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Abstract  

Paratuberculosis is a chronic enteric disease that affects ruminants. It is caused by 

Mycobacterium avium subsp. paratuberculosis (MAP) an obligated intracellular acid-fast 

bacilli that usually infect macrophages in the intestine and lymph nodes and is able to survive 

and replicate inside phagosomes by inhibition of the phago-lysosome maturation. 

Paratuberculosis is characterized clinically by progressive emaciation and chronic diarrhea and 

causes major economic losses in many countries by reduced milk production, weight loss and 

death. 

The protective immunity against paratuberculosis is incompletely defined. However, it 

is well known that Th1 CD4+ T cells have a central role by activating the infected macrophages 

by producing IFN-γ during the antigen recognition process through the MHC class II- TCR 

interaction. On the other hand, there is a very little knowledge about other subgroups of CD4+ 

T cells like Th2, Treg and Th17, which produce cytokine like IL-4, IL-10 and IL-17A, 

respectively and their role in the protective immunity against paratuberculosis. 

The main aim of this thesis was to study the characteristics of reactive CD4+ T cells 

under MAP infection by optimising a method to isolate T cell lines and T cell clones from 

naturally infected goats. Different methods were tried to obtain a maximum growth of CD4+ T 

cells. Positive selection of CD4+ T cells isolated by MACS or Dynal magnetic beads increased 

the yield of cultivated CD4+ T cells and minimized the overgrowth of CD8+ and γδ T cells in 

the cultures. Media supplemented with 10% goat serum (GS) was better for the growth of T 

cells than the same concentration of foetal calf serum (FCS) and was further used for the 

culture of goat T cells. PHA at 1µg/ml was used as a mitogen, and the CellTiter-Glo assay was 

used instead of 
3
H-thymidin incorporation assay as a read out for cell proliferation in T cell 

recall response tests (T cell proliferation assay). 

Cytokine production was tested by different methods. A routine plasma ELISA method 

was used to measure IFN-γ production by PBMC after PPD-J stimulation of whole blood for 20 

hours and confirmed the presence of MAP responsive T cells in the blood. Intracellular staining 

by flow cytometry demonstrated that both CD4+ and CD8+ T cells could secret IFN-γ, and that 

the highest production after PPD-J stimulation was in CD4+ T cells. RT-PCR for mRNA 

encoding IL-10, IFN-γ and IL-17 was established and an increase of IFN-γ and IL-17 mRNA 

expression after PPD-J stimulation was noted in one T -cell line. No increase of IL-10 mRNA 
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was detected after PPD-J stimulation of T cell lines by either Q-RT-PCR or intracellular 

cytokine staining.   

The ability to culture antigen specific T cells was demonstrated after immunization with 

MAP specific peptides. Five CD4+ T cell lines had responses to three peptide pools that 

contained 20 peptides in each. Furthermore, responses to 11 individual peptides were 

demonstrated.  

In conclusion, we have established a method for cultivation of CD4+ T cells in vitro. 

This method can be used for detailed characterisation of both specificity and phenotype of this 

T cell in MAP infection. 
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1 Introduction 

1.1 Taxonomy and characteristic of MAP  

There are more than 130 species of mycobacteria. They belong to the order: 

Actinomycetales, family: Mycobacteriaceae and genus: Mycobacterium. The obligate 

pathogenic mycobacteria include the Mycobacterium tuberculosis complex and M. leprae. 

The other species of mycobacteria range from obligate or facultative pathogens to harmless 

environmental organisms collectively referred to as Mycobacteria Other Than Tuberculosis 

(MOTTS), nontuberculous mycobacteria (NTM) or atypical mycobacteria. One important 

species of the atypical mycobacteria are the M. avium complex. All mycobacteria are acid 

fast, which means that they are resistant to decolourization by acids during staining 

procedures. The most common technique used to identify acid-fast bacteria is the Ziehl-

Neelsen stain. The mycobacteria are nonmotile, aerobic or microaerophilic rods, they contain 

mycolic acid in their cell wall and their genomes have a high GC content of 59-66% GC (
1-3

). 

The cell wall is made up of a waxy mixture of lipids and polysaccharides (
4,5

). The thick waxy 

cell wall does not only give the bacteria it‘s properties of acid-fastness, but it also creates 

hydrophobicity and an increased resistance to low pH, high temperature, and different types 

of chemicals, and increase their lifespan and disease-causing potential in harsh and diverse 

environments (
6,7

). 

Mycobacterium avium subspecies paratuberculosis (MAP) is an obligate pathogenic 

bacterium in the M. avium complex.(
8,9

). Genetically MAP is 99 % related to the other M. 

avium subspecies, but has different phenotypic characteristics such as slower growth. MAP 

also requires the addition of an iron transport molecule called mycobactin when grown in 

vitro and it forms a rough colony when grown on a solid agar medium (
2,10

). MAP causes a 

distinct disease called paratuberculosis mainly in ruminants. Paratuberculosis is a chronic 

inflammation of the intestinal tract. Other important subspecies of M. avium are M. avium 

subsp avium and M. avium subsp. hominissuis. Mycobacterium avium subsp avium causes 

tuberculosis in birds while M. avium subsp hominissuis causes granulomatous lesions in 

lymph nodes of pigs and humans. Disseminated disease and lung infection can be seen in 

immunocompromised individuals.  
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1.2 Routes of infection    

MAP has ability to survive outside the host organism for a considerable period of 

time: in the river water for up to 270 days, in faeces and black soil for 11 months and in 

manure-water at 5°C for up to 252 days (
10

). Survival of MAP in the farm environment can be 

aided by its ability to be established and persist in biofilms on wet surfaces until intake by a 

suitable host (
7
). Also, the extremely hydrophobic cell wall structure of these organisms 

increases their ability to adhere to surfaces (
11

) 

Commonly animals are infected through the faecal–oral route by ingestion of 

contaminated milk or food products or by accidental ingestion of the organism from 

contaminated surfaces (
12

). MAP can be excreted in colostrum and milk (
13

), and MAP has 

been detected by PCR in raw goat milk (
14

). In utero infections occur in cattle (
15

) and have 

been reported in goats as well (
16

). Spreading of MAP between herds is often a result of 

trading animals with unknown infection status, but spread due to contaminated faeces on 

pastures also occurs (
17

). Considering the fact that paratuberculosis has been found in several 

wild animals including badger, fox, primates, rabbits, swine, and weasels (
6,18

), it has been 

proposed that wild animals can be another way of transfer for the MAP bacteria between 

farms and herds. 

1.3 Development of clinical disease 

The incubation period is usually months or years; periods ranging from 4 months to 15 

years have been reported (
19

). It is believed that young animals less than six months of age are 

more susceptible to infection (
20

) . Animals are usually infected shortly after birth, but rarely 

show clinical signs before they are two years old (
19

). Clinical sings include a decrease in milk 

production, diarrhea, rough hair or alopecia, sub-mandibular oedema (bottle jaw), wasting and 

weakness, followed by death after a course of several weeks to months. However, the annual 

mortality rate is usually low and may be less than 1% despite the fact that up to 50% of the 

animals in the herd may be infected. Furthermore, only approximately 10-15% of the infected 

animals develop clinical disease. In some animals, mastitis and infertility may occur as 

secondary complications (
21-23

).  
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Infected animals can be classified into four groups according to clinical symptoms, 

faecal shedding of bacteria and immunological responses: (i) silent infection; (ii) subclinical 

disease; (iii) clinical disease; and (iv) advanced clinical disease (
23

). 

When ingested, MAP established itself in the lymphoid tissue of the small intestine 

(
24

). In the stage of silent infection, there are no clinical signs. There is usually no detectable 

bacterial shedding or circulating antibodies, but evidence of a cellular immune responses may 

be seen (
25,26

).  

During the phase of subclinical disease, there are still no clinical signs of 

paratuberculosis.  

However, the animals can shed low numbers of bacteria in stool and there may be signs 

of both cellular and humoral immune responses. Goats may start faecal shedding of MAP one 

year after infection and can be persistent faecal shedders for a long period without showing any 

clinical sings of paratuberculosis (
26-28

).  

Throughout this long sub-clinical phase (estimated at 2-10 years) when the ruminant is 

apparently healthy, it is able to transfer the infection through the shedding of MAP 

intermittently in milk and faeces (
29

).  

During the third stage of infection, referred to as clinical disease, the only consistent 

symptom is the loss of weight despite apparently normal appetite (
16

). Cattle, may develop 

diarrhea while this is rarely seen in goats (
30

). At this stage, bacteria are usually found in the 

stool, and animals usually have antibodies against MAP. Most animals, if not killed, enter 

stage four. 

In advanced clinical disease, animals develop a scaly skin and bad hair coat, and finally 

progressive emaciation, dehydration, anemia with submandibular oedema and depression are seen. 

At this stage of the infection, diarrhea, or more generally a clumping of stool, can be seen (
16

). The 

inflammatory cells that respond to such infection cause thickness of the intestinal wall until it 

no longer functions, thus leading to malabsorption and protein-losing enteropathy. When the 

animals had reached an advanced clinical stage, they usually die within a few weeks (
6
). 

Macroscopical lesions are mainly seen in the intestine and draining mesenteric lymph 

nodes. Intestinal lesions can be segmented or diffuse, and is found most often in the terminal 

ileum, but may occur throughout the length of the intestinal tract. Thickening and corrugation 
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of the intestinal mucosa with transverse folds, and dilated and thickened serosal and 

mesenteric lymphatic vessels (lymphadenopathy) are common (
25,31

). Intestinal mucosa is 

often redness, show crevices, and has a granular appearance. The mesenteric lymph nodes are 

pale, swollen and oedematous. In goats, nodular foci of caseous necrosis and calcification 

may be present both in the mucosa and in the lymphnodes (
32,33

). Morin, M. (1982), noted 

caseous necrosis of Peyer's patches with ulceration of the overlying mucosa in the ileum of 

two from eight goats on his study (
32

). 

The histopathological lesions caused by MAP in goats were characterized by 

accumulations of macrophages in the intestinal mucosa. These macrophages had a prominent, 

foamy or vacuolated cytoplasm and many of them were packed with acid-fast bacilli. 

According to the clinical signs, the histopathological lesion can described as:  

Mild lesions were characterized by focal collections of macrophages and lymphoid 

cells in the upper parts of the lamina propria of the intestinal villi, with few or no acid-fast 

bacilli. This form is associated with strong cell-mediated immune responses. 

In the more severe lesions, macrophages were infiltrated in the deeper zones of the 

lamina propria and finally, the whole lamina propria was invaded by massive numbers of 

macrophages which compressed the crypts of Lieberkuhn; in these areas, the villi were 

severely atrophic and blunted. The macrophages containing large numbers of acid-fast bacilli. 

This form is associated with strong humoral immune responses (
25,32

). 

In sheep carcasses; emaciation, oedema, ascites and hydropericardium, in addition to 

atrophy and necrosis of fat tissue, were also noted (
31

).   

1.4 Possible role in Crohn’s disease  

Crohn's disease (CD), also known as regional enteritis is a kind of inflammatory bowel 

disease which may affect any part of the digestive tract from the mouth to the anus, but 

significantly affect the lower part of the small intestine, called the ileum. It causes a 

granulomatous inflammation of the intestine which anatomically resembles granuloma that 

occurs in intestinal tuberculosis. The aetiology of CD is unknown, but it is thought to be a 

dysregulated immune response to intestinal bacteria. However, there are contradictory data 

about the involvement of different organism in CD. Several infectious agents, including MAP 

adherent invasive E. coli, Yersinia, and Pseudomonas have been suggested as triggering 
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agents of CD (
34-37

). Because of the pathological similarities between paratuberculosis and 

CD, MAP has been the most durable infectious candidate to be proposed as a causative agent 

of CD (
38,39

). In 1998 the British Medical Journal published a paper describing the case of a 

little boy who developed M. paratuberculosis infection in the lymph nodes of his neck, and 

after an incubation period for five years, developed disease in the bowel that was 

indistinguishable from CD (
40

).  

Humans can be exposed to MAP through many sources. Animals infected with MAP 

can excrete the live bacteria in both faeces and milk. Recent studies have shown that MAP 

present in milk can survive pasteurization, which has raised concerns about human health due 

to the nature of the spread of MAP in modern dairy herds. It is resistant to heat and is able to 

isolate itself inside white blood cells, which may contribute to its persistence in milk. It has 

also been reported to survive chlorination in municipal water supplies (
29,41

). Infected animals 

can contaminate their surrounding environment, increasing the risk of spread of paratuberculosis at 

the farm level and potentially polluting of waterways used for the extraction of drinking water.  

If MAP is involved in CD development, shedding of MAP by infected animals has 

implications for food and water safety, as illustrated in figure 1-1(
42

). Consideration should thus 

be given to the animals with paratuberculosis and the risk of contamination of food and water 

sources until the situation is clarified (
43

). 

MAP infections, like most of the mycobacteria, are difficult to treat. It is resistant to 

antituberculosis drugs (which use generally to treat infection with Mycobacterium 

tuberculosis), but can only be treated with a combination of antibiotic such as rifabutin and a 

macrolide such as clarithromycin. Treatment regimens can last years (
29,44

)  
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Figure 1.1: Spread of MAP shed by infected animals in faeces and milk, and potential   routes of human exposure to 

MAP via animal-derived foods and water (use with permission from the publisher (CAB International, Wallingford, 

UK). 

1.5 Diagnostic assays 

The diagnosis of MAP infection is difficult, especially in the early stages of disease. 

This is due to  the long incubation period, the variable lag phase associated with bacterial 

proliferation, and the slow progression of the lesions (
21

). In the early stages of the disease, it 

is thus impossible to identify all infected individuals. Therefore testing usually is performed 

on a herd level. In a herd, there will be animals at different stages of the disease and the 

likelihood to identify correctly an infected herd is quite high. The optimal testing strategy will 

include a combination of diagnostic tests (
45,46

). Unfortunately, all forms of testing requires a 

lot of time and costs (
47

) and often an optimal testing strategy is not feasible.  
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Diagnostic tests can be divided into two categories; test for the organism or tests 

measuring the animal‘s response to the infection.  

1.5.1 Organism-based tests 

There are two types of these assays; either culture of the living organism from manure, 

tissue or environmental samples, or PCR that amplifies the MAP genetic material from live or 

dead MAP.  

MAP cultivation is a highly specific method, but it is expensive and requires 

approximately 8-16 weeks of incubation to produce visible colonies on solid media (
25

).  If the 

sample is heavily contaminated with MAP a positive result can sometimes be seen within a 

few weeks, however a negative results requires at least 4 months. Some strains are also 

extremely difficult or impossible to culture in the laboratory. 

Different methods have been used to detect MAP  by  PCR based on IS900 or other 

MAP specific genes from different samples of infected animals. The PCR can be performed 

directly on the samples. The sensitivity of this direct PCR is sometimes low due to low 

number of bacteria or the presence of PCR inhibitors in faeces. Different methods have thus 

been established to increase the sensitivity. One such method is immunomagnetic separation-

PCR (IMS-PCR) (
48

). In this method, magnetic beads are coated with specific antibodies and 

incubated with samples to allow extraction of the bacteria from the samples. PCR is much 

quicker than cultivation and most of the laboratories provide a result in less than a week (
49

).  

PCR is also performed on paraffin blocks when the tissue is collected at autopsy. The 

pathologist is looking for MAP specific lesions and for acid fast bacteria (
50

).  PCR on this 

section can then be used to identify the bacterial species. Finally, most laboratories also use a 

PCR to confirm that the organism isolated in culture is in fact MAP. 

1.5.2 Immunological methods 

  A paradigm has been that the infected animal elicit a strong cell-mediated immune 

response in the early stages of the infection and a strong humoral immune response in the 

later stages (
31,51

). This paradigm has turned out to be too simplistic. It is clear, however, that 

different immunological assays have their advantage at different stages of the infection. 
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The detection of a systemic cell-mediated immune response generally comes before 

the detection of antibody production. Animals that have a silent infection are often not able to 

respond on serological tests but can react positively to tests that measure cell mediated 

immunity (
52

). The Cell Mediated Immunity (CMI)-based methods like cutaneous testing for 

delayed-type hypersensitivity (DTH with johnin PPD), gamma-interferon assay and 

lymphocyte stimulation test thus have the highest sensitivity in animals with silent or sub-

clinical infection (
27,53,54

). However, the specificity of these tests is variable. They are also 

expensive, and the in vitro-tests require live cells, and can thus be a challenge when testing 

animals from remote areas.  

Antibody based tests look for antibody produced by an infected animal. There are 

three common types of blood test: include complement-fixation test, the agar gel 

immunodiffusion (AGID) test and enzyme-linked immunosorbent assay (ELISA). The latter 

is sensitive in clinical infection but performs poorly in subclinical infection (
55-57

). A number 

of ELISA kits have been approved for use in milk from individual cows (not bulk tank) as 

well as blood samples. 

  Due to the biology of MAP infection, it is usually only possible to identify adult 

animals infected with MAP. This means that even though calves, kids, lambs etc. are infected 

while very young, they do not shed the organism with any frequency (so the organism 

detection assays will be negative) and they do not produce antibody (so the blood/milk tests 

will be negative). This is why it is recommended that diagnostic tests are used only for the 

animals of at least 18 months of age (
58,59

). 

1.6 Control 

Paratuberculosis is endemic among the goats in 6 of 19 counties in Norway. Infection 

in sheep and cattle can be attributed either to import from countries with endemic disease or 

close contact with infected goats. Importation of live cattle in Norway has been very limited 

from around 1996 and has largely been replaced with imported semen and embryos. However 

the presence of infected flocks of goats constitute a risk for spreading infection to other 

ruminants (
60

). Infection has been found to readily spread between and across species with no 

restrictions, making the disease hard to control. Movement of animals between herds through 

trading is probably the most common way that infection spread from farm to farm. However, 

wild animals are also proposed to be able to spread the disease between farms or herds (
6
). 
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The economic losses due to paratuberculosis are considerable, due to death of clinical 

cases and subclinical effects like reduced weight gain, milk yield and fertility. Therefore, 

control programs have been established in several countries. The programs vary from country 

to country, and their designs are based heavily on the species of animals, prevalence of the 

disease and the aim of the program (eradication or control).  

Control programs are invariantly expensive and in many countries vaccination, may be 

the only affordable alternative at this time. Different types of vaccines have been tried and 

used against paratuberculosis. For example; live (non-attenuated and attenuated) and killed 

whole cell (
61

), subunit vaccines consisting of sonicated bacteria, bacterial cell fractions or 

recombinant MAP antigens (
62,63

), and recently, DNA vaccines, consisting of the inoculation 

of mammalian expression vectors containing MAP genes (
64,65

).  

Many studies have discussed the advantages and disadvantages of paratuberculosis 

vaccines. The advantages were: The number of animals with clinical symptoms was 

decreased in cattle, sheep and goats; faecal shedding was reduced, as well as the number and 

severity of bacteriological isolations and histological lesions in the intestines. On the other 

hand, there are also disadvantages of vaccination. The existing vaccines can delay the onset of 

clinical symptoms but do not protect against infection. This makes it difficult to identify 

infected animals. The vaccinated animals develop antibodies that interfere with existing 

serodiagnostic tests for paratuberculosis, and they become reactive in the tuberculin skin test, 

used for the control of bovine tuberculosis (
66

). Kalis, C.H. et al (2001), found that the killed 

vaccine in cattle does not reduce faecal shedding or MAP transmission and the improvement 

of management procedures is more effective (
67

). Other studies have shown that changing in 

the management and hygiene practices and good sanitation are important (
68

). 

In summary, the perfect vaccine has to have the following qualities: it causes minimal 

tissue reaction; there is no interference with diagnostics test for tuberculosis and 

paratuberculosis; it can discriminate between infected and vaccinated animals; it eliminates 

faecal shedding of bacteria; and prevents the occurrence of clinical disease (
69

). 
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1.7 Pathogenesis  

Ingested MAP is taken up through the wall of the intestinal tract through ―M‖ cells in 

the Peyer‘s patches and establish residence within the local macrophages in that region (
21,70

). 

By complex and not completely understood mechanisms, MAP affects cellular signalling and 

other bacteria-fighting mechanisms of the macrophages and creates a hospitable environment 

for themselves within these cells. They replicate slowly and may stimulate inflammatory and 

immunological responses (
29,33,71

). These microscopic infection of macrophages in the small 

intestinal can continue for years without provoking any detectable reaction from the immune 

system of the animal i.e., Infected animals are not sick and do not react to the infection in any 

measurable way (
29

). 

While some exposed individuals may develop resistance to chronic infection, many 

infected goats subsequently carry the infection in a dormant state in the Peyer‘s patches of the 

intestine and the mesenteric lymph nodes for a variable period into adulthood. At some point, 

triggered by stress or other ill-defined factors, some infected animals begin to shed the 

organism in the faeces (
72

). Clinical symptoms of paratuberculosis usually begin to appear at 

this point. More macrophages are recruited to the site of infection and an ill-defined type of 

granuloma is performed constituting an aggregate of living, dying and dead MAP and 

macrophages. The lesions progresses and regresses, but remains a localized battle in the 

gastrointestinal tract and draining lymph nodes. As more MAP enter and replicate in the 

macrophages however, and as more cells are recruited to fight them, the lesion expands. This 

granulomatous inflammation spreads, and the infected macrophage may then depart the 

gastrointestinal tract for the neighbouring lymph nodes, and be spread through the blood to 

other organ systems (
29

).  

1.8 Immune response 

The study of host immune responses to MAP is complicated by several factors, 

including long-term nature of the disease, the insidious nature of the organism and the size of 

the infective dose and the immunity of the host. 

The major route of infection in ruminates are via ingestion of contaminated food or 

water with MAP organism. MAP uptake by M cells may be mediated by number of microbial 

pattern recognition receptors like B1 integrin (
73

), Toll-like receptor-4 (TLR-4) and platelet 
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activating factor receptor (
74

). The local intestinal macrophages are the target cells for MAP 

infection, which phagocyte the organism and have several processes to degrade phagocytosed 

material. The activation of macrophages upon phagocytosis of MAP is dependent upon the 

interaction of MAP with surface receptors, including TLRs, which are important for initiation 

the adaptive immune response (
75

), regulation of bactericidal agents like reactive nitrogen and 

oxygen species and lysosomal peptides (
76

).  

Taylor, D.L. et al (2008), concluded that six TLRs were expressed in ileal and jejunal 

tissues and their associated lymph nodes from naturally infected sheep (TLR1, TLR2, TLR3, 

TLR4, TLR5, TLR8) (
77

). Ferweda, G. et al (2007), suggested that TLR2 has the greatest 

impact on cellular activation and subsequent induction of cytokines (
78

). Other receptors on 

macrophages that have potential modes of entry of MAP into macrophages are; complement 

receptors (CR), CR1, CR3 and CR4; mannose receptors, Fc receptors and CD14 (
79-81

). 

  However, as an intracellular organism, MAP has ability to survive in the 

macrophage. Mycobacterial survival is enhanced by the bacteria‘s ability to prevent 

acidification of phagosomes and inhibiting the maturation of the phagosome (
43

). The lipid 

rich layer of MAP may play an important role in resistant to intracellular killing mechanism 

(
82

). Once the infected macrophage activated by MAP, they secreted numbers of cytokines 

such as tumor necrosis factor-α (TNF-α), IL-1, IL-12 and granulocyte-macrophage colony- 

stimulating factor (GM-CSF) (
83

), which have an autocrine bactericidal effect or may be 

stimulated the production of other pro-inflammatory cytokines like IL-6, IL-8 and IL-10, that 

usually generated due to response to mycobacterial lipoarabinomannan (LAM), 

peptidoglycans or heat shock proteins (
84

). 

The innate immune system can sometimes control the infection; however, usually an 

induction of the adaptive immune response occurs. The induction of the adaptive immune 

response happens when macrophage and dendritic cells (DC) take up the bacteria and present 

antigens to the naïve T cells. There are two major groups of T cells carrying the alpha/beta T 

cell receptor on the surface. The CD8+ T cells recognize antigen presented on MHC class I, 

while the CD4+ T cells recognize antigen presented on MHC class II. The CD4+ T cells are 

of major importance for protection against mycobacterial infections including 

paratuberculosis. The CD4+ T cells, also called T helper (Th) cells, can develop into different 

subtypes dependent on the cytokine environment.  
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Studies over several years have shown that the effective resistance to progressive 

infection and disease due to MAP is associated with a cell-mediated rather than humoral 

immunity, and local rather than systemic responses are believed to be most important in the 

early stage of infection (
31

). In the early, subclinical infection stage, activated CD4+ T helper 

cell biased towards a Th1 response is dominating. This response is characterized by 

production of cytokines like gamma interferon (IFN-γ), IL-2 and tumor necrosis factor alpha 

(TNF-α). These cytokines are assumed to orchestrate the cell-mediated immune functions, 

which are crucial for containing such intracellular infections. Especially IFN-γ plays an 

important role in mycobacterial infections in the activation of T lymphocytes and 

macrophages, dendritic cell (DC) maturation, upregulation of MHC class I and II molecules 

and production of reactive oxygen and nitrogen species by macrophages (
85,86

). 

IFN-γ also induces the secretion of IL-12 by antigen presenting cells (APCs), which 

results in Th1 induction through a paracrine pathway, and it also works to directly 

complement the Th1 polarization through an autocrine mechanism that does not involve IL-12 

(
87

). It appears that CD4+ T cell (Th1) is the primary source of IFN-γ in the early stages of 

paratuberculosis infection, however CD8+ T cell and γδ T cell can also produce IFN-γ (
88

). 

The amounts of IFN-γ secreted from γδ T cell in response to MAP Ag is lower than the 

amounts that is secreted from CD4+T cells and CD8+T cells (
89,90

). 

Another subgroup of CD4+ T cells are the Th17 cells. These cells produce IL-17 in 

response to IL-23 secreted from activated macrophages. IL-17 enhances inflammation by 

stimulating production of other proinflammatory cytokines, like IL-1, IL-6 and TNF-α. They 

also produce chemokines that mediate recruitment of macrophages and neutrophils to the site 

of infection, and these cells are involved in forming organized granulomatous lesions (
31,91

). 

Although IL-23 and IL-17 seem to play roles throughout mycobacterial infection, the most 

crucial period, seems to be in the control of inflammation in the more advanced stage of 

tuberculosis (
92

). The role of Th17 cells in MAP infection is not known, but higher gene 

expression of IL-17 have been seen in animals with severe disease compared to individuals 

with minimal or moderate disease (
93,94

).  

When the animal begin to exhibit the non-specific, clinical signs of paratuberculosis, 

such as weight loss, and in some species diarrhea, a switch from Th1 to Th2 immune 

responses is seen in many, but not all animals (
91,95

). This stage is characterized by secretion 

of Th2 cytokines like IL-4 and IL-5 that promote B cell differentiation and antibody secretion. 
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 The balance between Th1-Th2 is influenced by IL-4 and IL-10 tending to suppress 

Th1 responses, and by IFN-γ that act against Th2 responses (
96

). Karcher, E.L. etal (2008), 

reported that IL-4 secretion by PBMC that were stimulated with whole cell sonicate of MAP, 

was higher in clinically infected cows compared to subclinically infected cows, which is 

fitting the paradigm of a shift to Th2 mediated immunity in clinical disease (
97

). 

As well as a Th1-Th2 shift during the late stage of MAP infection, another 

subpopulation of T cell known as T regulatory (Treg) cells further modulates host immune 

response to mycobacterial antigens. These Treg cells are  responsible for controlling immune 

responses during infection via secretion of the immune suppressive cytokines, IL-10 and 

transforming growth factor-β (TGF-β) (
91

). An upregulation of IL-10 has been observed in 

ileum, mesenteric lymph nodes and cultured PBMC, from naturally infected cattle and sheep 

with paratuberculosis (
98,99

). Another study showed that addition of exogenous IL-10 to 

bovine cells cultures before infection with live MAP reduced the IFN-γ secretion (
100

). TGF- 

β also plays a regulatory role in host immunity through inhibition of T cell activation and 

proliferation which is associated with decreased IFN-γ production (
101

). However, the role of 

Treg cells in paratuberculosis remains unclear. 

Animals that fail to control the disease will often develop a humoral immune response 

concurrent with increased shedding of bacteria in the stool, possibly followed by the onset of 

clinical symptoms (
33

). Humoral responses in paratuberculosis seem to indicate an inverse 

correlation with cell-mediated immunity (CMI) in cattle and sheep. The role of B cells in 

mycobactrial infection is not well understood. However Begara-McGorum, I. etal (1998), 

found that the numbers of B cells in the mesenteric lymph nodes of lambs experimentally 

infected with MAP were significantly reduced (
102

).  

In contrast, the proportion of B cells in PBMC fraction isolated from cattle naturally 

infected with MAP was significantly higher for animals with clinical signs of disease 

comparing to control cows or subclinical infected cows (
103

). As well as to develop into 

antibody secreting plasma cells, B cells act as APC and may play a role in the activation of 

Th2 cells (
91

). A recent report also documented a regulatory role for B cells in chronic 

inflammatory pathogenesis, which is mediated through IL-10 secretion (
104

).  

Often both humoral and cell mediated immune responses can be detected at the same 

time in peripheral blood of an infected animals reflecting that local immune responses in the 
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various foci may differ. It has previously been reported that infected animals are able to 

completely recover from paratuberculosis infection, but experimental infections in goats 

indicate that reactivation of bacteria in small foci is possible (
27

). What drives this reactivation 

or what makes an infection developing to clinical disease in a proportion of animals, is still 

unclear. In some aspects, MAP can be regarded as an opportunistic pathogen since the 

majority of animals are indeed able to control the infection. It thus seems obvious that the 

variations in the immune response of the host are more important than the infectivity of the 

MAP bacilli. 

It is thus of major importance to gain more knowledge about the immune response in 

paratuberculosis. 
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Aim of the study 

To isolate and characterize Mycobacterium avium subspecies paratuberculosis 

reactive T cells. 

The sub goals are 

1) To optimization a method for T-cell cultivation in vitro   

2) To characterise the phenotype of MAP reactive T cells  

3) To perform initial screening for antigen specificity of the T cell lines  

4) To isolate CD4+ T cell clones from PPD-J reactive T cell lines  

 

The project is linked to an EU funded project: Aiming to develop a new vaccine 

against MAP infection. 
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2 Materials and Methods 

2.1 Animals and standard diagnostic testing 

2.1.1 Animals 

The present study included four female goats, 4 years of age from Norwegian dairy 

goat herd in Etne i Hordaland that was naturally infected with MAP and tested positive in the 

Bovine IFN-γ EASIA kit (see below) test before arrival and housing at the Norwegian 

Veterinary Institute (NVI) in February 2011. One of the goats was pregnant and delivered 

twins three months after arrival at the institute. 

After 6 months at the NVI the goats were immunized intramuscularly twice (4 weeks 

apart) with 118 MAP specific peptides in the CAF04 adjuvant (Statens Serum Institute, 

Copenhagen, Denmark). The peptides were designed as part of the ParaTBvaccine project and 

the sequences and design is not a part of this thesis. There were two aims of the vaccination. 

The first was to identify immunogenic peptides, while the second was to see if we could 

cultivate peptide specific T cells in vitro. The vaccination was approved by the Norwegian 

Animal Research Authority. 

2.1.2 Detection of MAP 

Five samples for bacteriological culture were obtained from the stool of these 4 goats 

to control shedding of MAP bacteria (20 samples in total). The samples were analysed by real 

time PCR (RT-PCR) and culture for MAP. Culturing was done according to standard 

procedures at the section for bacteriology at NVI, following the internal protocol (ME 0039 ‗‘ 

Mycobacterium avium subsp. paratuberculosis påvisning‘‘) (Tone Johansen, personal 

communication, 2012). MAP was cultured on selective and non-selective Dubos medium 

(
105

). Briefly, approximately one gram of stool from each goat were homogenized, 

decontaminated by 4% sodium hydroxide and 5 % oxalic acid with 0.1% malachite green, 

centrifuged and redissolved in saline water. The samples were inoculated on the different 

Dubos media with mycobactin (2 μg/ml) (Allied Monitor, MO, USA) and pyruvate (4 mg/ml) 

and incubated at 37
o
C for approximately 16 weeks.  
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Bacterial colonies with typical morphology were confirmed as MAP by positive result 

on Ziehl-Neelsen staining, testing for mycobactin dependence and by detection of the MAP 

specific IS element IS900 by RT-PCR. (
106

).  

Real time PCR was performed on faecal samples using Adiavet
®
Paratb real time kit 

(Adiagène, Saint-Brieuc, France), detecting IS900. The company‘s new protocol for DNA 

isolation, where 3-10 g of stool can be analysed was used, increasing the sensitivity of the 

method. 

Briefly, 3 ± 0,2g of stool was suspended in 20 ml sterile distilled water using a 

stomacher and left overnight for rehydration as recommended by Adiagène. The supernatant 

was filtrated using chemfilter (Adiafilter, Adiagène) for removing of PCR inhibiting 

substances, the pellet redissolved and the bacterial cells mechanically disrupted by bead-

beating. DNA was extracted with the QIAamp® DNA Mini Kit (Qiagen, Hilen, Germany) as 

recommended by the manufacturer. RT- PCR was performed using Adiavet
®

Paratb real time 

kit (Adiagène) as recommended with the EPC-Extraction as an internal control for each 

sample. The PARA positive control that was included with the kit was run for quality control 

of each assay, and Milli-Q water was run as negative control. RT-PCR was performed using 

Stratagene Mx3005P (Stratagene, La Jolla, CA, USA) (
107

). 

2.1.3 IFN-γ assay 

One whole-blood sample was collected from vena jugular by the evacuated blood 

collection tubes (5 ml) with lithium heparin as anticoagulant (Terumo Europe N.V., Leuven, 

Belgium) from each animal and tested for the presence of IFN-γ production in response to 

MAP proteins by using the Bovine IFN-γ EASIA kit, manufactured by the (BioSource Europe 

S.A., Nivelles, Belgium), which is based on Competitive ELISA technique and used to semi-

quantify protein levels of IFN-γ in plasma and supernatant. 

The reference materials were represented by positive and negative control sera 

supplied by the manufacturer. Briefly, 1 ml whole-blood was incubated per well in 24-well 

plate (Corning, NY, USA) with 10 μg/ml Purified Protein Derivative (Johnin) PPD-J 

(Norwegian Veterinary Institute (NVI), Oslo, Norway) for 24 hour at 37°C in humidified air 

with 5% CO2. In addition, wells with no antigen added were set up for each animal as control 

wells. The next day plasma was collected and stored at -70°C. Testing was performed by 
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adding 100µl in duplicate to 96-well ELISA plate precoated with an anti-bovine IFN-γ 

monoclonal antibody (moAb) in 50 μl of incubation buffer. After 1 hour incubation at room 

temperature on a horizontal shaker, plate was washed three times and incubated with 

horseradish peroxidase anti-bovine IFN-γ monoclonal antibody conjugate (HRP) solution; the 

plate was incubated with shacking for another hour. Colour development was achieved by 

adding Chromogen tetramethylbenzidine (TMB) solution and was stopped after 15 min of 

incubation. Plate was read at 450 nm. The results are given as OD in the PPD-J stimulated 

well – OD in the non-stimulated well. A difference above 0.3 is considered positive. 

2.2 Cultivation of T cells 

2.2.1 Isolation of peripheral blood mononuclear cells (PBMC) 

Blood was collected from the jugular vein into evacuated blood collection tubes 

(9ml)/EDTA as anticoagulant (Terumo), and PBMCs were isolated with Lymphoprep (Axis-

Shield PoC, Oslo, Norway) by gradient centrifugation as previously described (
108

). Equal 

volumes of blood were mixed with phosphate-buffered saline (PBS) with 2mM EDTA. 10 ml 

lymphoprep was pipetted underneath 35 ml blood-PBS and centrifuged at 1800xg for 30 min 

at room temperature, no brake. PBMCs were collected from the interface and washed twice. 

The PBMC pellet was resuspended in RPMI 1640 glutamax (GIBCO, Invitrogen, NY, USA) 

supplemented with gentamycin 50µg/ml (GIBCO), funigzone 1µg/ml as final concentration 

and 10% fetal calve serum (FCS) (PAA-gold, Austria) or 10 % goat serum (GS) (NVI) 

preheated to 37C. The cells numbers were determined by the use of hemocytometer chamber 

(Bürker, Germany). 

2.2.2 T cell cultivation 

2.2.2.1 Antigens 

PPD-J was made from MAP strain 2E at NVI and had a stock concentration of 

1mg/ml. Synthetic peptides were kindly provided from Statens Serum Institute, Copenhagen, 

Denmark.  
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2.2.2.2 Cultivation of goat T cell lines: 

The protocol for cultivating T cell lines from goat is a modified version of an 

established protocol for cultivation of human T cell lines from human blood or small intestine 

biopsies from patients with Crohn‘s disease (
109

). Briefly, blood collection, PBMC isolation 

and cell suspension was done as described in 2.2.1. The PBMC cell suspension was adjusted 

to 1.6-2 x10
6
 cells/ ml. PPD-J 5-10µg/ml was added to the cell suspension to stimulate PPD-J 

recognizing T cells and to increase the yield of MAP reactive T cells. Ovine IL-2 (1:200) 

(Norwegian School of Veterinary Science (NVH), Oslo, Norway) and Human recombinant 

(Hr) IL-15 1 ng/ml (eBioscience) were added to cell suspension, to stimulate T cell growth. 

MEM non-essential amino acid 100x (Gibco, Invitrogen, UK) and 2-Mercaptoethanol (Gibco) 

at 50µM/ml were added to T cell culture media when we started to use dynabeads, see below.   

One hundred twenty five of the cell suspension was added into 8 wells on a 96 well U- 

bottom plate. The plate was incubated at 37
o
C/ 5% CO2 for 4 days and checked for cell 

growth under microscope. At day, four or five the cells were fed with RPMI 1640 media 

supplemented with 10% FCS or 10 % GS and cytokines ovine IL-2 and Hr IL-15. If good 

growth in the wells, the cells were suspended and split 1:2. 

2.2.2.3. Restimulation of Expanding T cell lines 

After one week, the cultivated T cell lines were restimulated to increase the number of 

reactive cells for later testing. Briefly, PBMCs from another individual was used as feeder 

cells to stimulate T cell growth. 

Isolated PBMC feeder cells were treated with Mitomycin C (10µg/ml) (Sigma-

Aldich,) for 1.5-2 hours to inhibit further proliferation. The treated cells were washed 3 times 

with PBS, centrifuged at 500 x g for 5min at 20
o
C and further resuspended in RPMI 1640 

media supplemented with 50 µg/ml gentamycin and 10% FCS or GS preheated to 37C. The 

cells were adjusted to (1.0-1.3 x 10
6
 cell/ml). Phytohaemagglutinin 1 µg/ml (PHA16, Remel, 

Lenexa, KS, USA), 1 ng/ml HrIL-15 and 1:200 ovine IL-2 were added to the feeder mix.  

Five hundred microliters of feeder mix was added into 4 wells of 48 well plate and 

approximately two wells of the 96 well U- bottom plate were added into 1 well on a 48 well 

plate. The plates were incubated at 37
o
C/ 5% CO2 for 4 days and checked for cell growth 

under the microscope. At day, four or five the cells were fed with RPMI 1640 media 
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supplemented with gentamycine 50µg/ml, 10% FCS or 10 % GS and cytokines ovine IL-2 

and Hr IL-15. Usually 16 wells on the 96 wells plate were transferred to 8 wells on the 48 

wells plate. These eight wells were from now on treated and labelled as four separate T cell 

lines. If good growth in the wells, the cells were suspended and split 1:2 or 3 into a 

neighbouring empty wells. After 2 weeks of expansion the T cells lines were collected and 

prepared for freezing down. The harvested cell lines were tested by T cell proliferation assay 

after antigen stimulation and flow cytometry. 

2.2.3  Negative and positive selection of CD4+ T cells 

2.2.3.1. Negative selection of CD4+ T cell (Depleting γδ T cell) 

PBMC was prepared as described earlier (2.2.1). γδ T cells were depleted from 

PBMC, by using MACS anti-mouse IgG microbeads (Miltenyi Biotec, Auburn, CA USA). 

Briefly, 10×10
6
 cells suspension was incubated with GB21A (mouse anti-bovine γδ TCR 

moAb, VMRD, Pullman, WA, USA) (1 µg Abs/ 10
6
 cell suspension) in PBS w/ 2 mM EDTA 

for 30 min on ice. After washing with PBS w/ 2 mM EDTA and 0.5% BSA, the cell pellet 

was resuspended to 1 x10
6
 cells and 20 µl of IgG-microbeads (MACS anti-mouse IgG 

microbeads, Miltenyi Biotec) were added and incubated for 10-15 min at 4°C with gentle 

shacking. The cells were thoroughly washed and loaded on the MACS separation columns 

(LD-columns for depleting, Miltenyi Biotec). Labelled cells were retained on the column 

within a magnetic field. Unattached cells were washed through, collected and resuspended in 

RMPI 1640 media supplemented with gentamycin 50 µg/ml and 10 % FCS into 1.2x10
6 

cell/ml. The T cell cultures were stimulated, and incubated as described earlier in 2.2.2.2. 

2.2.3.2 Positive selection of CD4+ T cell 

Two methods were tested for positive selection of CD4+ T cells 

2.2.3.2.1 Miltenyi MACS beads positive selection of CD4+ T cells 

The first method used the Miltenyi MACS bead cell selection kit. Briefly, 10 x10
6
 cell/ 

ml were incubated with GC1A (mouse anti-caprine CD4+ moAb, VMRD) (1 µg Abs/ 10
6
 cell 

suspension), after incubation for 30 min on ice, the cells were washed and resuspended to 1 

x10
6
 cells and 20 µl of IgG-microbeads (MACS) were added and incubated for 10 min at 4°C 

with gentle shacking. The cells were thoroughly washed and loaded on the MACS separation 
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LS-columns for positive selection (Miltenyi Biotec). Labelled cells were retained on the 

column in the magnetic field. The column was removed from the magnetic field, and the 

positively selected cells were eluted by passing PBS w/ 2 mM EDTA and 0.5% BSA 

thorough the column. The selected cells were washed and resuspended to 1.2x 10
6
 cell / ml 

and mixed with PBMC feeders as described earlier (2.2.2.3), antigens (PPD-J and/or MAP 

peptides) were added to the feeder mix. T cells were seeded out in 96 well U bottom plates as 

described earlier (2.2.2.2) 

2.2.3.2.2 Dynal Dynabeads positive selection of CD4+ T cells 

The second method tested for CD4+ T cell positive selection was using Dynabeads 

conjugated with Pan Mouse Ig (Dynal, Oslo, Norway). Briefly, PBMC were isolated (2.2.1), 

the cells were washed twice and incubated with GC1A (VMRD) (1 µg Abs/ 10
6
-cell 

suspension) for 30 min on ice. After incubation, the cells were washed and 4×10
6
 Dynabeads 

(Dynal) were added pr 1 ml of cell suspension and incubated for 30 min at 4°C with gentle 

shacking. Isolated CD4+ T cells (cells attached to the beads) with a magnetic particle 

concentrator (Dynal) for 15 ml tubes. The selected cells were washed and resuspended as 

described in the previous method. 

2.2.4  T cell proliferation assay 

T-cell activation assay measures the ability of T lymphocytes to proliferate in vitro as 

a recall response to earlier encountered antigen.  

The protocol previously described in (
109

) with some modifications. Autologus PBMC 

from infected goats were prepared and resuspended to 1.0 x 10
6
 cell/ml and seeded into 96 

wells flat plate and incubated for 1.5-2 hours for adherent cells to stick to the plastic.   

The plate was washed 2-3 times with RPMI 1640 media supplemented with 2% FCS  

to wash away non adherent APCs. The antigens or mitogens were diluted by RMPI 1640 

media supplemented with 10% FCS and added to the adherent APCs in triplicates and 

incubated overnight at 37
o
C/ 5% CO2.  

Next day, 1.0x10
6
 cells/ml T cells (Approx 70000 cells/well) were added to the 

stimulated APCs and incubated for 72 hours before addition of 50 µl CellTiter-Glo® Reagent 

(Promega, Madison, USA) that use adenosine triphosphate (ATP) in a luminescence reaction 



22 

 

producing a stable luminescent signal via luciferase catalyzed luciferin+ATP reaction. The 

light signal is measured (i.e. luminescent signal) by a Wallac 1420 /Victor 2 multiwell 

scanning luminometer (Perkin Elmer, Wallac oy, Turku, Finland). Amount of ATP is linear 

correlated to the number of cells, thus it is possible to give an estimate of the cell 

proliferation. The data were expressed as percentage proliferative change of stimulated cells 

versus the control that consisted of unstimulated cells.   

Alternatively the plate is incubated for 48 hours and 20 µl of 
3
H-thymidine 

(0.5µCi/well) (Hartman analytic, Germany) was added and incubated another 24 hours for 

incorporation of 
3
H-thymidine into the cell DNA. Thus, the proliferation and cell activation 

can be measured as the amount of radioactive labelled DNA by using a scintillation beta-

counter (Wallac 1450 MicroBeta TriLux Liquid Scintillation Counter and Luminometer, 

Perkin Elmer). The results were expressed as a stimulation index (SI = mean optical values of 

cell stimulated cultures/ mean optical values of unstimulated cell culture (control).  

2.2.5 Freezing and thawing of cells 

2.2.5.1. Thawing of T-cells  

The cryovial containing cells was thawed in water bath at 37C. Just before the last of 

the ice had melted, the content of the vial was transferred to the 50 ml tube. Eight ml RMPI 

1640 media supplemented with 20% FCS preheated at 37C was added drop wise, mixed 

carefully and spun down at 500xg for 7min at room temperature. The supernatant was poured 

off and the cell pellet was resuspended in preheated RMPI 1640 media supplemented with 

10% FCS for further use. 

2.2.5.2. Freezing T cell  

Prior to freezing, 1.8-ml cryovials (Nunc, Denmark) were labelled and keep at 4C in 

a freezing rack (Stratagene). The cell suspension was spun down and resuspended with half 

volume of total freezing volume with pre-cooled 50% FCS in RMPI 1640 media on ice. Then 

the last half of total freeze volume was added by dropwise adding RPMI 1640 media (60%) 

supplemented with 20% FCS and 20% dimethylsulfoxide (DMSO) (Sigma, MO, USA). In 

total 1 ml of cell suspension was added pr vial (5x10
6
cell/1ml in each vial). The cell 
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suspension was added immediately to the prechilled cryovials and stored in a -80C freezer. 

Long term storage of cell vials was provided in a liquid N2 tank. 

2.3  Flow cytometry 

 The monoclonal antibodies (moAbs) used in the present study are shown in table 2-1.  

Table 2-1: Monoclonal antibodies used in single and triple colour flow cytometry 

moAbs Final 

concentration 

Specificity Source  ****Ig 

isotype/florochrome   

Source  Final 

concentration 

Method 

used 

GC1A* 5 µg/ml CD4 VMRD, 

Pullman,  

WA, 

USA 

 

IgG2a / PE  Southern 

Biotechnology 

associates, 

Birmingham, 

AL, USA 

2µg/ml 

Single 

 

 

CACT80C** 1µg/ml CD8 IgG1/PE 2µg/ml 

GB21A** 5µg/ml γδ T δ 

chain 

specific   

IgG2b/PE 2µg/ml 

GC1A* 7µg/ml CD4 VMRD 

 

IgG2a / Alexia633  Southern 

Biotechnology  

2,5µg/ml 

Triple  

 

 

 

38.65*** 2µg/ml CD8 AbD 

Serotec, 

Oxford, 

UK 

IgG2a /Alexia633 Invetrogen, 

Oregon, USA 

1,4µg/ml 

GB21A** 4µg/ml γδ TCR δ 

chain 

specific   

VMRD IgG2b/FITC Southern 

Biotechnology  

11,9µg/ml 

CC302¤ 7µg/ml IFN-γ AbD 

Serotc 

IgG1/PE AbD Serotc 14µg/ml 

CC320¤¤ 4µg/ml IL-10 IgG1/PE 14µg/ml 
* mouse anti-caprine / ** cross-reacting mouse anti-bovine / *** cross-reacting mouse anti-ovine / **** goat anti-mouse 

conjugated fluorescent antibody   

¤ cross-reacting mouse anti-bovine IFN-γ / ¤¤ cross-reacting mouse anti-bovine IL-10 

   

 Single-colour flow cytometric analysis for surface markers was performed with 

unconjugated primary monoclonal antibodies (Table 1). In brief, 2x10
5
-5x10

5
 cells were 

added to 96 well round bottom plates and washed twice with PBS containing 1% BSA, and 

10mM NaN3 by centrifugation at 400xg for 3min at 4
o
C (washing buffer). Thereafter, cells 

were incubated with primary antibodies for 30 min at 4°C. After incubation the cells were 

washed twice and subsequently incubated with isotype specific goat anti-mouse secondary 

antibodies conjugated with phycoerythrin (PE) (Table 1) for 30 min at 4°C. Following 

incubation, cells were washed twice and fixed in 150 µl FACS Lysing Solution (Becton 

Dickinson, San Jose, CA, USA). Cells incubated with secondary antibodies only were used as 

negative controls.   
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Intracellular cytokine production by T cell lines was assessed by three-colour flow 

cytometry. The combination of moAbs used in triple colour flow cytometry are shown in 

table 2-2.  

Table 2-2: Combination of moAbs used in triple- colour flow cytometry 

Unstimulated T cells Stimulated T cell line (PPD-J 5µg/ml) Positive control 

(SED) 
 

CD4GC1/IgG2a-

Alexia633 
 

IFNg/IgG1-PE 

 

γδGB21A/IgG2b-FITC 

 

CD8-38.65/ 

IgG2a-Alexia633 

 

IFNg/IgG1-PE 

 

CD4GC1/IgG2a-

Alexia633 
 

IL-10/IgG1-PE 

 

CD4GC1/IgG2a-

Alexia633 
 

IFNg/IgG1-PE 

 

γδGB21A/IgG2b-FITC 

 
CD8-38.65/IgG2a-

Alexia633 

 

IFNg/IgG1-PE 

 

CD4GC1/IgG2a-

Alexia633 
 

IL-10/IgG1-PE 

 

CD4GC1/IgG2a-

Alexia633 
 

IFNg/IgG1-PE 

  

 Briefly, approximately between 1.8 - 4 x 10
6
 cells/ well of T cells were incubated in 

24 well plates containing adherent autologous cells with or without PPD-J at a final 

concentration of 5 µg/ml. Staphylococcus aureus enterotoxin D (SED) (Toxin Technology, 

Sarasota, Florida, USA) was used as a positive control at a final concentration of 0.1µg/ml. 

The plates were incubated for 8 hours before Brefeldin A (10 µg/ml) (Sigma) was added to 

the wells to block cytokine secretion. After a total incubation of 18 hour, the cells were 

transferred to 96 well staining trays and washed twice.  After the washing step, cells were 

incubated with unconjugated primary monoclonal antibodies against surface markers for 30 

min. on ice, (Table 1). After incubation, the cells were washed twice and incubated for 30 

min. on ice with isotype specific goat anti-mouse conjugated secondary antibodies (Table 1). 

Thereafter, cells were washed twice before fixation and permeabilization by incubation for 20 

min. on ice in Cytofix/Cytoperm solution (BD Biosciences, San Diego, CA, USA). Cells were 

washed twice with PermWash solution (BD Biosciences).  

Staining for intracellular cytokine was performed in PermWash with unconjugated 

monoclonal primary antibodies for 30 min. on ice (Table 1), followed by washing 3 times in 

PermWash. The cells were finally incubated 30 min. on ice with isotype specific goat anti-

mouse secondary antibodies conjugated with PE against IFN-γ, or IL-10 (AbD Serotc, Oxford, 

UK) (Table 1). Following incubation, cells were washed 3 times and stored in Perm/Wash 

solution. Cells incubated with secondary antibodies only were used as negative controls. 

The cell samples were run on a FACSCalibur flow cytometer. The lymphocytes were 

identified according to their specific forward- and side-scatter. Data from ten thousand cells 

were collected per run when performing for surface staining alone and a total of 100,000 



25 

 

gated cells were analysed for intracellular staining.  Data analysis was performed using the 

CellQuest software version 6.0. Positive fluorescence gates were set with reference to the 

negative controls. 

2.4 Quantitative real-time polymerase chain reaction 

(Q-RT-PCR)  

2.4.1 Stimulation of T cell lines 

T cell lines that had a high response to PPD-J were used in this experiment. Briefly, 

frozen autologous PBMCs were thawed as previously described in 2.2.5.1. 1x 10
6
 cell/ ml 

were seeded in 96 wells plate for generation of adherent APC as described in 2.2.4.1 and 

incubated for 1.5 hours. After incubation, 10µg/ml of each PPD-J and Concanavalin A 

(ConA) (1mg/ml) (Sigma-Aldrich, Norway) or medium only (as negative control) were added 

to the adherent APCs and incubated overnight at 37
o
C/ 5% CO2.  

Next day, frozen expanded CD4+ T cell lines were thawed and resuspended into 

approximately 2.0x10
6
 cells/ml T cells, 50 µl of cell suspension (approximately 10x 10

4
 

cells/well) were added to stimulated APCs including control wells and incubated for 20 hours.  

After 20 hours, the stimulated cells were harvested and pooled, spun down at 3000xg 

for 5 min at room temperature, and resuspended in 350 µl lysis buffer (RLT buffer from the 

Qiagen RNeasy Mini Kit (Qiagen) with 1% β-mercaptoethanol). Buffer RLT contains highly 

denaturing guanidine-thiocyanate which inactivates RNases and ensures purification of intact 

RNA. The chaotropic salts in the buffer RLT is critical for lysis, but also for the later binding 

of RNA to the silica membrane of the column (
110

). 

Lysed cells were homogenized by 5 times passage through a 21-gauge needle fitted to a 

syringe to reduce the viscosity of the lysate sample. RNA was isolated directly after the lysis 

step or the lysate was stored at -70°C until use.  
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2.4.2  Isolation of RNA  

Total RNA was extracted from stimulated and unstimulated T cell lines using the 

RNeasy Mini Kit (Qiagen) following the manufacturer's instructions. The RNeasy Mini spin 

column kit is based on selective binding properties of RNA to a silica membrane combined 

with speed microspin technology.    

The frozen lysate was thawed at 37
o
C in a water bath and homogenized for a second 

time before RNA isolation. 

One volume of 70% ethanol was mixed with the RNA sample. Ethanol is added to the 

lysate to enhance selective binding of RNA to the column. After centrifugation, the spin 

column was washed several times by adding washing buffer RW1 and washing buffer RPE, 

respectively. These two steps of washing were done to remove genomic DNA, proteins and 

other contaminants which may be retained on the column and cause reduction of RNA purity 

and yield.  

The purified RNA was released from the membrane by adding RNase-free water 

directly to the spin column membrane, and RNA was eluted into a new tube by centrifugation. 

Elution of RNA using RNase-free water is important to reduce the risk of RNA being 

degraded by RNases. 

The RNA concentration was measured by spectrophotometry using a nanodrop 

instrument (Thermo Fischer Scientific, Waltham, MA, USA). The 260/280 ratio and the 

260/230 ratio were used as indicators of RNA purity. The purified RNA samples were frozen 

down at 70
o
C.  

2.4.3 Complementary DNA (cDNA) synthesis  

Reverse transcription of RNA into single stranded cDNA combined with genomic 

DNA (gDNA) elimination was performed using the QuantiTect Reverse Transcription Kit 

(Qiagen) according to the manufacturer's instructions.  

The first step is gDNA elimination to remove contaminating gDNA from the RNA and 

thereby minimize the detection of gDNA in the later qRT-PCR. Briefly, RNA template was 

mixed with the gDNA wipeout buffer from the kit and incubated for 2 min at 42
o
C. After 

gDNA elimination, the RNA template was mixed with a reverse transcription master mix that 
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includes Quantiscript reverse transcriptase, Quantiscript RT buffer and RT primer mix. The 

reaction mix for cDNA synthesis was incubated for 15 min at 42
o
C followed by 3 min. at     

95
o
C to inactivate the reverse transcriptase.  

Quantiscript reverse transcriptase is enzymatic mixture, which contains two types of 

enzyme that in combination are used to synthesis single-strand cDNA. The first enzyme is a 

RNA-dependent DNA polymerase that has the ability to synthesis DNA from a RNA 

template; the second type is RNase H activity that is specific to degrade RNA in RNA: DNA 

hybrids. RT primer mix is blend of two types of primers (oligo-dt and random primer). The 

oligo-dT which is a short sequence of deoxy-thymine nucleotides have advantage to bind to 

the poly-A tail providing a free 3'-OH end of the mRNA that can be extended by reverse 

transcriptase to create cDNA strand and produce full length transcript (
111

). The second one; 

random primers; are oligonucleotides usually contain 6 nucleotides (hexamer) that consist of 

every possible combination of bases which can prime all along the RNA with or without poly-

A tail (
112

).  

The RT primer mix is use as a starting point to ensure cDNA synthesis from all 

regions of RNA transcripts, even from 5‘ regions. Quantiscript RT buffer includes Mg2+ and 

dNTPs, and in combination with Quantiscript reverse transcriptase and the RT primer mix, it 

has the ability to synthesis high cDNA yields. The cDNA was stored at -20ºC. 

2.4.4  Primer and probe design: 

The Primer3Plus free software (http://www.pubmed.de/cgi-

bin/primer3/primer3plus.cgi ) was used to design oligonucleotides (primers and probes). 

Spidey tool (http://www.ncbi.nlm.nih.gov/IEB/Research/Ostell/Spidey/spideyweb.cgi) was 

used to align genomic DNA of Bos taurus sequences with mRNA capra hircus to identify 

areas suitable for the design specific PCR primers and probes. The BLAST tool 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi ) was used to confirm that none of the selected 

oligonucleotides recognized any registered DNA sequence other than the target. Sequences 

used for primers and probes design were obtained from public databases (GenBank, National
 

Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov/nuccore?term=). Primers 

and probes were purchased from DNA Technology A/S (Denmark). Table 2-3. 

 

http://www.pubmed.de/cgi-bin/primer3/primer3plus.cgi
http://www.pubmed.de/cgi-bin/primer3/primer3plus.cgi
http://www.ncbi.nlm.nih.gov/IEB/Research/Ostell/Spidey/spideyweb.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ncbi.nlm.nih.gov/nuccore?term
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Table 2-3: primers and probes sequences used for qRT-PCR conformation 

Gene Primer Sequences  5`—3` Accession  no. 
Primer 

location 

Product size 

(bp)** 

IL-17A 

Forward CTC CAC CGC AAT GAG GAC 

GU269912.1 Exon 3 138 Reverse GAC CAG GAT CTC TTG CTG GA 

Probe* 6CT GGG AGG CCA AGT GCA GCC X 

IFN-γ 

Forward CAG GAG CTA CCG ATT TCA GC 

U34232.1 Exon 1 120 Reverse CCT GGC CAT AAG AAC CAG AA 

Probe* 6CC GGC CTA ACT CTC TCC TAA ACG ATG AX 

IL-10 

Forward GCG CTG TCA TCG TTT TCT G 

DQ837159.1 Exon 4,5 117 Reverse ATG TCA AAC TCA CTC ATG GCT TT 

Probe* 6TC TTC AAT ATG CTC CAA GAG AGG GGT GTC TX 

bActine 

Forward CGT GAG AAG ATG ACC CAG AT 

AF481159.1 Exon 1,2 122 Reverse CCA GAG TCC ATG ACA ATG C 

Probe* 6CA CTC CTG CCA TGT ATG TGG CCX 

 

 

2.4.4.1 Test of primers  

To test the designed primers and probes, two step real time PCR was performed using 

Maxima SYBP Green /ROX qPCR master mix (2x) (Fermentas, Maxima™, Fermentas 

GmbH, Germany). Maxima master mix is a ready-to-use solution that includes Maxima® Hot 

Start Taq DNA polymerase and dNTPs in an optimized PCR buffer. It contains SYBR Green 

dye that allows DNA detection and analysis without using sequence-specific probes and 

supplemented with ROX as passive reference dye. dUTP is included in the mix for optional 

carryover contamination control using uracil DNA glycosylase (UDG). Only cDNA template 

of≤500 ng and primers (Forward and Reveres) 10µM need to be added to the master mix. For 

negative controls, RNase free water was added. 

All reactions were performed in duplicate. Reactions were run on Stratagene Mx3005P 

(Agilent Technologies, USA). For SYBR Green/ROX qPCR master mix, cycling conditions 

were as follows: 10 min at 95°C, followed by 40 cycles with denaturation for 10 min at 95°C 

and annealing/elongation for 45 min at 60–72°C. Melt curves were run from 95
o
C to 72

o
C. 

All reactions were performed in duplicate. 

 

 

 

* 6: 5` labelled with 6-FAM.    X: 3` labelled with TAMRA 

** bp: base pair 
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2.4.5 Running of samples Q-RT-PCR  

To quantify the expression of the selected gene, two steps Q-RT-PCR was performed 

using TaqMan® gene expression master mix (AB Applied Biosystems, Foster city, USA).  

TaqMan® Gene Expression Master Mix is an appropriate mixture of components 

(except primers, probes, template, and water) which is necessary to perform qRT-PCR. It‘s 

contains UP (Ultra Pure) AmpliTaq Gold® DNA Polymerase, which is type of hot stable 

enzyme that activated only at temperatures where the DNA is fully denatured , Uracil-DNA 

Glycosylase (UDG) it‘s type of enzyme that use to prevent any generation of carryover-PCR 

product by eliminating any uracil integrated into single or double stranded amplicons, 

deoxyribonucleotide triphosphates (dNTPs) with deoxyuridine triphosphate (dUTP) and 

ROX™ Passive Reference which is used for normalization in data analysis.  

All reactions were performed in duplicate. The reaction mixture for each well of PCR 

plate was contain: 2x TaqMan Gene Expression Master mix, each primer (Forward and 

Reverses) (50µM), Probe (5µM), RNase free water, and ≤500 ng of template cDNA. In the 

negative controls, RNase free water was added. 

  Reactions were run on Stratagene Mx3005P (Agilent Technologies). For TaqMan® 

gene expression master mix, cycling conditions were as follows: 10 min at 95°C, followed by 

45 cycles with denaturation for 15 min at 95°C and annealing/elongation for one hour at 

59°C. Melt curves were run from 95
o
C to 59

o
C.  

Q-RT-PCR assays were analyzed by using the 2-(∆∆Ct) method with Office Excel 

2007 (Microsoft) as described previously (
113

). To assess the effect of stimulation (PPD-J or 

ConA) versus un-stimulated cell on cytokines expression in PBMCs within a goat, the bActin 

gene was used as housekeeping gene. Q-RT-PCR assays with CT values above 40 were 

considered negative (the lowest CT value; the highest ΔRn value). 
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2.5 T cell cloning 

The protocol previously described in (
109,114

) with few modifications. T cell clones 

were generated from PPD-J reactive T cell lines (CD4+ sorted T cell lines) with three days 

stimulation with PPD-J before seeding out potentially activated T cells in Terasaki plate 

(Nunc, Denmark). PBMCs were prepared as earlier described (2.2.1) and resuspended into 

1x10
6
 cells/ml, seeded in the 96 flat wells plate, and incubated at 37

o
C/ 5%CO2 for 1,5-2 

hours for adherent APCs. PPD-J antigen was diluted to 10µg/ml in RMPI 1640 media  

supplemented with gentamycin 50µg/ml, fungizone 1µg/ml and 10% GS added to the 

adherent APCs and incubated overnight. CD4+ T cells were added to APC fed with PPD-J 

and incubated for three days at 37
o
C/5%CO2. 

After three days, the restimulated T cells were collected and resuspended with 

autologous PBMCs feeder mix prepared from two or three donors as previously described 

(2.2.2.3). The T cells were cloned by limiting dilution method at a concentration of 1, 3 and 

10 cell/well in Terasaki plate (Nunc) and incubated for 11 days at 37C/ 5%CO2. If the cells 

remain viable (feeder cell layers and optimal medium are usually required because of apparent 

low cell density / well) and proliferates, then an isolated clone of cells will have been 

established in the well. 

After 11-14 days, plates were screened by microscopy for growing T cell clones. 

Wells with homogenous layer of ―cobblestone like‖ cells were picked and transferred to 24 or 

48 well plates and re-stimulated with feeder mix as for restimulation of T cells (2.2.2.3).  

Growing T cell clones were tested for antigen-specific proliferation 10 days after 

restimulation as described earlier (2.2.4). 



31 

 

3 Results  

3.1 MAP culture 

MAP culture and RT-PCR for quantification was performed at the section for 

bacteriology at NVI to confirm the infection and shedding status of the animals.  A total of 20 

samples from the four naturally infected goats were tested. RT-PCR was able to detect MAP 

in all 20 samples, while 15 of 20 samples were positive by culture (Table 3-1). The lowest Ct 

value was observed in goat no. 7037, which also had five out of five samples positive on 

culture, indicating that this goat was heavily infected with MAP. The goat was an advanced 

case with clinical symptoms. The cut-off Ct value was set to 40. 

Table 3-1: Culture and real-time PCR results of each goat that naturally infected with MAP. 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

Goat no. Day Culture 
Ct value (real time 

PCR) 

7029 

1 + 32,60 

2 - 34,88 

3 + 32,27 

4 - 34,33 

5 + 35,03 

7037 

1 + 17,94 

2 + 16,44 

3 + 17,15 

4 + 18,49 

5 + 18,60 

7041 

1 + 31,66 

2 + 34,86 

3 - 29,80 

4 + 33,96 

5 + 35,13 

7257 

1 + 38,10 

2 - 34,90 

3 - 38,55 

4 + 33,33 

5 + 34,76 
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3.2 IFN-γ assay 

This experiment was performed as a routine diagnosis combined with bacteriological 

culture to confirm the diagnosis the paratuberculosis in naturally infected goats and to 

confirm the presence of PPD-J reactive T cells in the blood. As seen in figure 3-1, all animals 

had an IFN- γ response in June 2010, while the response declined below cut off value in one 

goat after arriving at the institute in February 2011.  

  

Figure 3-1: IFN-γ production presented as optical density OD responses following specific stimulation with PPD-J Ag 

The cut-off point is represented as a horizontal line (OD 0.3). (A) June 2010 and (B) February 2011 
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3.3 T cell cultivation 

3.3.1 CellTitre-Glo assay as read-out 

For practical reasons we decided to use the CellTiter-Glo assay as our standard read-

out for proliferative cell response. The CellTiter-Glo assay was compared to the standard 

assay for T-cell proliferation; incorporation of 
3
H-thymidine (Figure 3-2). The two methods 

gave a similar profile in a dose response test using PBMCs stimulated with PHA that serial 

diluted 1:4. A parallel test of a PPD-J responsive T cell line was also performed at a later 

stage to ensure that similar results were obtained when assessing antigen specific responses. 

Figure 3-3 

 

Figure 3-2: Comparison between CellTiter-Glow assay (A) and 3H-thymidine incorporation assay (B) by using serial 

dilution of PHA mitogen (1:4) on PBMC. Data are expressed as SI (mean optical values of cell stimulated cultures/ 

mean optical values of unstimulated cell culture (control) for 3H-thymidine incorporation assay and change % of 

stimulated cells vs unstimulated cells for  CellTiter-Glo assay 
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Figure 3-3: Comparison between CellTiter-Glow assay (A) and 3H-thymidine incorporation assay (B) by using serial 

dilution of PPD-J (1:2) on T cell lines. Data are expressed as SI (mean optical values of cell stimulated cultures/ mean 

optical values of unstimulated cell culture (control) for 3H-thymidine incorporation assay and change % of stimulated 

cells vs unstimulated cells for  CellTiter-Glo assay. 

3.3.2 Test of mitogen 

To expand human T cells in vitro, PHA is used to agglutinate and trigger the cells.  A 

titration of PHA and ConA was performed on PBMC to determine the optimal concentration 

of the mitogen, and to compare that PHA and ConA as mitogen for cultivation of caprine T 

cells.  The proliferative mitogenic response to PHA for the PBMC gave both a higher 

response than with Con A and a response at lower concentration.  PHA optimal concentration 

was approximately between 0.1µg/ml and 1µg/ml (Figure 3-4). According to these results 

PHA was chosen for restimulation of T cells and it was used at a concentration of 1µg/ml. 
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Figure 3-4: PBMC responses to serial diluted (1:4) mitogens PHA (A) and ConA (B). The results are expressed as 

change % of stimulated cells vs unstimulated cells by using CellTiter-Glo assay 

3.3.3 Growth of T cells 

The growth of T cell was subjectively assessed based colour of the medium, number 

of times they needed splitting and on how the cells looked in the microscope. A summary of 

all the results are given in Table 3-2. A less than expected growth of T cells was observed 

when using FCS (heat inactivated 56
o
C for 30 min), and we thus decided to see if pooled GS 

(heat inactivated 56
o
C for 30 min) would improve the growth of the cells. For the non-sorted 

T cell lines six out of nine lines grew relatively ok, while all the eight lines expanded with GS 

grew well. 

Table 3-2: T cell growing score in media supplemented with 10% FCS or 10% GS 

Serum FCS GS 

Methods Times Growing 
Lines 

no. 
PPD-J resp. Times Growing 

Lines 

no. 
PPD-J resp. 

Non-sorted 9 6/9 35 
22/35 G. 

12/35 L. 
8 8/8 15 

7/15 G. 

4/15 M. 

-gd T cell 4 
Slow* 

(PHA) 
19 

13/19 G. 

2/19 M. 
ND ND ND ND 

MACS  

CD4+ 
2 1/2 4 

2/4 L. 

 
2 2/2 4 

2/4 L. 

 

Dynal CD4+ ND ND ND ND 13 13/13 64 
61/64 G. 

3/64 M. 
  

 
-gd T cell: depleting γδ T cell 

*slow: added diluted PHA 

ND: not done 

G: good response (with cut-off ≥ 90% change vs control%)  

M: medium response (with cut-off 10 - 90 %change vs control%) 

L: low response (with cut-off ≤ 10% change vs control%) 
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3.3.4 T cell responses and phenotype of T cell lines 

The T cell lines were tested in the CellTiter-Glo assay for responses to PPD-J and a   

variable response was observed (Table 3-2, and Figure 3-5). To try to find some explanations 

for this variation, we performed flow-cytometry on the expanded T cell lines to see the 

percentages of CD4+ T cells in the different lines. A huge variation was observed (Figure 3-6) 

with the percentage of CD4+ T cell ranging from only 0.06% - 29%.   
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Figure 3-5: Proliferation of non-sorted T cell lines in response to PPD-J stimulation. Autologous PBMCs were used as 

APC and were incubated with antigens overnight. T cell lines were added followed by three days incubation. 

CellTiter-Glo reagent was added. Each T cell line was tested in triplicates. The results are expressed as change % of 

stimulated cells vs unstimulated cells by using CellTiter-Glo assay 
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Figure 3-6: Non-sorted T cell lines after one week restimulation. Most T cell lines have high gate % of γδ T cell lines. 

The results are expressed as a gate % by using single colour flow cytometry. 
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Because of the overgrowth of γδ T cells, we decided to deplete these cells by using 

MACS beads before the expansion of the T cells. The yield of CD4+ T cell was increased to 

35% (range 3-59%) whiles the percentage of γδ T cell lines was decreased to 0.4% (0.08% -

0.97%). However, we still noted a high percentage of CD8+ T cells in the culture, 59% (34 - 

81%), Figure 3-7 
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Figure 3-7: Gate percentage of T- cell subsets after depletion of γδ T cells using MACS beads (negative selection). The 

results are obtained by using single-colour flow cytometry.  

 

To increase the yield of CD4+ T cell and to avoid overgrowing of CD8+ and γδ T 

cells, we choose to cultivate CD4+ T cell after positive selection by either MACS beads or 

dynabeads. Figure 3-8 illustrate that the yield of CD4+ T cells in  lines expanded after  

positive selection using dynabeads were higher than in the non-sorted T cell lines, 79 % (78-

81%) and 35% (20 -56%), respectively. Cultivation of CD4+T cells isolated by MACS beads 

gave approximately the same results (data not show). 



38 

 

 

0

10

20

30

40

50

60

70

80

90

1,1, 2,2, 1,1, 2,2,

7041 7257

gaot and T cell lines

g
a

te
 %

   

 Figure 3-8: Percentage of CD4+ T cell in lines in non-sorted T cell lines and T cell lines expanded after positive 

selection using dynabeads. Non-sorted T cell lines are labelled 1.1 and sorted T cell lines are labelled 2.2. The data are 

expressed as gate % of CD4+ T cells tested by single-colour flow cytometry 

 

By increasing the number of CD4+ T cell, PPD-J response increased in some lines 

only. In goat no. 7257 there is an increase in the PPD-J response in sorted T cells 2.1 (127% 

±7%) and 2.2 (285% ±4%) compared with the non-sorted lines 1.1 (93% ±3%) and 1.2(112% 

±5%) from the same animal, (change % response of T cell lines group ± SD%). Figure 3-9. 

The increased response could be explained by an enrichment of antigen specific T cells. 
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Figure 3-9: Proliferation of T cell lines in response to PPD-J stimulation. Autologous PBMCs were used as 

APC and were incubated with antigens overnight. T cell lines were added followed by three days 

incubation. CellTiter-Glo reagent was added. Each T cell lines were tested in triplicates. The results are 

expressed as change % of stimulated cells vs unstimulated cells by using CellTiter-Glo assay. Non-sorted T 

cell lines (1.1, 1.2) and T cell lines after positive selection using dynabeads are shown (2.1, 2.2) 
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Some lines were tested for the presence of the various T cell subsets after a second 

expansion of the lines. The percentages of CD8+ and γδ T cells increased while the yield of 

CD4+ T cells decreased to 71% (69-72%) in sorted T cell lines and to 50% (40-56%) in non-

sorted T cell lines. There were also a high percentage of double positive T cells expressing 

both CD8+ and γδ T cell receptor in some lines 15% (3-31%). Figure 3-10. 
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Figure 3-10: Overgrowing of CD8+ T cells and γδ T cells after second expanding of sorted (2.1) and non-sorted T cell 

lines (1.1 and 1.8).  T cell lines were stimulated with PPD-J at 5µg/ml and incubated with autologous PBMCs as APC 

in triplicates well for each stimulate and unstimulated T cell lines. Data expressed as gate % by using triple-colour 

flow cytometry 

 

3.3.5 Peptide response 

The goats were tested for IFN- production against MAP specific peptide pools before 

and after vaccination. No responses to any peptides were detected before immunization and 

minimal responses were seen after immunisation (results not shown). To see if we could 

cultivate peptide responsive T cells in vitro, T cell lines were made in the presence of pools of 

peptides. Five T cell lines from goat 7041 (3.1, 5.1) and 7257 (3.1, 4.1, 5.1) had response to 

three pools of peptides as well as a PPD-J response. T cell lines 3.1 from both goat 7257 and 

7041 had significant response to PP 3, T cell lines 4.1 of goat 7257 had response to PP 5, 

while T cell lines 5.1 from both goat 7257 and 7041 had mediocre response to PP 8 (data not 

shown) 
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These T cell lines were expanded further and tested against the individual peptides in 

each of these three pools. The stimulated T cell lines had high response to numbers of 

individual peptide, Figure 3-11. The highest responsiveness was to peptides No.: p 27, 28, 29, 

48, 50, 63, 69, 70, 74, 78, and 79.  

 
Figure 3-11: Responses of expanded T cell lines after stimulation with PPD-J at concentration 10µg/ml as well as individual 

peptides. Autologous PBMCs were used as APC and were incubated with antigens overnight. T cell lines were added followed by 

three days incubation. CellTiter-Glo reagent was added. Each T cell line was tested in triplicates. A and D T cell lines response to 

PP3, B PP5, C and E PP8. The highest responsiveness was to individual peptides  No.: p 27, 28, 29, 48, 50, 63, 69, 70, 74, 78, and 

79. Results are expressed by change vs control % by using CellTiter-Glo assay. ND; not determined. 
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3.4 Cytokine expression by Q-RT-PCR and flow 

cytometry 

Relative expression of the genes encoding IFN-γ, IL-17A and IL-10 were measured in 

three T cell lines. The lines were stimulated with PPD-J, ConA or left unstimulated.  A high 

relative expression of IFN-γ after stimulation with ConA was seen in all lines, while an 

increase in IL-17 production was detected only in goat 7029. A high expression of mRNA 

encoding IFN-γ and IL-17 was detected in the T cell line from goat 7029 after stimulation 

with PPD-J. The relative expression ratios of mRNA encoding IFN-γ and IL-17A were 85 

(range 71-103) and 37 (range 31-44), respectively. No increase in IL-10 production was 

detected after stimulation in any of the non-sorted T cell lines. Figure 3-12. 
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Figure 3-12: Cytokine mRNA expression 

for IFN-γ, IL-17A and IL-10 in non-

sorted T cell lines were stimulated with 

PPD-J and ConA for 20 hours. The levels 

of mRNA were normalized to the 

housekeeping gene bActin. Non-

stimulated T cells were used as 

calibrators by using ∆∆Ct method. The 

results were expressed as mean relative 

expression and rang (lower, higher) 

7029 
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To obtain additional data on cytokine expression intracellular cytokine staining for 

IFN-γ and IL-10 was performed on sorted and non-sorted T cell lines after stimulation with 

PPD-J. An increase in IFN-γ production was detected in both CD4+ and CD8+ T cells after 

the PPD-J stimulation. However, the increase was most pronounced for the CD4+ T cells. 

Table 3-3 and Figure 3-13. None of T cell subsets produced IL-10 (Data not show). 

 

Table 3-3: Percentage of T cell subsets producing IFN-γ.  

  CD4+ T cell CD8+ T cell γδ T cell 

Goat  T cell lines unstimulated PPD-J unstimulated PPD-J unstimulated PPD-J 

7029 1.8 (NS) 0.05 0.61 0.27 0.57 0.04 0.15 

7041 
1.1 (NS) 0.15 0.36 0.50 0.56 0.29 0.29 

 2.1 (CD4) 0.42 1.62 0.20 0.38 0.11 0.10 

7257 
1.1 (NS) 0.06 1.11 0.30 0.61 0.13 0.17 

2.1 (CD4) 0.09 0.64 0.23 0.45 0.07 0.11 

 

NS: non-sorted T cell lines 

CD4: sorted T cell lines  

 

 

 

Figure 3-13: Flow cytometric dot plots (triple colour staining) showing the phenotypes and IFN-γ expression of 

unstimulated T cell lines (upper panels) and PPD-J-stimulated T cell lines (lower panels) from one representative 

infected goat 7029 (1.8).  
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3.5 T cell cloning  

Eight attempts to generate T cell clones were by limiting dilution from CD4+ T cell 

lines that have strong PPD-J response was performed. Only a few clones grew sufficiently 

well to study the T cell clones further and attempt another round of expansion and determine 

their epitope specificity. Only three expended T cell clones gave good response to PPD-J at 

10 µg/ml, two clones from 1 cell/well and one from 3 cell/well. Figure 3-14.  Other T cell 

clones lost their reactivity after expansion. 
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Figure 3-14: Responses of expanded T cell clones after stimulation with PPD-J at concentration 10µg/ml. autologous 

PBMCs were used as APC and were incubated with PPD-J overnight. T cell clones were added followed by three days 

incubation. CellTiter-Glo reagent was added. Each T cell clone was tested in triplicates. Three expended T cell clones 

gave good response to PPD-J at 10 µg/ml, two clones from 1 cell/well and one from 3 cell/well. Data expressed as 

change vs control % by using CellTiter-Glo assay 
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4. Discussion 

The success of cell culture depends upon the cell type and the culture condition. Here 

we systematically studied various common culture conditions including sera, mitogens and 

described a reliable culture method of caprine T cells. 

Serum is routinely added to the cell culture as a source of nutrition that stimulate the 

cell proliferation (
115

). It also contains several essential factors and attachment factors that 

enhance the proliferation of cells (
116

). Among several sera types that are available; FCS is 

most frequently used in media for cell culture. However, in the present study we noted that 

the T cells grew less than expected in 10% FCS and did not seem to thrive on visual 

inspection. We thus decided to try pooled GS instead, since in our hands human pooled serum 

is superior to FCS when cultivating human T cells. We observed that the T cells cultured in 

media supplemented with 10% GS grew better and looked healthier on visual examination It 

is not clear if this is due to the fact that we used serum from the same species or because the 

serum are from adult goats instead of foetuses. Serum from adult animals is likely to contain 

other growth factors, cytokines etc that may be beneficial for growth of T cells. The serum did 

not, however, affect the response to PPD-J in the T cell lines or the percentages of CD4+ T 

cells in the lines. In conclusion we decided to use 10% GS in our standard protocol for T cell 

expansion, while FCS was used for freezing and thawing of the cell and also for the short 

term tests like T cell proliferation assays. Several studies were in agreement with our result to 

replace FCS with GS as a source of nutrition in cell culture (
117-119

). 

It is presumed in paratuberculosis infection that CD4+ T cells play a central role in the 

controlling of the infection. Mogues, T. etal (2001), investigated that mice lacking MHC class 

II or depleted of CD4+ T cells by monoclonal antibodies succumb faster to infect with 

Mycobacterium tuberculosis than wild-type mice, and M. tuberculosis-infected IFN-γ 

knockout mice have significantly less survival times than their infected wild-type counterparts 

(
120

).  The aim of this study was therefore to establish a method for cultivation of CD4+ T 

cells from goats. In our experiments, we noted that the CD8+ and γδ T cells generally grew 

much better than the CD4+ T cells, and these cells frequently overgrew the cultures. Smyth, 

A.J. et al (2001), studied the kinetics of mycobacterial antigen responsiveness in M. bovis 

infected cattle,  and showed that γδ T cells remained significantly activated for at least 7 days 
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in culture, while activation of αβ T cells (CD4+ and CD8+ T cells) declined during that 

period. This can explain the predominance of γδ T in non-sorted T cell lines (
121

).  

Three isolation methods were performed to enrich for CD4+ T cells. In the present 

study, the lowest yield of CD4+ T cells were generally in T cell lines that were non-sorted or 

depleted for γδ T cells, while positive selection using MACS or dynabeads gave higher 

percentages of CD4+ T cells. The yield of CD4+ T cells by the latter two methods was 

similar. However, dynabeads were more practical and faster and appeared to be gentler on the 

cells. The cells looked more viable and the dynabead method was therefore chosen as the 

standard protocol. Despite the fact that the purity was >98% after positive selection, the 

percentages of CD4+ T cells in the lines progressively declined after expansion. This 

demonstrated the superior growth of both CD8+ T cells and γδ T cells when using our 

protocol. The PPD-J response varied between the lines and was not consistently higher in 

positively selected CD4+ T cell lines, but some lines did have a significantly higher response 

than non-sorted lines. We did not identify which subsets of cells that proliferated after PPD-J 

stimulation and cannot exclude that the CD8+ T cells or γδ T cells also responded to PPD-J in 

some lines. Other studies have, however, demonstrated that CD4+ T cells were the 

predominant reactive T cells with high PPD-J response (
88,122-124

). A higher number of CD8+ 

T cells or γδ T cells will lead to less CD4+ T cells in the line, and the chance of having a 

CD4+ T cell responsive to specific antigen (PPD-J) in the cell suspension decreases.  

The simplest explanation for a lower response in non-sorted T cells are the lower 

number of CD4+ T cells in these lines, and that CD8+ and  T cell completely over grow the 

responsive CD4+ T cells.  An alternative explanation is that the CD8+ and γδ T cells can have 

a suppressive effect on CD4+ T cells.  Chiodini, R.H. and Davis, W.C. (1992) concluded that 

the presence of γδ T cell in vitro suppresses the response of CD4+ T cell to PPD-J, and  may 

have an immunoregulatory effect on CD4+ T cell (
125

). Navarro, J.A. et al (1998), indicated 

that the progression of paratuberculous lesions may be due to an ineffective host immune 

response attributable to CD8+ T lymphocyte subset that "downregulate" the activities of the 

CD4+ T lymphocytes (
126

). This was not in agreement with Chiodini, R.H. and DavisW.C. 

(1993), who demonstrated that CD8+ T cells might have a contrasuppression role to the CD4 

+ T cells by suppressing the γδ T cells (
127

). One interesting observation with the work of T 

cells isolated from goats compared with T cells from human, is that the amount of willingly 

growing CD8+ and  T cells is much greater in the goats. Potentially is this also reflecting 
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the important role of these cells in ruminants, and thus even more focus should be put on 

these subsets to understand their role in the immune response during MAP infection. 

In the present study 
3
H-thymidine incorporation assay was replaced with CellTiter-Glo 

assay. The present read out method (Celltiter-Glo assay) was easy to use (Add-mix-measure), 

safe and non-radioactive. Our results also showed that the titration curves for both mitogen 

and antigen were similar and eliciting the same sensitivity. This result was in agreement with 

many researches that replaced 
3
H-thymidine incorporation assay with CellTiter-Glo assay or 

other kind of non-radioactive assay (
128-131

).  

A definitive diagnosis of paratuberculosis currently requires demonstration of MAP by 

routinely mycobactin dependent bacteriological culture, acid fast stain by ZN‘s method and 

detection of IS900 by PCR amplification. To confirm the presence of MAP reactive T cells in 

peripheral blood a whole blood IFN-γ assay was performed. All five goats had high level of 

IFN-γ and were shedding bacteria in three or more of five faecal samples. These results were 

in agreement with other studies that indicated faecal shedding and high level of IFN-γ in the 

same animals (
132,133

).  

Many studies  using  vaccines that consist of either live attenuated or inactivated 

whole-cell, have demonstrated that the incidence of clinical symptoms and tissue colonization 

can be reduced, but infection is not prevented (
134,135

). These whole-cell vaccines also 

interfere with diagnosis of bovine tuberculosis and paratuberculosis (
136,137

). This has led to   

development of new paratuberculosis vaccines candidates consisting of specific MAP 

antigens, potentiated with adjuvants to stimulate the adaptive immunity against 

paratuberculosis (
90,138-140

). The present study is related to an EU funded project that aims to 

develop a new vaccine against MAP infection, which does not interfere with diagnostic tests 

for bovine tuberculosis and paratuberculosis. The EU project has thus identified potentially 

immunogenic MAP specific peptides. These pools of peptides were injected intramuscularly 

to the infected goats to boost any immune response present in these animals. The specific aim 

of the present work was mainly to see if we were able to cultivate peptide specific CD4+ T 

cells, but we also wanted to obtain preliminary data on the immunogenicity of these peptides. 

Sorted CD4+ T cell where expanded in the presence of peptide pools and subsequently tested 

for responses against the peptides. Some of the CD4+ T cell lines had a response to PP 3,5 

and 8 and we identified the response to individual peptides in these T cell lines. These 

preliminary findings confirmed that we are indeed able to cultivate specific CD4+ T cells in 
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vitro. We have also confirmed that some of the selected peptides induced a CD4+ T cell 

response, and these peptides are potentially candidates to be included in future vaccines.  

IFN-γ is Th1 cell type cytokine that important in the control of paratuberculosis 

infection by activation of macrophages and clearance of mycobacterial infections (
141

). Some 

studies demonstrated that mice and humans with a deficiency in the ability to produce or 

respond to IFN-γ are very susceptible to mycobacterial infections such as tuberculosis (
142,143

). 

On the other hand IL-17A is critical for enhancement of memory responses to mycobacterial 

infections, and after challenge with M. tuberculosis, IL-17-inducible chemokine expression 

mediates the recruitment of Th1 lymphocytes to lung tissue (
144

). Many studies have recorded 

higher expression of IFN-γ in PBMCs of cattle infected with paratuberculosis (
98,100,145

), 

especially in subclinical infected cattle (
94,146,147

). Overnight stimulation with PPD-J is 

standard in IFN-γ testing and results in significant production of this cytokine (
148

). While IL-

10 is an anti-inflammatory cytokine that downregulates Th1 type immune response. IL-10 has 

been demonstrated to be higher in the late or clinical stage of paratuberculosis infection to 

those of subclinically affected animals (
99

). IL-10 has an inhibitory effect on the killing of 

mycobacteria and suppresses T cell functions (
97,149

).  Because of the relevance of IFN-γ, IL-

17A and IL-10 in the immune response to paratuberculosis, we decided to look at the 

expression of these cytokines in some of the established T cell lines.   

To characterise the cytokine expression of the MAP reactive T cell lines, two methods 

were used; Q-RT-PCR and intracellular staining. The Q-RT-PCR was established for IFN-γ, 

IL-17A and IL-10 and the response in T cell lines to stimulation with PPD-J and ConA were 

compared to unstimulated cells.  A PPD-J specific response with expression of IFN-γ and IL-

17A was seen in one of the tested T cell lines, while IL-10 was not detected.  These results 

were in agreement with other studies that demonstrated no or a low amount of expression of 

IL-10 as a response to in vitro mitogen stimulation (
97,150,151

).  

Intracellular IFN-γ and IL-10 levels were also measures and co-staining for CD4+, 

CD8+, and γδ T cell subpopulations were performed to identify which cells produced the 

cytokines. The CD4+ T cell subset appeared to be the primary cellular source of IFN-γ during 

infection with MAP, with little to no IFN-γ produced by the γδ T cell subset. Some IFN-γ 

production was also seen in the CD8+ T cells. Furthermore, IFN-γ production was also seen 

in the unstimulated cells. This might explain why we could not detect any difference in the 

RT-PCR where the PPD-J response is compared to the response in the unstimulated T-cells. 
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These results were in agreement with other studies that demonstrated that CD4+ cells are the 

predominant T cell that secreted IFN-γ during MAP infection, and that no significant 

expression level IL-10 was detected(
62,88

).   
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5. Conclusions 

1. In this study, we have made several different attempts and tried to optimize the 

cultivation of MAP reactive CD4+ T cells isolated from blood of MAP infected 

goats.  

2. We were able to isolate MAP reactive T cells that responded to PPD-J after three 

weeks of cultivation. 

3. To maintain reactivity we found that it was important to sort out the CD4+ T 

cells, to reduce the chance of overgrowth from CD8+ and γδ T cells.  

4. The isolated T cells had the hallmarks of Th1 reactive T cells by expressing IFN-γ 

after PPD-J stimulation.  
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6.  Future perspectives 

 The long-term aim of this research project is to develop a vaccine that are safe and 

protective and give minimal side effects for the animals and thus can be accepted by the 

livestock industry. In addition, this vaccine should not compromise the diagnostic tests so it is 

possible with simple biological test to separate infected from vaccinated animals. To reach 

these goals we need to understand the development of protective immunity in the animals and 

will focus on the key players providing this protection. This means that the work will focus on 

understanding the role of the different subsets of T cells taking part in the immune response, 

CD4+, CD8+ and -T cells. By developing a panel of MAP reactive T cell lines and clones 

from several animals, we would also be able to determine a number of essential epitopes that 

should be included in either a vaccine or a diagnostic test. By studying the immunology of 

paratuberculosis we also hope to be able to give clues about the treatment of the human 

equivalent Crohn‘s disease. 
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