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patients” should read: ”Serum levels of the Advanced Glycation End product 
hydroimidazolone are associated with retinopathy in type 1 diabetes patients”. 
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3. Abbreviations 
�2�1 �2�1 trans-membrane cell-linker 
ADRB3 �3 adrenergic receptor gene 
AGE(s) advanced glycation end product(s) 
ALR aldose reductase 
ALT-711 alagebrium chloride 
AMD age-related macular degeneration 
BRB blood-retinal barrier 
BSA bovine serum albumin 
CEC carboxyethylcysteine 
CEL carboxyethyllysine 
CI confidence interval 
CMC carboxymethylcysteine 
CML carboxymethyllysine 
CSME clinically significant macular edema 
DAG diacylglycerol 
DCCT diabetes control and complications study 
DELFIA dissociation enhanced lanthanide fluoro-immunoassay 
DNA deoxyribonucleic acid 
DNR diabetes and no retinopathy 
DOLD 3-Deoxyglucosone-derived lysine dimer 
DR diabetic retinopathy 
ELISA enzyme-linked immunosorbent assay 
ETDRS early treatment of diabetic retinopathy study 
GOLD glyoxal imidazolium crosslink 
HbA1c hemoglobin A1c 
HFE HLA-H antigen 
HPLC high performance liquid chromatography 
iBRB inner blood-retinal barrier 
ICAM-1 intercellular adhesion molecule 
KHL keyhole limpet hemocyanin  
LC-MS  liquid chromatography mass spectrometry 
LMW low–molecular weight  
ME macular edema 
MG methylglyoxal 
MG-BSA  methylglyoxal-modified bovine serum albumin 
MG-H1  methylglyoxal hydroimidazolone isomer 1 
MOLD methylglyoxal imidazolium crosslink 
MS mass spectrometry 
MSMS tandem mass spectrometry 
NADPH reduced form of Nicotinamide adenine dinucleotide phosphate  
NO nitric oxide 
NPDR non-proliferative diabetic retinopathy 
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NVD neovascularization of the optic disc 
NVE neovascularization elsewhere (than of the optic disc) 
oBRB outer blood-retinal barrier 
OR odds ratio 
PAI-1 plasminogen activator inhibitor-1 
PDR proliferative diabetic retinopathy 
PKC protein kinase C 
PTB N-phenacylthiazolium bromide 
RAGE receptor for AGE 
ROS reactive oxygen species 
RPE retinal pigment epithelium 
RR relative risk 
SD standard deviation 
sRAGE endogenous secretory RAGE 
TGF-�1  transforming growth factor- �1 
UDP-GlcNAc N-acetyl glucosamine  
UKPDS United Kingdom Prospective Diabetes Study 
VCAM-1 endothelial vascular cell adhesion molecule 1 
VEGF vascular endothelial growth factor 
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5. Introduction:  

5.1 Diabetes  

Diabetes mellitus is a heterogeneous group of diseases characterized by high glucose levels in 

the blood and urine. The earliest known mentioning of the word “diabetes” dates back to a roll 

of papyrus from the 3rd Egyptian dynasty and the physician Hesy-Ra. “Diabetes” means 

“going through”, referring to the polyuria which is one of the symptoms in diabetes. The Latin 

word “mellitus” means “honey-sweet”, referring to the sweet taste of the urine from a diabetic 

subject (1).  

The two main forms are type 1- and type 2-diabetes mellitus.  

The signs and symptoms of diabetes mellitus are caused by lack of insulin or inability to 

respond to insulin, or both. Type 1-diabetes is characterized by autoimmune destruction of the 

pancreatic beta cells, causing insulin deficiency. Type 2-diabetes is due to a relative insulin 

deficit, its pathogenic mechanisms combining resistance to insulin with a relative defect of 

insulin secretion. There are huge variations in incidence rates of diabetes mellitus type 1- 

between different geographical areas and ethnical groups, the Scandinavian countries ranging 

among the highest (2). The prevalence of both type 1- and type 2-diabetes seems to increase 

worldwide, Norway included (3). Studies linking WHO’s global database with demographic 

estimates of the UN calculate a drastic increase in the prevalence of diabetes mellitus on a 

world basis within the next 20 years, estimating the number of adults with diabetes in the 

world rising (from 135 million in 1995) to 300 million in the year 2025 (3). In Norway today, 

90,000 – 120,000 people have been diagnosed with diabetes, but it is estimated that there are 

almost as many undiagnosed cases (4). How to face this epidemic challenge of diabetes is an 

up-to-date political issue (5). Additional challenges as diabetes increases not only include how 

to deal with the disease itself, but how to deal with its vascular complications; especially since 

preventive measures produce better individual health and far less health expenses (6) (7). As 

of yet, there are no Norwegian figures available, but the cost of treatment of diabetes and its 

complications in Sweden amounts to 8% of its direct healthcare expenses (8). Type 2-diabetes 

among persons at risk of developing the disease can be primarily prevented or postponed 

through life-style intervening measures (9). 

 
5.2 Hyperglycemia and vascular complications of diabetes 

Diabetes leads to disease in both large and small vessels (macro- and microvascular 

complications).  
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Macrovascular complications are due to atherosclerosis and can occur in large blood vessels 

in any part of the body, affecting the brain, heart, and peripheral arteries (e.g of the lower 

extremities) giving rise to stroke, cardiac heart disease and peripheral arterial disease. The risk 

for - and burden of - macrovascular mortality and morbidity are increasing (10) (11), in 

particular when microvascular disease already exists (12) (13) (14).  

Microvascular complications are due to progressive pathology of the small arterioles. Organs 

mainly affected are the eyes, kidneys and nerves (15); diabetic retinopathy. Diabetic 

retinopathy is the most important cause of permanent visual impairment and/or secondary 

blindness in the working-age population in the Western world (16) (17). The findings from 

the small, but early Oslo and Stockholm studies were confirmed in the DCCT, stating that 

decreasing blood glucose levels by intensive insulin treatment could prevent or delay the 

development of diabetic microvascular complications (18) (19) (20) (21). This was later also 

confirmed in type 2-diabetes in the UKPDS (22). However, with time the vast majority of all 

patients with diabetes develops background retinopathy, as many as 40–50% observed 

progressing to proliferative retinopathy within 25 years of diabetes onset (23). Over the last 

decades, proliferative retinopathy is declining in many centres (24) (25) (26).  

Susceptibility to diabetic microvascular complications reveals a great interindividual variation 

(27). Not all patients with diabetes develop complications, but multiple vascular 

complications occur in almost 20 % of patients (28). It has also been speculated whether there 

may be a chronological order in which microvascular complications develop (29) (30). In 

longitudinal studies, diabetic patients with retinopathy at baseline are at increased risk of 

developing diabetes-associated peripheral neuropathy (31) and coronary heart disease (32).  

In type 1-diabetes, almost all patients develop signs of retinopathy in the first 20 years.  

In type 2-diabetes, up to a third of patients have retinopathy at the time of diagnosis (33), 

increasing to two-thirds within 20 years. However; as the incidence and prevalence of both 

type 1- and type 2-diabetes are increasing, on a population level complications are expected to 

increase. It is thus important for the prevention of diabetic retinopathy and its progression that 

organized measures are implemented. However, in order to identify treatable retinopathy and 

apply further prophylactic measures, joint medical efforts are warranted. Inevitable and silent 

progression of diabetic retinopathy may otherwise be overlooked until the patients experience 

vision loss. In general, current recommendations apply for retinopathy screening to be 

undertaken annually.  
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5.3 Diabetic retinopathy; background. 

 

Diabetic retinopathy was first recognized after the invention of the direct ophthalmoscope in 

the middle of the 19th century (34). In 1856, Eduard Jäger observed and described diabetic 

macular changes (35), his findings and interpretations meeting skepticism from the 

establishment of ophthalmology. Histopathological proof came in 1872 with Nettleship’s 

publication (36). The proliferative changes of diabetic retinopathy, including vitreous 

hemorrhages and retinal detachment due to traction, were described in 1876 by Wilhelm 

Mantz (37). With the discovery of insulin in 1921 by Banting and Best (38) the treatment of 

diabetes was revolutionized. The expected “final cure” for diabetes appeared too optimistic, 

though, before the growing awareness of the association between diabetes and its 

complications. In insulin treated survivors, the prevalence of diabetic complications increased 

dramatically, too, further challenging the patients, clinicians and researchers. Dr. Elliot P. 

Joslin (already in 1931, only 10 years after the discovery of insulin) concisely described his 

clinical observations: “With the advent of insulin, we moved from the era of diabetic coma to 

the era of diabetic complications” (39). Ballantyne described in 1943 diabetic retinopathy as a 

unique vasculopathy rather than caused by hypertension and atherosclerosis (40). Finally, in 

1954, the work of Knud Lundbæk created acceptance for the concept of diabetic 

microvasculopathy as a diabetic entity (41).  

In the following second half of the 20th century, experimental treatment modalities evolved 

with the changing needs of the diabetic patient. Meyer-Schwickerath pioneered 

photocoagulation. His principles of using light on retinal conditions (initially reflected 

sunlight, and later light from a xenon arc) were applied and improved by several others 

(Morón-Salas, Wetzig, Amalric, Okun, Wessing et al) (42). Laser treatment eventually turned 

out the most successful means of photocoagulation (43) (44), still used world-wide. Several 

surgical approaches for treating diabetic retinopathy were also developed, even experimental 

procedures such as pituitary ablation (45). In 1968, The Airlie House Symposium gathered 

devoted ophthalmologists and diabetologists to define the future course for research and 

development in the field of diabetic retinopathy. Systematic approaches to the growing 

challenges of diabetic retinopathy continue to produce valuable insight. Basic epidemiological 

studies on both type 1 and type 2 diabetes have shown beneficial effects of glycemic control 

on onset and progression of diabetes retinopathy (21) (22).  
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Pathogenesis  

Diabetic retinopathy is caused by deranged systemic and local (retinal) metabolism, 

potentially capable of destroying the architecture and specialized function of this vascularized 

neural tissue of the eye. Alterations in and between the functional and supportive cells of the 

retina occur before ophthalmoscopical signs of retinopathy become clinically evident. As 

vascular and neural cell defects seem to depend on one another, one might question at what 

point diabetic retinopathy actually starts. Electroretinographically observed alterations of 

retinal nerve cell function may occur quite early in the course of retinopathy (46), and 

neuroretinal dysfunction in general (measured by ERG, dark adaptation, contrast sensitivity, 

colour vision) has in fact been shown even before vascular lesions are seen on the fluorescein 

angiogram (47). In addition, symptoms such as vision changes can be transitory or occur late, 

hence an insufficient parameter for both severity grading and visual prognosis.  

Apoptosis of the contractile pericytes that embrace the microvessels denotes a primal 

anatomical change, hereby facilitating later microaneurysm development (48) (See Fig. 1).  

 

Fig. 1 Early capillary targets (effects) in the development of diabetic retinopathy 
          The endothelium                                                          The pericytes                
           (aneurysm formation)                                                  (apoptosis)                                                             

                

                                                                   
Schematic diagram of pathogenesis of diabetic retinopathy  
             (From Kohner, EM et al 1995, Diabetes) 
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In the earliest, preclinical stages of diabetic retinopathy, the retinal blood flow increases. 

Leukocytes and monocytes later adhere to the vessel walls, and localized hypoxia results from 

capillary closure (49) (50) (51). Further autoregulatory and hemodynamic dysfunction cause 

the retinal veins to dilate, eventually appearing bead-like. Cellular and intercellular barrier 

derangement may cause intraretinal hemorrhages and leakage of plasma and precipitation of 

its lipid and protein constituents (48). Of all tissues, retina has the highest rate of oxygen 

consumption (52). When poor perfusion (revealed by fluorescein angiography) and 

microinfarctions of the retinal neurons occur (denoted by soft exudates), ischemia may 

include larger retinal areas. Further progression may trigger neovascularization, initiated by 

sprouting of new (but leaky!) retinal vessels due to stimulation by growth factors. These 

factors may leak from the systemic circulation or be of intraocular origin. VEGF is considered 

the most important, whereas examples of others are insulinlike growth factor 1, hepatocyte 

growth factor and basic fibroblast growth factor (53) (54) (55). At this stage, the clinical 

condition of PDR is reached, and panretinal laser treatment will decrease the stimuli for 

further worsening.  

Macular edema is caused by increased vascular permeability in the macular area. Generalized 

macular edema is probably due to a widespread blood-retinal barrier (BRB) breakdown, 

secondary to glucose-induced microvascular damage. Anatomically, there are actually two 

blood-retinal barriers that may break due to ocular disease: The outer BRB consists of the 

retinal pigment epithelium, regulating trans-epithelial diffusion by the intercellular tight 

junctions, further separating the choroidal circulation from the retina. The inner BRB consists 

of tight junctions of the endothelial cells of retinal vessels and provides a selective mechanism 

for the retina to regulate its environment during varying metabolic demands. It is most fragile 

in diabetic retinopathy; “retinal disease of diabetes mellitus”. 

Diabetic retinitis, the old descriptive term of proposed inflammatory changes of the retinae in 

diabetic patients, may in part be justified etymologically: Compared with patients with less 

severe retinopathy, patients with severe NPDR or worse have elevated serum levels of 

chemokines, supporting the hypothesis that inflammation is involved in the pathogenesis of 

retinopathy (56).  

 

Risk  

The longer the duration of diabetes, the greater the risk of diabetic retinopathy (57) (58). The 

chronic hyperglycemia or total glycemic load associated with diabetes over time is thought to 

be the primary cause of diabetic retinopathy (DR) (See Fig 2.) (21).  
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One of the most important treatable risk factor besides hyperglycemia is hypertension; both in 

patients with diabetes type 1 (59) (60) and type 2 (61).  

Indirectly, underlying genetic predispositions for the background disease (diabetes mellitus) 

may be of etiological importance for its complications, too. Especially in diabetic 

nephropathy, direct genetic associations have been revealed (62), already suggested by its 

much lower incidence over time compared to retinopathy. Among the most intriguing 

candidate genes in diabetic retinopathy involve the expression of VEGF (vascular endothelial 

growth factor), ALR (rate limiting enzyme of the polyol pathway), RAGE (receptor for 

AGE), ICAM-1 (intercellular adhesion molecule), ADRB3 (�3 adrenergic receptor gene), 

HFE (or HLA-H antigen), and �2�1 integrin (specific trans-membrane cell-linker)(63). 

Evidence suggests that familial factors strongly influence the susceptibility to complications, 

especially regarding nephropathy (64) (65) (66). Recent studies report of female 

preponderance for diabetic complications (67) and genome-wide linkage analysis linking 

chromosome 1p to diabetic retinopathy (68).  
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An association between nephropathy and retinopathy has clinically been shown, and a 

previous study (29) demonstrated that diabetic nephropathy is strongly associated with 

diabetic retinopathy. Other recent studies have confirmed the presence of diabetic retinopathy 

itself revealing patients at risk of diabetic nephropathy (69); in type 1 diabetics maybe even 

more so (70). Squandrito and Cucinotta (1991) reported that the severity of diabetic 

nephropathy in type 1- and type 2-diabetes increases the prevalence of diabetic retinopathy 

(71). However, both complications have hyperglycemia in common, making it difficult to 

dissect the relationship. 

Unfavourable lipid profiles have been associated with the development and progression of 

diabetic retinopathy (72), and a new study suggests that lowering lipids by fenofibrate reduces 

the need for laser treatment (73). 

 

Clinical aspects  

Preserving vision is, however, the most important treatment goal for both patient and 

ophthalmologist, being far simpler and more successful a task in the early stages of 

retinopathy development, and – even better; before its evolvement, when preventive measures 

may be applied more efficiently. Additional helpful management strategies as DR progresses 

to macular edema (ME/CSME) and/or PDR include retinal laser therapy, albeit often at the 

expense of functioning retina (74). With retinal traction and/or non-resorbing vitreous 

hemorrhage, vitreoretinal surgery may become necessary.  

 

Classification  

Diabetic retinopathy is classified according to stage and treatment indications, also revealing 

its potential vision threat (75). The terms no retinopathy (DNR), non-proliferative retinopathy 

(NPDR) and proliferative retinopathy (PDR) of diabetes reflect the chronological 

development of this complication left untreated/suboptimally treated; with or without macular 

edema (ME) or clinically significant macular edema (CSME). As mentioned, these latter 

entities may coexist with DR. Although uncommon, they may be solely present.  

 

Biochemical mechanisms and ROS  

A definite biochemical explanation of diabetic retinopathy has not been established, but 

interaction of various pathways is obvious. Four main candidate mechanisms for the 

deleterious effect of hyperglycemia are the following (76) (See Fig. 3):  
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I     Polyol/Aldose reductase pathway  

II   Hexosamine pathway  

III  Protein kinase C pathway with activation of vascular endothelial growth factor  

IV  Advanced Glycation End products pathway (77).  

 

I  Increased glucose flux through the polyol or aldose reductase pathway will lead to sorbitol; 

a reaction catalyzed by the enzyme aldose reductase. The depletion of cellular cofactor 

NADPH may decrease NO production in endothelial cells, altering the redox balance of the 

cell. NADPH is also an essential cofactor for regeneration of the important intracellular 

antioxidant, reduced glutathione, hereby increasing the susceptibility to intracellular oxidative 

stress. Increased intracellular sorbitol may reduce levels of myo-inositol, which in animal 

studies is associated with the development of neuropathy, nephropathy and retinopathy (78). 

 

II  Increased hexosamine pathway activity: Some of the fructose-6-phosphate (Fructose-6-P) 

from glycolysis is diverted via N-acetyl glucosamine (UDP-GlcNAc), changing gene 

expression of transcription factors by modification of serine and threonine residues. 
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(79) (e.g. increased modification of transcription factor Sp1 increases expression of TGF-�1 

and PAI-1, promoting blood vessel pathology.) 

 

III  Increased protein kinase C pathway activity: Hyperglycemia increases intracellular 

content of glyceraldehyde-3-phosphate, which stimulates synthesis of diacylglycerol (DAG); 

further activating protein kinase C (PKC). Activation of the �-isoforms of PKC in the vessels 

of nerves, kidneys and retinae of diabetic animals may produce vascular damage including 

increased permeability, altered blood flow, NO dysregulation and leukocyte adhesion. 

  

IV  Increased production of AGE and its precursors appear to cause cellular dysfunction via 

three routes (see also Fig 5):  

1. By modification of intracellular protein; regulatory proteins of gene transcription among 

the most important. 

2. By modification of intercellular signaling between cell and matrix after diffusion of AGE 

precursors out of the cell. 

3. By modification of extracellular proteins of the bloodstream (e.g. albumin), enabling 

AGE-receptors interaction and activation. This in turn causes vascular pathology from 

production of inflammatory cytokines and growth factors. 

 

ROS and oxidative stress 

Reactive oxygen species (ROS) are highly reactive molecules in biological systems, 

potentially harmful when insufficiently removed. Oxidative stress is the result of a relative 

imbalance of ROS and antioxidative status and may interfere with pathways I – IV. 

Generation of ROS occurs when oxygen is converted to the free radical O2�¯ (superoxide), 

which then is dismutated to H2O2 by the enzyme superoxide dismutase. H2O2 may be 

enzymatically converted to H2O by catalase or glutathione peroxidase, or to HO� by reaction 

with copper or iron (80).  

ROS have various sources, including normal oxidative phosphorylation in the mitochondria; 

and various effects, including cell membrane dysfunction. If DNA is altered, the expression of 

a range of signaling or enzymatic proteins may also be altered, via modified transcription 

factors. Oxidative stress is central in diabetic complications, and there is most probably an 

interaction between ROS and AGEs (81) (76). AGEs – directly or indirectly – stimulate ROS 

production (82) and studies have shown a decreased formation of AGEs due to antioxidant 

effect (83). In diabetes, the formation of ROS/AGE may be a self-perpetuating cycle (84). 



 15

Potential sources of ROS in the Maillard reaction are many; auto-oxidation of glucose; Schiff 

bases; Amadori adducts and AGEs (85). (See Fig. 3 and Fig. 4)  

 

5.5 AGEs (Advanced Glycation End products):  
      Background, pathologic relevance and detection 
 

  
MAILLARD, Louis Camille (1878-1936). 

AGEs will now be described in more detail, as this is a central topic in the present 

dissertation. 

The basis for formation of AGEs – the Maillard reaction – takes place when reducing sugars 

react non-enzymatically with amino acids on proteins forming Advanced Glycation End 

products; AGEs (See Fig. 4A). It was first described in Louis Camille Maillard’s scientific 

paper of 1912; “Action des acides aminés sur les sucres: formation des mélanoidines par voie 

méthodique” (86).  

 

 Fig. 4A Possible pathways for formation of Advanced Glycation End products, AGEs.  

 

 
(corrected from www.google.no) 

 

The formation of AGEs occurs in most foods during heating and plays a central role in the 

development of color, aroma and flavor, texture and nutritional value of cooked and processed 

foods.  
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However, these processes were later also revealed in biological systems. 

HbA1c, which reflects mean level of blood glucose, is an Amadori product (see Fig. 4A) and 

the most important predictor for development and progression of vascular complications in 

diabetes (21) (19).  

 

AGEs; definition and examples  

The term “AGEs” refers to posttranslationally glycated modifications on end-standing 

aminogroups on proteins, lipoproteins, lipids and nucleic acids that non-enzymatically have 

undergone irreversible dehydration and condensation processes via various reactive 

intermediates. There may be several modifications per molecule and several different proteins 

may be modified. The modification itself is often referred to as an “adduct”. (see Fig. 4A). 

There are several alternative routes into forming AGEs, and the predominant substrate 

fuelling the glycation is glucose. However, carbohydrates and sugars other than glucose, such 

as glyceraldehyde, fructose and ribose also glycate to form AGEs.  

Early glycation products may later form advanced glycation end products, like glyoxal from 

auto-oxidative glycation. Glyoxal may, through further steps of oxidation (glycoxidation) 

form N�-(carboxymethyl)lysine (CML), whereas methylglyoxal (MG) may form 

hydroimidazolones and e.g. argpyrimidine. MG levels are increased in diabetes, and 

hydroimidazolone is one of the most important AGEs (87). CML and other AGEs may also 

form without carbohydrates from lipid peroxidation, phospholipids and the nucleotides of 

DNA. When oxidation accompanies glycation, examples of additional glycoxidation products 

to CML are CEL and pentosidine, the latter with intrinsic fluorescent properties (80). Tissue 

and plasma fluorescence may be used as indirect markers of accumulation of AGEs. In 

addition to CML and pentosidine, glyoxal-lysine dimer (GOLD) is considered marker of 

glycoxidation (88).   

Examples of AGEs formed through nonoxidative processes are pyrraline, MOLD and DOLD. 

A list of biologically important AGEs are found in Table 1 (89). 
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Methylglyoxal derived AGEs  

In addition to sugars, many different aldehydes and ketones can form AGEs in vivo. 

Methylglyoxal (MG) is an �-oxoaldehyde capable of provoking oxidative stress, and is 

present at higher concentrations in diabetes (90). It generates from spontaneous 

decomposition of triose-phosphate intermediates in aerobic glycolysis and oxidative 

degradation of both carbohydrates (pentoses and ascorbate) and lipids (arachidonate) (91). It 

is also a substrate of the glyoxalase system (92), which detoxifies it to D-lactate. 

By irreversible glycation, methylglyoxal forms AGEs both intracellularly and extracellularly. 

It may modify a range of different proteins in different compartments, from collagen in tissue 

to proteins of the circulation. The type of AGE modification formed is determined by the free 

aminogroup to which it binds and modifies.  

There are three main aminoacids that react non-enzymatically with methylglyoxal forming 

physiological AGEs; cysteine, lysine and arginine.  

Examples of cysteine modifications are CMC and CEC, which are increased in plasma of 

diabetic nephropathy (93).  

N(epsilon)-(carboxyethyl)lysine (CEL)  and the imidazolium crosslink, methylglyoxal-lysine 

dimer (MOLD) are examples of AGEs formed from MG and lysine. Lysine modifications 

may also crosslink with eachother via lysine bridging forming imidozolysine.  

When MG reacts with arginine, argpyrimidine may form, which is a fluorescent AGE. 

However, the main AGEs formed when MG reacts with arginine in proteins are isomers of 

hydroimidazolone called methylglyoxal hydroimidazolones, of which MG-H1 (N-�-acetyl-N-
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�-(5-hydro-5-methyl)-4-imidazolone is the one quantitatively dominating in vivo, often 

referred to as hydroimidazolone only, and of special focus of this thesis 

(See Fig. 4B). 

 

 

 

 

AGEs and disease  

The formation of AGEs is observed in the human body at all ages and increases as a process 

of normal aging, contributing to cross-linking of extracellular, long-lived proteins, and may 

lead to browning and fluorescence, and – where these reactions are accelerated – to 

development of diabetic complications and inflammatory processes linked to 

neurodegenerative diseases (94), hypertension, rheumatoid arthritis and atherosclerosis (95).  

There are several reasons for AGEs believed to be of pathogenic importance in diabetic 

vascular complications (see Table 2): 
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Table 2.  

Background for pathogenic involvement of AGEs in vascular complications of diabetes. 

Pathogenic importance AGEs / findings References

AGEs  measured in skin collagen from 
human biopsies predict progression of 
diabetic microvascular complications better 
than HbA1c 

CML (96) 

Injection of AGE modified proteins in non-
diabetic experimental animals produces 
effects similar to diabetic late complications 

in vitro modified rat serum 
albumin 

(97) 

Inhibition of AGEs reduces diabetic 
retinopathy, nephropathy and neuropathy in 
experimental animals 

PAS-positive vasculature 
deposits in hypertensive 
rats / Radioimmunoassay-
AGEs measured as AGE-
RNase per μmol 
hydroxyproline and  tissue 
fluorescence in end organ 
of diabetic rats 

(98) (99) 
(100) 

A positive correlation has been shown 
between content of AGEs in human skin 
collagen and diabetic retinopathy and 
nephropathy 

ELISA for skin collagen 
AGEs; pentosidine and 
fluorescent AGE 
measurements / 
fructoselysine, CML, 
pentosidine and 
fluorescence 

(101) (102) 

Associations have been found between 
serum levels of AGEs and human diabetic 
nephropathy and cardiovascular disease 

AGEs with DELFIA and 
polyclonal antibody / non-
CML AGEs 

(103) (104) 

AGE receptor interactions  (see under next italic headline) 
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Figure 5 depicts the three routes as mentioned in 6.3 IV 1-3, through which AGEs may cause 

cellular dysfunction:  

 

 
 

Circulating AGEs; AGE/RAGE interaction 

The liver and kidney are both involved in the catabolism and excretion of AGEs from the 

circulation (105) (106). Renal tissue is among the targets of AGEs that cause cellular damage 

and reduce kidney function. Hence, a reduced clearance of AGEs from the circulation may 

further increase both cause and effect of damage from glycation (107). Clinical studies have 

reported increased serum levels of CML in subjects with type 1- (108) and type 2-diabetes 

(90) and elevated levels of CML are associated with microvascular complications of diabetes 

such as retinopathy (101). In addition, patients with type 2-diabetes have increased circulating 

levels of the AGE hydroimidazolone (109) and its precursor MG (90). Positive associations 

between serum levels of hydroimidazolone and retinopathy have been shown in clinical 

studies of type 1-diabetes (110). The effects of circulating AGEs may be caused by interaction 

with receptors or without receptors involved (See Fig. 5). There are several AGE receptors, of 

which the multiligand receptor RAGE probably is among the most important, participating in 

chronic inflammatory and immune responses (111). Proposed endogenous ligands for RAGE 

other than certain AGEs (like CML), are S100/calgranulins (a family of closely related 

calcium-binding polypeptides that accumulate extracellularly at sites of chronic 

inflammation); amphoterin (or protein HMGB1, released by cells undergoing necrosis) and 
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amyloid (amyloid -� peptide accumulating in Alzheimer’s disease; amyloid A accumulating 

in systemic amyloidosis).  

A truncated, soluble form of RAGE also exists; sRAGE (endogenous secretory 

RAGE), which is capable of binding extracellular ligands without cell contact. sRAGE in 

excess can competitively bind ligands meant for RAGE, thus preventing cellular signalling 

mediated via this receptor. The balance between levels and actions of RAGE and sRAGE may 

be central in AGE-mediated pathology (80). AGE/RAGE interaction activates a cascade of 

signal transductions, of which the PKC pathway is one. Generation of reactive oxygen species 

(ROS) may follow, triggering NF-�B. This in turn elicits release of proinflammatory 

cytokines, expression of adhesion molecules and growth factors (e.g. VCAM-1, TGF-B1, 

VEGF), all implicated in the pathogenesis of diabetic complications, like diabetic retinopathy 

(111) (80).  

Whether hydroimidazolones interact with RAGE is uncertain. However, methylglyoxal 

modification of arginine residues by may be particularly damaging because arginine residues 

occur at a high frequency in substrate and ligand recognition sites in enzymes and receptors 

(112). 

 

AGEs, VEGF and the eye  

Retinal pericytes have a low regenerative capacity. Loss of these supportive cells is an early 

event in the course of diabetic retinopathy (48). As AGEs in vitro are toxic to bovine retinal 

pericytes and cells of the microvasculature (113) (114), they may play an important role in 

pericyte loss. Further, capillary non-perfusion and closure gradually increase hypoxia and 

stimulation of growth factors (Fig. 1). VEGF is produced in the eye by retinal pigment 

epithelium (RPE) cells and is up-regulated by hypoxia. It is considered to be involved in the 

progression of diabetic retinopathy (115) (116) as it stimulates vascular permeability and new 

vessel growth. It has been shown that AGEs induce VEGF expression in retinal cell culture 

and animals. There are four major biologically active human isoforms. VEGF165 

predominates in the human eye, appearing to be responsible for pathological ocular 

neovascularization (117). If AGE modified protein is injected in non-diabetic rats, VEGF in 

the eye is up-regulated (118), producing dysfunction of the inner BRB (119). Utilizing “anti-

VEGF” as a therapeutic concept has expanded over the last few years: VEGF antibodies are 

used to reduce neovascularization and edema of not only cancer but also ophthalmologic 

entities such as AMD and ME of DR (120) (121).  
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Interestingly, AGEs are associated with degenerative changes of other tissues of the 

eye as well:  

-  Accumulation of AGEs (CML) is found on the corneal basement membrane suggesting a 

causative role in corneal epithelial disorders in diabetes (122).   

-  Methylglyoxal hydroimidazolones are quantitatively major AGEs of the lens proteins in 

humans. These lens protein modifications may stimulate further glycation, oxidation, and 

protein aggregation to form cataract (123). 

-  Accumulation of AGEs (pyrraline) is found at the optics disc; in the cribriform plate and 

around vessels of the optic nerve, possibly contributing to the development of neuropathy of 

the optic disc and nerve in diabetes (124). 

-  Elevated levels of AGEs (non-CML, hydroimidazolone) have recently been described in the 

human vitreous of diabetic patients compared to non-diabetic controls (125) (126). 

 

 
 AGEs; different methods for detection  

1)  Immunoassays are widely used in the field of AGE research. The immunoassay used in the 

present study was developed by Kilhovd et al (109) based on work by Berg et al with minor 

modifications (110) in our determination of N�-acetyl-N�-(5-hydro-5-methyl)-4-imidazolone 

(MG-H1) which is a  methylglyoxal (MG) -modified arginine compound. The antibodies of 

the DELFIA assay (dissociation enhanced lanthanide fluoro-immunoassay) used are marked 

with Europium chelate for fluorimetric visualization. An advantage of the DELFIA system 

compared to the enzyme linked immunoassay (ELISA) is its ability to diminish interfering 

background fluorescence when applying a delayed fluorescent visualization technique. With 

either immunoassay the quantification is relative, depending on the quality of the standard 

quantification.  

 

2)  Separation methods coupled to MS (mass spectrometry):  Due to the complexity of 

biological samples, chromatographic techniques (e.g. HPLC; high pressure liquid 

chromatography) have been used for initial separation of molecules into relatively 

homogenous groups. This may be used in combination with later, spectrometric methods, 

such as LC-MS (liquid chromatography mass spectrometry). MS may be performed in a 

coupled fashion called MS/MS, or tandem mass spectrometry. These are all methods for a 

more absolute quantification with a relatively high sensitivity. 
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With mass spectrometry (MS), the constituents of chemical samples are measured as the 

mass-to-charge ratio of ions: The sample is ionized; ions of different masses are separated, 

and finally; their relative abundance is measured by ion flux intensity. This is the golden 

standard for AGE measurements at the present time. However, initial preparation of the AGE 

sample is still necessary before LC-MSMS (127), usually by enzymatic digestion or acid 

hydrolysis. This implies that the intact modification of the protein is not measured, but rather 

peptide fragments of the modified proteins. 

  

3)  Autofluorescence may be measured using an autofluorescence meter applied to the skin 

(128). This method is not AGE specific, as compounds other than AGEs also may fluoresce. 

It measures both glycation and oxidation adduct fluorophores, but the phenomenon of 

fluorescence in tissue and plasma can be used as a marker for the presence of AGEs. Over 

time, tissue fluorescence increases in diabetes (83), (129), (130) as observed within the 

kidney, the retina, the skin and other sites of diabetic microvascular pathology. Some studies 

have suggested that fluorescent AGEs may be better associated with microvascular 

complications than with non-fluorescent compounds such as CML (131). It is thought that 

incomplete degradation of AGE-modified proteins from the diet or endogenous sources 

produce so called low–molecular weight (LMW) AGEs. A simple and indirect way of 

measuring tissue florescence is by measuring fluorescence in the LMW fraction of serum 

(108). The findings of Januszewski et al support the association between LMW AGEs and 

end-organ damage in diabetes (132). 

 

6. Aims of research 

� To measure and stepwise compare serum hydroimidazolone within a group of diabetic 

patients with different degree of retinopathy  

� To measure and compare in patients with diabetes and in age matched controls: 

- hydroimidazolone in vitreous of patients with diabetes and in age matched 

controls   

- hydroimidazolone and VEGF both in serum and in vitreous fluid 

� To compare retinopathy from fundus photographs in a follow-up study of patients with type 1 

diabetes  

� To apply a new, clinical method of retinopathy classification on fundus photographs 
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7. Subjects and methods 

 

7.1 Subjects 

Paper 1 

From a Scandinavian outpatient clinic we recruited 227 patients with type 2 diabetes mellitus 

– 124 men and 103 women – with retinopathy ranging from none to proliferative. At the time 

of diagnosis, 221 patients were older than 30 years and 6 patients were younger than 30 years, 

but were not in need of insulin treatment. 86 had no retinopathy; 89 had NPDR and 52 had 

PDR. The retinopathy group (NPDR + PDR) was cross-sectionally compared to the non-

retinopathy group (DNR). The two groups differed significantly on several parameters; hence 

logistic regression analysis was applied for comparison regarding retinopathy and serum 

levels of hydroimidazolone. Patients with plasma creatinine values > 200 mg/dl were 

excluded as this level of reduced kidney function may be associated with increased serum 

hydroimidazolone values. 

 

Paper 2 

Vitreous from 23 consecutive patients with type 2-diabetes and median known diabetes 

duration of 12 years were included and compared to 32 non-diabetic and age-matched control 

subjects who also underwent vitrectomy. The median age of both groups was 67 years. 

Vitrectomy within the last 6 months before hospitalization and vitreous of reddish colour were 

criteria for exclusion; as were plasma creatinine values > 200 mg/dl. Serum and vitreous 

parameters were cross-sectionally compared with regard to hydroimidazolone and 

retinopathy, in particular. 

 

Paper 3 

We randomly selected 61 patients with diabetes mellitus type 1 from a Scandinavian 

outpatient clinic for comparison of degree of retinopathy and serum levels of 

hydroimidazolone. DNR patients had a mean duration of diabetes of 14 years, which was 

significantly lower than the mean duration of 20 years in the DR group. The ratio PDR/NPDR 

was 36/11. Quartiles of serum hydroimidazolone were compared with occurrence of 

retinopathy.  
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Paper 4 

In 1989, of the reachable 1868 incident type 1 diabetes cases in Norway from the period 

between 1973 and 1982, 600 were randomly selected for participation in the study. The 

baseline examination for diabetic complications of the 368 enrolled took place in 1989/-90. 

355 were eligible for follow-up examination in 2002/-03.  

All new-onset cases of type 1 diabetes occurring in Norwegian children below 15 years of age 

within the decade 1973/-82 were retrospectively registered by the Norwegian Childhood 

Registry between 1985 and 1986. The analyses at follow-up included 294 subjects with 

proper retinal photographs. The participants belonged to different hospital catchment areas, 

and the main investigator visited 24 different hospitals all over Norway. The examination 

included a medical history, blood pressure measurements, collection of overnight timed urine, 

random venous blood samples and fundus photography. Patient characteristics at baseline, 

divided into participants and non-participants at follow-up, were compared. 

   

 

7.2 Methods 

MG modification of BSA was prepared by incubating BSA in sodium phosphate buffer (100 

mM, pH 7.4 and 37	C) with 1 mM MG for 4 days, before dialyzed against ammonium 

bicarbonate buffer (30 mM, pH 7.9 and 4	C) and lyophilized to dryness. Preparations of 

lyophilized MG-BSA were stored in liquid nitrogen. As determined by Thornalley’s group 

(133) using HPLC amino acid analysis, this low-modified MG-BSA contains 23% modified 

arginine residues per molecule of serum albumin. 

 

Hydroimidazolone immunoassay  

We have previously developed specific solid-phase, time-resolved competitive immunoassays 

(DELFIA Wallac, Turku, Finland) for determining AGEs in serum (103); further developed 

by Kilhovd et al (109). The primary antiserum of the assay is a monoclonal anti-

hydroimidazolone (IG7) antiserum. (It was obtained by injecting mice with keyhole limpet 

haemocyanin (KHL) and modified by incubating with 70 mmol/l of MG for 6 hours at 37	C. 

Epitope specificity of the anti-hydroimidazolone antibody was evaluated using both dot blots 

and an indirect competitive ELISA. The IG7 antibody reacted specifically with N�-acetyl-N�-

(5-hydro-5-methyl)-4-imidazolone, showed 1% cross-reaction against its oxidized form 

methylimidazolone, and to some extent recognized the analogue glyoxal derived arginine 

hydroimidazolone compound. It did not react with N�-acetyl-argpyrimidine, bis(N�-
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acetyl)lys-4-methyl-imidazolium chloride or carboxyethyllysine.) The IG7 antibody relatively 

specifically recognized MG-induced modifications of arginine residues, and did not cross-

react with the imidazolones produced by the reaction of 3-deoxyglucosone with arginine 

(134), (135). 

Essentially as described by Kilhovd et al (109), levels of hydroimidazolone immunoreactivity 

were determined with this monoclonal anti-MG-modified arginine antibody, except that we 

coated the microtiter wells in 0.05 mol/L Tris buffer (pH 7.8) and set up our assay in 

duplicates: Microtiter strips of 12 wells each were coated with 0.1 ml of MG-modified BSA 

(25 
g/ml) diluted in 0.05 mol/L Tris buffer (pH 7.8). They were then covered, and incubated 

overnight while shaking at room temperature. The strips were further stored at 4	C before 

washed. The wells were washed 6 times in DELFIA washing buffer before use. Duplicates of 

100 
l MG-modified BSA standard or serum (diluted 1:4) were added to each well along with 

50 
l of anti-hydroimidazolone (IG7) antiserum diluted 1:5000 in DELFIA assay buffer*. 7 

standard solutions of 0, 2.5, 5, 10, 20, 40 and 100 
g/ml MG modified BSA were used per 

assay. The strips were incubated while shaking in room temperature for two hours, and then 

washed six times in washing buffer. 100
l/well of Europium-labeled anti-mouse-IgG-

antibodies were then added in a final concentration of 0.1 
g/ml in DELFIA assay buffer. 

(The indicator antibody for the DELFIA was marked with Europium chelate for fluorimetric 

visualization). All strips were incubated while shaking for one hour in room temperature, 

before subsequently washed 6 times and incubated for 5 minutes while shaking with DELFIA 

Enhancement solution prior to measurement of the Europium-ion chelate specific 

fluorescence in a 1232 DELFIA Fluorometer.    

This assay was applied in paper 1, 2 and 3. The arbitrary hydroimidazolone unit (U) was 

defined as the competitive activity of 1 
g of MG-modified BSA standard, expressed as U/mg 

protein. 

                                                                                                                                            

*When determining vitreous levels of hydroimidazolone, the same assay was used. Vitreous 

samples were set up in non-diluted triplicates. 

 

VEGF assay  

We determined serum and vitreous levels of the angiogenic isoforms of natural human 

VEGF165. The Quantikine ® VEGF immunoassay (R & D Systems, Inc., Minneapolis, MN, 

USA) was used. Optical density was determined at 450 nm using a Rosys Anthos HT2 micro 
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plate absorption spectrophotometer (Anthos Labtec Instruments, Salzburg, Austria). A 

correction wavelength of 620 nm was used.  

 

Vitreous hemoglobin  

Harboe’s method together with updated validations for measuring haemoglobin (Hb) in 

micromolar concentrations were used (136). We measured absorbance with an Ultrospec® 

3300 pro spectrophotometer (Amersham Biosciences, Cambridge, UK; acquired by General 

Electric Company, Fair- field, CT, USA) at wavelengths of 380 nm, 415 nm and 450 nm. The 

following equation then expresses in g �l the concentration of hemoglobin (137): CHb = 1.67 x 

A415 – 0.83 x A380 - 0.83 x A450.  

 

Vitreous albumin  

Albumin was measured in duplicates of 50 
l vitreous samples using the Tina-quant 

immunoturbidimetric albumin assay (F. Hoffmann-La- Roche Ltd, Basel, Switzerland). 

 

 

Asessment of Retinopathy 

Paper I & Paper III: After pupillary dilation, stereo photographs from 7 standard fields were 

taken of each eye, using a 30	 fundus camera (Topcon TRC-50, Tokyo, Japan). Grading was 

performed in a masked fashion. The patients were characterized according to the ETDRS 

level of retinopathy in the worse affected eye by a centrally located, highly skilled team. If 

former treatment with panretinal photocoagulation had been given, retinopathy was 

automatically classified as PDR; that is, ETDRS level 61. 

We then grouped these results in three categories: DNR, NPDR and PDR for comparison of 

retinopathy with other parameters. 

Paper II:  The patients were clinically diagnosed during their period of hospitalization: 

Diagnoses were pre- and peroperatively confirmed by the eye surgeon through mydriatic 

pupils, using indirect ophthalmoscope and operating microscope, respectively. 

Paper IV: In paper 4, the photographic procedure of taking colour retinal photographs of 

each eye using Kodachrome 64 ISO 35-mm colour slide film (Kodak, Rochester, NY, USA) 

with a non-mydriatic 45	 retinal camera (45NM-CR; Canon, Tokyo, Japan) was applied by 

the same investigator (T. Skrivarhaug) after instilling one drop of cyclopentolate 1% and 

epinephrine 10% in the cul-de-sac of each eye to obtain dilated pupils. The standard 

procedure of centering the photographs midway between the fovea and the temporal edge of 
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the optic disc was executed in the exact same way at follow-up and baseline. For back-up 

safety in case of reduced quality affecting the readability of one or more pictures, double sets 

of pictures were taken of each eye. Without knowledge of the subjects’ identity, the pictures 

were graded centrally for retinopathy (by D. Fosmark), status of the worse eye deciding level 

of retinopathy. Between the extremes PDR and DNR; NPDR was further sub-classified with a 

new, simplified clinical method (Table 1) based on evidence from the ETDRS and the 

WESDR (Diabetic Retinopathy Disease Severity Scale (75)). Macular edema was not 

detectable using our method. Patients with fibrous proliferations, vitreous hemorrhage or scars 

from panretinal photocoagulation were assigned to the PDR category.  

 

HbA1c was analyzed with high-performance liquid chromatography (VARIAN II 

Hemoglobin A1c program, BioRad, Hercules, CA) (reference range, 4.0%-5.3%). 

 

 (Blood tests were collected after overnight fasting. 

 

Three overnight timed urine samples were collected at home. 

       

Creatinine in urine was analyzed using a kinetic method (Beckman Synchron LX20, Brea, 

CA). 

 

Urinary albumin was measured using nephelometry (IMMAGE, Beckman Coulter) or 

turbidimetry (Beckman Synchron LX20). Normal values for urine albumin urine creatinine 

ratio were < 2.0 mg/mmol for men and < 2.8 mg/mmol for women. 

 

Plasma creatinine was analyzed with a kinetic method (Beckman Synchron LX20). The  

Reference ranges are 51- 88 
mol/L (women) and 63-105 
mol/L (men). 

 

Lipids (triglycerides and total cholesterol) were measured with standard enzymatic methods at 

a centralized lab. 

Statistical analyses  

In all papers, statistical analyses were performed using the SPSS software, version 12.0.0 

(SPSS, Chicago, IL). Two-sided Mann-Whitney U test was used when comparing medians of 
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continuous data not normally distributed. The Spearman correlation test was used when 

studying the association between two continuous variables. For conservative estimates, we 

used logistic regression analysis according to Katz (138). A significance level of 5% was used 

for each test. 

Paper I: Unadjusted comparisons between patients with and without retinopathy were 

performed using Student’s t-tests (2-sided) for continuous variables and exact Fisher tests (2-

sided) for dichotomous variables. Logistic regression analysis, with retinopathy as dependent 

variable, was used to study the impact of selected variables; hydroimidazolone, plasma 

creatinine, urinary albumin-creatinine ratio, HbA1c, diabetes duration, age, and blood 

pressure. (These variables were enabled for multiple regression analyses as initial bivariate 

unadjusted analyses showed significant associations with retinopathy). 

Paper II: Spearman’s test for correlations was used for correlation testing. Logistic 

regression was used for correction of vitreous albumin when comparing vitreous VEGF 

between controls and diabetes patients. 

Paper III: A linear-by-linear association chi-square test was used when studying the 

association between quartiles of hydroimidazolone and retinopathy. We used a two-sided 

exact Fisher test when comparing the prevalence of retinopathy between two groups. When 

comparing HbA1c and age between two groups, an independent two-sample t-test was used; 

and for the comparison of duration of diabetes, a two-sided Mann-Whitney test was used. The 

Spearman correlation test was used when studying the association between two continuous 

variables.  

Paper IV: We estimated the cumulative incidence of PDR from diabetes onset until follow-

up, using a Kaplan-Meier plot. To assess declining incidence of PDR with year of diagnosis, 

the patients were divided into two groups: 1973–1977 (n=133) and 1978–1982 (n=161). Cox 

regression analysis was used to estimate the hazard ratio for association between baseline 

factors and PDR. The following variables were analyzed: sex, age, age at diabetes onset, 

diabetes duration, smoking status, arterial blood pressure, AER, HbA1c, triglycerides and 

total cholesterol. Variables with a p-value <0.20 were then included simultaneously in a 

multiple regression model.  

In the analysis of predictive risk factors for PDR, the three subjects with PDR at baseline were 

not included. As the exact time of onset of NPDR was unknown, the assessment of potential 

predictors of retinopathy among patients without DR at baseline was analyzed similarly using 

logistic regression.  
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Sensitivity analysis of non-participation was exclusively based on HbA1c values. By using 

assumptions based on external data, we performed a sensitivity analysis in order to assess the 

potential influence of selection bias due to non-participation and other losses to follow-up 

(deaths and emigration) on our estimated risk of complications. The total risk in the full 

cohort of participants and non-participants is a weighted average of the observed risk of 

complications among participants and the corresponding risk among non-participants. This 

total risk can then be estimated under conservative assumptions regarding the risk among non-

participants. 

(Data from the DCCT indicated a 75% increase in risk of PDR per 1%-point increase in 

HbA1c during a mean follow-up of 6.5 years. The HbA1c difference among non-participants 

and participants in our material in 1990 was only 0.6%-points. A conservative assumption of 

75% higher risk of PDR as compared with the participants was made, and that 50% of them 

had no DR at baseline while the rest had NPDR.) 

 

8. Summary of main results (papers) 
 

Paper 1:   
� Increased serum levels of the specific advanced glycation end product methylglyoxal-derived 

hydroimidazolone are associated with retinopathy in patients with type 2 diabetes mellitus. 

 

According to the ETDRS protocol, level of retinopathy was determined from retinal 

photographs of 227 patients with type 2 diabetes mellitus and median known diabetes 

duration of 14 years. 86 patients had no retinopathy (DNR), whereas non-proliferative 

retinopathy (NPDR) was diagnosed in 86 patients and proliferative retinopathy (PDR) in 52 

patients. Median age was 66 years.  

Serum levels of hydroimidazolone were increased in the group of patients with retinopathy, 

with a further increment as retinopathy worsened to PDR. This was found when including all 

patients irrespective of time elapsed from diabetes having been diagnosed, but also in the 

smaller group of patients with shorter duration of diabetes, i.e. below the median of 14 years. 

We found a strong association between HbA1c and diabetic retinopathy (p<0.0001), and the 

association between retinopathy and hydroimidazolone was independent of HbA1c.  
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Paper 2:  
� Increased vitreous levels of hydroimidazolone in type 2 diabetes patients are associated with retinopathy. 

 

Using a cross-sectional case-control study design, we compared vitreous and serum contents 

in 23 patients with diabetes type 2 – sixteen of which had PDR – to 32 age-matched controls 

also undergoing vitrectomy. Level of retinopathy was based on clinical examination. We 

found a positive correlation in all patients between vitreous and serum content of 

hydroimidazolone (r=0.48, p<0.001). This was also true within cases and non-cases 

separately.  

  

Paper 3: 
� Serum levels of the Advanced Glycation End product hydroimidazolone is associated with retinopathy 

occurrence in type 1 diabetes patients.  

 

In this cross-sectional study of 61 type 1 diabetic patients, 14 had no retinopathy (DNR), 11 

had NPDR and 36 had PDR. Grading of retinopathy was based on retinal 7-field stereo 

photographs according to the ETDRS protocol. Comparisons of serum levels of 

hydroimidazolone were made between patients with and without retinopathy. 

Hydroimidazolone quartiles were found significantly associated with retinopathy (p=0.013). 

After adjusting for duration of diabetes by logistic regression analysis, a significant difference 

in retinopathy present was found when comparing the lowest quartile with the rest (p=0.022).  

 

Paper 4:  
� Low cumulative incidence of proliferative retinopathy in childhood-onset type 1 diabetes in Norway. 

 

294 childhood-onset type1 diabetic patients had readable fundus photographs taken and 

examined for retinopathy between 2002 and 2003. This was a follow-up of originally 368 

patients having undergone identical examinations between 1989 and 1990; all belonging to 

the 10 year cohort of 1906 persons diagnosed with diabetes mellitus type 1 between 1972 and 

1983. 262 of 294 (89.1%) developed diabetic retinopathy, of which 32 developed PDR. The 

cumulative incidence of PDR began increasing after 10 years of diabetes duration, reaching 

10.9 % (95 % CI: 7.3-14.5 %) at twenty-five years. Mean diabetes duration was 19 years 

(range 12-29 years); mean age for diagnosis of PDR was 27 years (range 17-41 years). 

Significant predictors at baseline for developing retinopathy of any degree were HbA1c 
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(OR=3.25, 95 % CI: 1.76-6.02, p<0.001) and male gender (OR=2.51, 95 % CI: 1.06-6.00, 

p=0.037), whereas significant predictors for developing PDR were NPDR at baseline 

(RR=3.71, 95 % CI: 1.59-8.68, p=0.03), HbA1c (RR=2.05, 1.44-2.93, p<0.001) and 

triglycerides (RR=1.55, 1.06-1.95, p=0.019).    

 

9. Discussion 

9.1 Methods 

Clinical and Photographic methods of retinopathy diagnosis 

 

a) The “Gold standard” for epidemiological surveys of DR is the seven-field, (analogue) 

retinal photographic method using film and a 30	 camera. Members of a highly skilled team, 

centrally located with resources at hand, applied this method on the subjects in paper 1 and 3, 

including later grading of the pictures according to the ETDRS standard. We grouped these 

results in three categories: DNR, NPDR and PDR for comparison of retinopathy with other 

parameters. 

  

b) In paper 4, to obtain dilated pupils one drop of cyclopentolate 1% and epinephrine 10% 

was instilled in the cul-de-sac of each eye. The non-mydriatic 45	 retinal camera (45NM-CR; 

Canon, Tokyo, Japan) produced colour retinal photographs of each eye using Kodachrome 64 

ISO 35-mm colour slide film (Kodak, Rochester, NY, USA). The photographic procedure was 

applied by the same investigator (T. Skrivarhaug). The standard procedure of centering the 

photographs midway between the fovea and the temporal edge of the optic disc was 

performed in the exact same way at baseline and follow-up. For back-up safety in case of 

reduced quality affecting the readability of one or more pictures, double sets of pictures were 

taken of each eye. Without knowledge of the subjects’ identity, the pictures were graded 

centrally for retinopathy (by D. Fosmark), status of the worse eye deciding level of 

retinopathy. Between the extremes PDR and DNR, NPDR was further sub-classified with a 

new, simplified clinical method (Table 1) (75). Macular edema was not detectable using our 

method. Patients with fibrous proliferations, vitreous hemorrhage or scars from panretinal 

photocoagulation were assigned to the PDR category. 

 

c) In paper 2, all ophthalmologic diagnoses including retinopathy were given during the 

patients’ period of hospitalization. The diagnoses were pre- and peroperatively confirmed by 

the eye surgeon using indirect ophthalmoscopy and operating microscopy, respectively. 
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When we chose methods for comparison of retinal photographs in paper 4, digital 

cameras were about to substitute the use of analogue equipment – including film. Yet, the 

extensively marketed digital techniques with resolution constantly improving, a standardized 

comparison with analogue photographs was missing. Hence, at follow-up, the described one-

field method for film was chosen due not only to its simplicity, but because of identicality to 

the method originally used at baseline. This facilitates the comparison between the two 

investigations.  

A more detailed yet standardized method for further classification of late changes in 

the course of retinopathy development was needed. An improved clinical method, newly 

developed in order to simplify the existing 7-field ETDRS Gold standard and to facilitate data 

comparisons between different countries and trials, was found applicable for our purpose.     

Albeit subjective, the clinical standard for identification of patients with retinopathy is by 

direct ophthalmoscopy. However, images from cameras producing single 30	 and 45	 fields 

have both been considered useful for retinopathy screening, epidemiology studies and routine 

care purposes. An exact agreement of 82.5 % was found when comparing ophthalmoscopy to 

the seven field stereo photographic method (139).  

Our method using a single 45	 photograph can be criticized for the possibility of under-

detecting retinopathy. One relative advantage with the 45	 field is that only one photo is 

needed to view the posterior pole of the retina. However, it is of lower magnification than (the 

one) produced with a 30	 camera (minified 0.64x at zero diopters). The 45	 images include 

areas above and below the temporal arcades, and temporal to the macula and just nasal to the 

disc (see Fig. 6). 
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Fig. 6  Approximate field obtained with a 45	 camera superimposed (dotted lines)  
              on photographic field obtained with the standard seven-field mydriatic stereoscopic  
              protocol from the Early Treatment Diabetic Retinopathy Study and a 30	fundus camera  
              (field 1 = disc; field 2 = macula; field 3 = temporal to macula; field 4 = superior temporal;  
              field 5 = inferotemporal; field 6 = superior nasal; field 7 = inferior nasal). 
 

With the use of a digital, monochrome camera, a study on retinopathy in 197 type 1 and type 

2 diabetic patients with a single 45	 image versus ophthalmoscopy revealed 100% sensitivity 

and 71 % specificity, the field identical to the field in our study (paper 4). Compared to the 7 

field stereo photographic method, the sensitivity and specificity of the 45	 image were 78 % 

and 86 %, respectively, with an exact agreement of 83 % (140). 

New vessels in the periphery only are very rare (<1 %), and new vessels at the posterior pole 

(in patients younger than 60 years) are significantly more frequent than beyond the posterior 

pole (141). Thus, a one-field photo of each eye covers most of the area of interest for 

inclusion of PDR-diagnoses. Predilection sites for retinal proliferations are the temporal 

arcades and second, the area nasal to the optic disc (142) (141).  

In order to cover a larger retinal area, a two field photographic method with an identical 45	 

NM-Canon camera has been validated over a 5 year period; centered on the macula and the 

optic disc, respectively (141). Missed diagnoses of PDR amounted to 0.9 %. False positive 

findings occurred in 6 of 1341 readings, or 0.4 %. False NVD were recorded mostly in 

younger patients (�36 years), whereas false NVE were recorded mostly in older patients (
50 

years). True NVE/NVD were found located on the temporal arcades in 48 % of the eyes and 

nasally to the optic disc in 42 % of the eyes, and were rarely found beyond the posterior pole 

(13 %; p<0.001) (141).  
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In retrospect, the two-field method might also have been applied in our setting. A larger area, 

particularly nasally to the optic disc, would then have been included. Still, macular edema 

would not have been classifiable. However, the one-field method was found sufficient for our 

purpose; to classify a larger group epidemiologically, and was chosen due to comparisons to 

be made with identical field pictures. The better of two photographs from both eyes was 

graded before the diagnosis was given by the state of the worse eye, but a small fraction of 

false negative PDR with our method due to a lower sensitivity is possible. However, a 

possibility of having undergone laser treatment without PDR also exists, overestimating this 

group. Importantly, in our material 78.6% had NPDR; of these most had mild NPDR (54.6%). 

Further, moderate NPDR accounted for 32.4% and severe NPDR amounted to only 13.0%. 

This clustering of relatively benign retinopathy is in keeping with our conclusion of a 

relatively low cumulative incidence of PDR after 25 years of diabetes. The pictures were 

thoroughly graded by one experienced ophthalmologist (D. Fosmark) in one session only. 
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Immunoassay method 

Different methods have been developed and used for the detection of AGEs within the field of 

research. For the detection of the hydroimidazolone MG-H1, the DELFIA-system was chosen 

due to experience regarding development and use in our laboratory. The quantification of 

AGEs when using immunoassays gives relative results, partly due to a missing quantitative 

standard for the different AGEs. Arbitrary units are therefore employed. Our assay for 

detection had an intra-assay variation in the range of 12 – 15%. The inter-assay variation was 

of up to 21%. The cross-reactivity against AGE-BSA was 8% when calculated as AGE-BSA 

protein against MG-modified BSA protein. No cross-reactivity was found against CML-BSA 

or glycated albumin in the hydroimidazolone immunoassay. The IG7 antibody relatively 

specifically recognizes MG-induced modifications of arginine residues. 

In use, the assay is practical as it is inexpensive, and many samples can be run within a 

relatively short period of time. It is also sufficient for our purpose, which is in larger samples 

to search for significant differences between cases and controls. Immunoassays have been 

criticized for their heavily modified antigen, use of arbitrary units and possible serum effects 

(87). However, the present assay has an acceptable dilution curve and satisfactory recovery   

(135): Both serum samples from diabetic patients and controls produced parallel inhibition to 

hydroimidazolone standard. Recovery studies have been performed by adding MG modified 

BSA to serum from patients and controls. The mean recovery of amount added was 115% ± 

26 %-points. A linear dilution curve reflected minor serum effect.  

One advantage of the DELFIA system compared to other immunoassay methods (ELISA) is 

its ability to diminish the background fluorescence through delayed fluorescence from 

Europium attached to the secondary antibody. Hydroimidazolone (MG-H1) is our AGE 

modification of focal interest due to its relative abundance in biological systems and its 

likelihood of playing a pathogenic role in diabetic complications.  
 
9.2 Interpretation of results  

For each paper, thorough interpretations are found in their respective sections of discussion 

(See Papers 1, 2, 3 and 4). In Paper 1 and 3, there exists a positive association between 

retinopathy and serum levels of hydroimidazolone in both type 2 and type 1 diabetes. 

However, as the studies are cross-sectional, no causal conclusions can be made. The lack of 

association between HbA1c and hydroimidazolone is in keeping with earlier findings; and 

logical, as the two are formed via partly different pathways. However, it is noteworthy that 

both hydroimidazolone and HbA1c were found strongly and independently associated with 
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retinopathy. Patients with clearly increased serum creatinine (>200 μmol/l) had not 

surprisingly clearly elevated serum hydroimidazolone, and these patients were excluded from 

further analysis. If hydroimidazolone is causally involved in early nephropathy is not known. 

In the present study, no association was shown between hydroimidazolone and urinary 

albumin-creatinine ratio.  

We measured hemoglobin, albumin and VEGF, adapting the methods for vitreous. This 

enabled a more extensive discussion and thorough interpretation of the true vitreous content 

of hydroimidazolone in Paper 2. Intravitreal measurements of albumin used as an indirect sign 

of iBRB disruption are seldseen. In our study, the correlation of vitreous albumin and 

hydroimidazolone is explained by the increase of vitreous albumin in the PDR group, due to a 

breakdown of the iBRB. Hydroimidazolone most likely originated from serum, whereas 

VEGF was produced intraocularly. No correlation between vitreous hydroimidazolone and 

VEGF was found in our study. However, the number of subjects studied was small.  

In Paper 4, we found a low cumulative incidence of PDR after 24 years of type1 diabetes. The 

study had a population based design, but there was a marked proportion of non-participants 

and losses for follow-up. Thus, a sensitivity analysis was done to assess any influence of 

selection bias on risk for retinopathy. As regards PDR, a higher cumulative incidence of 

14.0% was found with this method (versus 10.9%). Still, this is relatively low. However, the 

proportion of subjects with NPDR was substantial (78.6%). There remains a potential for still 

improved glycemic control and optimization of other risk factors that can be modified, like 

blood pressure and triglycerides. A uniform screening system is still missing in Norway, as 

are registers for incident blindness. This study is a contribution to increased knowledge on 

microvascular complications nationwide, and as such a stimulus for further research and 

improvement of prophylactic measures.      

 

10. Concluding remarks (Relevance of papers, future research) 

The exact pathogenic mechanisms of diabetic retinopathy are only partly revealed. Interplay 

of ROS and AGEs are plausible. Most probably, the explanation consists of multiple factors. 

The range of functionally and structurally different AGEs also makes it difficult to point out 

which AGE is the most pathogenic.  

Exogenous AGEs (from coffee, smoking, foods etc) and their disputed pathogenic role are not 

discussed in this paper. In general, a limited consumption is recommended due to their 

abundance in “unhealthy food”, but in particular if reduced kidney function exists (143) (144).  
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Elegant approaches for potential interventions in restricting the burden of endogenous AGEs 

have emerged, attacking at the following sites: 

a) AGE formation may be inhibited by trapping of reactive (di)carbonyls in the glycation process 

and chelation of transition metal ions (e.g. by aminoguanidine, pyridoxamine). Unfortunately, 

aminoguanidine has toxic side effects which has lead to discontinuation of clinical studies 

(145) (146). A drug category already in use – inhibiting the angiotensin-converting enzyme – 

has anti-hypertensive effect but is also potent as AGE inhibitor (147). 

b) AGE cross-links may be broken down. PTB (N-phenacylthiazolium bromide) and ALT-711 

(alagebrium chloride), cleave AGE-mediated cross-links (89). 

c) AGE binding may be inhibited. The binding of ligand to AGE receptor include soluble RAGE 

(sRAGE) and RAGE specific antibodies, neutralizing the effect of receptor interaction (148) 

(149). 

d) ROS/AGE interaction may be targeted via antioxidants, exemplified by improved retinal blood 

flow in type 1 diabetics after high-dose vitamin E supplementation (150).  

Productive “anti-AGEs” research makes future important clinical implications of this 

knowledge probable, including retinopathy.  

 

Our findings strongly support the following statements: 

 

� Serum levels of the AGE-modification hydroimidazolone (MG-H1) are increased in both type 

1 and type 2 diabetic patients with retinopathy compared to those without retinopathy. 

� Serum levels of hydroimidazolone (MG-H1) are increased in PDR compared to NPDR 

(diabetes mellitus type 2). 

�  Vitreous levels of hydroimidazolone (MG-H1) are increased in type 2-diabetic patients 

compared to age-matched controls due to leakage from serum. 

� Vitreous levels of hydroimidazolone (MG-H1) are increased in PDR compared to NPDR in 

type 2-diabetic patients, and may originate from serum due to iBRB breakdown.  

� VEGF in vitreous fluid is increased in diabetes type 2. Even higher levels are found in PDR. 

The increase in VEGF is not due to a spill-over effect from the circulation, even though the 

iBRB is disrupted, supporting that it is produced intraocularly. 

Patients with type 1 diabetes of 24 years duration and retinopathy staged from fundus 

photographs had 89.1% cumulative incidence for DR. 10.5% of these have PDR.   

� 
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