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1. Introduction 

1.1 Photodynamic therapy 

  Surgery, ionizing-radiation therapy and chemotherapy are still the most important 

treatment modalities against cancer. Despite their wide use, these methods have several 

limitations and the mortality is therefore still high for most cancer forms. Only in the 

US more than 550 000 people die from cancer every year (American Cancer Society, 

statistics for 2008). Damage to healthy tissue is one of the main limitations of today’s 

cancer therapy and lack of specificity of the treatment and subsequent adverse effects 

often reduce both local and systemic control. Optimization of cancer treatment may 

therefore be exerted through improved treatment specificity.  

  Even though application of light-activated compounds, photosensitizers (PSs), were 

used for repigmentation of vitiligenous skin in India as early as 1400 BC (Daniell & 

Hill 1991), the utilization of photochemistry in therapy was not investigated 

scientifically until the beginning of the 20th century when von Tappeiner and co-

workers found that the toxic effect of acridine was enhanced by light (Raab 1900) and 

then published the first results on photodynamic therapy (PDT) on skin cancer using 

eosin as a PS (Von Tappeiner & Jesionek 1903). In 1912, Dr. Meyer-Betz followed up 

the PDT research demonstrating the potency of PSs by injecting hematoporphyrin into 

himself before he was exposed to sun light (Meyer-Betz 1913). Throughout the first part 

of the 20th century some reports on PS accumulation in tumours were published (Daniell 

& Hill 1991, Macdonald & Dougherty 2001). However, it was not until the 1970s, when  

 
 Fig.1: Photodynamic therapy against cancer. The PS is systemically 

injected and preferentially retained in the tumour tissue. Light exposure 

activates the PS which eventually kills the cancer cells. 
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haematoporphyrin derivate-induced PDT was shown to induce long-term cures of 

several cancers in vivo (Dougherty et al. 1975, Kelly et al. 1975), that the development 

of PDT was seriously escalated. 

    PDT is today a treatment modality for cancer (Dolmans et al. 2003) and age-related 

macular degeneration (AMD) (Mennel et al. 2007a, Mennel et al. 2007b). However, the 

method is also under evaluation for the treatment of psoriasis (Szeimies et al. 2002), 

rheumatoid arthritis (Hansch et al. 2008) and microbial infections (Jori et al. 2006). 

PDT is based on administration of a PS to the diseased area (Dougherty et al. 1998). 

Light exposure of the PS with appropriate wavelengths causes formation of reactive 

oxygen species (ROS), which eventually kill the target cells. The combination of PS and  

 

 

Table 1: Photosensitizers with marketing authorization for clinical use 

 

 

 

Photosensitizer Trade 
name 

Producer Indication References 

Hematoporphyrin 
derivative (HpD 

Photofrin Axcan Pharma Barrett`s Oesophagus, 
Cervical dysplasia, 
Cervical cancer,  
Lung cancer, 
Oesophageal cancer, 
Gastric cancer,  
Bladder cancer   

Nakamura et 
al. 2001, 
Dolmans et al. 
2003, 
Yamaguchi et 
al. 2005, 
Juzeniene et al. 
2007, Overholt 
et al. 2007, 
Corti et al. 
2007 

Benzoporphyrin-
derivative monoacid ring 
A (BPD) 

Visudyne Novartis Age-related macular 
degeneration 

Mittra & 
Singerman 
2002 

Meta-tetra hydroxyphenyl 
chlorine (m-THPC), 
temoporfin 

Foscan Biolitec Pharma Head and neck cancer D'Cruz et al. 
2004 

5-Aminolevulinic acid 
(ALA) 

Levulan DUSA 
Pharmaceuticals. 

Actinic keratosis 
Basal-cell  carcinoma 

Calzavara-
Pinton 1995, 
Braathen et al. 
2007 

Methyl aminolevulinate 
(MAL) 

Metvix Photocure ASA Actinic keratosis 
Basal-cell  carcinoma 

Pariser et al. 
2003, Braathen 
et al. 2007 

Hexyl aminolevulinate 
(HAL) 

Hexvix Photocure ASA Diagnosis of bladder 
cancer 

Witjes & 
Douglass 2007 
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light is also used in cancer diagnosis, named fluorescence diagnosis (FD) (also known 

as photodynamic diagnosis or PDD), where fluorescence from the photo-activated PS is 

used to detect cancer tissue. A schematic illustration of the principle of PDT in cancer 

treatment is shown in Fig.1. Table 1 shows PSs with marketing authorization for PDT 

and FD.   

 

1.1.1 The physical and chemical mechanisms of PDT 

  A PS is defined as a chemical entity, which upon absorption of energy from light, 

induces a chemical or physical alteration of another chemical entity (Dougherty et al. 

1998). The absorbed energy excites electrons from the ground state to higher energy 

orbitals (Macdonald & Dougherty 2001). An excited electron usually has a very short 

lifetime (ps-ns) before the absorbed energy is released as heath or fluorescence and the 

molecule is transferred to its ground state. PSs, however, have the ability to undergo 

intersystem crossing (ISC), where the PS is transferred to a longer-lived excited triplet 

state (�s-ms) (Macdonald & Dougherty 2001) (Fig.2). The triplet state of the PS can 

also return to the ground state by emitting a photon (phosphorescence) or heat, or it can 

transfer its acquired energy to other molecules through Type I or Type II photochemical 

reactions (Kelly et al. 1975, Moan & Sommer 1985) (Fig.3). In PDT both Type I and 

Type II reactions take place, but the Type II reactions are regarded as the dominating. 

Type I reactions are, however, more frequent in hypoxic environments. In type I 

reactions, the PS in the triplet state reacts with another PS or with an organic substrate. 

Electron or hydrogen-atom transfer between the reacting molecules creates oxidized and 

reduced compounds that can react with molecular oxygen and produce oxygen radials as 

superoxide anions (O2
-), hydroxyl radicals (OH�), hydrogen peroxide (H2O2) or other 

peroxides with the ability to induce oxidative damage (Ochsner 1997, Macdonald & 

Dougherty 2001, Castano et al. 2004). In oxygenated environments the type II reactions 

dominate. The energy in the triplet state of the PS is then transferred to ground state 

molecular oxygen (triplet state) that becomes excited to its singlet state (singlet oxygen 

(1O2)), which in turn can oxidize other compounds (Ochsner 1997, Macdonald & 

Dougherty 2001, Castano et al. 2004).  1O2 is considered as the most important ROS 

formed during PDT (Weishaupt et al. 1976, Moan & Sommer 1985).   
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Type I Type II
3PS1 + 3PS1 PS·+ + PS·-

3PS1 + S           S·+ + PS·-

3PS1 + S           S·- + PS·+

3O2

O2·- H2O2· OH- O2 ·

Oxidative damage

3PS1 + 3O2

Oxidative damage

1PS0 + 1O2

 
Fig.3: Type I and type II photochemical reactions. 

 
Fig.2: Jablonski diagram. The PS in its ground state (1PS0) absorbs energy 

from light and is excited to higher energy orbitals (1PSn) from which the 

energy can be released as heat or fluorescence after vibrational relaxation 

(V.R). An excited PS in the singlet state may also undergo ISC and transfer 

the PS to its triplet state (3PS1).  3PS1 may release its energy as heat or 

phosphorescence, or react with other molecules. When the 3PS1 reacts with 

molecular oxygen (3O2) the ROS singlet oxygen (1O2) is formed.  
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Nearly all of the solid matter in cells consists of 4 forms of biomolecules; proteins, 

nucleic acids, polysaccharides and lipids. Polysaccharides seems not to suffer from 

photochemical oxidation, while unsaturated fatty acids (Doleiden et al. 1974, 

Bachowski et al. 1988), proteins (especially 5 amino acids (histidine, tryptophan, 

cystein, methionine and tyrosine)) (Jori et al. 1969, Jori et al. 1971, Doleiden et al. 

1974, Das et al. 1985, Berg & Moan 1988, Berg et al. 1990a) and the nucleotide 

guanine (Gutter et al. 1977) are sensitive to PDT-mediated oxidation.  

 

1.1.2 PDT mediated targeting of tumours  

  PDT causes tumour damage directly by inducing necrosis, apoptosis (Dougherty et al. 

1998, Kessel & Luo 1998, Plaetzer et al. 2005) or autophagy (Kessel et al. 2006, 

Buytaert et al. 2006) in the tumour cells. PDT may also stiumulate shutdown of the 

tumour vasculature (Fingar et al. 1999, Engbrecht et al. 1999, Chen et al. 2002, 

Woodhams et al. 2006) and, in addition, PDT is shown preclinically to activate anti-

tumour immunity (Castano et al. 2006, Kousis et al. 2007). Recently, photochemically-

induced anti-tumour immunity was demonstrated in a patient with recurrent 

angiosarcoma, where distant non-treated tumours disappeared after PDT (Thong et al. 

2007). The contribution of the different mechanisms to PDT-mediated tumour 

destruction depends on the photosensitizer, its formulation, the administration route, the 

time between PS administration and light exposure and the target tissue (Berg 2007). 

The present thesis focuses on the direct cytotoxic effect of PDT.  

  PDT is a selective treatment modality for cancer due to preferential accumulation of 

the PS in tumour tissue (Bossu et al. 1997) and the confined light exposure of the 

cancerous area. The mechanisms involved in the accumulation of PSs in cancer tissue 

are not fully understood, however, several properties of the tumour may contribute to 

the selection (Hamblin & Newman 1994). First, PSs tend to bind to LDL and are 

therefore facilitated for uptake in cancer cells, which often express elevated levels of 

LDL receptors (Kessel 1986, Maziere et al. 1991). Second, many of the clinical relevant 

PSs are weak bases and the acidic tumour environment therefore makes the PSs more 

lipophilic and consequently able to diffuse more easily into the tumour and adsorb to the 

tumour membranes (Friberg et al. 2003, Gerweck et al. 2006). Third, the leaky 

vasculature and poor lymphatic drainage also probably contributes to the retention of 
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the PS in the tumour (Bugelski et al. 1981). It is also proposed that the PS is easily 

taken up in macrophages, and that the elevated level of macrophages in tumours 

contribute to the tumour retention (Korbelik et al. 1991). The preferential retention of 

PSs in cancer cells is not just utilized in PDT, but also in FD of cancer as well as for 

fluorescence guided resection of tumour tissue (Zimmermann et al. 2001, Mayinger et 

al. 2008, Jocham et al. 2008).  

 

1.1.3 Intracellular targets of PDT 

  Singlet oxygen has a short lifetime in organic tissue and its diffusion length in cells has 

been estimated to 10-20 nm (Moan & Berg 1991). The intracellular primary targets of 

PDT are therefore highly dependent on the localization of the PS at the time of light 

exposure. Intracellular distribution of the PS is dependent on the chemical properties of 

the compound, but also on the incubation time and cell type. PDT with different PSs has 

been shown to target both the plasma membrane (Kessel 1989), mitochondria (Ji et al. 

2006, Saczko et al. 2007), Golgi apparatus (Rodal et al. 1998, Fabris et al. 2001), 

endoplasmic reticulum (Rodal et al. 1998, Uzdensky et al. 2001), endosomes and 

lysosomes (Roberts & Berns 1989, Berg et al. 1990b) and the microtubuli (Berg et al. 

1990a). Clinically relevant PSs for cancer treatment do usually not localize to the 

nucleus because of their negative charge (Evensen & Moan 1982). The present thesis 

focus on amphiphilic PSs, that first bind to the plasma membrane before they are 

transported to the membranes of endosomes and lysosomes by endocytosis.  

  

1.2 Photochemical internalization (PCI) 

  Macromolecular drugs based on proteins, DNA and RNA are becoming increasingly 

relevant in cancer therapy due to the potential high selectivity of the treatment. Such 

macromolecular drugs are often hydrophilic and lack an effective transport mechanism 

into the cell cytosol where their targets often are located, or from where they can easily 

be reached. These drugs are taken up by endocytosis (Mousavi et al. 2004, Mayor & 

Pagano 2007) and are transported to endosomes from where only a minor fraction is 

usually able to escape into the cytosol before the drug is degraded in lysosomes. 

Endo/lysosomal degradation contributes to reduced therapeutic effects and results in a 
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need for dose escalation, causing increased adverse effects of the treatment. The 

endo/lysosomal membrane permeability therefore limits the applicability of these drugs 

(Lloyd 2000). Many compounds have been used to increase the cytosolic release of 

endo/lysosomally trapped drugs, such as ammonium chloride, chloroquine, monensin 

and saponin (Casellas et al. 1984, Wu 1997, Heisler et al. 2005). These reagents are, 

however, not optimal for in vivo applications due to lack of selectivity towards target 

cells and high toxicity. Liposomes (Fretz et al. 2005), nanoparticles (Vasir & 

Labhasetwar 2007), polymers (Neu et al. 2005) and viruses (Pouton et al. 2007) are 

today investigated as formulation principles for intracellular delivery of macromolecular 

drugs. Endo/lysosomal sequestration and subsequent degradation is, however, also 

shown to be an obstacle for these delivery systems.   

 

1.2.1 The principle of photochemical internalization 

  Photochemical internalization is a relative new method for cytosolic delivery of drugs 

that are trapped in endosomes and lysosomes (Berg et al. 1999, Hogset et al. 2004).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4: Cellular localization of the PCI PS TPPS2a. TPPS2a first 

adsorbe to the plasma membrane. By endocytosis, the PS is 

transported into the cell and is kept localised in the membranes of 

the endocytic vesicles. (Fig. is out of scale.) 
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This drug delivery system is based on photosensitizers that localize to the cells 

endosomes and lysosomes such as meso-tetraphenylporphine with 2 sulfonate groups on 

adjacent phenyl rings (TPPS2a) and aluminium phtalocyanine with two sulfonate groups 

on adjacent phthlates (AlPcS2a) (Berg et al. 1990b, Berg & Moan 1994, Berg & Moan 

1997, Selbo et al. 2001b) (Figs.9A and D). These PSs are amphiphilic and are, upon 

administration, first adsorbed to the plasma membrane (Berg et al. 1990b) before they 

are endocytosed into the membranes of the endocytic vesicles (Fig.4).  
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Fig.5: Schematic illustration of PCI. A: PCI with the “light after” procedure  

(paper IV). B: PCI with the “light first” procedure. 
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Illumination with an appropriate light source results in a photochemical reaction which 

causes rupture of the endo/lysosomal membranes so that the drugs that are trapped on 

the inside can escape into the cytosol and reach their target. This PCI practice, where 

the photochemical reaction is generated after administration of the macromolecular 

drug, is termed “light after” procedure (Fig.5A). Interestingly, PCI has also been shown 

effective for some macromolecules when the photochemical treatment is performed 

prior to the drug administration, a practice termed as “light fist procedure” 

(Prasmickaite et al. 2002, Berg et al. 2006) (Fig.5B). It has been hypothesised that the 

explanation for this is that the photochemically induced damaged endocytic vesicles 

fuse with drug-containing vesicles and that the drugs, in this way, are able to escape 

from endosomes and lysosomes into the cytosol before lysosomal degradation.  

 

1.2.2 PCI of different classes of molecules 

  PCI has been shown to increase the cytosolic delivery and subsequent therapeutic 

effect in vitro of many macromolecules such as proteins (Selbo et al. 2000a, Dietze et 

al. 2003), immunotoxins (Selbo et al. 2000b, Selbo et al. 2001a) and DNA delivered by 

cationic polymers (Hogset et al. 2000, Prasmickaite et al. 2000, Prasmickaite et al. 

2001, Prasmickaite et al. 2004), adenovirus (Hogset et al. 2002, Bonsted et al. 2004, 

Engesaeter et al. 2005, Engesaeter et al. 2006a, Engesaeter et al. 2006b) and adeno-

associated virus (Bonsted et al. 2005). PCI in vitro has also been reported as an 

intracellular delivery system for peptides (Berg et al. 1996, Berg et al. 1999), PNAs 

(Shiraishi & Nielsen 2006, Berg et al. 2007), siRNA (Oliveira et al. 2007) and some 

chemotherapeutics, such as bleomycin (Berg et al. 2005), doxorubicin (Lou et al. 2006, 

Lai et al. 2007) and mitoxantrone (Adigbli et al. 2007). PCI has been demonstrated in 

vivo with the protein toxin gelonin (Selbo et al. 2001b, Dietze et al. 2005), a nonviral 

p53 gene (Ndoye et al. 2006), and has also been shown to increase the therapeutic effect 

of bleomycin (Berg et al. 2005). PCI of bleomycin is now approaching the first clinical 

trial with PCI.  
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1.2.3 PCI: a method for selective drug delivery to tumours 

  One of the main limitations of cancer therapeutics is poor selectivity towards target 

cells and chemotherapeutic treatment is often withdrawn due to adverse effects. PCI 

represents a method for selective drug delivery to the cancer cells. The reasons for this 

is that the PS is preferentially retained in tumour tissues and that the light is only 

applied to the desired area (see section 2.1.2). Since PCI releases drugs that would 

otherwise be degraded, the overall administrated dose, and also the adverse effects of 

the drug may be reduced without affecting the treatment outcome.  

  The selectivity of PCI towards cancer cells can be further increased by delivery of 

drugs that selectively targets the tumours. Indeed, this has been shown using targeted 

toxins such as MOC31-gelonin (Selbo et al. 2000b), EGF-saporin (paper I) and 

cetuximab-saporin (paper II), and targeted genes with both non-viral and viral vectors 

(Kloeckner et al. 2004, Bonsted et al. 2006, Bonsted et al. 2008). 

  The ideal drug for delivery by PCI has an intracellular target. The drug should not be 

able to penetrate the plasma membrane and must be taken up in cells by means of 

endocytosis and accumulate in endocytic vesicles. The drug should also ideally by it self 

be unable to escape from the endocytic vesicles into cytosol. In addition, the drug must 

be capable of diffusion from the blood vessels into the tumour-tissue.  

 

1.3 Targeted protein-toxins 

  Targeted protein-toxins are molecules consisting of one cell binding moiety and one 

protein-toxin moiety (Vitetta et al. 1993, Pastan & Kreitman 1998, Kreitman 1999). The 

cell binding part is an antibody, an endogen ligand or a fragment of one of these two 

and recognizes only cells expressing a specific target antigen. The protein-toxin part is a 

toxin derivated from either plants or bacteria (Pastan & Kreitman 1998). Targeted 

protein-toxins in cancer treatment have been studied for several decades. The first and 

second generation targeted protein-toxins used in the beginning of these studies suffered 

from lack of specificity, heterogeneous composition due to the chemical methods for 

protein linkage and poor stability which made the clinical progress slow. Development 

of recombinant third generation targeted protein-toxins has, however, speeded up the 

process and the first targeted protein-toxin, denileukin, which consists of interleukin-2 



INTRODUCTION 

 11

(IL-2) and a trunced diphtheria toxin, was approved by the American Federal Drug 

Agency (FDA) in 1999 for cutaneous T cell lymphoma (Pastan et al. 2007). Several 

other targeted toxins are currently in clinical trials for both hematologic and solid 

tumours (Pastan et al. 2007).   

 

1.3.1 Ribosome inactivating protein-toxins from plants 

  Some plants such as Ricinus communis, Gelonium multiflorum and Saponaria 

officinalis produce ribosome inactivating protein-toxins (RIPs) (Barbieri et al. 1993). 

These RIPs exerts N-glycosidase activity against the 28S RNA of the 60S ribosomal 

subunit, causing arrest of the protein synthesis which consequently induces cell death 

(Endo et al. 1987, Barbieri et al. 1992). RIPs can mainly be divided into 2 groups, type 

I and type II (Barbieri et al. 1993, Nielsen & Boston 2001). Type I RIPs, as gelonin, 

agrostin and saporin consist only of the cytotoxic chain with N-glycosidase activity (A-

chain), while type II RIPs, as ricin, abrin and mistelthoe lectin, have a cell binding B 

chain in addition to the toxic A-chain. The toxic A-chain from the different RIPs is 

argued to use distinct mechanisms for cytosolic translocation (Vago et al. 2005, Sandvig 

& van 2005). However, once inside the cell cytosol, type I and II RIPs have similar 

potency (Barbieri et al. 1993). The lack of a cell binding B-chain in type I RIP causes, 

however, poor cellular uptake, and the cytotoxic effect of these RIPs is therefore often 

absent or very low (Barbieri et al. 1993). Type II RIPs are therefore more frequently 

utilized than type I RIPs in targeted protein-toxins. The type I RIPs saporin (Stirpe et al. 

1983) and gelonin (Stirpe et al. 1980) are used in the present thesis. Both saporin and 

gelonin are mainly taken up in the cells passively by means of pinocytosis (Barbieri et 

al. 1993). Gelonin has in addition been shown to be taken up by endocytosis through the 

mannose receptor (Madan & Ghosh 1992).    

 

1.4 Epidermal growth factor receptor (EGFR) 

  Several attempts have been made to find cancer cell specific targets that can be utilized 

in therapy. Conventional chemotherapeutic agents such as the alkylating agents 

(cyclophosphoamide), antimetabolites (metotrexate) and cytotoxic antibiotics 

(bleomycin) exert their effect mainly on frequently dividing cancer cells. Severe adverse  
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Tumour type Tumours 
overexpressing EGFR 

References 

Colorectal 30% - 80% McKay et al. 2002, Spano et al. 2005, Leung et al. 
2008 

Head and neck 80% - 100% Herbst & Shin 2002, Zimmermann et al. 2006, 
Kalyankrishna & Grandis 2006 

Pancreatic 32% - 69% Thybusch-Bernhardt et al. 2001, Bloomston et al. 
2006, Dancer et al. 2007 

Nonsmall cell lung 
carcinoma 

32% - 67% Hirsch et al. 2003, Onn et al. 2005, Nakamura et 
al. 2006 

Breast 7% -76% Bhargava et al. 2005, Reis-Filho et al. 2005, van 
Diest et al. 2006 

Renal cancinoma 76% - 93% Yoshida et al. 1997, Langner et al. 2004 
Ovarian 38% - 62% Nielsen et al. 2004, Vermeij et al. 2008 

 

Table 2: EGFR overexpression in tumours 

 

effects are, however, observed in normal fast dividing cells and depression of the bone 

marrow as well as damage to the epithelium of the gastrointestinal tract are often 

experienced. In the last decades proteins as targets for cancer therapeutics has become 

attractive. Several proteins have been shown to be overexpressed in cancer cells 

compared to normal cells and protein-targeted cancer therapeutics, such as kinase 

inhibitors and antibodies, have obtained marketing authorisation by both FDA and the 

European Medicines Agency (EMEA). Epidermal growth factor receptor (EGFR) is one 

of the most studied protein targets for cancer therapy (Rowinsky 2004, Ciardiello & 

Tortora 2008). The receptor is overexpressed in several different cancers (Table 2), and 

activation of the receptor is associated with cancer cell related properties as increased 

proliferation (Perry et al. 1998), blocking of apoptosis (Kulik et al. 1997), migration 

(Woodburn 1999) and vascularisation (Schreiber et al. 1986, Gille et al. 1997) which 

make the receptor an interesting target for anti-cancer drugs. A recent report showed 

that EGFR also stimulate to survival of cancer cells independent of its kinase activity, 

by inhibiting autophagy (Weihua et al. 2008). 

 

1.4.1 EGFR; physiology and activation 

  EGFR/ErBb1/HER1 is a 170 kDa transmembrane tyrosine kinase where the 

polypeptide chain crosses the plasma membrane once (Fig.6).  
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The receptor consists of a cysteine-rich extracellular ligand binding domain, a 

hydrophobic transmembrane chain and an intracellular domain where the kinase activity 

is located (Wells 1999, Rowinsky 2004, Normanno et al. 2006). Upon activation by one 

of its ligands the receptor undergoes homo- or hetero dimerization with another receptor 

in the EGFR family (Fig.7). Human epidermal growth factor receptor 2 (HER2) is 

regarded as the major partner in EGFR hetero-dimerization and EGFR-HER2 dimers 

are assumed to be more stable and generate a stronger and more prolonged activation 

signal compared to the EGFR homodimers (Tzahar et al. 1996, Lenferink et al. 1998). 

Dimerization of EGFR activates the kinase by inducing a conformational change of the 

receptor complex, causing exposure of the ATP-binding site and subsequent 

phosphorylation of tyrosines in the intracellular domain of the receptor (Klein et al. 

2004, Mattoon et al. 2004, Gan et al. 2007). A cascade of phosphorylation reactions is 

initiated where the RAS-RAF-MEK-ERK pathway and the AKT pathway are common 

for all ligands (Normanno et al. 2006). The receptor dimerization also stimulates 

endocytosis of the receptor (Wang et al. 2005) after which EGFR is either recycled back 

to the plasma membrane or transported to the lysosomes where it is degraded, 

depending on its ubiquitinylation (Yarden 2001, Dikic 2003, Huang et al. 2006) (Fig.7). 
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Fig.6: Illustration of EGFR and its 

localization in the plasma membrane 
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1.4.2 EGFR targeted drugs 

  Current EGFR targeted drugs can be divided in two groups (Castillo et al. 2004); 

specific tyrosine kinase inhibitors (TKIs) as erlotinib, lapatinib and gefitinib (Herbst et 

al. 2004, Bareschino et al. 2007, Ciardiello & Tortora 2008) and monoclonal antibodies 

(mAbs) as cetuximab and panitumumab (Baselga 2001, Cohenuram & Saif 2007). 

EGFR TKIs have the backbone structure of 4-anilinoquinazolins (Al-Obeidi & Lam 

2000, Denny 2002, Yun et al. 2007). These drugs are small and lipophilic and diffuse 

across the plasma membrane where they function as competitive antagonists for the 

intracellular ATP-binding domain of EGFR (Denny 2002). The TKIs thereby inhibits 

ligand induced EGFR activation and shut down the growth and survival promoting 

signalling from the receptor (Fig.8a). EGFR targeted TKIs are also reported to induce 

inactive EGFR/HER2 heterodimers and inhibits in this way HER2 signalling as well as 

EGFR signalling (Matar et al. 2004, Gan et al. 2007). EGFR specific mAbs, on the 

other hand, recognizes and antagonize the ligand binding extracellular domain of the 

receptor and inhibits EGFR activation and subsequent growth and survival promoting 

activation (Li et al. 2005, Yoshida et al. 2008) (Fig.8b). Antibody dependent cellular 

cytotoxicity is, in addition, suggested to be an important mechanism for cetuximab-

induced cytotoxicity in vivo (Naramura et al. 1993, Kurai et al. 2007). Other EGFR 

targeting strategies are under development for therapeutic use such as utilization of 

EGFR specific siRNA (Kang et al. 2006, Yamanaka et al. 2008), EGFR targeted 
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Fig.7: The EGFR signal transduction. p = phosphorylation 
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chemotherapeutics (Vega et al. 2003, Mamot et al. 2005) and EGFR targeted 

radioimmonotherapy (Li et al. 2004). EGFR targeted toxins is also an interesting 

approach in cancer therapy (Engebraaten et al. 2002, Sampson et al. 2008). RIPs exert 

their cytotoxicity intracellularly by inhibition of the ribosome activity (see 2.3.1). 

Selectivity towards EGFR expressing cancer cells may be achieved by linking RIPs to 

EGFR targeting moieties, subjecting the RIPs to EGFR mediated endocytosis (Fig.8c). 

Fig.8 shows EGFR targeted drugs used in the present thesis. 

 
 
 
 
 
 
 
 

B

E
G

F R

E
G

F R

Inhibits signal transduction,
growth and survival

E
G

FR
 m

A
b

A 

E
G

F R

E
G

F R

EGF EGF

Inhibits signal transduction, 
growth and survival

EGFR TKI EGFR TKI

C

E
G

FR

E
G

FR

RIP

Inhibits protein synthesis and
induces cell death

RIP

Ribosome

EGFR 
targeting
moiety

 
Fig.8: EGFR targeted drugs used in the present thesis. A: EGFR 

specific TKIs bind to the intracellular ATP binding domain of the 

receptor. B: EGFR specific mAbs bind to the extracellular ligand 

binding domain of the receptor. C: EGFR targeted RIPs are taken up in 





17 

2. Aims of the study 
PCI of an EGFR targeted toxin was expected to exert a 3-fold selectivity for cancer 

cells, i.e utilization of a tumour targeting toxin, use of photosensitizers that accumulate 

preferentially in tumour tissue and exposure of light only to the tumour area. It was 

therefore hypothesized that PCI of EGFR targeted toxins was a promising modality for 

cancer therapy. 

 

The specific aims of the investigations where: 

• To evaluate EGFR as a target for PCI-delivered drugs, utilizing both an endogen 

ligand and a monoclonal antibody as EGFR targeted moieties. 

• To study if PDT with PSs appropriate for use in PCI damage EGFR, and 

evaluate its impact on PCI of EGFR targeted drugs. 

• To study the effect of PDT and PCI on EGFR and mitogen-activated protein 

kinase (MAPK) signal transduction, and evaluate its importance for treatment 

cytotoxicity. 

• To study the treatment outcome after combination therapy with PDT and EGFR 

targeted drugs. 

• To study how activation and inhibition of EGFR influence on PDT induced 

EGFR- and MAPK-signalling and evaluate the impact of such manipulations on 

the treatment outcome when PDT is combined with an EGFR targeted drug.  
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3. General experimental considerations 

3.1 Cell lines 

  The PCI principle has been documented in more than 30 cell lines in vitro (Dietze et 

al. 2006). The present experiments are performed in cell lines with different expression 

levels of EGFR. The A-431 human epidermoid carcinoma cell line is one of the most 

used cell lines in EGFR targeted research in vitro, and was included in the present 

studies. The EGFR is highly expressed in A-431 cells (Wrann & Fox 1979) which are 

reported to contain 106 receptors per cell compared to 104-105 receptors/cell in other 

epidermal cells (Stryer 1975). The three human cell lines WiDr (colorectal 

adenocarcinoma), HCT-116 (colorectal carcinoma) and Du-145 (prostate carcinoma) 

has been used in previous PCI research (Dietze et al. 2006). These cell lines express 

EGFR (paper I-III), (Caceres et al. 2008) and where therefore included as EGFR 

positive models in the present work. The NuTu-19 rat ovarian cancer cell line (used in 

paper I, III, VI and V) is claimed to mimic human ovarian cancer and represent a good 

model for preclinical ovarian cancer research (Major et al. 1997). NuTu-19 cells may be 

established as an orthotopic model (Sloan Stakleff et al. 2005) and is hence an 

interesting cell line for future PCI experiments. NuTu-19 cells express EGFR, as do up 

to 62 % of ovarian cancers in humans (table 2). Since NuTu-19 cells are of rat origin, 

EGFR in this cell line is not recognized by the humanized murine antibody cetuximab 

(results not shown). Two EGFR negative cell lines, the human uterus sarcoma cell line 

MES-SA, and the human breast cancer MDA-MB435 (paper I), were used as negative 

controls in the present studies.  

 

3.2 Photosensitizers and light sources 

  Two photosensitizers were used in the present thesis, TPPS2a and AlPcS2a (Fig 9). 

Both of these photosensitizers localize to endosomes and lysosomes in the cells, but 

their absorption spectra differ significantly (Fig. 9). AlPcS2a absorbs red light with a 

maximum at approximately 670 nm and an absorption coefficient (�674) of 190 000M-

1cm-1 (as reported for AlPcS4 in methanol (Brasseur et al. 1987). TPPS2a absorbs light in 

the blue region of the spectrum with a maximum at approximately 415 nm and �413= 
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500 000 M-1cm-1 (as reported for TPPS4 in water (Rahman & Harmon 2006)). Red light 

penetrates more efficiently through tissues than blue light, and AlPcS2a is therefore the 

preferred photosensitizer for in vivo use. TPPS2a is, however, the most efficient 

photosensitizer for in vitro experiments in our laboratory due to the irradiance from our 

blue light source that is higher than the red light source (13.5 mW/cm2 and 1.5 mW/cm2 

respectively). The emission spectra for the blue light source is presented in figure 9.  A 

300 mW 670 nm diode laser was used as a light source in vivo.  

 

 

Fig.9: PSs and in vitro light source used in the present thesis. The 

molecular structure and absorption spectra for the PS used in 

experiments in vitro, TPPS2a, is presented in A and B. The emission 

spectrum for the blue light source used in vitro is shown in C. The 

molecular structure and absorption spectra for the in vivo relevant PS 

AlPcS2a is presented in D and E. 
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3.3 PDT 

  Most of the photochemical reactions (PDT) in the present studies were performed with 

the PCI procedure where the PS is targeted to the endocytic vesicles before light 

exposure. This is achieved in vitro by an 18 hrs incubation of TPPS2a followed by a 4 

hrs chase period in drug-free medium before light exposure (paper I-VI) (Fig.10A). In 

the in vivo experiments, AlPcS2a was injected i.p. 48 hrs prior to light exposure, a 

procedure which leads to PS accumulation in endosomes and lysosomes (Selbo et al. 

2001b). The PS localisation in endosomes and lysosomes is caused by passive targeting 

due to the overall endocytosis of the cell (adsorptive endocytosis). Clinically, one may 

phase scenarios where some of the PS still is present on the plasma membrane at the 

time of light exposure. The present studies therefore includes PDT procedures where 

cells were exposed to light directly after the PS incubation (without the 4 hrs chase 

period) localizing the photosensitizer to the plasma membrane in addition to 

endo/lysosomal vesicles (paper III, IV and V) (Fig.10B). Experiments where cells were 

exposed to a 30 min incubation of TPPS2a directly followed by light exposure were also 

exerted to target most of the PS to the plasma membrane at the time of light exposure 

(paper V) (Fig.10C).  
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Fig.10: TPPS2a localization in A-431 cells. Fluorescence micrographs of A-431 

cells after TPPS2a incubation procedures targeting the PS primary to the 

endo/lysosomal vesicles (A), to the plasma membrane in addition to the 

endo/lysosomal vesicles (B) or only to the plasma membrane (C).   
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3.4 PCI and PDT-drug combination therapy 

  The terminology PCI is in the present work used when the photochemical treatment, 

targeted to endocytic vesicles, is combined with drugs with intracellular targets that are 

taken up in cells by means of endocytosis and trapped in endocytic vesicles. When the 

photochemical treatment was combined with other drugs, as low molecular inhibitors 

that passively diffuses across the plasma membrane or the extracellular binding 

antibody cetuximab, the dual treatments were termed as PDT-drug combination therapy. 

PCI was performed with both the “light after” and “light first” procedure (paper I and 

II) (Fig 4A). The treatment regimen for the PDT-drug combination therapy was also 

varied, performing PDT prior to, after or during the drug incubation period (paper V and 

VI).   The impact of the treatment schedule on the outcome of PCI as well as PDT-drug 

combination therapy was therefore investigated in paper I, II, V and VI.  

 

3.5 Assays for measurements of cytotoxicity 

  In the present thesis, cytotoxicity was evaluated by three different methods. The MTT 

(3-[4,5-demethylthiazol-2-y]-2,5 diphenyltetrazolium bromide)-assay was used to 

measure viability 24-48 hrs after PDT and PCI treatments in all papers. In the MTT 

assay cells are incubated 2-4 hrs with the MTT-reagent. MTT is cleaved by succinate 

dehydrogenase and other dehydrogenases located in the mitochondria of the cells. 

Cleavage results in the formation of blue formazan crystals, which are dissolved in 

DMSO and measured colourimetrically at 570 nm. An advantage of the MTT assay is 

that it is fast and easy to perform. A limitation of the method is that this assay measures 

cell viability rather than direct cell survival. The time point at which the assay is 

performed is therefore of high importance to correlate the MTT data to cytotoxicity. The 

detection range for colourimetric measurements is also less than 2 log due to variable 

background absorption in combination with non-linear absorption at OD  above ~1.2 

with the instrument used in the present studies. Clonal cell survival experiments were 

used as control experiments to the MTT-assay in paper II. In the clonal cell survival 

assay the cells were incubated 7-10 days after treatment so that surviving cells could 

form colonies. The colonies were fixed in ethanol and stained with a saturated solution 

of methylene blue and dried before manual colony counting. Clonal cell survival as a 
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method for cytotoxicity measurements, do not suffer from problems with high 

background counts. The method also provides a broad dynamic range, which is an 

advantage of this method. Measuring the clonal cell survival after treatment indicates, 

however, the colony-forming ability of the cells, rather than toxicity. The assay is 

therefore not optimal evaluating treatments which induce growth arrest rather than cell 

death. Counting the actual number of viable cells by a Coulter counter was also used to 

measure the treatment effects in this thesis (paper V and VI). In the Coulter counter 

procedure, cells were trypsinated and resuspended in PBS before they were subjected to 

counting. This method provides the actual number of cells in the samples and may be 

used to study cytotoxic as well as cytostatic effects. The method also provides the cell 

size distribution in counted samples, which may indicate the cells position in the cell 

cycle. Disadvantages utilizing the Coulter counter for cytotoxic measurements are that 

the method is time consuming, and may provide large standard errors between parallels, 

due to loss of cells during centrifugation and resuspension.       

 

3.6 Statistical analysis of synergistic and antagonistic effects 

  In paper V and VI a statistical method was used to determine synergistic and 

antagonistic effects of PDT-drug combination therapies. This statistical model is based 

on the assumption that PDT and the drug have distinct mechanisms of action. The 

expected survival fraction (SF) after an additive effect of the combined treatment will 

therefore be the product of the SFs of each treatment separately: 

SFadd = SFPDT x SFdrug   or  log SFadd = log SFPDT + log SFdrug  

The SFPDT and SFdrug  were calculated dividing the surviving number of treated cells on 

the cell number in the untreated controls. SFadd was then compared to the observed SF 

of the combined treatments (SFcomb) using the synergy/antagonism parameter DL 

defined as the difference in logarithm between the observed SFcomb and the calculated 

SFadd: 

DL =-(logSFcomb- logSFadd ) =  log (SFadd /  SFcomb) = log SFPDT+ log SFdrug - log SFcomb 

Positive DL values indicate synergistic effects, while negative DL values indicate 

antagonistic effects of the combined treatments. Additive effects of the treatments result 

in DL values close to zero. Significant differences of DL from zero were established 

through t-tests using a two-tailed significance level of p � 0.05. The treatment 
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modalities were accepted synergistic if the DL value was significant positive and 

antagonistic if the DL value was significant negative. 
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4. Summary of publications 

4.1 Paper I 

  This publication is the first report on PCI of an EGFR targeted drug. One of the 

endogenous ligands of EGFR, EGF, was linked to saporin through the biotin-

streptavidin bond. The EGFR targeted toxin was shown to be taken up specifically by 

EGFR receptor-mediated endocytosis. Saporin and EGF-saporin inhibited protein 

synthesis to a similar extent in a cell free reticulocyte lysate system. EGF-saporin was, 

however, much more toxic than saporin in NuTu-19 and A-431 cells. PCI of EGF-

saporin was approximately 1000-fold more cytotoxic than PCI of saporin in NuTu-19. 

PCI of EGF-saporin was more effective when the drug was administered before light 

exposure (“light after” strategy) than when the photochemical treatment was performed 

prior to the EGF-saporin incubation (“light first” strategy). In order to verify selective 

toxicity of the PCI treatment in EGFR positive cells, the EGFR negative cell lines MES-

SA and MDA-MB435, receptor blocking with an EGFR antibody and incubation with 

an excess of free EGF were utilized. It was concluded that PCI of EGFR targeted toxins 

is a promising method to increase the specificity and toxicity of protein-toxins.  

 

4.2 Paper II 

This paper present PCI of an EGFR targeted immunotoxin, cetuximab-saporin. The 

EGFR targeted mAb cetuximab and saporin were linked by the biotin-streptavidin bond 

and specific binding of cetuximab-saporin to EGFR in HCT-116 cells was shown by 

fluorescence microscopy with competing excess of free cetuximab. It was reported that 

free cetuximab attenuated EGF-induced EGFR phosphorylation in HCT-116 cells, but 

induced only a minor reduction of cell viability in agreement with other reports. 

Cetuximab-saporin alone was, however, much more toxic in HCT-116 cells with an 

LD50 of  ~100 pM and binding of cetuximab to saporin increased the toxicity of saporin 

about 10-fold. Treatment of HCT-116 cells with 3 pM cetuximab-saporin did not cause 

any cytotoxicity. However, PCI of 3 pM cetuximab-saporin increased the cytotoxicity 

20-fold compared to the photochemical reaction with photosensitizer and light as 

measured by clonal cell survival. The cetuximab-saporin-induced toxicity was 
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completely reversed in the presence of a 200 fold excess of free cetuximab. Similar 

effects were obtained in the EGFR positive DU-145 and A-431 cell lines. Experiments 

with the EGFR negative MES-SA cell line showed no difference in cytotoxicity 

between saporin and cetuximab-saporin independent on delivery with PCI. PCI of 

cetuximab-saporin was only effective when the targeted toxin was administered prior to 

the photochemical treatment (“light after” strategy) in HCT-116 cells and had no effect 

when PDT was performed first (“light first” strategy) compared to the photochemical 

treatment alone. It was concluded that PCI of cetuximab-saporin is an unique method 

for cancer treatment that specifically kills target cells by three different mechanisms; (i) 

Blocking of EGFR signalling by a monoclonal antibody, (ii) the photochemical reaction 

generated by a tumour accumulating photosensitizer and tumour directed light and (iii) 

the ribosome inactivation activity of saporin after PCI induced cytoplasmic release in 

EGFR positive cells. 

 

4.3 Paper III 

The aim of this study was to investigate photochemical targeting of EGFR in vivo and in 

vitro using PSs utilized in PCI. Two different protocols were used for the photodynamic 

treatment of NuTu-19 cells in vitro, one in which the treatment with the PS was 

optimized for accumulation in endocytic vesicles prior to light exposure and one where 

the PS was located on the plasma membrane in addition to the endocytic vesicles. It was 

shown that ~LD50 PDT immediately inhibited the ability of EGFR to phosphorylate 

upon EGF stimulation with both protocols. Fluorescence microscopy of Alexa488 

labelled EGF showed that PDT inhibited EGF binding when the photosensitizer was 

located to both the plasma membrane and the endocytic vesicles, but not when primarily 

present in the endocytic vesicles. The decreased EGF-induced EGFR phosphorylation 

after endo/lysosomally targeted PDT can therefore not be explained by reduced EGF 

binding. Total EGFR was attenuated by PDT only when the photosensitizer was located 

on the plasma membrane in addition to the endocytic vesicles. The mechanism behind 

the photochemical targeting of total EGFR was studied. Degradation in endocytic 

vesicles did not contribute to the photochemical damage of total EGFR, as shown in 

experiments where cells were kept on ice, inhibiting overall endocytosis as well as in 

experiments in the presence of the cathepsin inhibitor E-64. It was observed on Western 
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blots that only the intracellular part and not the extracellular part of total EGFR was 

subjected to photochemical degradation, indicating a direct photochemical damage of 

specific sites of the receptor rather than degradation of the whole protein. Y1068 was 

indicated as the most sensitive site for photochemical oxidation. The mechanisms 

behind TPPS2a-PDT mediated EGFR damage in NuTu-19 cells in vitro was concluded 

to be dependent on the amount of photosensitizer present on the plasma membrane at 

the time of light exposure. The photochemically induced EGFR damage in vitro was 

shown to be cell line dependent since no effects on EGF-induced EGFR 

phosphorylation was observed in WiDr cells after endo/lysosomal targeted PDT. PDT 

with the in vivo relevant PCI photosensitizer AlPcS2a resulted in a decrease in total 

EGFR in WiDr tumours growing subcutaneously in Balb C (nu/nu) mice. No decrease 

in total EGFR was detected until 24 hrs after light exposure in vivo, and inhibition of 

EGFR translation and/or transcription was suggested as a possible mechanism for the 

total EGFR reduction observed in vivo.  

 

4.4 Paper IV 

 This paper reports on MAPK signalling after LD50 TPPS2a-PDT and the impact of this 

signalling on the treatment outcome after both PDT and PCI in two different cell lines. 

It was found that TPPS2a-PDT immediately activated both extracellular signal regulated 

kinase (ERK) and p38 in a transient manner in both NuTu-19 and WiDr cells. The 

activation of ERK observed after PDT was stronger than that obtainable with EGF 

incubation alone and the absolute EGF-mediated activation of ERK was the same in 

PDT-treated and untreated cells. The subsequent deactivation of ERK after 2 hrs 

seemed, in contrast to other reports, not to depend on activation of phosphatases as 

shown in the presence of the phosphatase inhibitors okadaic acid and vanadate. 

Activation of c-Jun NH2 terminal kinase (JNK) was also observed after TPPS2a-PDT, 

but only in NuTu-19 cells at doses reducing the cell viability by 50% or more. 

Experiments with suitable inhibitors revolved that p38 is an immediate death signal, 

while JNK rescues cells after PDT and PCI. Activation of ERK seemed, however, not to 

influence on PDT or PCI mediated cell death in NuTu-19 or WiDr cells.   
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4.5 Paper V 

  The aim of this study was to evaluate the impact of photochemically induced EGFR 

damage when TPPS2a-PDT was combined with an EGFR targeted drug. PDT was 

performed with two different protocols, one targeting the photosensitizer to the 

endocytic vesicles and one where the photosensitizer was targeted to the plasma 

membrane at the time of light exposure. PDT, when targeted to the endocytic vesicles, 

did not induce EGFR damage at doses killing up to 90 % of A-431 cells. However, the 

EGFR specific TKI, tyrphostin AG1478 (tyrphostin), caused an immediate inhibition of 

EGF-stimulated EGFR activation lasting for ~24 hrs. Tyrphostin, when administered 

directly after endo/lysosomal PDT in A-431 cells, resulted in a synergistic cytotoxic 

effect as measured by cell counting 72 hrs after tyrphostin incubation. A photochemical 

damage of EGFR was observed after plasma membrane targeted PDT (LD50) in A-431 

cells. Surprisingly, an even stronger synergistic effect on cytotoxicity was observed 

when tyrphostin was administered directly after plasma membrane targeted PDT 

compared to endo/lysosomal targeted PDT in A-431 cells, indicating that the outcome 

of PDT and EGFR-targeting drug combination therapy was not dependent on 

photochemical EGFR damage. It was studied whether the synergistic effect between 

PDT and tyrphostin was cell line dependent. Hence, the PDT-tyrphostin combination 

treatment was also performed in NuTu-19 cells. Endo/lysosomal targeted PDT in NuTu-

19 cells reduced the ability of EGFR to phosphorylate upon EGF-stimulation 5 min-4 

hrs after light exposure. Tyrphostin also reduced EGF-induced EGFR phosphorylation, 

but in a more sustained manner lasting for at least 48 hrs. Cytotoxic evaluation after the 

PDT-tyrphostin combination treatment in NuTu-19 cells showed, surprisingly, an 

antagonistic effect when tyrphostin was administered directly after endo/lysosomal 

targeted PDT. The antagonistic effect observed after treatment with the PDT-tyrphostin 

combination was dependent on the timing of drug incubation as shown by the additive 

effect on cytotoxicity observed when PDT was exerted after tyrphostin incubation as 

well as during the tyrphostin incubation period. It was concluded that the outcome of 

PDT-tyrphostin combination treatment is not correlated to photochemical EGFR 

damage and that the therapy require further evaluation.  
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4.6 Paper VI 

  The molecular mechanisms of cell signalling when PDT is combined with EGFR 

targeted drugs were studied in this paper. Two different drugs, the EGFR specific TKI, 

tyrphostin, and the EGFR mAb cetuximab, were administered directly after 

endo/lysosomal targeted TPPS2a-PDT in A-431 cells. Surprisingly, an antagonistic 

effect on cytotoxicity was observed after the PDT-cetuximab treatment compared to the 

synergistic outcome when PDT and tyrphostin were combined. Fluorescence 

microscopy of Alexa488-labelled cetuximab revealed no decreased cetuximab binding 

to EGFR after PDT. Western blot experiments showed that tyrphostin and cetuximab 

induced distinct EGFR-, ERK- and p38- signalling and the impact of this on the toxicity 

of the combination treatments was evaluated. PDT induced a prolongation of tyrphostin 

induced EGFR inhibition, but had no effect on cetuximab induced EGFR signal 

transduction. The PDT-tyrphostin combination treatment also induced a sustained 

inhibition of phospho-ERK that was not observed after the PDT-cetuximab combination 

treatment. Using the MEK inhibitor PD98059, ERK was found to be an important 

mediator of tyrphostin- and PDT-induced cytotoxicity as well as for the synergistic 

outcome of the PDT-tyrphostin combination treatment, in contrast to the cetuximab 

monotherapy and PDT-cetuximab combination treatment. It was concluded that the 

synergistic cytotoxic effect observed after the PDT-tyrphostin combination treatment 

was caused by a prolonged inhibition of EGFR and ERK, not detected after the 

antagonistic PDT-cetuximab treatment. 
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5. Discussion 
 

  PCI has been shown to be an effective drug delivery system for protein-toxins, genes 

and some conventional chemotherapeutics in vivo and in vitro (see Introduction). 

Photosensitizers used in PCI are preferentially retained in tumour tissue and with the 

possibility to direct light only to the diseased area, PCI can exert a two fold targeting of 

cancer cells. The selectivity of PCI towards cancer cells may be increased by delivering 

drugs which themselves target cancer cells. The search for tumour specific antigens that 

can be utilized in cancer therapy has been, and is still, a large field in cancer research 

and EGFR is one of the most investigated proteins for cancer targeted therapeutics. 

EGFR is endocytosed as a part of the regulation of its activity and the receptor was 

therefore anticipated as a suitable target for PCI-delivered drugs. 

 

5.1 The efficacy of PCI of EGFR targeted protein-toxins 

  An advantage of using RIP based targeted toxins in cancer therapy is that they are 

highly toxic when they enter the cell cytosol. A problem with targeted toxins in the 

treatment of solid tumours is, however, poor penetration through the malignant tissue 

due to their large molecular size in addition to the poor convection in solid tumours 

(Fukumura & Jain 2007a, Fukumura & Jain 2007b). PCI is expected to enhance the 

effect of targeted toxins which have reached the tumour cells, and will in this way 

reduce the treatment obstacle made by poor tumour delivery. Another limitation in the 

use of therapeutic targeted toxins is the formation of neutralizing antibodies due to 

repeated injections of the drug. Since PCI may enhance the therapeutic effect of a 

targeted toxin up to 1000 fold (paper I), the clinical number of treatments is likely to be 

highly reduced compared to treatments with the targeted toxins alone, and formation of 

neutralizing antibodies will thereby be of less importance. Another major limitation for 

the clinical use of targeted toxins is their uptake in normal cells. This may lead to 

vascular leak syndrome (VLS), haemolytic uremic syndrome and damage to healthy 

organs which express the target antigen on the cell surface (Pastan et al. 2007). These 

adverse effects are highly dose-dependent, and since PCI is expected to increase the 

treatment specificity and thereby probably reduce the necessary dosage of the targeted 
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toxin, it is to be expected that these adverse effects can be reduced by introduction of 

the PCI technology. 

 The present thesis includes two reports on PCI of EGFR targeted toxins. In the first 

study one of the endogen ligands of EGFR, EGF, was linked to the protein-toxin 

saporin to form an affinity-toxin (paper I) while in the second study cetuximab, an 

EGFR monoclonal antibody, was linked to saporin to form an immunotoxin (paper II). 

EGF-saporin and cetuximab-saporin were specifically taken up by EGFR indicating that 

utilization of EGFR targeted toxins can improve the specificity of PCI towards cancer 

cells compared to delivery of untargeted toxins. Accordingly, PCI of EGF-saporin and 

cetuximab-saporin was much more cytotoxic than PCI of saporin, indicating that EGFR 

is a promising candidate for PCI mediated enhancement of the cytotoxicity of targeted 

protein-toxins.  

 

5.1.1 Bioconjugation of the targeting ligand and the protein-toxin 

  The biotin-streptavidin binding was used to link saporin to both EGF and cetuximab. 

The binding is non-covalent with an association constant of 1015M-1 (Diamandis & 

Christopoulos 1991), and is therefore stronger than the association constant when an 

antibody binds to its receptor, reported to be in the range of 108-1012M-1 (Siiman & 

Burshteyn 2000, Xie et al. 2005). The binding forms rapidly and is convenient for 

proof-of-concept studies as those performed in paper I and II.  One of the obstacles of 

conjugating a targeting ligand to a protein-toxin is loss of effect of the toxic moiety 

(Atkinson et al. 2001). Linking of EGF to saporin through the biotin-streptavidin 

binding did not influence the RIP activity of saporin (paper I), and this binding seems 

therefore promising for screening and evaluation of targeting ligands for PCI-mediated 

delivery of protein toxins. There are, however, several disadvantages of using the 

streptavidin-biotin bond in formation of targeted toxins. Streptavidin is a tetramer of 60 

kDa where every monomer has a biotin binding site. This gives the possibility of 4 

biotinylated compounds to bind to each streptavidin tetramer. The binding reaction of 

biotinylated proteins to streptavidin labelled saporin can be difficult to control due to 

steric hindrance, which gives the possibility of heterogeneity in reaction products. The 

ability of streptavidin to bind to 4 biotinylated proteins can also result in very large 

products. Four molecules of biotinylated cetuximab bound to streptavidin-saporin may 
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form an immunotoxin of ~700 kDa which may be to large for efficient delivery to solid 

tumours. The diffusion of macromolecules through tissues is dependent on their size 

and weight and must be kept relatively low to ensure sufficient diffusion (Jain & Baxter 

1988, Jain 1990). On the other hand, hydrophilic drugs with low molecular size are 

subjected to high renal clearance. Hence, the molecular size of such drugs must be high 

enough to avoid immediate excretion (Brenner et al. 1978, Maack et al. 1979). If EGF 

is linked to saporin (1:1) through a simple disulfide bridge, this would result in a ~40 

kDa affinity-toxin that may be subjected to a rapid plasma clearance. However, EGF 

linked to saporin (1:1) through the streptavdin-biotin bond would form an affinity toxin 

with a MW of ~100 kDa, more suitable for in vivo use. The biotin-streptavidin bond has 

been clinically used (Knox et al. 2000, Weiden 2002, Forero et al. 2004, Gruaz-Guyon 

et al. 2005), however, immunogenicity of streptavdin is a major disadvantage of this 

conjugation strategy (Meredith & Buchsbaum 2006). As described above, PCI will 

probably be clinically applied in a limited number of times (1-2), and therefore 

streptavidin-induced immunogenicity may not be a treatment obstacle. The biotin-

streptavidin system in the present thesis is used to demonstrate proof –of-principles of 

PCI of EGFR targeted toxins. Other methods for conjugation of toxin and targeting 

moieties should therefore be explored in future studies.  In production of type I RIP 

based targeting toxins the targeting ligand and toxin have traditionally been chemically 

conjugated through disulfide bridges (Stirpe et al. 1980, Hirota et al. 1989, Kreitman 

1999, Selbo et al. 2000b, Polito et al. 2004). These chemical reactions are difficult to 

control and suffer from heterogeneity in the reaction products, which in turn require 

several separation and purification steps. The last decades, research on recombinant 

technologies have made it possible to synthesize immunotoxins in transfected E.coli. 

Recombinant synthesis of an immunotoxins offers high control of the product, and the 

technology makes it possible to induce a peptide linker in the product to obtain distance 

between the moieties and a desired molecular size of the fusion toxin. The only targeted 

toxin with a marketing authorisation on today’s market, OntakTM, consists of IL-2 and 

truncated diphtheria toxin made recombinantly. Paper I and II are both in vitro studies 

where the streptavidin-biotin linkage has been shown useful to demonstrate proofe-of-

concept of PCI of EGFR targeted drugs. Preclinical and clinical models would, 

however, probably benefit from recombinant made EGFR targeted toxins.  
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5.1.2 EGF versus cetuximab as a targeting ligand 

  Both EGF-saporin and cetuximab-saporin were taken up selectively by the EGFR. The 

affinity of EGF towards EGFR is lower than that of cetuximab (Huether et al. 2005) and 

higher doses of the EGF-saporin complex compared to cetuximab-saporin may be 

required to induce comparable cytotoxicity. No direct comparison has been made 

between EGF-saporin and cetuximab-saporin in the present studies, and which of the 

targeting ligands that is most suitable for PCI delivered EGFR targeted toxins is 

difficult to determine. Both targeted toxins were, however, studied in the A-431 cell line 

and the results indicate that PCI increases the cytotoxicity of EGF-saporin to a larger 

extent than PCI of cetuximab-saporin. A LD99 dose of PCI of the two toxins were 

observed at 5 pM and 100 pM for EGF-saporin and cetuximab-saporin respectively, 

using a photochemical dose which reduced the viability by ~50% (Paper I and II). It can 

therefore be estimated that EGF-saporin is approximately 25 times more effective in 

combination with PCI than cetuximab-saporin. EGF stimulates to a more rapid 

endocytosis of EGFR than cetuximab (Friedman et al. 2005, Jaramillo et al. 2006). The 

increased cytotoxicity after PCI of EGF-saporin compared to cetuximab-saporin could 

therefore be explained by a more effective endocytosis of the former, accumulating 

more toxin in the endo/lysosomal vesicles at the time of light exposure. The endocytic 

trafficking of EGFR has also been shown to differ dependent on EGF- or cetuximab- 

stimulation (Roepstorff et al. 2008). This could also influence on the PCI induced 

toxicity of the two targeting toxins as the effect of PCI may be dependent on the type of 

endocytic vesicle from which the toxin is to be released (Selbo et al. 2000a). The 

incubation time for the two toxin conjugates were, however, different in the two papers 

(4 hrs for EGF-saporin and 18 hrs for cetuximab-saporin), and the two targeted toxins 

must be evaluated under the same experimental conditions to confirm the difference in 

PCI mediated toxicity.  

  EGF is an endogen ligand for EGFR and binding of EGF-saporin to a cell may induce 

growth and survival signalling. Since the protein-toxin will kill the cell after light 

exposure, this growth stimuli may not be important in PCI treated cells. However, 

tumour cells that suffer from poor light delivery, i.e. distant metastasis or EGFR 

expressing normal cells, may be subjected to growth and survival signals. However, 

growth stimulating effects have not been reported using other ligands, as VEGF 

(Veenendaal et al. 2002) and IL-2 (Foss 2006), as targeting moieties in targeted toxins, 
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and EGF fused to DAB389 has been investigated in a clinical phase I/II trial against 

lung cancer (Kreitman 1999). Using cetuximab as the targeting ligand in EGFR targeted 

toxins will, on the other hand, block EGFR signalling and reduce growth and survival of 

the cells. PCI of cetuximab-saporin could therefore probably exert a three-fold directed 

toxicity towards tumour cells (Fig.11); (i) the photochemical reaction, (ii) cetuximab 

induced toxicity and (iii) saporin induced toxicity. In addition, cetuximab may stimulate 

to antibody dependent cellular cytotoxicity in vivo, which is claimed to be its main 

mechanism of action (Naramura et al. 1993, Kurai et al. 2007). All together, these 

factors may favour cetuximab as the most suited targeting ligand for PCI-delivered 

EGFR- targeted toxins. On the other hand, it was shown in paper VI that cetuximab acts 

antagonistic in combination with the photochemical reaction utilized in PCI, indicating 

that cetuximab is not the optimal targeting ligand for EGFR targeted protein-toxins 

delivered by PCI.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since cetuximab (150 kDa) is approximately 25 times larger than EGF (6.3 kDa), 

targeted-toxins using cetuximab as a ligand will be larger and consequently probably 

more immunogenic compared to when EGF is utilized as the targeting moiety. This may 

cause an increased formation of neutralizing antibodies, inhibiting the effect of the 

targeted toxins when cetuximab is used as the targeting moiety compared to EGF. The 

smaller size of EGF compared to cetuximab may be an advantage for tissue penetration 

 
Fig.11: Three postulated mechanisms for PCI of 

cetuximab-saporin induced cytotoxicity. (1) 

Cetuximab blocks growth and surviving promoting 

signalling. (2) PDT induced cell death. (3) Inhibition 

of protein synthesis by saporin (paper II). 
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of the targeted toxin. Even though not evaluated in the present thesis, it is possible to 

make targeted toxins where the targeting ligand contains only the Fv fragment of the 

monoclonal antibody. Targeted toxins containing Fv fragments are shown to be less 

immunogenic than whole antibodies (Reiter & Pastan 1998), and an Fv fragment against 

EGFR could provide a targeting moiety with the preferred properties of cetuximab 

together with a more practical size. Fv-based EGFR targeted protein-toxins should 

therefore be included in future work on PCI of EGFR targeted drugs.  

   

5.2 Photodynamic targeting of EGFR  

  PDT, utilizing several photosensitizers, has been shown to reduce total EGFR as well 

as the activation ability of the receptor (de Witte et al. 1993, Ahmad et al. 2001, Wong 

et al. 2003, Zhuang et al. 2003, Schieke et al. 2004) . PCI of EGFR targeted toxins is 

dependent on a functional plasma membrane-bound EGFR that binds and internalizes 

the drug. Photochemically induced damage of EGFR should therefore be expected to 

attenuate PCI of EGFR-targeted toxins if any of the PS is present at the plasma 

membrane at the time of light exposure and the EGFR targeted toxin is delivered after 

the photochemical reaction (PCI with the “light first” procedure).  

 

5.2.1 TPPS2a-PDT induced damage to EGFR  

  The photosensitizers for use in PCI are first adsorbed to the plasma membrane upon 

administration and are then localised to endosomes and lysosomes at the time of light 

exposure. It is, however, not unlikely that a minor fraction of the PS can be retained on 

the plasma membrane during the PCI procedure and this may cause EGFR damage upon 

light exposure. This was indicated in paper III showing that TPPS2a-PDT, as performed 

with the PCI procedure, inhibited EGF-induced EGFR activation in NuTu-19 cells 5 

min after exposure to light, even though no photosensitizer was detected on the plasma 

membrane as measured by fluorescence microscopy. Little is known about the 

molecular mechanisms behind PDT-mediated EGFR targeting. However, Zhuang et al. 

reported that attenuation of EGFR after Rose Bengal(RB)-PDT was dependent on 

activation of both caspase-3 and protein phosphatases (Zhuang et al. 2003). The 

decreased EGFR activation after endo/lysosomal PDT observed in paper III can also be 
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caused by activation of phosphatases, and experiments in the presence of caspase- and 

phosphatase-inhibitors should be performed to study this hypothesis. Experiments in 

paper III with a significant amount of TPPS2a present on the plasma membrane in 

addition to the endocytic vesicles also inhibited EGFR activation, and in addition, total 

EGFR was reduced immediately after light exposure. The results on total EGFR 

attenuation after PDT with plasma membrane bound TPPS2a indicated a direct oxidation 

of the receptor in the NuTu-19 cells. Amphiphilic photosensitizers such as TPPS2a will 

generally be localized in the outer leaflet of the plasma membrane with the hydrophilic 

part in the extracellular space and the hydrophobic part inside the membrane. Moan and 

Berg estimated in 1991 diffusion length of 1O2 in cellular membranes to 10-20 nm 

corresponding to a lifetime of 10-40 ns (Moan & Berg 1991). However, more recent 

studies have indicated longer lifetimes for 1O2 (Skovsen et al. 2005, Hatz et al. 2007) 

and it is not unlikely that this ROS can diffuse across the 10-20 nm tick plasma 

membrane. On the other hand, singlet oxygen will be easily quenched by biomolecules 

in the plasma membrane (Bronshtein et al. 2004) and more research is required to 

conclude on the mechanisms causing the damage of EGFR in TPPS2a-treated cells.  

  The susceptibility of TPPS2a-PDT mediated EGFR damage seems to be cell line 

dependent. In contrast to the NuTu-19 cells, no damage of EGFR was observed after a 

LD50 dose of endo/lysosomal targeted TPPS2a-PDT in WiDr (paper III) nor in A-431 

cells (Paper V). When the photosensitizer was targeted only to the plasma membrane in 

A-431 cells, a reduction in EGF-stimulated EGFR phosphorylation was observed (paper 

V. This reduction was comparable to that reported after PDT in the NuTu-19 cells when 

the PS was targeted to endosomes and lysosomes (paper III). We can therefore conclude 

that photochemical damage of EGFR by TPPS2a-PDT is dependent on the amount of 

photosensitizer present at the plasma membrane at the time of light exposure. The 

susceptibility towards TPPS2a-induced photochemical damage in different cell lines 

therefore probably depends on the ratios of endocytosis and exocytosis in the cells. If 

the EGFR damage observed in the present thesis is caused by 1O2 that diffuses through 

the plasma membrane and directly oxidize the intracellular domain of the receptor, the 

composition of the plasma membrane and presence of quenching biomolecules should 

also be considered as determinant factors for the photochemical damage of EGFR. Even 

though not discussed in the relevant publications, PDT induced EGFR damage with 

Photofrin (Wong et al. 2003), 5-ALA induced protoporphyrin IX (PpIX) (Wong et al. 
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2003), Hypericin (de Witte et al. 1993) and RB (Zhuang et al. 2003, Schieke et al. 

2004) as PSs may be caused by a direct oxidation of the receptor at light exposure time, 

as all of these PSs has been shown to localize to the plasma membrane (Thomas & 

Pardini 1992, Lin et al. 2000, Selbo et al. 2001a, Hsieh et al. 2003b). In addition, the 

lipophilicity of these PSs indicate that they can freely diffuse through the plasma 

membrane, and thereby  easily target the intracellular domain of EGFR upon light 

exposure. 

  EGFR damage has been claimed important for PDT-mediated toxicity (Ahmad et al. 

2001, Schieke et al. 2004). Administration of EGFR inhibitors before PDT may be 

utilized to evaluate the importance of photochemical receptor damage for cytotoxicity. 

If photochemical EGFR targeting represents an important signal for TPPS2a-PDT 

induced cell death, PDT-mediated cytotoxicity should be expected to decrease in the 

presence of an EGFR inhibitor. This was observed when PDT was combined with the 

TKI tyrphostin and the mAb cetuximab in the NuTu-19- and A-431-cell line 

respectively (paper V and VI). An increase in PDT induced toxicity was, however, 

observed after the PDT-Tyrphostin combination treatment in the A-431 cell line (paper 

VI), but as this synergistic effect seemed to be correlated to an enhanced inhibition of 

ERK as well as EGFR (for further discussion see section 5.3.1), the present results 

together indicate that photochemical induced damage of EGFR may contribute to 

TPPS2a-PDT mediated cell death.  

  It has also been argued that the effect of PDT may be enhanced by addition of an 

EGFR targeted drug (Ahmad et al. 2001). The results obtained in the present studies 

shows that the outcome of such combination therapies are highly dependent on the cell 

type as well as the mechanism of action of the EGFR targeted drug and its interaction 

with the photochemical treatment. In general, data obtained in the present studies 

indicate that combinations of PDT and EGFR targeted drugs must be strictly evaluated 

before they are introduced to the clinic to avoid antagonistic effects of the treatments. 

 

5.2.2 Influence of photochemical-induced EGFR damage on PCI of 
EGFR targeted toxins 

   PCI of a drug, as described in details in the introduction chapter, can be performed 

with two different treatment procedures; either with the drug for delivery administered 
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before (“light after” strategy) or after (“light first” strategy) the photochemical 

treatment. PCI of EGF-saporin was much more effective with the “light after” strategy 

compared to the “light first” strategy in NuTu-19 cells, even though no differences were 

found between the “light first” and “light after” strategy when PCI of streptavidin-

saporin was performed (paper I). The same observation was made by PCI of cetuximab-

saporin in HCT-116 cells, where no PCI effect was observed when the “light first” 

strategy was applied compared to the “light after” strategy that induced a synergistic 

effect on cell killing (paper II). TPPS2a-PDT mediated EGFR damage were, in the 

present thesis, not studied in HCT-116 cells. However, the photochemical damage of 

EGFR in NuTu-19 cells (paper III) correlates well with the decreased effect of PCI of 

EGF-saporin with the “light first” strategy in this cell line. If PCI of EGFR targeted 

toxins with the “light first” procedure is inhibited by photochemical induced EGFR 

damage, the “light first” and “light after” strategy should be expected to have similar 

efficacy in A-431 cells where no photochemical damage of EGFR was observed after 

endo/lysosomal targeted PDT (paper V). Fig.12 presents PCI of EGF-saporin with both 

the “light after” and “light first” strategy in A-431 and NuTu-19 cells. PCI of EGF-

saporin in A-431 cells seems just as effective with the “light first” strategy as with the 

“light after” strategy compared to the NuTu-19 cells where the “light first” strategy is 

less efficient. Consequently, these results, together with the data from the studies on  

PDT-mediated EGFR damage, indicate that the photochemical treatment may inactivate 

the target receptor and should be taken into account when designing treatment protocols 

for PCI of EGFR targeted drugs. As PCI of EGFR targeted toxins seems to depend on 

photochemically induced EGFR damage and because these effects tend to be cell line 

dependent, it will be important to find factors predicting the EGFR damage and 

consequently responsiveness to the PCI treatment in a specific cell type.     
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5.3 EGFR targeted drugs; effects on PDT and PCI induced 

protein signalling and subsequent toxicity 

  Combination therapy is becoming increasingly relevant in cancer therapy. Even though 

PCI mainly has been used as a drug delivery system for large hydrophilic drugs with 

intracellular targets, the photochemical treatment (PDT) may be combined with other 

drugs. Increased cytotoxicity is reported after dual therapy with PDT and different 

chemotherapeutic drugs such as cisplatin (Nonaka et al. 2002) cyclophosphamide 

(Casas et al. 1998), 5-fluoro-2-deoxyuridine (5FdUr) (Zimmermann et al. 2003), 

metotrexate (Sinha et al. 2006) and doxorubicin (Kirveliene et al. 2006). Recently, 

novel anticancer drugs as TKIs (Dimitroff et al. 1999, Liu et al. 2007), mAbs (del 

Carmen et al. 2005, Ferrario & Gomer 2006) and COX-2 inhibitors (Ferrario et al. 

2005) have been reported to enhance PDT-mediated toxicity. However, antagonistic 

responses have also been reported with PDT in combination with doxorubicin and 

5FdUr (Zimmermann et al. 2003, Kirveliene et al. 2006). Multimodality therapy is 

generally considered most effective when the different monotherapies have distinct 

mechanisms of action (del Carmen et al. 2005, Zhang et al. 2005, Soffietti et al. 2007). 

Knowledge of the molecular mechanisms of action following PDT, as well as the drug 

intended as an adjuvant, is therefore of importance to predict the outcome when the 

treatments are combined and to avoid antagonistic cytotoxicity. This information will 
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Fig.12: PCI of EGF-saporin with the light first and light after strategy. PCI of streptavidin-

saporin and EGF-saporin was performed with both the light first and light after strategy in A-431 cells 

(A) and NuTu-19 cells (B) (paper I). 



DISCUSSION 

 41

also have value when evaluating PDT for incorporation into established treatment 

modalities.  

 

5.3.1 The impact of MAPK signalling  

  The events leading to cell death or survival after PDT can be evaluated by studying the 

protein signalling after the treatment. Even though the signal transduction after PDT 

mainly is triggered by the formation of singlet oxygen, cellular signalling after PDT is 

dependent on the photosensitizer, its localization, PDT-dose and also on the cell type 

used (Moor 2000, Piette et al. 2003, Almeida et al. 2004, Buytaert et al. 2007, 

Uzdensky 2008). Several groups have shown an increasing interest in this field, and 

many different proteins and protein cascades have been investigated. The PDT-induced 

mitochondrial release of cytochrome C (Vantieghem et al. 1998, Kim et al. 1999, 

Reiners, Jr. et al. 2002), caspases (Granville et al. 1998, Zhuang et al. 2001) and 

MAPKs (for references see below) are, however, of the most studied, and the present 

work has revealed the MAPK signalling after TPPS2a-mediated PDT. The three most 

investigated proteins in the MAPK family are the extracellular signal regulated kinase 

(ERK), p38 and JNK. These three MAPKs are all parts of protein phosphorylation 

cascades where the end points are post transcriptional modification and  activation of 

different transcription factors regulating growth, differentiation, apoptosis and 

inflammation (Bonni et al. 1999, Chang & Karin 2001, Hazzalin & Mahadevan 2002).  

  ERK is a protein in the RAS-RAF-MEK cascade downstream of EGFR associated 

with growth and cell survival (Zebisch et al. 2007). TPPS2a-PDT induced ERK 

signalling was found to be cell line dependent in the present studies. ERK was activated 

5 min post LD50 TPPS2a-PDT in both NuTu-19 and WiDr cells (paper IV). This is in 

agreement with Tong et al. who reported on a similar ERK-activation after Photofrin-

induced PDT (Tong et al. 2002). However, in that study the observed ERK activation 

was correlated to PDT-resistance (Tong et al. 2002), which is in contrast to our results 

showing no direct connection between ERK activation and PDT-induced cell death in 

neither NuTu-19 nor WiDr cells (paper IV). Interestingly, PDT in NuTu-19 cells 

inhibited EGF-induced EGFR phosphorylation by 50 % (paper III), while the EGF-

stimulated ERK activation seemed not to be influenced by the photochemical reaction 

(paper IV). Since PDT inhibits EGF-induced EGFR activation without affecting EGF-

induced ERK activation, these data indicate that the rate limiting step in the EGFR-ERK 
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pathway in NuTu-19 cells is located downstream of EGFR. We have suggested RAF 

activation as a possible rate limiting step in this pathway in agreement with an other 

report (Dougherty et al. 2005) (paper IV). In contrast to the TPPS2a-PDT induced 

activation of ERK in NuTu-19 cells, PDT using 5-ALA induced PpIX, Photofrin, RB, 

and hypericin as photosensitizers has been reported to attenuate ERK activity, suggested 

to be important for PDT-mediated cytotoxicity (Assefa et al. 1999, Wong et al. 2003, 

Schieke et al. 2004). These reports are, however, in agreement with the results obtained 

in paper VI, where attenuation of phosphorylated ERK was indicated as a death signal 

after TPPS2a-PDT in A-431 cells.   

  The present studies indicate that TPPS2a-PDT induced ERK signalling may have 

impact on the treatment outcome when PDT is combined with EGFR targeted drugs 

(paper IV, VI and VI). An antagonistic effect on cytotoxicity was observed when 

endo/lysosomal targeted PDT, resulting in activation of ERK, was combined with 

tyrphostin in the NuTu-19 cells compared to the synergistic effect obtained after the 

combination in A-431 cells where PDT attenuated ERK activation. The antagonistic 

effect observed after the PDT-tyrphostin combination treatment in the NuTu-19 cells 

may be explained by PDT-induced EGFR damage which in turn inhibits the tyrphostin-

induced toxicity (paper V) (Fig 13.A). It remains to be studied if tyrphostin inhibits the 

ERK activation observed immediately after PDT in NuTu-19 cells, but this will 

probably have no effect on PDT-induced cytotoxicity since the MEK inhibitor PD98059 

have no effect on survival of NuTu-19 cells after PDT (paper IV). In the A-431 cell line, 

endo/lysosomal targeted PDT does not target EGFR (paper VI). The synergistic effect 

observed when this PDT treatment is combined with tyrphostin may be due to a 

prolonged inhibition of EGFR as well as ERK compared to the mono-therapies (paper 

V, VI and Fig 13B). Plasma membrane targeted TPPS2a-PDT in A-431 cells also causes 

synergistic cytotoxic effects on cell survival in combination with tyrphostin even though 

this photochemical regimen damage EGFR (paper V) (Fig 13.C). PDT induced EGFR 

damage in combination with Tyrphostin therefore causes synergistic toxicity in A-431  
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cells while antagonistic effects are observed after the combination in NuTu-19 cells. 

Paper V therefore concluded that the outcome of PDT–tyrphostin combination treatment 

is not correlated to EGFR damage. Neither EGFR nor ERK was investigated after PDT-

tyrphostin treatment when the PS was targeted to the plasma membrane in A-431 cells. 

The importance of prolonged ERK inhibition for a synergistic outcome when 

endo/lysosomal targeted PDT is combined with an EGFR targeting drug in A-431 cells 

was, however, indicated in the experiments on PDT-cetuximab combination therapy in 

paper VI. In contrast to the tyrphostin treatment, cetuximab-treatment alone as well as 

the PDT-cetuximab combination treatment induced only a 2 hrs incomplete inhibition of 

ERK in the A-431 cells and an antagonistic effect was observed after the PDT-

cetuximab combination treatment. Compared to the tyrphostin treatment, cetuximab 

alone induced a more prolonged inhibition of EGFR and PDT did not increase 

cetuximab-induced EGFR inhibition. This can explain the antagonistic cytotoxicity after 

the PDT-cetuximab treatment compared to the PDT-tyrphostin treatment in the A-431 

cells (Fig.13D). As discussed above, combination therapy is generally considered most 

effective when the different modalities have distinct action mechanisms. The results in 
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Fig.13: Protein signaling and cytotoxic outcome when TPPS2a-PDT 

is combined with EGFR targeting drugs in the present thesis.  
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paper VI indicate different modes of action between PDT and cetuximab concerning 

EGFR and p38, but mutual effects on ERK. To explain the antagonistic cytotoxicity of 

PDT and cetuximab, other effectors downstream of EGFR should be investigated to 

reveal if the two treatments have common action mechanisms on other proteins. 

  ERK signalling may influence on the outcome of PCI induced toxicity. The 

antagonistic effect observed when cetuximab is combined with PDT indicates that this 

mAb may not be optimal as a targeting moiety for PCI delivered EGFR targeted toxins, 

even though PCI clearly enhanced cetuximab-saporin induced cytotoxicity in paper II. 

The results also indicate than PCI can be optimized by delivering drugs which inhibits 

ERK as a part of their mechanism of action, although the effect seems to be cell line 

dependent.   

  The JNK proteins are stress induced kinases (Vlahopoulos & Zoumpourlis 2004) 

shown to be activated by PDT with different photosensitizers (Almeida et al. 2004). 

Assefa et al. reported that JNK activation rescues cells from hypericin mediated PDT 

(Assefa et al. 1999) while JNK activation after Photofrin-PDT has been shown not to 

influence on cytotoxicity (Hsieh et al. 2003a). The impact of JNK activation after PDT 

seems therefore to depend on the photosensitizer and/or on the cell line. In the present 

studies increased phosphorylation of JNK was observed in NuTu-19 cells 1 hr after 

TPPS2a-PDT at doses reducing the viability to 50% or less (paper IV). Here it was 

demonstrated that in presence of the JNK inhibitor SP125600, the cytotoxic effects of 

PDT were significantly increased, suggesting that JNK activation rescues cells from 

PDT-mediated death in this cell line (paper IV). No activation of JNK was observed 

neither in WiDr nor in A-431 cells after LD50-TPPS2a-PDT (paper IV, results not 

published), but activation of JNK at higher doses cannot be excluded. Activation of 

JNK may inhibit PCI induced cell death at higher doses than applied in paper IV. The 

results on JNK obtained in the present studies may therefore indicate that 

macromolecular drugs, that inhibit JNK, may be suitable for PCI delivery in cases 

where JNK is activated after PDT. 

  P38 is also a stress induced kinase (Zarubin & Han 2005) shown to be activated after 

PDT with different photosensitizers. PDT-induced p38 activation has been reported as a 

death mechanism as well as a rescuing signal and the impact of p38 signalling on cell 

death after PDT seems to depend on both the photosensitizer, PDT-dose and the cell 

line (Klotz et al. 1999, Assefa et al. 1999, Xue et al. 1999, Zhuang et al. 2000, Tong et 
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al. 2003, Kralova et al. 2007, Buytaert et al. 2008). Activation of p38 was observed 5 

min after LD50 TPPS2a-PDT in all investigated cell lines (NuTu-19, WiDr and A-431) 

(paper IV and VI). The impact of this PDT-induced p38 activation was studied in the 

presence of the p38 inhibitor SB203580. It was found that p38 activation is an 

immediate death signal after TPPS2a-induced PDT (paper IV and VI). The two EGFR 

targeted drugs tyrphostin and cetuximab was in paper VI shown to have distinct effects 

on p38 signalling: p38 was shown as a death signal after PDT-cetuximab combination 

treatment, however, not after PDT-tyrphostin treatment (paper VI). The p38 inhibitor 

was also included in experiments with PCI of gelonin. The results indicated that the p38 

signal transduction observed after TPPS2a-PDT also occurred after PCI of gelonin, and 

influenced on the PCI mediated cell death to a similar extent as observed for PDT 

induced toxicity (paper IV), but at lower photochemical cytotoxic doses. The results on 

PCI of gelonin in the presence of the p38 inhibitor therefore indicate that p38 activation 

influence on the effect of gelonin in addition to the photochemical-induced toxicity. 

TPPS2a-PDT, as performed during these works, exerts its effect mainly by 

endo/lysosomal rupture, relocalization of the PS and subsequent photochemical effects 

on different membrane bound organelles. If SB203580 inhibits the photochemical 

rupture of the endo/lysomal vesicles, this may explain the decreased PCI effect in the 

presence of the inhibitor, since less gelonin will be able to escape into the cytosol. 

Another possibility is that the p38 inhibitor attenuates gelonin-induced toxicity in the 

cytosol. The present thesis focuses on PCI of EGFR-targeted toxins, where the overall 

aim is to improve the targeting and enhance the killing of cancer cells. PCI is also used 

for delivery of genes where the aim is not necessarily to kill the target cell, but rather to 

deliver the gene of interest. If p38 inhibition does not influence on photochemically-

induced rupture of endosomes and lysosomes, inhibition of photochemical induced 

death signals, as the p38 activation, in PCI of genes is likely to increase the fraction of 

surviving transducable cells and may in this way increase the spesificity of the 

treatment. PDT induced p38 activation has by others also been associated with 

induction of VEGF using both BPD and Hypericin as photosensitizers (Hendrickx et al. 

2005, Solban et al. 2006) and activation of p38 after hypericin PDT is in addition shown 

to upregulate cyclooxygenase-2 (Hendrickx et al. 2003) and heme-oxygenase 1 

(Kocanova et al. 2007). Induction of both VEGF (Ferrara & Gerber 2001, Kowanetz & 

Ferrara 2006), COX-2 (Bakhle 2001) and heme-oxygenase (Jozkowicz et al. 2007) may 
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stimulate to angiogenesis and tumour promoting survival in vivo. If PDT with PCI 

relevant PSs induces the same signalling as observed with BPD and hypericin, 

introduction of a p38 inhibitor to the PCI procedure may optimize the treatment. A 

summary of the TPPS2a-PDT induced MAPK signalling data of the present thesis is 

presented in table 3.  

 
 

 

 

  

 

 

 

 

Protein NuTu-19 WiDr A-431 
p-EGFR decrease no effect no effect 
EGFR no effect no effect no effect 
p-ERK increase increase decrease 
ERK no effect no effect no effect 
p-JNK increase not detected not detected 
JNK no effect no effect no effect 
p-p38 increase increase increase 
P38 no effect no effect no effect 

Protein NuTu-19 A-431 
p-EGFR decrease decrease 
EGFR decrease no effect 
p-ERK increase - 
ERK no effect - 
p-JNK - - 
JNK no effect - 
p-p38 increase - 
P38 no effect - 

A 

Table 3: Protein signaling detected in the present thesis after LD50 TPPS2a-PDT with the PS 
targeted primary to endocytic vesicles (A) and to the plasma membrane in addition to the 
endocytic vesicles. 

B
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6. Conclusions 
 

 Specificity and efficacy of PCI can be optimized by delivering drugs which accumulate 

in cancer cells. EGFR is a suitable target for such drugs for two main reasons. First, the 

receptor is overexpressed in several different cancers and second, EGFR is internalized 

as a part of its physiology and is therefore able to transport attached drugs to endosomes 

and lysosomes, the primary targets for PCI.  

  PCI of EGFR targeted drugs exerts a three-fold selectivity for cancer cells: (i) the 

photosensitizers is preferentially retained in tumour tissues, (ii) the light is directed only 

to the tumour area and (iii) utilization of an anticancer drug which targets cancer cells.  

  Photodynamic targeting of EGFR is cell line dependent and is correlated to the amount 

of photosensitizer present on the plasma membrane at the time of light exposure. 

However, other cell specific properties seems also important in PDT induced EGFR 

damage.  

  PCI of EGFR targeted drugs may be influenced by the treatment procedure, i.e the use 

of “light first” or “light after” strategy. Photodynamic damage of EGFR seems to 

decrease the efficacy of the PCI when the photochemical treatment is performed prior to 

administration of the EGFR targeted drug (“light first” procedure). Hence, the timing of 

drug administration and light activation in cancer patients may be critical to obtain 

optimal effects with PCI of EGFR-targeted drugs.   

  Both the endogen ligand of EGFR, EGF, and the EGFR mAb cetuximab may be 

suitable as the EGFR targeting moiety for PCI delivered drugs. The protein signal 

transduction induced by the EGFR targeted drug and the photodynamic reaction can, 

however, interact which in turn may influence on the cytotoxic effect of the treatment.   

  The present thesis demonstrates the proof-of-concept of PCI of EGFR targeted drugs 

and pinpoints the importance of studying the intracellular signalling post 

endo/lysosomal targeting PDT paving the way for further improvements of the PCI 

technology and possible future clinical applications.  
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7. Future perspectives 
 

  The therapeutic applicability of anticancer drugs is to a large extent limited by the 

adverse effects of the treatment. PCI of EGFR targeted protein-toxins is in the present 

thesis shown as an effective anticancer treatment that exerts a high specificity for cancer 

cells in vitro and the results warrant further work with in vivo preclinical models. These 

studies may be initiated using EGFR expressing tumour models in mice and measure 

the tumour growth after the treatment. The impact of receptor status and malignancy for 

the treatment outcome after PCI of EGFR targeted drugs should be addressed in these 

studies. Future work on the PCI technology also includes development of the method 

towards specific cancer indications.  

  The two papers on PCI of EGFR targeted toxins in the present thesis where proof-of-

principle studies where EGF-saporin and cetuximab-saporin were made without any 

optimalization concerning PCI delivery. Future work should therefore include studies 

evaluating the optimal composition of the targeted toxins such as the ratio of toxin to 

targeting moiety. Recombinant targeted toxins are assumed to be advantageous over 

chemical conjugates due to increased specificity, higher stability and the homogeneity 

of reaction products, and future work should include establishment of recombinant 

EGFR targeted toxins. The preclinical evaluation of recombinant EGFR targeted toxins 

should include fragments of antibodies, but also EGF and other natural ligands since 

EGF was found to be a promising ligand for protein-toxin delivery by PCI. Saporin was 

used as the toxic moiety in both EGFR targeted toxins used in this thesis. Gelonin is 

another type I RIP shown to work very efficient when delivered with PCI. Gelonin 

alone is less toxic to whole cells than saporin and may increase the specific toxicity 

when utilized in PCI delivered EGFR targeted toxins compared to saporin. PCI of 

EGFR targeted toxins based on gelonin should therefore be considered.  

  The PCI technology is highly dependent on effective endocytosis of the delivered 

drug. The present thesis has, however, not evaluated the endocytosis ratio of the 

different EGFR targeted toxins. Endocytosis of EGFR is dependent on the ligand 

attached and also on whether the receptor is homodimerized, heterodimerized or not 

dimerized. Future work should therefore include experiments on EGFR targeted drug- 

and toxin mediated endocytosis and its impact on the efficacy of PCI.  
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  The present thesis reports on MAPK signal transduction after photochemical treatment 

as performed by PCI. Knowledge about death and survival mechanisms induced by this 

form of photochemical treatment can improve the PCI technology and also predict 

suitable drugs for PCI delivery. The work on mapping protein signal transduction with 

impact on cell death and survival after the photodynamic treatment should therefore be 

continued. This should include investigations of protein pathways involved in apoptosis, 

autophagy and necrosis.  

  EGFR-mediated signal transduction and its impact on PDT- induced protein signalling 

has also been investigated in the present work. It was shown that interactions between 

EGFR targeted drugs and the photochemical treatment had an impact on the treatment 

outcome when the two modalities were combined, causing both synergistic and 

antagonistic effects on cytotoxiciy of the treatment. Interactions between PDT and 

EGFR targeting on the level of signal transduction should be further explored in future 

studies to avoid antagonistic toxicity and optimize the modality of PCI of EGFR 

targeting drugs.  
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