertuzumab, and incubation with 

Pertuzumab increased ligand-induced internalization and degradation of EGFR. 

Altogether, this paper shows that Pertuzumab is a potent heterodimerization inhibitor, 

and that disruption of EGFR-ErbB2 dimers results in increased internalization and down-

regulation of EGFR. Over time, this will probably decrease the level of signaling EGFR-

ErbB2 complexes at the plasma membrane. 

 

Paper IV 

Preubiquitinated chimeric ErbB2 is constitutively endocytosed and subsequently 

degraded in lysosomes 

 

Unlike the other ErbB proteins, ErbB2 is considered to be endocytosis deficient and is 

normally concentrated at the plasma membrane. Stabilization of ErbB2 at the plasma 

membrane is believed to be the result of a stable interaction with HSP90. Incubation with 
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the HSP90 inhibitor 17-AAG interrupts the association between HSP90 and ErbB2, and it 

is well established that 17-AAG treatment leads to ubiquitination and efficient down-

regulation of ErbB2. Whether ubiquitination itself is sufficient to induce internalization 

and degradation of ErbB2 is not yet clear. Our group has recently demonstrated that 

polyubiquitination of EGFR is sufficient to promote constitutive endocytosis of EGFR. 

To investigate whether Ub directs internalization and degradation of ErbB2, we have in 

paper IV constructed and used a chimeric preubiquitinated ErbB2 containing full-length 

ErbB2 and a C-terminally appended tetra-Ub chain (ErbB2-Ub4). In contrast to wild-type 

ErbB2, the fusion protein was found to be constitutively endocytosed without the need 

for 17-AAG. We further showed that internalization of the ErbB2-Ub4 construct 

depended on clathrin, and overexpression of truncated versions of the clathrin adaptor 

proteins epsin1 and Eps15 reduced internalization. The construct was observed to be 

constitutively modified with both Lys63- and Lys48-linked polyUb chains which are in 

several cases functional signals for endocytosis and degradation, respectively. Like for 

17-AAG- treated ErbB2, ErbB2-Ub4 was spontainously internalized into early 

endosomes, followed by routing to late endosomes and lysosomes. Degradation was 

confirmed, and we demonstrated that the ubiquitinated protein was more efficiently 

degraded than was wild-type ErbB2. Our data argue that ErbB2 is generally localized to 

the plasma membrane, but that ubiquitination is sufficient to induce clathrin-dependent 

endocytosis and lysosomal degradation of the ErbB2. 
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METHODOLOGICAL CONSIDERATIONS 

Cell lines 

The present studies were performed in cultured cell lines. Cell lines are easy to work 

with, provide large variation regarding the type and expression levels of ErbB proteins, 

and are readily accessible for manipulation with drugs and various reagents. Cell lines are 

susceptible to mycoplasma infection and accumulation of genotypic or phenotypic 

changes, and due to this, our cell lines were routinely analyzed and kept in culture for a 

limited number of passages. The use of cell lines in cancer research is based on the 

assumption that they to some extent are similar to both nonperturbed and neoplastic cells. 

Cultured cells require serum, since they are not supplied by blood. High interstitial fluid 

pressure in solid tumors represents a barrier for delivery of high molecular weight 

compounds (181). This applies to therapeutic antibodies, and especially to a combination 

of antibodies that would further increase their molecular size (paper II). In addition, the in 

vivo environment might obscure binding of an antibody (e.g. anti-human IgG used in 

paper II) to tumor cells by containing antigens that are otherwise not present in cultured 

cells. Neoplastic cells are continuously supplied with growth factors by an extensive 

capillary system. Lack of this supply in cultured cell lines might be argued to contribute 

to an artificial system, especially when analyzing growth factor signaling. However, the 

possibility to remove growth factor ligands from cultured cells is necessary when the aim 

of the study is to detect changes in ligand-independent receptor interactions. In paper I, 

stably transfected porcine aortic endothelial (PAE) cells were used since they do not 

express endogenous ErbB proteins. In addition, the cells were starved to remove ligands 

and terminate further signal-transduction initiated by ligands in the medium. However, 

we can not be sure if the cells are secreting autocrine factors after starvation. The use of 

cells expressing only EGFR (PAE.EGFR) enabled us to study the effect of Cetuximab 

and Nimotuzumab on ligand-independent receptor dimerization and signaling that 

otherwise could be masked by the presence of ErbB ligands or other ErbB proteins. For 

the same reason, it can be argued that the lack of endogenous proteins and/or high 

expression levels of receptors could lead to results that would normally not be observed 
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in human cancer cells overexpressing ErbB proteins. However, the PAE cell lines used in 

our studies are well characterized, and they stably express EGFR at a high level and 

demonstrate activation and internalization of EGFR comparable to that of human cells 

endogenously expressing the EGFR (182, 183). 

Transient transfection 

An additional advantage of using isolated cells or cell lines is the ability to easily 

introduce and investigate modified versions of proteins, including mutant versions or 

protein domains, by transient transfection. In paper IV, we based our study on ErbB2 

which was modified with a linear chain of four ubiquitins. The ErbB2-Ub4 construct was 

transiently expressed in PAE cells prior to each experiment. One limitation to this 

approach is that transient transfection can result in very high expression of the encoded 

protein. ErbB2 homodimerization is suggested to be density dependent (184), and high 

ErbB2 expression may induce artificial  receptor interactions which could again lead to 

enhanced internalization The internalization of ErbB2-Ub4 was always compared with 

transiently transfected wild-type ErbB2. However, transfection with wild-type ErbB2 

could have resulted in higher ErbB2 expression levels, as compared to ErbB2-Ub4, since 

wild-type ErbB2 is believed to be endocytosis resistant. An additional limitation is that it 

is difficult to secure constant expression levels, since protein expression upon transient 

transfection varies from experiment to experiment. 

Small interfering RNA 

Small interfering RNA (siRNA) is a widely used tool to suppress the expression of a 

protein and thereby study the effect of incubation with or without the protein of interest. 

Besides down-regulating the expression of a certain protein, introduction of RNA may 

produce nonspecific side effects in the cell. This is why we always compared the effect of 

clathrin knock-down with control cells that were transfected with scrambled negative 

control siRNA having similar length and identical concentration to the siRNA against 

clathrin heavy chain. 
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Immunological methods 

Several immunologically based methods were used to detect changes in ErbB protein 

levels, ErbB protein interactions, ErbB protein -modifications, and ErbB protein–

localization. These methods rely on recognition of the antibody used towards the antigen 

of interest. One problem that is frequently encountered is the misleading information on 

specificity of an antibody that is provided by manufacturers. This is particularly 

problematic when making conclusions about a specific protein that has high sequence 

similarity to other proteins, such as ErbB proteins. Antibodies that are assumed to bind 

one specific ErbB protein usually recognize other ErbB proteins additionally. All anti-

ErbB antibodies that were used for western blotting were tested for specificity by 

detecting immunoreactivity in cells that expressed other ErbB proteins than the antibody-

targeted receptor. In particular, the lack of antibody specificity towards EGFR limited our 

options in paper I to directly study EGFR dimerization upon cross-linking EGFR and 

ErbB2. Isolation of dimers was achieved by immunoprecipitation. The 

immunoprecipitation was based on linking antibodies to pre-coupled protein A or protein 

G magnetic beads. To confirm that the antibody was precipitating the antigen and not the 

beads themselves by non-specific interactions, a sample with only beads and no antibody 

was included as negative control. Cross-linking of proteins with the non-cleavable 

chemical BS3 was used in paper I and III to identify interactions between ErbB proteins 

upon dimerization. One pitfall that is important to be aware of when using BS3 is that it 

binds all cell surface proteins since BS3 is membrane impermeable. BS3 non-specifically 

links all amine-containing targets. This also includes anti-ErbB antibodies, which were 

added to cells before incubation with BS3 and could have created receptor-antibody 

complexes at the plasma membrane. If the antibody-receptor complex was too large to 

enter a 6% gradient gel, this could explain the reduction of 380 kDa bands upon antibody 

stimulation, as seen in paper I and III. However, even two ErbB proteins in complex with 

one IgG antibody should be small enough in size to enter a 6% gel, and no bands above 

380 kDa were detected during these experiments. 

 Confocal microscopy was used to detect the cellular localization of ErbB proteins, 

ligands, and/or anti-ErbB antibodies. This provides the possibility to identify a detailed 
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localization of proteins in single cells. However, cell-to-cell variations are frequent, and it 

is important to objectively analyze a large number of cells in a sample before preparing a 

representative image.  To identify the nature of compartments containing the protein of 

interest, double staining was used, and colocalization was investigated. Several 

considerations must be kept in mind when using combinations of primary and secondary 

antibodies for analysis of colocalization. A merged image must be generated from two 

images taken in the same z-plane. Even so, a protein may appear to be localized within an 

intracellular compartment if it displays strong plasma membrane fluorescence in the same 

z-plane as the intracellular vesicle, and care should be taken when interpreting 

colocalization images. Choosing the right antibody combinations and the correct 

instrument settings are crucial to avoid cross excitation and bleadtrough. One obvious 

requirement is to use primary antibodies of different species, to prevent cross-reactions. 

To check for cross-reactions of secondary antibodies in double stained samples, a 

negative control lacking one of the primary antibodies was always included for each new 

antibody combination. Otherwise, antibody cross-reactions could result in overlapping 

fluorescence and mistakenly be interpreted as colocalization. 

125I-EGF binding assay 

Use of iodinated EGF provides a sensitive way to quantitatively measure ligand-binding, 

-internalization, -recycling, and –degradation. 1 ng of 125I-EGF was used to measure 

EGF-induced EGFR internalization. The 1 ng concentration is too low to saturate 

clathrin-dependent endocytosis (56), and this amount of EGF  is therefore considered to 

be efficiently internalized. 

Chemical inhibitors 

Multiple inhibitors were used throughout this work to investigate the consequence of 

blocking the function of certain proteins. Although application of chemical inhibitors is a 

powerful and commonly used approach to achieve this, they often block more than one 

target and can be toxic at high concentrations and thereby produce nonspecific side 

effects. One example is the kinase inhibitor AG1478 which was used in paper I and II to 

block EGFR kinase activity. It competitively inhibits the ATP binding site in the kinase 
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domain and is considered to be highly potent and specific for EGFR (185). Although 

being specific towards an ErbB kinase domain, several studies have reported that it also 

inhibits ErbB2, and our group has recently noticed that AG1478 is also a potent inhibitor 

of the ErbB3 kinase activity (186). This would represent a problem when studying the 

effect of EGFR inhibition in cells also expressing other ErbB proteins. For the purpose of 

the present work, AG1478 was used in cells expressing EGFR only, and conclusions 

could be made since we only studied inhibition of EGFR and not the other ErbB 

members. For other experimental settings, this emphasizes that one should be cautious  

even when using inhibitors that have previously been reported to be specific. One 

possibility is to test for potential off-target effects. Although the proton pump inhibitor 

amiloride is reported to selectively block macropinocytosis (62), we, in paper II, also 

studied endocytosis of transferrin to confirm that amiloride at the concentration used, did 

not inhibit clathrin-dependent endocytosis. 
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GENERAL DISCUSSION 

Effects of anti-EGFR antibodies on receptor dimerization and 

internalization 

Nimotuzumab has shown promising antitumor efficiency both in vitro and in vivo, 

particularly in combination with chemo- and radiation –therapy (117, 142, 144). 

Comparative studies involving its counterpart, the worldwide approved Cetuximab, are 

important when evaluating the therapeutic potential of the antibody. Such studies may 

reveal molecular mechanisms that explain functional differences observed for these two 

mAbs in the clinic. The major argument in favor of Nimotuzumab is that it does not 

provoke severe skin toxicity (143). One explanation for this is that Nimotuzumab, in 

contrast to Cetuximab, blocks ligand binding while simultaneously permitting a basal 

level of EGFR signaling (145).  However, our results show that, apart from having effect 

at different concentrations, the two antibodies did not appear to differ mechanistically 

with respect to inhibiting ligand-binding, blocking basal and ligand-induced dimerization 

and Erk activity (Paper I). This is in agreement with the reduced affinity of Nimotuzumab 

when compared to Cetuximab (144) and not the lack of inhibition of basal EGFR 

activation (145), that is responsible for the different in vivo effects. Indeed, the 

concentration of Nimotuzumab used in Paper I was increased compared to Cetuximab by 

a factor of ten, corresponding to differences in affinity. Our study was performed on cells 

expressing the intact receptor, and this might explain why the effects differ from those 

suggested by crystal structures of antibody/receptor fragments in solution. In contrast to 

our results, You et al. showed that treatment with Nimotuzumab did not significantly 

affect the level of EGFR, Erk, and Akt phosphorylation in tumor biopsies (187). 

However, as noted by the authors, the immunohistochemical staining intensities for these 

proteins were low and may not have been sensitive enough to detect small changes in the 

basal level of EGFR activity. In addition, the lack of EGFR signaling inhibition and the 

low anti-tumor activity in response to increasing amounts of Nimotuzumab could be 

attributed to the low affinity of the antibody.  
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 A recent study showed that Cetuximab and Nimotuzumab differ not only in 

affinity, but also in avidity (188). In contrast to Cetuximab, Nimotuzumab requires 

bivalent binding and therefore a high level EGFR expression for stable attachment to 

cells. If bivalent binding did occur in our study, it could have been responsible for the 

observed disruption of active EGFR dimers since bivalent antibody binding has been 

shown to prevent receptor dimerization due to steric constraints on the receptor (189, 

190). One potential difference between the PAE.EGFR cells used in paper I and cells 

used in other studies is the EGFR expression level. Only in cells with high (H125 cells) 

and very high (A431 cells) EGFR expression levels, i.e. in cells with an EGFR density at 

the plasma membrane high enough to allow bivalent binding did Nimotuzumab and 

Cetuximab bound with the same efficiency (188). Since we had to increase the 

concentration of Nimotuzumab to obtain equal inhibitory effects as for Cetuximab, this 

could suggest that the PAE.EGFR cells did not have high enough concentration of EGFR 

at the plasma membrane for Nimotuzumab to bind bivalently. PAE.EGFR cells have been 

well characterized and express EGFR at levels corresponding to H125 cells (182, 191). 

and the cells should therefore stably bind Nimotuzumab. However, it should be noted that 

receptor levels in these studies are measured per cell, and not per area. The surface areas 

of H125 and PAE cells have different EGFR densities even though the receptor 

expression levels per cell are similar. The lack of formation of large complexes in the size 

range of two receptors with one IgG antibody upon crosslinking, (see also Immunological 

Methods in the Methodological Considerations chapter) supports the notion that the 

EGFR density is too low to allow bivalent binding of anti-EGFR antibodies in 

PAE.EGFR cells. 

 Both antibodies are capable of eliciting ADCC (135, 142), which was not 

investigated in the present study due to methodological limitations. This is important to 

address when proposing explanations for functional differences between antibodies that 

share the same Ig subclass (IgG1), which is known to be the main activating class of 

ADCC (192).  

 Based on our in vitro data comparing Nimotuzumab and Cetuximab with respect 

to their capacity to inhibit ligand binding, receptor dimerization and downstream 

activation of Erk, we suggest the following model; 
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  Figure 4. Effect of Nimotuzumab (h-R3) and Cetuximab (C225) on ErbB1 dimerization and 

signaling. In absence of ligand, ErbB1 can adopt the active receptor conformation and engage in 
dimers that mediate basal levels of ligand-independent downstream signaling (phosphorylation of Erk 
1/2). Nimotuzumab and Cetuximab bind the ErbB1 domain III with different affinity and block ligand 
binding accordingly. Both antibodies inhibit ligand-dependent and ligand-independent ErbB1 
dimerization by promoting the inactive receptor conformation. This reduces the basal level of Erk 
activity. 

 

 

 
An additional mechanism of action that contributes to the antitumor activity of anti-ErbB 

mAbs is receptor endocytosis. The ability of Cetuximab and Nimotuzumab (data not 

shown for Nimotuzumab) to internalize and route EGFR was investigated, but no 

significant difference between the antibodies was observed, and it was difficult to make 

precise conclusions due to limited sensitivity of the internalization method that was 
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chosen. Instead, a new approach to increase the observed antibody-induced 

internalization was investigated in detail in Paper II. 

Antibody-induced down-regulation by macropinocytosis 

Cetuximab has previously been demonstrated to induce internalization of EGFR (130), 

which is considered an important mechanism that may contribute to antitumor activity if 

the receptor becomes efficiently down-regulated by degradation (1). However, 

Cetuximab-induced internalization is slow, and a fraction of EGFR can be routed to the 

nucleus instead of to lysosomes (131, 132), a process that is associated with negative 

outcome since nuclear EGFR has been associated with poor clinical outcome (133, 134). 

Combining Cetuximab with other mAbs is shown to efficiently down-regulate EGFR by 

inhibiting recycling (121). The mechanism of action is proposed to be antibody-induced 

clustering of the receptor at the plasma membrane followed by efficient internalization 

and degradation in lysosomes (114). mAb combinations are reported to significantly 

enhance the antitumor effect of Cetuximab in vivo, independently of functions mediated 

by the antibodies Fc regions (ADCC) (125).   

 In an attempt to increase Cetuximab-induced EGFR internalization, we did a 

sequential incubation with Cetuximab followed by an anti-human IgG antibody (Paper 

II). The antibody combination was observed to induce large clusters of EGFR at the 

plasma membrane, followed by rapid EGFR internalization and degradation. Internalized 

EGFR-antibody complexes localized to large early endosomal compartments, as 

confirmed by confocal- and electron –microscopy. The vesicle size corresponded to 

macropinosomes, since they are considerably larger than CCVs. This suggested that 

macropinocytosis was responsible for mediating EGFR-antibody internalization. 

 Macropinocytosis is a form of bulk uptake that non-selectively internalizes 

extracellular material. The fluid phase marker dextran was used to confirm that the 

antibody combination was internalized from the plasma membrane. Although often stated 

in the literature (193), dextran is not specific for macropinocytosis. This was noticed in 

our control experiments when observing vesicular colocalization of dextran and 

fluorescent EGF at concentrations typical for clathrin-dependent endocytosis (15 ng) 

(data not shown). After confirming that the antibody combination internalized EGFR 
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independently of clathrin and dynamin, we next used latrunculin B to investigate actin 

dependency. Inhibition of actin polymerization by latrunculin B resulted in efficient 

block of endocytosis, arguing that the internalization was actin- dependent and 

characteristic for macropinocytosis, since rearrangement of the actin cytoskeleton is 

required for internalization by macropinocytosis. To confirm this, we next used 

amiloride, which is considered to be a more selective blocker of macropinocytosis (65, 

194). Incubation with amiloride also blocked antibody-induced EGFR internalization 

efficiently. 

 The antibody-induced vesicles resembled MVBs and were positive for both EEA1 

and the late endosome/lysosome marker LAMP1, in accordance with degradation data. 

Some studies suggest that macropinosomes do not mature into late endosomes and MVBs 

(reviewed in (62)). EGF-induced macropinosomes in A431 cells are shown to be positive 

for EEA1 (63), but they are recycled to the plasma membrane instead of maturing into 

MVBs. Yet other studies, using other cell lines than A431, showed that EGF-induced 

macropinosomes undergo maturation into late endosomes and fuse with lysosomes (195). 

This is in agreement with our data, suggesting that macropinosomes undergo maturation. 

Sorting of EGF-EGFR complexes into MVBs is believed to depend on EGFR 

ubiquitination and interaction with ESCRT complexes on the limiting membrane of 

endosomes (196). We found that the antibody combination induced ubiquitination of the 

EGFR, and upon internalization, the EGFR-antibody complexes initially colocalized with 

EEA1 and later with LAMP1. Immuno-EM further demonstrated efficient sorting into 

MVBs, all strongly suggesting routing to late endosomes/lysosomes. 

 PI3K activity is suggested to be required for macropinocytosis, since PI3K 

activates GTPases that are involved in rearrangement of actin filaments. Amiloride is 

proposed to inhibit macropinocytosis by inhibiting these GTPases (194). We therefore 

investigated PI3K activity, but could not observe any activation of the downstream 

effector Akt (data not shown) upon treatment with the antibody combination, despite 

efficient inhibition of macropinocytosis by amiloride. Although the antibody combination 

was found to phosphorylate EGFR at several tyrosine residues, it did not induce 

downstream Erk aktivation. One possible reason for this is that activation at tyrosine 

residue 1173 in EGFR is known to recruit the tyrosine phosphatase SHP1 that can 
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attenuate ErbB-mediated Erk activity (33). Additionally, macropinocytosis was not 

affected when the kinase activity of EGFR was blocked. Our results thus suggest that 

other mechanisms then PI3K and EGFR kinase activity are involved in antibody-induced 

macropinocytosis. This is in agreement with previous reports showing that the murine 

version of Cetuximab in combination with other anti-EGFR mAbs down-regulate the 

EGFR without activation of the receptor or components of downstream signaling 

pathways (MAPK and PI3K) (121). One possible mechanism for antibody-induced 

macropinocytosis could be that internalization of EGFR depends on receptor interactions 

rather than kinase activity (197). 

 Altogether, our data show that a combination of antibodies can efficiently down-

regulate EGFR by induction of macropinocytosis that culminates in lysosomal 

degradation of the cargo. The process is probably initiated via clustering of EGFR into 

large receptor-antibody complexes. The steric cross-linking by the antibodies is most 

likely responsible for the observed activation of EGFR, perhaps by orienting the receptor 

kinase domains into such close proximity that some asymmetric kinase interactions can 

take place. However, the internalization did not depend on this activation. Incubation 

with antibodies induced a considerably lower EGFR phosphorylation compared to 

incubation with high concentrations (60 ng) of EGF (data not shown). But antibody 

combination induced a much more rapid receptor degradation than did the ligand. EGF at 

high concentrations has been shown to induce macropinocytosis (65), at which point the 

clathrin-dependent endocytosis of EGFR is probably saturated in these cell lines (196). 

Both ligand- and antibody-induced degradation was similar upon incubation for 4 h, 

suggesting that whatever pathways were involved, they may have become saturated. As 

pointed out, the endocytic pathways are probably not mutually exclusive, and it can very 

well be that the antibody combination initiated several parallel routes, but primarily 

macropinocytosis since only inhibition of this pathway efficiently blocked the antibody-

induced internalization. 

Targeting the endocytosis deficient ErbB2 

ErbB2 is normally located at the plasma membrane, where its overexpression is 

associated with spontaneous receptor dimerization (31) and poor clinical outcome (153). 
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One model suggests that the high surface expression of ErbB2 is due to increased 

recycling of the receptor when compared to the other ErbB members (87, 198). Another 

model argues that ErbB2 is endocytosis deficient, either due to the presence of signals 

that retain ErbB2 at the cell surface or the lack of signals that promote rapid 

internalization (83, 196). This model is supported by studies showing that internalization 

of EGFR is negatively affected upon heterodimerization with ErbB2 (83, 85). Interaction 

with HSP90 may also be responsible for retaining ErbB2 at the plasma membrane. The 

present work consistently supports the notion that ErbB2 is endoyctosis deficient and 

thereby also negatively affects internalization of the EGFR. In paper III we show that 

Pertuzumab disrupts ligand-independent EGFR-ErbB2 dimers, counteracts ligand-

induced EGFR-ErbB2 dimerization and thereby increases EGF-induced internalization 

and degradation of EGFR. Our data confirm that Pertuzumab did not affect recycling of 

EGFR in these cells, but that it rather prevents EGFR from dimerizing with ErbB2 at the 

plasma membrane. Eventually, Pertuzumab will probably reduce the sustained 

proliferative signaling emerging from EGFR-ErbB2 complexes at the plasma membrane. 

These results contribute to the understanding of mechanisms involved in Pertuzumab 

activity. 

 Different concentrations of EGF were used throughout these experiments, ranging 

from 1 ng/ml for the internalization assay to 60 ng/ml for the recycling and degradation 

assays. As pointed out above, different ligand concentrations could induce different 

endocytic pathways varying in extent and efficiency of internalization.  

 

In paper IV, no endocytosis of wild-type ErbB2 could be observed unless the cells were 

incubated with 17-AAG, supporting the view that ErbB2 is endocytosis deficient. It has 

been proposed that ErbB2 is normally endocytosed and recycled, but that 17-AAG  

down-regulates surface ErbB2 by increasing degradative sorting rather than increasing 

endocytosis (199). However, our confocal experiments could not detect internalized 

ErbB2 in absence of 17-AAG. It should be noted that wild-type ErbB2 was found to be 

constitutively degraded when cells were incubated with cycloheximide, suggesting that 

some internalization of wild-type ErbB2 occurred although ErbB2 could not be detected 

in endosomes. As previously suggested, this could be due to high expression of ErbB2 
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when using transient transfections. This could potentially induce artificial receptor 

interactions and result in internalization. 

 It is well established that 17-AAG treatment leads to ubiquitination and down-

regulation of ErbB2 (200). It is also suggested that fragmentation of ErbB2, possibly as a 

result of ubiquitination, precedes its degradation (199). Whether cleavage is required for 

endocytosis of ErbB2 is not clear (166, 201), and our group has previously demonstrated 

that geldanamycin induces endocytosis and lysosomal degradation of full-length ErbB2 

(172). This is in accordance with our current results, showing that C-terminal cleavage is 

not required for endocytosis of ErbB2 (Paper IV). Furthermore, we show that 

ubiquitination itself is sufficient to induce internalization and degradation of ErbB2. This 

is in accordance with a previous paper from our group where the same type of ubiquitin 

chain was found to induce internalization of the EGFR (76). Our unpublished data show 

that, as for ErbB2-Ub4, the appended ubiquitin chain was also sufficient to induce 

degradation of EGFR-Ub4 (data not shown). However, in contrast to EGFR- Ub4, ErbB2-

Ub4 was found to be modified by both Lys48- and Lys63-linked Ub chains. Furthermore, 

wt ErbB2 was shown to be ubiquitinated on Lys48- and Lys63 upon incubation with 17-

AAG. A recently published study has demonstrated that Lys48- and Lys63-linked 

polyubiquitination is important for trafficking and degradation of ErbB2 (77). Whether it 

is the appended ubiquitin chain itself, or the induced polyubiquitination that is 

responsible for internalization and degradation of ErbB2-Ub4 is therefore not clear. One 

limitation is that ErbB2-Ub4 may not be biologically relevant. The patterns of poly-Ub 

chains that are generated naturally by cells are probably different from the appended 

tetra-Ub chain in the ErbB2-Ub4 construct. However, our results clearly show that a 

linear chain of four ubiquitins is sufficient to induce events leading to clathrin-dependent 

and kinase-independent endocytosis and subsequent degradation of ErbB2. 

 ErbB2 is probably endocytosis deficient due to stable association with Hsp90. 17-

AAG targets HSP90, and our results show that in contrast to ErbB2-Ub4, wild type ErbB2 

can only be internalized upon incubation with 17-AAG, further suggesting that ErbB2 is 

endocytosis deficient upon association with HSP90. Our results also show that 

endocytosis of ErbB2-Ub4 increases upon incubation with 17-AAG, suggesting that 

HSP90 can stabilize also ErbB2-Ub4 at the plasma membrane. Incubation with 17-AAG 
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disrupts the stabilization of ErbB2 and enhances ErbB2-Ub4 internalization, probably by 

inducing further ubiquitination of the receptor.  

 The co-chaperone of HSP90, HSP70, is known to be involved in internalization, 

lysosomal delivery and degradation of client proteins (202), including plasma membrane-

localized ErbB2 (200). HSP70 was stably associated only with ErbB2-Ub4, but 

inefficiently associated with wild type ErbB2 (data not shown), suggesting that this co-

chaperone more efficiently recognized the appended Ub chain both in the absence and 

presence of 17-AAG. Co-chaperones have been demonstrated to facilitate internalization 

and degradation of target proteins (202). This suggests that ErbB2 is endocytosis-resistant 

when associated with Hsp90, but not with Hsp70. 17-AAG has previously been shown to 

induce exchange of Hsp90 by Hsp70,  further inducing ubiquitination of ErbB2 by CHIP 

(200, 203). 
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Abstract

The monoclonal antibody C225 (Cetuximab) blocks binding of ligand to the epidermal 

growth factor receptor (EGFR). In addition, it is known that incubation with C225 

induces endocytosis of the EGFR. This endocytosis has previously been shown to be 

increased when C225 is combined with an additional monoclonal anti-EGFR antibody. 

However, the effects of antibody combinations on EGFR activation, endocytosis, 

trafficking and degradation have been unclear. By binding a secondary antibody to the 

C225-EGFR complex, we here demonstrate that a combination of antibodies can 
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efficiently internalize and degrade the EGFR. Although the combination of antibodies 

activated the EGFR kinase and induced ubiquitination of the EGFR, the kinase activity 

was not required for internalization of the EGFR. In contrast to EGF-induced EGFR 

down-regulation, the antibody combination efficiently degraded the EGFR without 

initiating downstream proliferative signaling. The antibody-induced internalization of 

EGFR was found not to depend on clathrin and/or dynamin, but depended on actin 

polymerization, suggesting induction of macropinocytosis. Macropinocytosis may cause 

internalization of large membrane areas, and this could explain the highly efficient 

internalization of the EGFR induced by combination of antibodies.  

Key words : EGFR down-regulation, macropinocytosis, Cetuximab, signaling 

Introduction 

The ErbB family consists of four closely related members: epidermal growth factor 

(EGF) receptor (EGFR, also known as ErbB1 or HER1), ErbB2 (HER2/Neu), ErbB3 

(HER3) and ErbB4 (HER4). Overexpression of the EGFR and/or its ligands is associated 

with increased cellular proliferation and resistance to apoptosis in a number of human 

epithelial cancers, such as head and neck-, ovarian-, cervical-, gastric-, colorectal- and 

breast cancer [1], and several new treatment modalities targeting the EGFR are in 

preclinical and clinical trials. Important approaches in neutralizing EGFR signaling are 

tyrosine kinase inhibitors and monoclonal antibodies (mAbs). While kinase inhibitors 

mimic ATP and bind to the intracellular kinase domain, antibodies target the extracellular 

part of the receptor, thereby preventing ligand binding, conformational activation and/or 

receptor dimerization [2-4]. Activating ligands bind to domains I and III within the 

extracellular region of the EGFR. These domains are � helix leucine rich repeat (LRR)-
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like domains of ~160 amino acids each [5]. Ligand binding induces EGFR dimerization 

and activation, as well as endocytosis and down-regulation by both clathrin-dependent 

and clathrin-independent pathways (reviewed in [6]). A number of different clathrin-

independent endocytic pathways have been identified, including among others, caveolin- 

and flotillin-associated endocytosis, clathrin- and caveolae-independent endocytosis, the 

CLIC/GEEC (clathrin-independent carrier/glycosylphosphatidylinositol-anchored 

protein-enriched endosomal compartments) pathway, and macropinocytosis (for recent 

reviews see [7-12]). Macropinocytosis is readily induced upon activation the EGFR as 

well as other members of the ErbB family [6, 9, 12-14], and does like CLICs [15], 

account for a major uptake of fluid and turnover of plasma membrane. However, while 

the CLIC pathway is constitutive [15], macropinocytosis is a signal dependent process 

[11, 12]. 

Several anti-EGFR mAbs have been approved for cancer treatment, and C225 

(Cetuximab, Erbitux), which is a human/mouse chimeric antibody, has proven clinically 

effective, especially when combined with chemotherapy or radiation [16]. C225 binds to 

domain III of the EGFR and inhibits binding of ligand [17]. C225 also has cytotoxic 

effect by inducing antibody-dependent cellular cytotoxicity (ADCC) and can counteract 

tumor growth through several different mechanisms (reviewed in [3, 16, 18]). One 

important way to counteract carcinogenesis is induction of receptor down-regulation. The 

mouse anti-EGFR antibody mAb-225, from which C225 was engineered, has been shown 

to induce endocytosis of the EGFR [19, 20]. The endocytic down-regulation was strongly 

increased when mAb-225 was combined with another noncompetitive anti-EGFR 

antibody [21]. It should however also be recognized that C225 has been shown to induce 
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nuclear localization of the EGFR [22], a condition often associated with poor clinical 

outcome (reviewed in [23]).   

Combination of antibodies can result in formation of large receptor-antibody complexes 

at the cell surface. The rate of endocytosis of antibody-receptor complexes has been 

proposed to be proportional to the size of the complex [24], and incubation with a 

combination of antibodies has furthermore been shown to increase EGFR down-

regulation due to inhibited endosomal recycling of the receptor [21]. We have in the 

current study investigated how C225 alone and in combination with a polyclonal anti-

human IgG antibody internalized and degraded the EGFR. Our present results suggest 

that the anti-human IgG antibody efficiently enhanced C225-induced endocytosis of the 

EGFR. Furthermore, the antibody combination used was found to internalize the EGFR 

by macropinocytosis and to result in efficient EGFR degradation. 
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Materials and Methods

Materials 

Human recombinant EGF was from Bachem (Budendorf, Switzerland). Mouse 125I-EGF 

was from Perkin-Elmer, Inc. (Waltham, MA, USA). Alexa 647-conjugated EGF, lysine-

fixable Oregon Green 488-conjugated dextran (MW 10 kD), Rhodamine-conjugated 

Phalloidin, TO-PRO-3 and AG1478 were from Life Technologies Ltd (Paisley, UK). 

PD153035 was from Tocris Bioscience (Ellisville, MO, USA). Protein G-coupled 

magnetic beads were from Invitrogen (Carlsbad, CA, USA). All other reagents were from 

Sigma-Aldrich (St. Louis, MO, USA) unless otherwise noted.  

Antibodies

Cetuximab (C225, Erbitux) was from Merck KGaA (Darmstadt, Germany). Goat anti-

early endosomal antigen 1 (EEA1) and mouse anti-ubiquitin antibodies were from Santa 

Cruz Biotechnology, Inc. (Santa Cruz, CA, USA). Rabbit anti-donkey IgG, anti-

hemagglutinin (HA) tag, anti-LAMP1, anti-KDEL and anti-tubulin antibodies were from 

Abcam plc (Cambridge, UK). Sheep anti-EGFR antibody (to the intracellular part) was 

from Fitzgerald Industries International, Inc. (Acton, MA, USA). Rabbit anti-phospho-

Erk (pThr202/pTyr204) and mouse anti-phospho-EGFR (pTyr1068) antibodies were from 

Cell Signaling Technology, Inc. (Danvers, MA, USA). Mouse anti-phospho-EGFR 

(pTyr1173) antibody was from Millipore (Billerica, MA, USA), and mouse anti-clathrin 

heavy chain (CHC) antibody was from BD Biosciences (Heidelberg, Germany). Non-

conjugated rabbit anti-sheep IgG, Rhodamine Red-X-conjugated donkey anti-human IgG,  

peroxidase-conjugated donkey anti-rabbit -, anti-mouse, anti-sheep -, Alexa Fluor 488-

conjugated donkey anti-goat -, Cy2-conjugated donkey anti-rabbit -, Cy2-conjugated 
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donkey anti-sheep -, Cy5-conjugated donkey anti-sheep - and Rhodamine Red-X-

conjugated donkey anti-rabbit IgG antibodies were from Jackson ImmunoResearch 

Laboratories, Inc. (West Grove, PA, USA). Alexa Fluor 647-conjugated donkey anti-goat, 

Alexa Fluor 647-conjugated donkey anti-rabbit and Alexa Fluor 488-conjugated goat 

anti-rabbit antibodies were from Life Technologies Ltd.  

Cell Culture and Treatment 

Porcine Aortic Endothelial  cells stably transfected with a plasmid encoding human wild-

type EGFR (PAE.EGFR) was provided by Alexander Sorkin, University of Pittsburgh, 

USA. These cells (expressing 1 – 4 x 105 receptors) [25] were grown in Ham’s F-12 

medium (Lonza, Basel, Switzerland) supplemented with 10% (vol/vol) fetal bovine 

serum, 0.5x penicillin-streptomycin mixture (Lonza) and 400 �g/ml G418 sulphate 

(Invitrogen). A431 cells from the American Type Culture Collection (Rockville, MD, 

USA) were grown in Dulbecco’s modified Eagle’s medium (DMEM) (sodium 

bicarbonate, 3.7 g/l, and high glucose, 4.5 mg/l) (BioWittaker, Walkersville, MD, USA) 

containing 10% (vol/vol) fetal bovine serum, 2 mM L-glutamine (Lonza) and 0.5× 

Penicillin-Streptomycin mixture (Lonza). HeLa cells and MCF-7 cells were grown in 

DMEM with 2 mM L-glutamine. C225, anti-human IgG, AG1478,  PD153035, 

latrunculin B, amiloride, Oregon Green 488-conjugated dextran, Alexa 647-conjugated 

EGF and/or nonlabelled EGF were added to cells in minimal essential medium (MEM) 

(Life Technologies Ltd) without bicarbonate and with 0.1% (wt/vol) bovine serum 

albumin (BSA). For treatment with C225 only, cells were incubated with C225 (5 �g/mL) 

for 30 min on ice, washed with ice-cold phosphate-buffered saline (PBS) and chased at 

37°C in MEM [0.1% (wt/vol) BSA] for the indicated time periods. For incubation with 
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antibody combinations, cells were first incubated with C225 (5 �g/mL in all experiments 

except for experiments presented in Fig. S9) for 30 min on ice, washed with ice-cold PBS 

and subsequently incubated with anti-human IgG (25 �g/mL) for 30 min on ice before 

being washed with ice-cold PBS and chased at 37°C in MEM [0.1% (wt/vol) BSA]. 

Control cells were incubated as described above with MEM [0.1% (wt/vol) BSA] only in 

the absence of antibodies. In experiments investigating degradation, the cells were 

incubated and chased in MEM [0.1% (wt/vol) BSA] with 25 μg/ml cycloheximide 

(CHX).  

Transfection of cells 

To knock down CHC, PAE cells were transfected twice with siRNA with a 48 hours 

interval using Lipofectamine 2000 (Life Technologies Ltd) according to the 

manufacturer’s recommendations. The target sequence GCAAUGAGCUGUUUGAAGA 

[26] was synthesized by Life Technologies Ltd. Control cells were transfected with 

Silencer Negative control #1 from Applied Biosystems (Carlsbad, CA, USA). The 

pcDNA3.1-HA-Dynamin1-K44A plasmid (encoding K44A dynamin lacking GTPase 

activity) was provided by Professor Sandra Schmid, and cells were transfected using 

Lipofectamine 2000 according to the manufacturer’s recommendations. Cells were 

analyzed approximately 20 hours upon transfection.  

Western blotting 

Cells were washed 3 times with ice-cold PBS before being lysed and subjected to SDS-

PAGE and immunoblotting as previously described [27]. Proteins were detected using 

Pierce SuperSignal West Dura Extended Duration Substrate (Thermo Scientific) and a 
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Kodak Image Station 4000R (Carestream Health, Inc., Rochester, NY, USA). All 

experiments were repeated three times. 

Internalization of 125I-EGF 

Upon incubation of cells, as described in figure legends, internalization of 125I-EGF was 

measured essentially as previously described [28]. Internalized 125I-EGF was estimated as 

the ratio of internalized to surface-localized cpm. 

Immunoprecipitation 

Upon incubation as described in figure legends, cells were lysed in preheated (100 °C) 

1% SDS in PBS, incubated at 100°C for 5 min and chilled on ice before homogenization, 

using a QIA-shredder column (QIAGEN, Valencia, CA, USA). To precipitate the EGFR, 

sheep anti-EGFR antibody was first coupled to protein G-coupled magnetic beads, in 

0.1 M phosphate buffer, pH 8, with 0.05% Triton X-100, at room temperature for 1 h. 

Antibody-coupled beads were dissolved in 2x immunoprecipitation (IP) buffer: 2% 

(vol/vol) Triton X-100, 0.5% (wt/vol) sodium deoxycholate, 1% (wt/vol) BSA, 2 mM 

EDTA, 40 mM NaF, 6 mM NEM, 1:100 (vol/vol) protease inhibitor and phosphatase 

inhibitor cocktail (P8340 and P5726) before the antibody-coupled beads and cell lysates 

were gently mixed for 1 h at 4°C. The beads were then washed with 1x IP buffer (50% 2x 

IP buffer + 50% SDS [1%] in PBS) and eluted in 2x sample buffer [27]. The 

immunoprecipitated EGFR and total cell lysates (TCL) were subsequently subjected to 

SDS–PAGE and immunoblotting. 

Immunocytochemistry and confocal microscopy 

Upon incubation with the indicated reagents, cells grown in 60 mm  dishes (Sarstedt AG 

& Co., Nümbrecht, Germany) were washed once with PBS and fixed with ice-cold 
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ethanol for 10 min or 4% paraformaldehyde (PFA) (Reidel-de Haën, Seelze, Germany) in 

Soerensen´s phosphate buffer for 10 min at room temperature (RT). Cells were then 

washed 3 times with PBS before anti-quenching with 50 mM NH4Cl for 10 min at RT 

and washing twice with PBS. PFA-fixed cells were permeabilized using Triton X-100 

(0.1% vol/vol in PBS) for 10 min at RT. During incubation with the anti-LAMP1 

antibody, 0.1% (vol/vol) Saponine (Merck KGaA) was used for permeabilization. 

Saponine was also included in buffers used in the following labeling steps. Cells were 

washed with PBS and blocked with BSA (1% wt/vol in PBS) for 30 min before 

incubation with primary antibodies for 1 h at RT. Samples were washed 3 times with PBS 

before incubation with secondary antibodies for 30 min at RT. For actin staining, cells 

were incubated with 33 nM Rhodamine-conjugated Phalloidin in PBS for 30 min at RT 

following immunolabeling. Nuclei were stained with 0.5 �M TO-PRO-3 in PBS for 2 h at 

RT under humid conditions followed by immunolabeling. The cells were mounted using 

Dako fluorescent mounting medium (Glostrup, Denmark) and examined by confocal 

microscopy analysis (Leica TCS SP; Leica Microsystems AG, Wetzlar, Germany and 

Olympus FluoView FV1000; Olympus Corporation, Tokyo, Japan). The images were 

processed using Adobe Photoshop CS2. All experiments were repeated three times.  

Immuno electron microscopy  

Cells incubated as described in figure legends, were prepared for immuno electron 

microscopy (immuno-EM) as described [29, 30].  Thawed cryo-sections were labeled as 

described in figures to legends, and bound antibodies were visualized using protein A 

gold (purchased from G. Posthuma, Utrech, The Netherlands). Sections were examined 

using a Tecnai G2 Spirit TEM (FEI, Eindhoven, The Netherlands) equipped with a 
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Morada digital camera using iTEM (SIS) software (Soft Imaging Solutions, Muenster, 

Germany).  Images were processed using Adobe Photoshop CS2.    

Results

C225-induced endocytosis of the EGFR is enhanced upon antibody-induced 

crosslinking of the C225-EGFR complex  

Binding of C225 to the EGFR has been shown to promote receptor internalization by a 

yet undefined pathway [19, 20, 22]. To track C225-EGFR internalization, porcine aortic 

endothelial (PAE) cells stably transfected with a plasmid encoding the EGFR 

(PAE.EGFR cells) were incubated with C225 on ice, chased for 1 h at 37°C, fixed and 

subsequently labeled with a fluorochrome-conjugated anti-human IgG antibody (Fig. 1A, 

upper panel). The labeling demonstrated that although the majority of C225 remained 

localized to the plasma membrane even after chase at 37°C, a small amount of C225 

localized to EEA1-positive vesicles, indicating some, but not a very efficient, antibody-

induced internalization of the EGFR. 

Incubation with two noncompetitive anti-EGFR antibodies in combination has, when 

compared to incubation with a single antibody, been demonstrated to more efficiently 

induce EGFR down-regulation [21, 24]. The increased down-regulation was reported to 

be a result of increased clustering and decreased recycling of the antibody-EGFR 

complex [21]. Also, aggregation of a mouse anti-EGFR antibody-EGFR complex, 

induced by incubation with a secondary anti mouse IgG antibody, was shown to increase 

antibody-induced EGFR degradation [24]. To study if this was also the case upon 

incubation with C225, we incubated PAE.EGFR cells with C225 on ice, followed by 

incubation with a donkey-anti human IgG antibody on ice before chase at 37°C (later 



 11

referred to as the combined-antibody incubation). Contrary to when cells were incubated 

with C225 alone, where the majority of antibody seemed to remain randomly distributed 

over the plasma membrane (Fig. 1A, upper panel), the labeling in cells incubated with 

both C225 and anti-human IgG localized to what appeared to be large clusters at the 

plasma membrane and/or intracellular vesicles (Fig. 1A, lower panel). The pattern was 

the same throughout the z-axis supporting a vesicular localization. The endosomal nature 

of these compartments was confirmed by partial colocalization with EEA1 (Fig. 1A) 

upon 1 h chase, and LAMP1 upon prolonged chase (Fig. 1B), as well as by partial 

colocalization with the fluid-phase endocytosis marker dextran (Fig. S1). This suggests 

that binding of a secondary IgG antibody to C225 enhanced C225-induced internalization 

of the EGFR. 

To confirm that the EGFR was endocytosed along with the antibodies, cells incubated 

with C225 in combination with anti-human IgG were, upon fixation, labeled with an 

antibody recognizing the intracellular domain of the EGFR. Confocal microscopy 

analysis demonstrated co-localization between anti-human IgG and EGFR, confirming 

that the antibody complex remained associated with the EGFR (Fig. 1C). Cells were also 

incubated with anti-human IgG alone as a control for nonspecific antibody binding. 

Incubation with anti-human IgG only did not result in a fluorescence signal, nor did it 

induce EGFR internalization (data not shown).   

To characterize the combined-antibody induced clustering and internalization of EGFR in 

more detail, PAE.EGFR cells incubated with or without C225 and donkey anti-human 

IgG on ice followed by chase at 37°C for various times, were prepared for immuno 

electron microscopy (immuno-EM). In cells not incubated with antibodies, labeling for 
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the EGFR appeared as single gold particles that seemed to be randomly distributed along 

the plasma membrane (Fig. S2A). Double labeling using antibodies recognizing the 

intracellular part of EGFR and donkey IgG respectively, demonstrated that the combined-

antibody incubation induced clustering of the EGFR at the plasma membrane already 

upon incubation on ice (Fig. S2B). Upon 30 min chase at 37°C, the size of the EGFR-

C225-donkey anti-human IgG clusters was increased, and labeling also localized to what 

morphologically resembled early endosomes (Fig. 2A-B). However, in the same 

specimen, what appeared to be tubular plasma membrane invaginations showing labeling 

for EGFR and donkey IgG, were frequently observed (Fig. 2A and S3C). Such 

invaginations may, depending on the angel of sectioning, on the micrographs not only 

appear as tubular plasma membrane invaginations, but probably also as intracellular 

cisternal or vesicular compartments, making an exact discrimination between plasma 

membrane- and endosome-localized clusters difficult (see Fig. 2A).  Whether these 

apparent tubules really represent tubular invaginations or folding of larger plasma 

membrane areas is also difficult to determine (see also Fig. S4). Some labeling did, 

however, also localize to compartments with the morphology of late multivesicular 

endosomes (multivesicular bodies (MVBs)) (Fig. 2C). Upon prolonged chase, the 

labeling localizing to intraluminal vesicles of MVBs increased (Fig. 2E-F).  This, 

together with the above described localization to EEA1 and LAMP1 positive 

compartments (see Fig. 1), confirmed that the combined-antibody incubation induced 

internalization and endosomal localization of EGFR. It should, however, be noted that 

strong plasma membrane labeling was observed even upon 3 h chase (Fig. S3E and G). 

What was also striking upon chase at all time points and to a smaller extent directly upon 
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incubation on ice, was a strong labeling for donkey anti-human IgG along narrow 

intercellular spaces (Fig. 3 and Fig. S3). In the same area, anti-EGFR antibody labeled 

the plasma membrane in each of the neighboring cells. This suggests that donkey anti-

human IgG and possibly also to some extent C225 alone, in addition to cross-linking 

EGFRs directly next to each other at the plasma membrane had a zipper effect, cross-

linking EGFRs on large plasma membrane domains both within the same cell, and 

between neighboring cells (see also Fig. S4).  

PAE.EGFR cells, which do not express endogenous proteins belonging to the EGFR 

family, were used to avoid effects of EGFR heterodimerization. To investigate whether 

the observed effect is general and to what extent it depends on the EGFR expression 

level, we repeated the internalization experiments using cell lines expressing EGFR at 

different levels. Incubation of A431 cells, which express high amounts of EGFR, with 

C225 alone or in combination with anti-human IgG, showed similar results to what was 

observed in PAE.EGFR cells, suggesting that the effects are general, at least for cells 

expressing high levels of EGFR (Fig. S5). Also HeLa cells, expressing EGFR at 

intermediate levels, showed endosomal localization of the donkey anti-human IgG 

antibody upon the combined-antibody incubation (Fig. S6A). MCF-7 cells however, 

expressing EGFR at a low level, showed only very limited localization of anti-human IgG 

in endosomes (Fig. S6B). Altogether, this demonstrates that the effect of the 

combinedantibody incubation is general, but varies depending on the EGFR expression 

level. The latter is in line with the suggestion that the size of antibody-receptor lattices 

formed at the cell surface determines the endocytosis efficiency [24].  

Antibody-induced internalization of the EGFR is clathrin-independent 
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Previous studies have not addressed the molecular mechanisms involved in antibody-

induced endocytosis of the EGFR in detail. Ligand-induced internalization of EGFR is 

mostly clathrin-dependent, but also clathrin-independent pathways have been identified 

(reviewed in [14]). While low concentrations of EGF induced clathrin-dependent 

endocytosis, high concentrations of EGF could induce clathrin-independent endocytosis 

and/or macropinocytic or dorsal ruffles-mediated internalization of the EGFR [14, 31-

33]. Although immuno-EM demonstrated that the combined-antibody incubation caused 

clustering of EGFR mainly on non-coated plasma membrane regions, some clusters also 

localized to regions containing coated pits, and labeling was also observed in what 

appeared to be coated vesicles (Fig. 4A). To investigate whether antibody-induced EGFR 

internalization was clathrin-dependent, cells were transfected with siRNA to clathrin 

heavy chain (CHC). Western blotting was used to confirm efficient clathrin knock down 

(see Fig. S7A). As expected, knock down of CHC was found to efficiently inhibit 

endocytosis of fluorescently labeled EGF (Fig. S7B). Internalization of C225 was, 

however, not inhibited in CHC knock down cells, neither when cells were incubated with 

the C225 alone (Fig. 4B), nor when incubated with C225 in combination with anti-human 

IgG (Fig. 4C). These findings strongly suggest that antibody-induced endocytosis of the 

EGFR is clathrin-independent.  

Antibody-induced internalization of the EGFR is dynamin-independent  

EGF-induced formation of dorsal ruffles, which leads to massive internalization of the 

EGFR, is clathrin-independent, but does depend on dynamin-2 [31]. Likewise, 

internalization of ErbB2 induced by the combination of two anti-ErbB2 antibodies was 

previously demonstrated to be dynamin-dependent [24]. To examine the role of dynamin 



 15

in the combined-antibody-induced internalization of EGFR, PAE.EGFR cells were 

transiently transfected with a dominant negative dynamin mutant (K44A), previously 

demonstrated to block endocytosis of EGF [34]. In cells expressing the HA-tagged K44A 

dynamin, internalization of EGF (15 ng/ml) into early endosomes was blocked (Fig. S8). 

However, C225 in combination with anti-human IgG was internalized and localized to 

EEA1-positive vesicles both in cells with and without expression of K44A dynamin, 

demonstrating that the combined-antibody-induced internalization of EGFR was 

dynamin-independent (Fig. 5).  

Antibody-induced internalization of the EGFR occurs by macropinocytosis  

To further dissect mechanisms involved in antibody-induced EGFR endocytosis, we 

addressed potential actin dependency. As expected, preincubation of PAE.EGFR cells 

with the actin polymerization inhibitor latrunculin B [35] resulted in complete 

depolymerization of actin filaments (Fig. 6A). When cells were incubated with C225 in 

combination with anti-human IgG, internalization of the antibodies was inhibited upon 

incubation with latrunculin (Fig. 6B). Compared to in control cells, where the antibodies 

were visible only in discrete clusters or vesicles, the antibodies were found to be retained 

at the plasma membrane upon incubation with latrunculin, suggesting that actin- 

mediated macropinocytosis is responsible for the observed internalization.  

To further investigate a potential role of macropinocytosis in antibody-induced EGFR 

internalization, PAE.EGFR cells were exposed to amiloride. Amiloride, which is an 

inhibitor of Na+/H+ exchange, has been widely used as inhibitor of macropinocytosis [12] 

and was recently demonstrated to block macropinocytosis due to reduced  

submembranous pH and inhibition of GTPases required for actin polymerization [36]. 
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When cells were incubated with amiloride for 2 h prior to incubation with C225 and anti-

human IgG, antibody-induced internalization of EGFR was inhibited (Fig. 7A). Instead of 

being localized to vesicles, the anti-human IgG (and thus also C225 and the EGFR) 

remained at the plasma membrane. To confirm that clathrin-mediated endocytosis was 

not affected by amiloride, internalization of 125I-EGF at the concentration of 1 ng/ml was 

measured (Fig. 7B). Internalization of EGF was found to be efficient also in the presence 

of amiloride. Altogether, these data show that the combined-antibody-induced 

internalization of EGFR required actin polymerization (Fig. 6 and 7), but not clathrin 

(Fig. 4), nor dynamin (Fig. 5). This strongly suggested that macropinocytosis is 

responsible for the internalization. 

EGFR phosphorylation induced by C225 and anti-human IgG is not required for 

internalization of the EGFR 

Ligand-induced internalization of the EGFR is generally considered to depend on 

dimerization-induced activation of the kinase domain followed by transphosphorylation 

of tyrosines in the cytoplasmic tail of the EGFR [6, 37]. However, also dimerization-

dependent, but kinase-independent, ligand-induced endocytosis of the EGFR has been 

demonstrated [38]. Endocytosis mediated by dorsal ruffles was found to depend on 

EGFR phosphorylation [31], while endocytosis induced by the combination of two 

noncompetitive anti-EGFR antibodies occurred without detectable EGFR 

phosphorylation [21]. We have recently demonstrated that incubation with C225 alone 

inhibited basal Erk activation downstream of the EGFR [39]. To study whether this was 

also the case when C225 was combined with the anti-human IgG antibody, PEA.EGFR 

cells were incubated with or without C225 in combination with anti-human IgG. EGFR 
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phosphorylation, and downstream signaling was investigated using antibodies to 

phospho-Tyr1173, phospho-Tyr1086, and phospho-Tyr1068 in EGFR, and to phospho-

Erk, respectively. As previously demonstrated [39], C225 alone did not affect the basal 

level of EGFR phosphorylation, but basal Erk activity was clearly inhibited (data not 

shown). However, when C225 was combined with anti-human IgG, EGFR was 

significantly phosphorylated at tyrosine residues 1173 and 1086 (data not shown), while 

Tyr 1068 was only slightly phosphorylated (Fig. 8A). Activation of Erk was to some 

extent inhibited when compared to control levels.  

Since C225 in combination with anti-human IgG induced EGFR phosphorylation, we 

examined whether EGFR kinase activity was required to mediate the combined-antibody 

induced EGFR internalization. To inhibit EGFR kinase activity, PAE.EGFR cells were 

incubated with either of the EGFR specific kinase inhibitors AG1478 and PD153035, 

both prior to and upon incubation with the antibodies. Antibody-induced phosphorylation 

of EGFR was efficiently counteracted by the kinase inhibitors (Fig. 8A). Internalization 

of the EGFR-antibody complex, was, however, not affected by AG1478 or PD153035 

(Fig. 8B), demonstrating that EGFR kinase activity and phosphorylation of EGFR was 

not required for antibody-induced endocytosis.  

C225 in combination with anti-human IgG induces ubiquitination of the EGFR  

The immuno-EM studies showed that EGFR-C225-donkey anti-human IgG complexes 

were efficiently sorted to intraluminal vesicles of MVBs (see Fig. 2).  Since sorting of 

EGF-EGFR complexes into MVBs is believed to depend on EGFR ubiquitination and 

interaction with ESCRT complexes on the limiting membrane of endosomes [6], we 

investigated to what extent incubation with C225 alone or in combination with anti-
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human IgG induced EGFR ubiquitination. Cells were incubated with C225 alone or C225 

in  combination with anti-human IgG and chased for 30 min at 37°C. Incubation with 

EGF for 10 min at 37°C was used as a positive control. Immunoprecipitation of the 

EGFR and Western blotting using an antibody to ubiquitin demonstrated that the antibody 

combination, but not C225 alone, induced efficient EGFR ubiquitination (Fig. 9). 

C225 in combination with anti-human IgG induces rapid and efficient degradation 

of EGFR in a C225 concentration dependent manner 

Since the EGFR was efficiently internalized and localized to a LAMP1 positive 

compartment upon the combined-antibody incubation, we investigated how efficiently 

the antibody combination degraded the EGFR when compared to degradation induced by 

high concentrations of EGF (60 ng/ml).  Incubation with antibodies or with EGF both 

resulted in degradation of the EGFR (Fig. 10). Degradation induced by the antibodies 

was, however, more efficient than degradation induced by incubation with EGF. 

Incubation with the combination of antibodies resulted in EGFR degradation already 

upon a 2 h chase, while continuous incubation with EGF gave a similar effect upon 4 h 

chase. Based on our previous study showing that C225 at a concentration of 5 �g/ml, 

most efficiently inhibited binding of EGF [39], this concentration was used in all 

experiments described up to now. However, since the endocytosis rate of antibody-

receptor complexes has been proposed to be proportional to the size of the complex [24],  

we also investigated to what extent C225 at lower concentrations induced internalization 

and degradation of EGFR. Incubation with decreasing concentrations of C225, but with 

the same concentration of anti-human IgG as used for previous experiments, 

demonstrated that the internalization and degradation was indeed depending on the C225 
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concentration (Fig. S9). While 5 �g/ml caused efficient down-regulation of EGFR from 

the plasma membrane (Fig S9A) and efficient EGFR degradation (Fig. S9C), the effect 

was gradually decreased upon incubation with decreasing concentrations of C225.  As the 

size of the antibody-receptor complex most likely depends on the EGFR expression level, 

we also compared what effect the combined-antibody incubation had on degradation of 

the EGFR in cells with varying levels of EGFR expression. In line with the 

internalization experiments shown in Fig. S6, the combination of 5 �g/ml C225 and anti-

human IgG induced EGFR degradation in HeLa cells, but not MCF-7 cells (Fig. S9D-E). 

Discussion 

The antibody C225 (Cetuximab, Erbitux) has been  approved for clinical use, but use of 

C225 has so far produced modest response when used as single agent in patients with 

colorectal cancer [40, 41], with head and neck cancer [42] and with non-small cell lung 

cancer [43]. The clinical benefit seems to increase when C225 is combined with 

chemotherapy or radiation therapy [16]. For such reasons, C225 is rarely used 

therapeutically as single agent. Several strategies have been used to increase the 

therapeutic potential of anti-receptor antibodies. With respect to ErbB2, a combination of 

antibodies has been shown to increase antibody-induced inhibition of tumor growth [44, 

45], possibly as an effect of antibody-induced internalization and degradation of ErbB2 

[45]. However, the exact molecular mechanisms leading to antibody-induced down-

regulation of ErbB-proteins have so far not been fully clarified. To investigate how 

antibodies can induce internalization and degradation of the EGFR, we used C225 alone 

or C225 combined with an anti-human IgG antibody. Microscopy analysis demonstrated 

that binding of anti-human IgG to the C225-EGFR complexes strongly enhanced C225-
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induced receptor internalization, thus supporting the notion that aggregation of C225-

EGFR complexes increases the internalization efficiency and/or inhibits recycling. Our 

results further demonstrate that the combination of antibodies induced internalization of 

EGFR in a clathrin-independent manner. The internalization was also dynamin-

independent, which in addition to clathrin-coated pits, rules out caveolae as a possible 

internalization pathway (reviewed in [8]). Morphologically the anti-human IgG-C225-

EGFR positive domains showed several similarities to CLICs [15], but in contrast to the 

CLIC/GEEC pathway which is constitutive [15], the pathway investigated in the current 

study was clearly induced and depending on extensive antibody-induced crosslinking of 

the EGFR. Disruption of actin filaments by latrunculin, however, efficiently blocked 

endocytosis, arguing that the internalization was actin-dependent. Furthermore, 

internalization was blocked upon preincubation with amiloride.  Amiloride is widely used 

as an inhibitor of macropinocytosis, and suppression with amiloride was in a recent 

review suggested to define macropinocytosis [11]. Altogether, although we can not fully 

exclude alternative pathways, such as CLICs, our results suggest that antibody-mediated 

aggregation induces internalization of the EGFR by macropinocytosis. Macropinocytosis 

was originally considered a non-regulated process, but although all details are currently 

not understood,  it is clear that the remodeling of the cytoskeleton leading to 

macropinocytosis is highly regulated (reviewed in [12]). Activation of PI3-kinase is 

important for activation of the GTPases Rac1 and Cdc42 which are involved in actin 

remodeling and are inhibited upon incubation with amiloride [36]. However, even though 

we found that the combined-antibody incubation induced phosphorylation of the EGFR, 

antibody-induced macropinocytosis occurred also when this phosphorylation was blocked 
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by EGFR kinase inhibitors. This is consistent with previous reports, demonstrating that 

down-regulation of EGFR by combination of the antibody mAb-225 (the murine version 

of C225) and other monoclonal antibodies was independent of EGFR kinase activity [21].  

The exact molecular events involved in antibody-induced macropinocytosis thus remain 

undefined.  

The fate of macropinosomes has been reported to vary, possibly depending both on how 

macropinocytosis was initially induced and on the cell type studied. While EGF-induced 

macropinosomes in HEK293 cells has been shown to fuse with EEA1 positive early 

endosomes, mature to late endosomes and finally fuse with lysosomes [46], 

macropinosomes induced by EGF in A431 cells showed limited fusion with early 

endosomes and no maturation into late endosomes [47, 48]. Since sorting of the EGFR 

into MVBs is believed to depend on ubiquitin-mediated interaction with the ESCRT 

complexes (reviewed in [6]), such differences may be due to varying degree of EGFR 

ubiquitination. In our present study, we found that the combined-antibody incubation 

induced ubiquitination of the EGFR, and upon internalization, the EGFR-antibody 

complexes initially colocalized with EEA1 and later with LAMP1. Immuno-EM further 

demonstrated efficient sorting into MVBs, all strongly suggesting routing to late 

endosomes/lysosomes. Consistently, the EGFR was found to be degraded upon the 

combined-antibody incubation. When compared to ligand-induced degradation of the 

EGFR, antibody-induced clustering induced a more rapid degradation. This difference 

was clear upon 2 h chase, but upon prolonged chase, the degradation was more or less the 

same. The different efficiency of EGFR degradation can probably in part be explained by 

the different efficiency of internalization. Clathrin-dependent endocytosis of the EGFR is 
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saturable [6], and the limited size of each coated pit may possibly also limit the number 

of EGFR molecules that can be internalized at any time. Macropinocytosis will on the 

other hand include large plasma membrane areas containing clustered EGFRs and thus 

allow internalization of a large number of receptors in a single event. It should, however, 

be noted that our electron microscopy analysis indicated that also macropinocytosis could 

be a saturable process. We found that even upon 3 h chase, large EGFR-C225-donkey 

anti human IgG complexes were retained at the plasma membrane. This, together with the 

apparent crosslinking between C225-EGFR positive membrane areas on neighboring 

cells (probably strongly inhibiting internalization of EGFR) could explain why the extent 

of EGF-induced and antibody-induced degradation of EGFR was more or less similar 

upon 4 h chase. Altogether, our results show that extensive cross-linking of EGFR at the 

plasma membrane can induce efficient macropinocytosis-mediated down-regulation of 

the EGFR. The possible zipper effect introduced by the secondary antibody could on 

single cells be an important mechanical force driving plasma membrane invagination 

prior to scission and internalization. However, as this zipper effect also appears to 

crosslink neighboring cells, it might have a negative effect on EGFR down-regulation in 

confluent cell cultures and, importantly, also in vivo.     
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Figure Legends 
Figure 1: C225-induced internalization of EGFR is increased when combined with 

anti-human IgG. (A) PAE.EGFR cells were either incubated with C225 only (C225) on 

ice, chased for 1 h at 37°C, fixed and stained using Rhodamine Red-X-conjugated anti-

human IgG and goat anti-EEA1 antibodies followed by Alexa Fluor 488-conjugated 

donkey anti-goat antibody or incubated with C225 followed by Rhodamine Red-X-

conjugated anti-human IgG (C225+IgG) on ice, chased for 1 h at 37°C, fixed and stained 

using goat anti-EEA1 antibody followed by Alexa Fluor 488-conjugated donkey anti-goat 

antibody and TO-PRO-3 for nuclear counterstaining. Scale bar, 20 �m. (B) PAE.EGFR 

cells were incubated with C225 and Rhodamine Red-X-anti-human IgG (C225+IgG) on 

ice, chased for 4 h at 37°C, fixed and stained using rabbit anti-LAMP1 antibody followed 

by Alexa Fluor 488-conjugated goat anti-rabbit antibody and TO-PRO-3. Scale bar, 20 
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�m. (C) PAE.EGFR cells were incubated with C225 and Rhodamine Red-X-anti-human 

IgG (C225+IgG) on ice, chased for 1 h at 37°C, fixed and stained using sheep anti-EGFR 

antibody followed by Cy5-conjugated donkey anti-sheep antibody. Scale bar, 20 �m. 

Lower images show higher magnification of framed areas. Scale bar, 5.44 μm. 

Figure 2: Combined-antibody incubation induces EGFR clustering and endocytosis. 

PAE.EGFR cells, sequentially incubated with C225 and donkey-anti human IgG on ice 

before chase at 37°C for 30 min (A-C), 1 h (D-E) or 3 h (F), were prepared for cryo-

immuno-EM.  Thawed cryosections were double-labeled using a sheep antibody to the 

intracellular part of EGFR followed by rabbit anti-sheep IgG and 10 nm protein A gold, 

rabbit anti-human IgG and 15 nm protein A gold.  Labeling was localized to the plasma 

membrane (A and D), in typical early endosomes (e.e.) (B and D), and in MVBs at 

different stages of formation (C, E and F). Whether the area labeled with * in A 

represents an early endosome, or a plasma membrane invagination is unclear. Bar 100 

nm. 

Figure 3: Combined-antibody incubation induces cross-linking of EGFR clusters on 

neighboring cells. PAE.EGFR cells, sequentially incubated with C225 and donkey-anti 

human IgG on ice before chase at 37°C for 1 h, were prepared for cryo-immuno-EM.  

Thawed cryosections were double-labeled using a sheep antibody to the intracellular part 

of EGFR followed by rabbit anti-sheep IgG and 10 nm protein A gold and rabbit anti-

human IgG and 15 nm protein A gold. B shows a high magnification picture of the 

framed area in A. Bars: A 1�m; B 100 nm. 

Figure 4: Antibody-induced endocytosis of the EGFR is clathrin-independent. (A) 

PAE.EGFR cells were sequentially incubated with C225 and donkey-anti human IgG on 
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ice and either fixed directly (left panel) or upon 30 min chase at 37°C (right panel). 

Thawed cryosections were double-labeled using a sheep antibody to the intracellular part 

of the EGFR followed by rabbit anti-sheep IgG and 10 nm protein A gold and rabbit anti-

human IgG and 15 nm protein A gold.  c.p.: coated pit; c.v.: coated vesicle. Bars 100 nm.

(B-C) PAE.EGFR cells were transfected with Silencer Negative control siRNA (Control) 

or CHC siRNA (Clathrin KD) prior to incubation with antibodies. (B) Cells incubated 

with C225 only were chased for 1 h, fixed and stained using Rhodamine Red-X-

conjugated anti-human IgG and goat anti-EEA1 antibodies followed by Alexa Fluor 488-

conjugated donkey anti-goat antibody. (C) Cells incubated with C225 and Rhodamine 

Red-X-anti-human IgG in combination (C225+IgG) were chased for 1 h, fixed and 

stained using goat anti-EEA1 antibody followed by Alexa Fluor 488-conjugated donkey 

anti-goat antibody and TO-PRO-3 for nuclear counterstaining. Scale bar, 20 �m.  

Figure 5: Internalization of EGFR induced by the antibody combination is dynamin 

independent. PAE.EGFR cells, transfected with a plasmid encoding HA-tagged K44A 

dynamin, were incubated with C225 and Rhodamine Red-X-anti-human IgG (IgG) on 

ice, chased for 1 h, fixed and stained using rabbit anti-HA and goat anti-EEA1 antibodies 

followed by Cy2-conjugated donkey anti-rabbit and Alexa Fluor 647-conjugated donkey 

anti-goat antibodies. The right image represents a merge of Rhodamine Red-X-anti-

human IgG localization and staining for EEA1. Scale bar, 20 �m.   

Figure 6: Internalization of EGFR induced by the antibody combination is 

dependent on actin. (A) PAE.EGFR cells were preincubated with or without (Control) 

latrunculin B (10 �g/ml) for 30 min at 37°C. Cells were then fixed with ethanol and 

stained using Rhodamine-conjugated Phalloidin and TO-PRO-3. (B) Cells preincubated 
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with or without latrunculin were subsequently incubated with C225 and Rhodamine Red-

X-anti-human IgG, chased for 1 h, fixed with ethanol and stained using goat anti-EEA1 

antibody. For cells treated with latrunculin, this drug was present also during incubation 

with antibodies and during the chase period. Scale bar, 20 �m.  

Figure 7: The combined-antibody incubation induces EGFR internalization by 

macropinocytosis. (A) PAE.EGFR cells, preincubated with or without (Control) 

amiloride (1 mM) for 2 h at 37°C, were subsequently incubated with C225 and 

Rhodamine Red-X-anti-human IgG, chased for 1 h in the presence of amiloride (1 mM) 

and fixed. Scale bar, 10 �m. (B) Cells preincubated with or without (Control) amiloride 

(1 mM) for 2 h at 37°C, were subsequently incubated with 1 ng/ml 125I-EGF at 37°C for 

the times indicated. The ratio of internalized to surface-localized 125I-EGF (mean ± SE of 

three independent experiments with four parallels) was plotted as a function of time.  

Figure 8: Activation of EGFR, induced by the combined-antibody incubation, is not 

required for EGFR internalization. PAE.EGFR cells preincubated with or without 

(Control) AG1478 (1 �M) or PD153035 (5 �M) for 1 h at 37°C, were incubated with or 

without C225 and Rhodamine Red-X-anti-human IgG (C225+IgG) and subsequently 

chased for 1 h in the presence or absence of AG1478  or PD153035. (A) Cell lysates were 

subjected to SDS-PAGE using two parallel 10% gels and immunoblotting with anti-

EGFR-phospho-tyrosine antibody (pTyr1173 or pTyr1068), anti-phospho-Erk (pErk) and 

anti-Tubulin antibodies. (B) Fixed cells were stained using goat anti-EEA1 antibody 

followed by Alexa Fluor 488-conjugated donkey anti-goat antibody and TO-PRO-3. 

Scale bar, 10 �m. 
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Figure 9: The combination of antibodies induces EGFR ubiquitination. PAE.EGFR 

cells were either incubated with or without (Control) C225 alone or with the antibody 

combination (C225+IgG) and subsequently chased for 30 min at 37 °C, or incubated with 

EGF (60 ng/ml) for 10 min at 37 °C. The cell lysates were subjected to 

immunoprecipitation under denaturing conditions using sheep anti-EGFR antibody. The 

immunoprecipitated material was then analyzed by Western blotting, using antibody to 

ubiquitin. The membranes were stripped and subsequently reblotted using sheep anti-

EGFR antibody. Total cell lysates (TCL) were immunoblotted using sheep anti-EGFR 

antibody, and anti-Tubulin antibody was used as loading control.

Figure 10: The antibody combination degrades EGFR with high efficiency. 

PAE.EGFR cells were either incubated with or without (Control) the antibody 

combination (C225+IgG) and subsequently chased for 2 or 4 h in presence of CHX, or 

incubated with EGF (60 ng/ml) for 2 or 4 h in presence of CHX. Cell lysates were 

subjected to SDS-PAGE using a 10% gel and immunoblotted with sheep anti-EGFR 

antibody. Anti-Tubulin antibody was used as loading control. 

Highlights 
 

� Cetuximab induced endocytosis of EGFR increases upon combination with anti-
human IgG 

� Antibody combination causes internalization of EGFR by macropinocytosis 
� Antibody-induced internalization of EGFR is independent of EGFR kinase 

activity 
� Antibody combination may have a zipper effect and cross-link EGFRs on 

neighboring cells 
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Supplementary information 

Supplementary Figure S1: Antibody combination internalizes surface-localized 

fluorescent dextran. PAE.EGFR cells were incubated with C225 and Rhodamine Red-

X-anti-human IgG (C225+IgG) in presence of Oregon Green 488-conjugated dextran (2 

mg/ml), chased for 1 h in presence of dextran (2 mg/ml) and fixed. Scale bar, 10 �m. 

 

Supplementary Figure S2: Combined-antibody incubation induces clustering of 

EGFR at the plasma membrane.  A) PAE.EGFR cells not incubated with antibodies 

were prepared for immuno-EM and labeled with sheep-anti EGFR followed by rabbit-

anti sheep and 10 nm protein A gold. B) PAE.EGFR cells, sequentially incubated with 

C225 and donkey-anti human IgG on ice, were prepared for cryo-immuno-EM.  Thawed 

cryosections were double labeled using a sheep antibody to the intracellular part of EGFR 

followed by rabbit anti-sheep IgG and 10 nm protein A gold, and rabbit anti-human IgG 

and 15 nm protein A gold.  Bars 100 nm. 

 

Supplementary Figure S3: Combined-antibody incubation induces clustering of 

EGFR and cross-linking of neighboring cells. PAE.EGFR cells, sequentially incubated 

with C225 and donkey-anti human IgG on ice, followed by chase at 37°C for 30 min (A-

D) or 3 h (E-I) were prepared for cryo-immuno-EM.  Thawed cryosections were double 

labeled using a sheep antibody to the intracellular part of EGFR followed by rabbit anti-

sheep IgG and 10 nm protein A gold, and rabbit anti-human IgG and 15 nm protein A 
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gold.  B, C and D show high magnification pictures of the framed areas in A; F, H and I 

show high magnification pictures of the framed areas in E and G, respectively. Bars 100 

nm.

 

Supplementary Figure S4: Combined-antibody incubation may have a zipper effect. 

Schematic drawings showing different variations of antibody induced patching of EGFR 

and possible cross-linking of plasma membrane sheets. A) The lines indicating the 

plasma membrane (p.m.) may represent either the membrane on separate areas of a single 

cell, or the plasma membranes of two different cells. The left side illustrates how C225 

on its own can crosslink neighboring EGFRs, and possibly also EGFRs on separate, but 

closely positioned membrane domains. The right side illustrates how anti-human IgG in 

different ways can crosslink neighboring EGFR-bound C225 molecules both within one 

membrane domain and on closely positioned membrane domains. B) Within the same cell 

cross-linking induced the combined-antibody incubation may have a zipper effect leading 

to the formation of either tubular invaginations (left side), or folding of larger membrane 

sheets (right side). Pale colors indicate antibodies localized in the back. C) The 

combined-antibody incubation may have a zipper effect leading to the cross-linking of 

plasma membrane domains on neighboring cells.  

 

Supplementary Figure S5: Antibody-induced receptor internalization is efficient in 

cells with high expression of EGFR. (A) A431 cells were incubated with C225 on ice, 

chased for 1 h at 37°C, fixed and stained using Rhodamine Red-X-anti-human IgG.  (B) 

A431 cells were incubated with C225 followed by Rhodamine Red-X-anti-human IgG on 
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ice before chase for 1 h at 37°C. (C) A431 cells, incubated as in B, were upon fixation

stained using sheep anti-EGFR antibody followed by Cy5-conjugated donkey anti-sheep 

antibody. Scale bars, 20 �m. Lower images in C show higher magnification of framed 

areas. Scale bar, 4.55 μM. 

 

Supplementary Figure S6: The degree of EGFR internalization upon combined-

antibody incubation varies depending on the EGFR expression level. HeLa cells (A) 

and MCF-7 cells (B) were incubated with the antibody combination (IgG), chased for 1 h, 

fixed and stained using goat anti-EEA1 antibody followed by Alexa Fluor 488-

conjugated donkey anti-goat antibody and TO-PRO-3 for nuclear counterstaining. Scale 

bars, 10 �m.

 

Supplementary Figure S7: Knock-down of CHC blocks internalization of EGF. 

PAE.EGFR cells were transfected with Silencer Negative control siRNA (Control) or 

CHC siRNA (Clathrin KD). (A) Cell lysates were subjected to SDS-PAGE and 

immunoblotting with anti-CHC antibody. Anti-Tubulin antibody was used as loading 

control. (B) Cells were incubated with Alexa 647-conjugated EGF (15 ng/ml) for 15 min 

at 37°C, fixed and stained using goat anti-EEA1 antibody followed by Alexa Fluor 488-

conjugated donkey anti-goat antibody. Scale bar, 20 �m. 

 

Supplementary Figure S8: Transfection of cells with HA-K44A-Dynamin1 reduced 

internalization of EGF. PAE.EGFR cells were transfected with plasmid encoding HA-

tagged K44A dynamin before incubation with Alexa 647-conjugated EGF (15 ng/ml) for 
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15 min at 37°C. Cells were then fixed and stained using rabbit anti-HA tag and goat anti-

EEA1 antibodies followed by Rhodamine Red-X-conjugated donkey anti-rabbit and 

Alexa Fluor 488-conjugated donkey anti-goat antibodies. Scale bar, 20 �m. 

 

Supplementary Figure S9: The effect of the combined-antibody incucbation on 

EGFR internalization and degradation varies depending on C225 concentration and 

on EGFR expression levels. (A-B) PAE.EGFR cells were incubated with the antibody 

combination (IgG) with decreasing concentrations of C225 (as indicated in figures), 

chased for 1 h, fixed and either (A) stained using goat anti-EEA1 antibody followed by 

Alexa Fluor 488-conjugated donkey anti-goat antibody, or (B) stained using sheep anti-

EGFR antibody followed by Cy2-conjugated donkey anti-sheep antibody. TO-PRO-3 was 

used for nuclear counterstaining. Scale bars, 10 �m. (B) The confocal settings and image 

analysis were kept constant to demonstrate the gradually increasing labeling of EGFR at 

the plasma membrane upon decreasing C225 concentrations. (C) PAE.EGFR cells were 

incubated with or without the antibody combination (C225+IgG) using decreasing 

concentrations of C225 (as indicated in figures) and subsequently chased for 2 h in the 

presence of CHX. Cell lysates were subjected to SDS-PAGE using a 10% gel and 

immunoblotted with sheep anti-EGFR antibody. Anti-Tubulin antibody was used as 

loading control.  (D-E) HeLa cells (D) and MCF-7 cells (E) were incubated with or 

without 5.0 �g/ml C225 followed by anti-human IgG (C225+IgG), and subsequently 

chased for 2  h in presence of CHX, or incubated with EGF (60 ng/ml) for 2 h in presence 

of CHX. Cell lysates were subjected to SDS-PAGE using a 10% gel and immunoblotted 

with sheep anti-EGFR antibody. Anti-Tubulin antibody was used as loading control.  
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Abstract 

The oncoprotein ErbB2 is endocytosis-deficient, probably due to its interaction with 

Heat Shock Protein 90. We previously demonstrated that clathrin-dependent 

endocytosis of ErbB2 is induced upon incubation of cells with Ansamycin derivatives, 

such as geldanamycin and its derivative 17-AAG. We have previously demonstrated 

that a preubiquitinated chimeric EGFR (EGFR-Ub4) is constitutively endocytosed in a 

clathrin-dependent manner. We now demonstrate that also an ErbB2-Ub4 chimera is 

endocytosed constitutively and clathrin-dependently. Upon expression, the ErbB2-

Ub4 was further ubiquitinated, and by Western blotting, we demonstrated that ErbB2-

Ub4 nucleates and enables formation of both Lys48-linked and Lys63-linked 

polyubiquitin chains. This is in contrast to EGFR-Ub4, where no further ubiquitination 

was observed. ErbB2-Ub4 was constitutively internalized and eventually sorted to late 

endosomes and lysosomes where the fusion protein was degraded. ErbB2-Ub4 was not 

cleaved prior to internalization. Interestingly, over-expression of Ubiquitin Interaction 

Motif -containing dominant negative fragments of the clathrin adaptor proteins epsin1 

and Eps15 negatively affected endocytosis of ErbB2. Altogether, this argues that 

ubiquitination is sufficient to induce clathrin-mediated endocytosis and lysosomal 

degradation of the otherwise plasma membrane localized ErbB2. Also, it appears that 

C-terminal cleavage is not required for endocytosis. 

 

 

Key words: ErbB2, endocytosis, signaling, ubiquitination, kinase activity 
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Introduction 

The epidermal growth factor receptor (EGFR) family consists of four receptor 

tyrosine kinases (RTKs): EGFR/ErbB1, ErbB2, ErbB3 and ErbB4. Aberration of 

signaling in human disease has in many instances been ascribed to altered function or 

expression of ErbB proteins, and over-expression and/or activating mutations of ErbB 

proteins are frequently associated with cancer. This especially applies to breast and 

ovarian carcinoma and to colon-, prostate-, non small cell lung- and pancreatic cancer. 

The ErbB proteins have similar overall structure. However, they behave in different 

ways with respect to ligand-induced activation and down-regulation [1]. Down-

regulation by endocytosis and subsequent degradation counteracts growth promoting 

and anti-apoptotic signaling. Understanding mechanisms involved in down-regulation 

of ErbB proteins should pave the way towards rational design of new drugs. 

Mechanistic insight has already resulted in ErbB-interacting agents undergoing 

clinical trials. Activation of ErbB proteins depends on dimerization, which is 

normally ligand-dependent, but possibly also ligand-independent when ErbB proteins 

are over-expressed  [2]. ErbB2 is an orphan receptor, which due to its constitutively 

exposed dimerization arm is incapable of binding ligand [3]. ErbB2 is over-expressed 

in a number of human malignancies, and over-expression is associated with poor 

clinical outcome [4].  Due to the pre-exposed dimerization arm, ErbB2 readily 

interacts with other ErbB proteins (EGFR, ErbB3 and ErbB4) both in presence and 

absence of growth factors. By heterodimerization, ErbB2 plays a dominant role in 

mediating the malignant phenotype [5]. Also,  ErbB2 signals poor prognosis due to its 

efficient interaction with other RTKs, such as c-Met and with the cytosolic kinase  Src 

[6, 7]. 

 

ErbB2 is normally concentrated at the plasma membrane and hardly observed in 

endosomes in non-manipulated cells. We and others have considered ErbB2 to be 

endocytosis deficient [8-10]. We have previously demonstrated that when ErbB2 is 

over-expressed, EGFR-ErbB2 heterodimerization causes retention of EGFR at the 

plasma membrane [8]. Furthermore, we have demonstrated that when cells are 

incubated with the anti-ErbB2 antibody Pertuzumab, EGFR-ErbB2 heterodimers 

dissolve, and in the presence of EGF, the free EGFRs form homodimers that are 

rapidly endocytosed [11]. This suggests that ErbB2 upon heterodimerization has a 

tethering function, inhibiting EGFR endocytosis. At the plasma membrane, ligands 
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that interact with EGFR can induce formation of EGFR-ErbB2 heterodimers and 

cause sustained proliferative signaling compared to signaling from EGFR 

homodimers. This pinpoints ErbB2 as an important treatment target [12]. 

 

ErbB2 is a Heat shock protein 90 (Hsp90) client, and Hsp90 stabilizes ErbB2 at the 

plasma membrane, probably by direct interaction with ErbB2 [13, 14]. Endocytic 

down-regulation of ErbB2 is induced when the interaction with Hsp90 is interrupted 

by the Hsp90-interacting Ansamycin geldanamycin (GA) [15-17]. The Hsp90-

interacting agents, such as GA and the GA-derivatives 17-AAG and 17-DMAG bind 

to the ATP/ADP-binding pocket of Hsp90 with higher affinity than the nucleotide, 

thereby replacing it. This inhibits the chaperone function of Hsp90 and leads to 

degradation of Hsp90 client proteins. 17-AAG has less general toxicity than GA and 

is now in clinical trials [18, 19]. However, the exact molecular mechanisms whereby 

Hsp90 inhibition leads to degradation of Hsp90 client proteins have not been worked 

out. It is clear that ErbB2 is ubiquitinated as a result of incubation with GA [20], and 

it has been assumed that the ubiquitin (Ub) ligases CHIP (carboxyl terminus Hsc70-

interacting protein) and/or Cullin5 is involved in GA-induced internalization and 

degradation of ErbB2 [21-23]. However, whether ubiquitination serves as an 

endocytosis signal or as a signal for proteasomal cleavage of ErbB2 is unclear [15, 16, 

24]. We have in the following investigated how constitutive ubiquitination affects 

ErbB2 endocytosis and degradation. This has been addressed by use of a chimeric 

preubiquitinated ErbB2 containing full-length ErbB2 and a C-terminally appended 

tetra-Ub chain (ErbB2-Ub4).  

 

We recently demonstrated that a tetra-Ub chain could mediate clathrin-dependent 

endocytosis of the EGFR regardless of kinase activity [25], and we have in the current 

study investigated and compared ubiquitination, endocytosis and degradation of wt 

ErbB2 and ErbB2-Ub4. Interestingly, we now demonstrate that also in case of ErbB2 

is a tetra-Ub chain capable of inducing endocytosis and degradation of the fusion 

protein. Like in case of EGFR-Ub4, ErbB2-Ub4 was found to be endocytosed via 

clathrin-coated pits in the absence of kinase activity. The ErbB2 chimera was also 

demonstrated to be further ubiquitinated by attachment of Lys48- and Lys63-linked 

Ub chains. To this end, we therefore conclude that ubiquitination enhances both 

endocytosis and degradation of ErbB2. 
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Materials and Methods 
 

Materials 

17-AAG was from Tocris Bioscience. Protein A-coupled magnetic beads were from 

Invitrogen (Carlsbad, CA, USA). Other chemicals were from Sigma-Aldrich 

Corporation (St. Louis, MO, USA) unless otherwise noted. 

  

Antibodies 

Mouse anti-ErbB2 antibody (clone TAB250 to the extracellular part) and rabbit anti-

ErbB2 antibody (PAD: Z4881 to the intracellular part) were from Invitrogen. Mouse 

anti-ErbB2 antibody (clone 42 to the extracellular part), and mouse anti-CHC 

antibody were from BD Biosciences (Heidelberg, Germany), goat anti-ErbB2 

antibody (to the extracellular part) was from R&D Systems (Minneapolis; MN, USA),  

mouse anti-ErbB2 (Ab-3 to the intracellular part) was from Calbiochem – Merck 

Biosciences (Beeston, Nottingham, UK), and rabbit anti-phospho-ErbB2 (pY1248) 

antibody was from Millipore (Billerica, MA, USA). Rabbit anti-tubulin, rabbit anti-

lysosomal-associated membrane protein 1 (LAMP1) and rabbit anti-Myc antibodies 

were from Abcam plc (Cambridge, UK). Mouse anti-Ub and goat anti-Early 

endosomal antigen 1 (EEA1) antibodies were from Santa Cruz Biotechnology, Inc. 

(Santa Cruz, CA, USA). Alexa Fluor 488-conjugated goat anti-rabbit and Alexa Flour 

647-conjugated donkey anti-goat antibodies were from Invitrogen. Rhodamine RedX-

conjugated donkey anti-mouse, DyLight 488-conjugated donkey anti-goat and 

peroxidase-conjugated donkey anti-rabbit, -mouse, and -human antibodies were from 

Jackson ImmunoResearch Laboratories, Inc. (West Grove, PA, USA). Human anti-

Lys63-linked polyUb antibody (Apu3.A8) and human anti-Lys48-linked polyUb 

antibody (Apu2.07) were provided by Genentech, Inc. (South San Francisco, CA, 

USA). 

 

Cell culture and treatment 

Porcine Aortic Endothelial (PAE) cells were grown in Ham´s F-12 medium with L-

glutamine (Lonza Group Ltd., Basel Switzerland), containing 0.5× Penicillin-

Streptomycin mixture (Lonza Group, Ltd.) and 10% (v/v) Fetal Bovine Serum (FBS) 

at 37 °C with 5% CO2. During experiments, cells were incubated with the indicated 
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compounds either in minimal essential medium (MEM; without bicarbonate) 

(Invitrogen) with 0.1% BSA, or in Ham´s F-12 medium if experiments lasted for 

more than 4 h. In experiments investigating receptor degradation, the cells were 

incubated with 25 μg/ml cycloheximide.   

 

Plasmids  

The pcDNA3.1-ErbB2 was described earlier [8]. Generation of 

pcDNA3.1/Hygro(+)ErbB2-Ub4 was performed by Mutagenex Inc. (Piscataway, NJ, 

USA). In brief, the full-length wt ErbB2 was amplified by PCR from pRK5-HER2-

GFP (a gift from Andrew Chantry, University of East Anglia, Norwich, United 

Kingdom) using the primers 

5´AAGCTTGCCACCATGGAGCTGGCGGCCTTGTGCC3´ and 

5´CCTAGGCACTGGCACGTCCAGACCCAGG3´ containing HindIII and AvrII 

restriction sites, respectively. The PCR product was then ligated into 

pcDNA3.1/Hygro(+)-4xUb vector generated from pcDNA3.1/Hygro-EGFR-Ub4 

(described in [25]), in which the EGFR part was excised from the plasmid using 

restriction enzymes  HindIII and AvrII. It should be noted that the second AvrII 

restriction site at position 6822 in the vector was site-directly mutated for the purpose 

of having a unique AvrII restriction site. The ErbB2-Ub4 construct was sequenced to 

confirm that no mutations had been introduced during PCR and cloning. The 

pcDNA3.1-Myc-Epsin1 ENTH-UIM was described earlier [26]. pEGFP-C2-Eps15 

DIII�2 was a gift from Alexandre Benmerah (Université Paris Descartes, Paris, 

France).  

 

Transfection of cells 

Transient transfection with plasmids as indicated in figure legends was performed 

using Lipofectamine™ 2000 (Invitrogen) according to the manufacturer´s 

recommendations. The transfected cells were analyzed approximately 20 h upon 

transfection. For knock-down of clathrin heavy chain (CHC), the cells were 

transfected twice with siRNA with a 48 h interval using Lipofectamine™ 2000. The 

target sequence was GCAAUGAGCUGUUUGAAGA [27], and the siRNA duplexes 

were synthesized and annealed by Invitrogen. The control siRNA cells were 

transfected with Silencer Negative control #1 from Applied Biosystems (Carlsbad, 

CA, USA).  
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Western blotting 

Cells were incubated as described in figure legends before being lysed and analyzed 

by SDS-PAGE and subsequently subjected to immunoblotting as previously described 

[8]. The reactive proteins were visualized by using Pierce SuperSignal West Dura 

Extended Duration Substrate (Thermo Scientific, Rockford, IL, USA), and the 

chemiluminescence signals were detected by Kodak Image Station 400R (Carestream 

Health, Inc., Rochester, NY, USA). Restore PLUS Western Blot Stripping Buffer 

(Thermo Scientific) was used according to the manufacturer´s recommendations for 

stripping of membranes.  

 

Co-immunoprecipitation 

Upon transfection and incubation as described in figure legends, cells were lysed in 

ice-cold lysis buffer (20 mM HEPES, pH 7.2, 2 mM MgCl2, 100 mM NaCl, 0.1 mM 

EDTA, 0.1% Triton X-100, 5 mM NEM, with 1:100 (v/v) of protease inhibitor 

cocktail and phosphatase inhibitor cocktail 2 (P8340 and P5726)). The lysates were 

then added to protein A-coupled magnetic beads precoupled to rabbit antibody to 

ErbB2 in 0.1 M phosphate buffer, pH 8, with 0.05% Triton X-100, at room 

temperature for 1 h. Antibody-coupled magnetic beads and cell lysates were gently 

mixed for 1 h at 4°C. The beads were washed four times with lysis buffer before 

being eluted in 2× sample buffer [8]  at 95°C for 5 min. The eluted proteins and total 

cell lysates were subsequently subjected to SDS–PAGE and immunoblotting.  

 

Analysis of ErbB2 ubiquitination 

To study ubiquitination of ErbB2 and ErbB2-Ub4, cells were lysed in preheated 

(100 °C) 1% SDS in PBS, incubated at 100°C for 5 min and chilled on ice before 

homogenization, using a QIA-shredder column (QIAGEN, Valencia, CA, USA). The 

lysates were added to protein A-coupled magnetic beads precoupled to mouse anti-

ErbB2 antibody (clone 42) as described above. The beads were dissolved in 2x 

immunoprecipitation (IP) buffer: 2% (v/v) Triton X-100, 0.5% (w/v) sodium 

deoxycholate, 1% (w/v) BSA, 2 mM EDTA, 40 mM NaF, 6 mM NEM, 1:100 (v/v) 

protease inhibitor and phosphatase inhibitor cocktail. Antibody-coupled magnetic 

beads and cell lysates were gently mixed for 1 h at 4°C. The beads were then washed 
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with 1x IP buffer (50% 2x IP buffer + 50% SDS [1%] in PBS) and eluted in 2x 

sample buffer [8]. Immunoprecipitated ErbB2 was analyzed by immunoblotting with 

antibody to Ub or antibodies specifically targeting Lys63- or Lys48-linked polyUb 

chains. 

Immunocytochemistry and confocal microscopy 

Cells were grown in 60 mm CELL+ culture dishes (Sarstedt AG & Co., Nümbrecht, 

Germany) or on 12 mm coverslips (Menzel-Gläser, Braunschweig, Germany) and 

transfected with the appropriate plasmids (as described in figure legends). After 

incubation with the indicated reagents, cells were washed with PBS and fixed in 

preheated (37 °C) 4% paraformaldehyde (PFA) (Reidel-de Haën, Seelze, Germany) in 

Soerensen´s phosphate buffer for 10 min. Cells were then washed three times in PBS 

before quenching of background fluorescence in 50 mM NH4Cl for 10 min at room 

temperature followed by washing twice with PBS. Fixed cells were permeabilized 

using 0.1% Triton X-100 in PBS. In experiments staining with anti-LAMP1 antibody, 

0.1% saponine (Merck KGaA, Darmstadt, Germany) was used instead of Triton X-

100 for cell permeabilization and included in all buffers in the following staining 

procedure. Nonspecific binding of antibodies was blocked by preincubation with 1% 

BSA in PBS for 30 min before incubation with primary antibody (diluted in 1% BSA 

in PBS) for 1 h. Samples were washed with PBS before incubation with a secondary 

antibody (diluted in 1% BSA in PBS) for 30 min. The cells were mounted using Dako 

fluorescent mounting medium (Glostrup, Denmark) and examined using confocal 

microscopy (TCSXP; Leica, Wetzlar, Germany). The images were processed using 

Adobe Photoshop CS2.  

 

Results 
17-AAG induces ubiquitination and internalization of ErbB2 

It has previously been reported that ErbB2 is ubiquitinated as a result of incubation 

with GA, and it has been assumed that Ub is necessary for GA-induced internalization 

and degradation of ErbB2 [13, 22]. We confirmed ubiquitination and internalization 

of ErbB2 upon incubation with 17-AAG in PAE cells that do not express endogenous 

ErbB proteins, but were transfected to express wt ErbB2. Cell lysates from cells 

incubated with or without 17-AAG were subjected to immunoprecipitation with an 

antibody to ErbB2 before the precipitated material was analyzed by Western blotting 
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with an anti-Ub antibody. As demonstrated in Fig. 1A, ubiquitination of ErbB2 was 

efficient only upon 17-AAG incubation. We further used confocal microscopy 

analysis to study the localization of wt ErbB2 in the presence or absence of 17-AAG. 

A clear vesicular localization of ErbB2 was only observed in 17-AAG incubated cells. 

These data confirm that 17-AAG induces ubiquitination and internalization of ErbB2.    

 

To investigate whether ubiquitination as such facilitates endocytic down-regulation, 

we constructed a chimeric protein consisting of full-length ErbB2 and four linearly 

connected Ubs (ErbB2-Ub4) (Fig. 2A). The string of Ubs attached to the C-terminus 

of ErbB2 is identical to the one we previously attached to the C-terminus of EGFR 

[25]. Western blot analysis of immunoprecipitated ErbB2 from PAE cells transiently 

transfected with plasmids encoding wt ErbB2 or ErbB2-Ub4 showed that the 

molecular weight was increased for ErbB2-Ub4 when compared to wt ErbB2. The 

fusion protein was also readily recognized by an antibody to Ub (Fig. 2B).  

 

ErbB2-Ub4 is constitutively modified with Lys63- and Lys48-linked polyUb 

chains  

We further studied ubiquitination of wt ErbB2 and ErbB2-Ub4 in PAE cells 

expressing wt ErbB2 or ErbB2-Ub4 upon incubation with or without 17-AAG. The 

cell lysates were subjected to immunoprecipitation with an antibody to ErbB2 before 

the precipitated material was analyzed by Western blotting with an anti-Ub antibody. 

As demonstrated in Fig. 1A and 3A, a strong high molecular weight smear was 

observed for wt ErbB2 in the presence of 17-AAG, confirming 17-AAG-induced 

ubiquitination of ErbB2. However, in the case of ErbB2-Ub4, a smear was observed 

both in the absence and presence of added 17-AAG (Fig. 2B and 3A). Although the 

ubiquitination increased upon incubation with 17-AAG, the ErbB2-Ub4 appeared to 

be further ubiquitinated regardless of incubation with 17-AAG. The extra Ub chains 

on ErbB2-Ub4 could arise from ubiquitination of the pre-appended tetra-Ub and/or of 

ErbB2 itself. The constitutive ubiquitination could suggest that ErbB2-Ub4 is 

recognized by the quality control machinery of the cell, which is responsible for 

ubiquitination of unfolded proteins upon recognizing exposed hydrophobic residues  

[28]. To study the nature of the polyUb chains on wt ErbB2 and ErbB2-Ub4, we 

immunoprecipitated ErbB2 (wt and –Ub4) and performed Western blotting using 

antibodies recognizing Lys48-linked or Lys63-linked Ub chains. Under all conditions, 
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we found that the ubiquitinated ErbB2 was recognized by antibodies to both Lys48- 

and Lys63-linked Ub chains (Fig. 3B).  

 

ErbB2-Ub4 localizes constitutively to early and late endosomes  

In order to investigate whether the appended Ub string affects the subcellular 

localization of ErbB2, we used confocal microscopy analysis to study the localization 

of wt ErbB2 and of ErbB2-Ub4 in absence or presence of 17-AAG. Interestingly, 

ErbB2-Ub4 was observed to localize to intracellular vesicles in the absence of 17-

AAG (Fig. 4A, lower left panel), in contrast to wt ErbB2, which mainly localized to 

the plasma membrane under similar conditions (Fig. 4A, upper left panel). However, 

when 17-AAG was added, the amount of ErbB2 positive vesicles increased both in 

cells expressing wt ErbB2 and in cells expressing ErbB2-Ub4 (Fig. 4A upper and 

lower right panels). These findings argue that while wt ErbB2 localizes to endosomes 

only upon incubation with 17-AAG, ErbB2-Ub4 is internalized constitutively, and 

further that internalization of ErbB2-Ub4 can be enhanced upon incubation with 17-

AAG. To confirm the endosomal nature of the vesicles where ErbB2 and ErbB2-Ub4 

accumulated, we labeled cells with antibodies recognizing endosome-associated 

proteins. Antibodies marking early endosomes (anti-EEA1) and antibodies marking 

late endosomes and lysosomes (anti-LAMP1) were used. Upon incubation of cells 

expressing wt ErbB2 with 17-AAG, ErbB2 was observed in both early and late 

endosomes (Fig. 4B). ErbB2-Ub4 was, however, observed to localize to both EEA1 

and LAMP1 positive compartments even in the absence of 17-AAG (Fig. 4C). This 

again argues that ubiquitination of ErbB2 triggers endocytosis and translocation of 

ErbB2 to late endosomes and lysosomes.  

 

ErbB2-Ub4 is not cleaved prior to internalization 

Previous studies have demonstrated that the intracellular C-terminal part of ErbB2 can 

be cleaved upon incubation with GA. This cleavage depended on proteasomal activity 

and did apparently occur at the plasma membrane. It is however not clear whether 

cleavage is in fact required for endocytosis of ErbB2 as such [15, 16, 24]. To 

investigate whether the constitutive internalization of ErbB2-Ub4 depends on a Ub-

induced C-terminal cleavage, we used anti-ErbB2 antibodies specifically recognizing 

either the ErbB2 extracellular domain or the very C-terminal part of ErbB2 and 

studied the localization of wt ErbB2 and ErbB2-Ub4 in cells incubated with or without 
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17-AAG. In line with data presented above, ErbB2-Ub4 demonstrated a constitutive 

vesicular localization, while wt ErbB2 showed vesicular staining only upon 

incubation with 17-AAG (Fig. 5). Importantly, both antibodies showed the same 

labeling pattern, confirming our previous conclusion that ErbB2 is not cleaved prior 

to internalization [16]. Based on these data, it seems that ubiquitination of ErbB2 

primarily is a signal for endocytic sorting and not a signal for proteasome-mediated 

cleavage of the ErbB2 C-terminus.  

 

ErbB2-Ub4 is internalized clathrin-dependently  

We previously demonstrated that ErbB2 could be endocytosed via clathrin-coated pits 

upon incubation with GA [16]. To investigate whether ErbB2-Ub4 is also internalized 

via clathrin-coated pits, PAE cells were transfected with siRNA to clathrin heavy 

chain (CHC) before being transfected with plasmids encoding wt ErbB2 or ErbB2-

Ub4. As demonstrated in Fig. 6A, knock-down of CHC was efficient. Consistent with 

previous reports, siRNA-mediated down-regulation of CHC efficiently blocked 17-

AAG-induced endocytosis of wt ErbB2 (Fig. 6B). Additionally, we observed a lack of 

vesicular staining for ErbB2 in CHC-depleted cells expressing ErbB2-Ub4. These data 

argue that the endocytosis of ErbB2-Ub4 is clathrin-dependent. Block of ErbB2-Ub4 

internalization was observed both in cells incubated with and without 17-AAG, 

suggesting that both constitutive and 17-AAG-induced endocytosis of ErbB2-Ub4 is 

clathrin-dependent. 

 

Overexpression of UIM-containing fragments of epsin1 and Eps15 inhibits 

internalization of wt ErbB2 and ErbB2-Ub4  

We have recently demonstrated that the adaptor protein epsin 1 interacts with the 

ubiquitinated EGFR via its ubiquitin interacting motifs (UIMs) and that this 

interaction promotes translocation of EGFR into central parts of clathrin-coated pits 

[26]. Furthermore, our recent data also demonstrated that both epsin 1 and the adaptor 

protein Eps15 constitutively interacted with EGFR-Ub4 [25]. In order to investigate 

whether epsin1 and Eps15 are also involved in clathrin-mediated endocytosis of wt 

ErbB2 and ErbB2-Ub4, we made use of truncated versions of epsin 1 and Eps15. The 

ENTH-UIM part of epsin 1 (Epsin1 ENTH-UIM) or the C-terminal part of Eps15 

containing two UIMs (Eps15DIII�2) were co-expressed with either wt ErbB2 or 

ErbB2-Ub4 before the cells were analyzed by confocal microscopy. Co-expression of 
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Epsin1 ENTH-UIM or Eps15DIII�2 and ErbB2-Ub4 was found to reduce the 

vesicular ErbB2-Ub4 localization otherwise observed in cells expressing ErbB2-Ub4 

only (Fig. 7A). The same effect was observed in 17-AAG-stimulated cells co-

expressing wt ErbB2 and Epsin1 ENTH-UIM or Eps15DIII�2 (Fig. 7B). Together, 

these results suggest that the adaptor proteins epsin 1 and Eps15 recruit ubiquitinated 

ErbB2 to clathrin coated pits from where ErbB2 is endocytosed.  

 

Kinase activity is not required for endocytic down-regulation of ErbB2-Ub4

To investigate whether ErbB2 kinase activity is required for translocation of ErbB2- 

Ub4 to coated pits, we inhibited the ErbB2 kinase using the kinase inhibitor AG879 

(Fig. 8A). Immunoflourescense confocal microscopy analysis of cells expressing 

ErbB2-Ub4 demonstrated that kinase activity was not required in order to induce 

endocytosis of ErbB2-Ub4 (Fig. 8B). Neither did inhibition of the ErbB2 kinase 

activity affect co-localization of ErbB2-Ub4 with LAMP1-positive endosomes (Fig. 

8C). This argues that ErbB2 kinase activity is not required for ubiquitin-mediated 

internalization of ErbB2-Ub4 or for the transport of ErbB2-Ub4 along the endocytic 

pathway to late endosomes and lysosomes.  

 

ErbB2-Ub4 is efficiently degraded upon endocytosis  

Since ErbB2-Ub4 was efficiently transported to LAMP1-positive compartments both 

in the presence and absence of 17-AAG, we investigated to what extent ErbB2-Ub4 

was constitutively degraded. The remaining ErbB2-Ub4 and wt ErbB2 in cells 

incubated with cycloheximide for increasing time periods were analyzed by Western 

blotting using an antibody to the extracellular part of ErbB2. Our data demonstrated a 

more efficient degradation of ErbB2-Ub4 when compared to wt ErbB2 (Fig. 9). The 

difference in degradation efficiency increased with increased incubation time, and 

upon incubation for 4 h, ErbB2-Ub4 was barely detectable.  

 

Discussion 
The endocytosis-promoting effect of ubiquitination on protein internalization has been 

demonstrated for several transmembrane proteins, including the EGFR [reviewed in 

29]. We have previously demonstrated that a chimeric preubiquitinated EGFR 

(EGFR-Ub4) was internalized in a constitutive manner without requirement for kinase 
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activity [25]. This argues that ubiquitination as such can induce endocytosis. ErbB2 is 

generally restricted to the plasma membrane and appears to be endocytosis-resistant 

[reviewed in 30, 31]. The inhibition of ErbB2 endocytosis is probably mediated by its 

interaction with Hsp90, since inhibition of Hsp90 by Ansamycins (GA or 17-AAG) 

induced endocytosis and degradation of ErbB2 [32]. It is assumed that ubiquitination 

is involved in ErbB2 down-regulation upon incubation with Hsp90-interacting agents 

[21]. The impact of ubiquitination on down-regulation of ErbB2 has, however, not 

been directly investigated, and it has been unclear whether ubiquitination of ErbB2 

would be sufficient to induce its down-regulation from the plasma membrane. To 

address whether ubiquitination as such can induce ErbB2 endocytosis, we engineered 

a tetra-Ub-containing fusion protein, ErbB2-Ub4, and investigated the effect of 

appending the tetra-Ub string on ubiquitination, endocytosis and degradation of 

ErbB2.  

 

Our current data clearly show that ErbB2-Ub4 was endocytosed constitutively and 

kinase-independently in a clathrin-dependent manner. ErbB2-Ub4 was observed to 

localize to EEA1-positive and LAMP1-positive endosomes, and appears to use the 

same endocytic pathway as ErbB2 upon incubation with GA or GA-derivatives (our 

current results and [16]). Additionally, labeling with an antibody recognizing the C-

terminal part of ErbB2 demonstrated that ErbB2-Ub4 was not cleaved prior to 

endocytosis.  

 

The impaired endocytosis of ErbB2 could potentially also be explained by rapid 

recycling of ErbB2, and incubation with GA has been reported to induce down-

regulation of ErbB2 by diverting endocytosed ErbB2 from a recycling to a 

degradative pathway [33]. Endocytosed ubiquitinated cargo is recognized by the 

endosomal sorting complex required for transport (ESCRT) machinery [reviewed in 

34]. This could suggest that ubiquitination of ErbB2 is not a signal for endocytosis as 

such, but rather a signal for interaction with the ESCRT machinery and sorting 

towards late endosomes and lysosomes. Based on our current results we cannot 

exclude this, but in contrast to ErbB2-Ub4, wt ErbB2 was not observed in endosomes 

unless the cells were incubated with 17-AAG. Furthermore, endocytosis of both 

ubiquitinated ErbB2 (our current data) and ubiquitinated EGFR [25], was inhibited by 

dominant negative fragments of the Ub-binding, clathrin-coated pit localized adaptor 
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proteins Eps15 and epsin 1. This argues that ubiquitination is involved in initial 

transport of EGFR and ErbB2 to clathrin-coated pits.  

 

Our current data also demonstrated that incubation with 17-AAG induced strong 

ubiquitination of wt ErbB2, and Western-blotting experiments showed that ErbB2 

was modified by both Lys48- and Lys63-linked Ub chains. ErbB2-Ub4 was also 

modified by Lys48- and Lys63-linked Ub chains, even in the absence of 17-AAG. 

Given this scenario, we cannot conclude as to whether or not the endocytosis and 

sorting to degradative compartments solely depends on the appended Ub4 chain or 

whether Lys63-linked polyUb chains are responsible for down-regulation of the 

ErbB2-Ub4 chimera. However, the finding that EGFR-Ub4 was constitutively 

endocytosed [25] and degraded (our unpublished results) argue that the Ub4 string is 

sufficient to induce clathrin-dependent endocytosis as well as ESCRT-mediated 

sorting and degradation.  
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Figure Legends 

 
Fig. 1. ErbB2 was ubiquitinated and internalized upon incubation with 17-AAG.  

PAE cells transiently transfected with a plasmid encoding wt ErbB2 were incubated 

with or without 3 μM 17-AAG for 1 h at 37 °C. A) Cell lysates were subjected to 

immunoprecipitation under denaturing conditions using mouse anti-ErbB2 antibody 

(clone 42). The immunoprecipitated material was then analyzed by Western blotting 

using an anti-ubiquitin (Ub) antibody. The membrane was stripped and subsequently 

reblotted for ErbB2 using rabbit anti-ErbB2 antibody. Total cell lysates (TCL) were 

immunoblotted with rabbit anti-ErbB2 antibody, demonstrating the expression of 

ErbB2 and also blotted with anti-Tubulin antibody as loading control. B) Fixed cells 

were immunostained with mouse anti-ErbB2 antibody (clone TAB250) followed by 

Rhodamine Red-X-conjugated anti-mouse antibody. Scale bar, 10 μm. 

 

Fig. 2. Characterization of the ErbB2-Ub4 chimera.  

A) Schematic picture of the ErbB2-Ub4 construct (See Materials and Methods for 

details) EC: Extracellular domain. TM: Transmembrane domain. IC: Intracellular 

domain Ub: Ubiquitin. B) PAE cells were transiently transfected with plasmids 

encoding wt ErbB2 or ErbB2-Ub4. Cell lysates were prepared and subjected to 

immunoprecipitation under denaturing conditions using a mouse anti-ErbB2 antibody 

(clone 42). The immunoprecipitated material was then analyzed by Western blotting 

using an antibody to ubiquitin (Ub), and the membrane was reblotted using rabbit 

anti-ErbB2 antibody. 

 

Fig. 3. ErbB2-Ub4 was modified by Lys63- and Lys48-linked polyubiquitin 

chains upon expression.  

PAE cells transiently transfected with plasmids encoding wt ErbB2 or ErbB2-Ub4 

were incubated with or without 3 μM 17-AAG for 1 h at 37 °C. The cell lysates were 

subjected to immunoprecipitation under denaturing conditions using mouse anti-

ErbB2 antibody (clone 42). The immunoprecipitated material was then analyzed by 

Western blotting using antibodies to ubiquitin (Ub) (A), or antibodies recognizing 

Lys48- or Lys63-linked polyUb chains (B). The membranes were stripped and 

subsequently reblotted using rabbit anti-ErbB2 antibody. Total cell lysates (TCL) 
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were immunoblotted using rabbit anti-ErbB2 antibody, demonstrating the expressed 

amounts of ErbB2/ ErbB2-Ub4, and were also blotted with anti-Tubulin antibody as 

loading control. 

 
Fig. 4. ErbB2-Ub4 was constitutively localized to early and late endosomes.  

A) PAE cells transiently transfected with plasmids encoding wt ErbB2 or ErbB2-Ub4 

were incubated with or without 3 μM 17-AAG for 2 h at 37 °C. The cells were then 

fixed and immunostained with mouse anti-ErbB2 antibody (clone TAB250) and goat 

anti-EEA1 or rabbit anti-LAMP1 antibodies. Only staining for ErbB2 is 

demonstrated. B) PAE cells transiently transfected with wt ErbB2 were incubated 

with 3 μM 17-AAG as in A). The cells were fixed and immunostained with mouse 

anti-ErbB2 antibody (clone TAB250) and goat anti-EEA1 or rabbit anti-LAMP1 

antibodies followed by Rhodamine Red-X-conjugated (red) anti-mouse and Alexa 

Flour 647-conjugated (green) anti-goat or Alexa Fluor 488-conjugated (green) anti-

rabbit antibodies. C) PAE cells transiently transfected with ErbB2-Ub4 were fixed and 

immunostained as in B). It should be noted that some of the cells demonstrated in A) 

are also demonstrated in B) and C). Scale bar, 10 μm.   

 

Fig. 5. Neither wt ErbB2, nor ErbB2-Ub4, was cleaved prior to internalization.  

PAE cells transiently transfected with plasmids encoding wt ErbB2 or ErbB2-Ub4 

were incubated with or without 3 μM 17-AAG for 2 h at 37 °C. The cells were then 

fixed and immunostained with goat anti-ErbB2 antibodies to the extracellular part 

(e.c.) and mouse anti-ErbB2 (Ab-3) to the intracellular part (i.c.) followed by DyLight 

488-conjugated donkey anti-goat (green) and Rhodamine RedX-conjugated donkey 

anti-mouse (red) antibodies. Scale bars are indicated on micrographs. 

 

Fig. 6.  Endocytosis of wt ErbB2 and ErbB2-Ub4 was clathrin-dependent.  

PAE cells were transfected with CHC siRNA or Silencer Negative control siRNA as 

described in Materials and Methods. Approximately 20 h prior to experiments, the 

cells were transfected with plasmids encoding wt ErbB2 or ErbB2-Ub4. A) Lysates of 

cells transfected with siRNA and wt ErbB2 or ErbB2-Ub4 were analyzed by Western 

blotting, using antibodies to CHC and Tubulin (loading control). B) siRNA 

transfected cells expressing wt ErbB2 or ErbB2-Ub4 were incubated with or without 
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3 μM 17-AAG for 2 h at 37 °C, fixed, and immunostained with mouse anti-ErbB2 

antibody (clone TAB250) before confocal microscopy analysis. Scale bar, 20 μm. 

 

Fig. 7. Endocytosis of wt ErbB2 and ErbB2-Ub4 was inhibited upon 

overexpression of UIM-containing dominant negative epsin1 and Eps15 

fragments.  

PAE cells were transiently transfected with plasmids encoding wt ErbB2 (B) or 

ErbB2-Ub4 (A) together with plasmids encoding the Myc-tagged ENTH-UIM domain 

of epsin 1 (Epsin1 ENTH-UIM) or EGFP-tagged C-terminal domain of Eps15 

containing the two UIMs (Eps15DIII�2). Cells expressing wt ErbB2 were incubated 

with 3 μM 17-AAG for 1 h at 37 °C, while cells expressing ErbB2-Ub4 were 

incubated in MEM only. The cells were fixed and immunostained with mouse anti-

ErbB2 (clone TAB250) antibody alone (cells expressing ErbB2 + Eps15DIII�2), or 

with mouse anti-ErbB2 (clone TAB250) and rabbit anti-Myc antibodies (cells 

expressing ErbB2 + Epsin1ENTH-UIM) prior to incubation with fluorescently labeled 

secondary antibodies. The cells were then analyzed by confocal microscopy. Doubly 

transfected cells are indicated with asterisks. Scale bars, 10 μm. 

 

Fig. 8. Endocytosis of ErbB2-Ub4 was independent of ErbB2 kinase activity.  

A) PAE cells transiently transfected with plasmids encoding ErbB2-Ub4 were 

incubated with or without the ErbB2 kinase inhibitor AG879 (50 μM) for 6 h at 

37 °C. Cell lysates were then subjected to Western blotting using antibody to ErbB2-

phosphotyrosine 1248 (pY1248) and mouse anti-ErbB2 antibody (clone 42). Tubulin 

was used as loading control. B-C) PAE cells transiently expressing ErbB2-Ub4 were 

incubated with AG879 as in A). The cells were subsequently fixed and double stained 

with mouse anti-ErbB2 (clone TAB250) and EEA1 antibodies (B), or with mouse 

anti-ErbB2 (clone TAB250) and LAMP1 antibodies (C) before confocal microscopy 

analysis. Corner insets show higher magnification of the framed areas. Scale bar, 

10 μM. 

 

Fig. 9. ErbB2-Ub4 was degraded more efficiently than was wt ErbB2.  

PAE cells transiently transfected with wt ErbB2 or with ErbB2-Ub4 plasmids were 

incubated at 37 °C in medium containing cycloheximide for the times indicated. The 

cells were lysed, and aliquots of each lysate were subjected to Western blotting with 
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antibodies to the extracellular domain of ErbB2 (mouse anti-ErbB2 antibody, clone 

42) and Tubulin as loading control.  
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