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ABSTRACT. We consider a scalar conservation law modeling the settling of particles in an ideal
clarifier-thickener unit. The conservation law has a nonconvex flux which is spatially dependent
on two discontinuous parameters. We suggest to use a Kruzkov-type notion of entropy solution
for this conservation law and prove uniqueness (L stability) of the entropy solution in the BV;
class (functions W(z,t) with ;W being a finite measure). The existence of a BV; entropy
solution is established by proving convergence of a simple upwind finite difference scheme (of
the Engquist-Osher type). A few numerical examples are also presented.

1. INTRODUCTION

1.1. Scope of the paper. One-dimensional models for continuously operated idealized clarifier-
thickener units have received considerable interest recently in both the mathematical [1, 13, 14]
and engineering literature [10, 11]. Clarifier-thickeners are widely used in the mineral processing,
chemical and pulp-and-paper industries as well as in wastewater treatment plants. Mathematical
models are urgently needed for the design, simulation and control of these units. However, for
many purposes details of the multidimensional flow field within these vessels are unimportant, so
that simplified spatially one-dimensional models are preferred. These models provide an important
example of nonlinear scalar conservation laws with spatially discontinuous flux functions. Other
applications, which lead to very similar mathematical models and therefore provide potential appli-
cations of the results presented herein, include traffic flow with abruptly changing road conditions
[31] and multiphase flow in porous media with changing permeabilities [19]. Important advances
in the analysis and solution of clarifier-thickener models have been made by Diehl in a long series
of papers including [13, 14, 15, 16, 17], in which local-in-time existence and uniqueness results
for problems with piecewise constant initial data are obtained [13, 14, 15]. Moreover, stationary
solutions are completely classified [15]. In practice, these stationary solutions correspond to the
desired normal states of continuous operation [17]. Numerical simulations using a Godunov-type
scheme are presented in [14, 15, 16].

Although the clarifier-thickener model had been studied intensively in recent years, the existence
of weak solutions to such clarifier-thickener models with general initial data was proved only
recently in [3] by establishing convergence of a constructive (numerical) algorithm known as front
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FIGURE 1. The one-dimensional clarifier-thickener model.

tracking. While [3] establishes the existence of a weak solution of the clarifier-thickener problem,
and also gives a proof of convergence for a numerical method, a well-posed entropy solution
framework for such equations (in which a unique stable solution exists) has been lacking so far.
The main difficulty is, of course, to appropriately include the discontinuities of the flux function
into an entropy condition that ensures uniqueness of the weak solution. It is the purpose of
this paper to establish well-posedness of the clarifier-thickener problem. First, we propose to use
a suitable Kruzkov-type notion of entropy solution for this problem and prove uniqueness (L!
stability) of the entropy solution in the BV; class (functions W (z,t) with ;W being a finite
measure). Secondly, existence of a BV} entropy solution is established by proving convergence
of a simple upwind finite difference scheme (of the Engquist-Osher type). The advantage of the
difference scheme over the front tracking method [3] is that the former is simpler to implement on
a computer. The performance of the difference scheme is demonstrated by numerical examples.

1.2. The clarifier-thickener model. Under idealizing assumptions, the gravity settling of small,
equal-sized solid particles in a viscous fluid can be described by the one-dimensional kinematic
sedimentation model by Kynch [8, 9, 30]. Its main assumption states that if the suspension is
considered as a superposition of two continuous phases, then the solid-fluid relative or slip velocity
vr = Vg — vr 18 a material specific function of the local solids concentration u only, where vg and
vr are the solid and fluid phase velocity. On the other hand, in one space dimension, the mass
conservation equations for the solid and fluid phase are

(1.1) Opu + 0y (uvs) = 0,
(1.2) Opu — 8, ((1 — u)ve) = 0,
where ¢ is time and x the vertical depth variable, i.e., x is assumed to increase downwards. If we
introduce the volume average velocity of the mixture q(z,t) := uvs + (1 — u)vg, then the sum of
(1.1) and (1.2) yields the continuity equation of the mixture, which is simply 8,q(x,t) = 0. This

equation may replace (1.2), while in terms of the velocities v, = v,(u) and ¢ = ¢(z,t), (1.1) can
be rewritten as

O+ 0z (q(z, t)u + u(l — v (u)) =0
or, by introducing the so-called Kynch batch flux density function b(u) := u(1 — u)v.(u), as
(1.3) Oyu + 05 (q(z, t)u + b(u)) = 0.

The function b(u) is assumed to be Lipschitz continuous, positive for u € (0,1), and to vanish
for u ¢ (0,1). We assume that b(u) is twice differentiable in (0, 1), that b'(u) vanishes at exactly
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FIGURE 2. Kynch batch flux density function b(u) = 6.75u(1—u)? (a) and fluxes
adjacent to the discontinuities of the parameter vector v at z = —1 (b), z = 1
(c) and z = 0 (d). The parameters are ¢, = —1, gg = 0.6 and up = 0.7.

one location u = umax € (0,1), where the function has a maximum, and that b"(u) vanishes at
no more than one inflection point in wing € (0,1); if such a point is present, we assume that
Uinfl € (Umax, 1). These assumptions are valid for the frequently used batch flux density functions
of the Richardson-Zaki [32] type

b(u) = {voou(l —u)™® foru € (0,1),

(1.4) Voo >0, m > 1.

0 foru<Oorwu>1,

The parameter vo, > 0 is the appropriately scaled settling velocity of a single particle in an
unbounded pure fluid. For illustrative purposes and the numerical examples, we choose here the
Kynch batch flux density function (1.4) with v, = 27/4 and n = 2, see Figure 2 (a). It is easy
to check that for b(u) given by (1.4), we have umax = 1/(n + 1) and uina = 2/(n + 1), and v is
chosen such that b(umax) =1 for n = 2.

Consider now the ideal clarifier-thickener model sketched in Figure 1. This is an idealized
cylindrical vessel of constant cross-sectional area S occupying a vertical interval z € [-1,1]. At
height x = 0, a feed source is located, through which fresh suspension to be separated is pumped
into the vessel (and distributed over the entire cross-sectional area) at a constant volume rate
Qr > 0. This induces an upward mixture flow for x < 0 and a downward mixture flow for z > 0.
The vessel is equipped with a controllable discharge opening at z = 1 and a controllable overflow
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outlet at £ = —1. The control variables are the volume overflow rate ()1, < 0 and the volume
discharge rate Qg > 0. The global conservation of mixture requires that Qp = Qr — QL. We
choose @r and @y, as the control variables that are prescribed independently or, equivalently, the
volume average velocities gg = Qr/S > 0 and g1, = Qr/S < 0. Thus, the volume average velocity
q(z,t) is given by

g. <0 forz <0
(1.5) q(z,t) = ’
gr >0 forz>0.
We assume that the mixture leaving the unit at z = 1 and = —1 is transported away at the

volume rates @gr and @ or corresponding velocities gg and qr,, respectively. The transport is
supposed to be realized through a thin pipe in which the solids and the fluid move with the same
velocity, which means that the slip velocity v; vanishes outside [—1,1] or equivalently, that the
flux b(u) is not present outside [—1,1].

Finally, we have to consider that z = 0 is not only the point at which the volume mixture feed is
divided into upward and downward bulk flows, but that solid material of a given concentration ug
is fed into the unit at that point. This means that the zero right-hand part of the governing
conservation law has to be replaced by the singular source term 6(z)Qrur, where 6(+) is the Dirac
unit mass located at z = 0. However, using the Heaviside function H(z), we may formally write

ADDEUE _ 52 (g — anJur = 02 (H () am — guJue),
and thereby express the singular source as a discontinuity of the flux function.

Collecting these considerations and finally assuming that an initial concentration ug(z) for
z € R is given (for example, ug = 0 for a system that initially contains only water), we can model
the clarifier-thickener unit as the following conservation law for the unknown concentration u(z, t):
{Otu + 0z9(z,u) =0, (z,t) €y :=R x (0,T),

(1.6) u(z,0) = up(z), TER,

where T > 0 is fixed, and the discontinuously spatially varying flux ¢ has the form
q.(u — up) for z < —1,

gr.(u —ur) + b(u) for —1 <z <0,

gr(u —up) +b(u) for0<z<l1,

gr(u — up) for z > 1.

g(z,u) =

Note that in this work, we assume that the control variables qi,, gr, and ur are constant in time.
The precise assumptions on the initial function ug are as follows:

(1.7) ug € L'(R), wo(x) € [0,1] for a.e. z € R, uo € BV (R).

From the point of view of applications, the initial function always has compact support, and it is
therefore reasonable to assume ug to be integrable on R. The assumption that u¢ has bounded
total variation is equally realistic. Moreover, the control variables qr,, qr, and up satisfy

qL <0, gr >0, 0<up<l.

The flux g(z,u) has discontinuities at the points x = —1,0,1. To facilitate the analysis, we
view the flux g as depending on two parameters v!(z) and 7?(z), which we write as a vector for
brevity:

Then

with

forz <0 1 forz e (-1,1)
1.8 1 = aw ’ 2 = s 1)y
(1.8) 7 (@) {qR for z > 0, 7 (@) {O for z ¢ (—1,1).
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We employ the notation

||f’u|| = max{lfu(’Ya“)' |’yl € [qLaqR]a 72 € [07 1]: u € [07 1]} .
We have the easily derived bound

(1.9) I full £ max{-qu,qr} +IU'll,  [It]| == Jnax, b (w)] -

We also have the bound

(1.10) |f&,u) = fOv,u)| < 3 =AY + DI =, bl = max, [b(u)l,

for any pair of parameter vectors ¥ = (31,52), ¥ = (v},7?) and any u € [0,1]. Define the total
variation of the vector v as TV(7) := TV(y!) + TV(y2). It is clear that v! and 7? have bounded
total variation, since TV(y!) = gqr — qr. and TV(y?) = 2, and thus TV (y) < co.

The parameter 7! (z) corresponds to the mixture flow velocity g(z). The discontinuity at z = 0
is due to the separation between the clarification zone (z < 0), where the flow is upward (g, < 0),
and the settling zone (z > 0), where the flow is downward (¢gg > 0). Observe that within the
present context ~(z) can only take the four discrete values (qr,0), (qL,1), (gr,0) and (gr,1)-
However, in Section 3, we will deal with approximations of « that allow this vector to lie on any
of the sides of the rectangle connecting these four points, except for the side connecting (g, 0) to
(gr,0). We denote the three remaining sides, where we allow = to be located, by G.

The flux f(v(z),u) has discontinuities at three locations: z € J, where the set of jump points
is J := {—1,0,1}. The discontinuities at £ = —1 and z = 1 are due to jumps in 72, while the
discontinuity at = 0 is due to the jump in v'. We denote by f(~y(z+),u) and f(vy(z—),u) the
limits of f(v(&),u) for £ = = with € > z and £ < z, respectively. For the discontinuity in y(z) at
z = —1, we have

(1.11) fv(=1=),u) = qulu—up), f(y(-=14),u) = qr(u — up) + b(w).

See Figure 2 (b). Similarly, for the discontinuity in v at z = 1,

(1.12) F(v(1=),u) = gr(u —ur) +b(w), f(¥(1+),u) = gr(u — up).

See Figure 2 (c¢). Finally, the fluxes adjacent to the discontinuity located at z = 0 are

(1.13) F(v(0-),u) = qulu —up) + b(u), f(v(0+),u) = gr(u — up) + b(u).

See Figure 2 (d).
For additional details on the present clarifier-thickener model and extensions to polydisperse
suspensions and vessels with varying cross-sectional area we refer to [2, 3, 6, 7).

1.3. BV; entropy solution. We denote by M(IIr) the finite Radon (signed) measures on Ilz.
The space BV (Il7) of functions of bounded variation is defined as the set of locally integrable
functions W : Il — R for which 8, W,0;W € M(Ilr). In this paper we use the space BV;(Ilt)
of locally integrable functions W : Il — R for which only ;W € M(Ilr). Of course, we
have BV (Il7) € BV;(Il7). We can also define the space BV, (Il7) by replacing the condition
oW € M(Ilt) by 0, W € M(Ily). It is well known that there exists a unique entropy solution
to conservation laws like (1.6) when the flux function depends smoothly on z, and this solution
belongs to BV (IIT), see [28, 37]. However, in our context with the flux function g(z, u) depending
discontinuously on z, we cannot expect solutions u to belong to BV, (IlT), that is, Oyu to be a
finite measure. It is, however, a purpose of this paper to demonstrate that BV;(Il7) is the natural
space in which to seek solutions, essentially thanks to the L! contraction property which seems to
hold for PDEs like (1.6) independently of the smoothness of z — g(z,u).

Independently of the regularity properties of 4 and wg, solutions to (1.6) generally develop
discontinuities, and so weak solutions must be sought. As is well known, weak solutions are not
uniquely determined by their initial data. Consequently, an entropy condition must be imposed
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to single out the physically correct solution. If we assume for the moment that ~(z) is “smooth”,
a weak solution u satisfies the entropy condition if for all convex C? entropy functions 5 : R = R,

(1.14) 0n(u) + st (v(2),u) + > 7" (2) (n'(U)fw (v(@),u) =y (’r(w),U)) <0,

in D'(IlT), where v*'(z) = dv"(x)/dz and the entropy flux ) : R> x R — R is defined by
(1.15) Yo (V(@),u) = 1'(u) fu (v (2), u).

By a standard limiting argument, (1.14) implies the Kruzkov entropy condition

VeeR: Ou—c|+ 0, (sign(u —o)(f(v(z),u) = f('y(:c),c)))

+ Z sign(u — ¢)v”' (@) fy» (v(2),¢) <0 in D'(Il7).

This entropy condition was used first by Kruzkov [28] and Vol’pert [37].
The above concept of entropy solution breaks down when 4 is discontinuous. We suggest to
use instead the following Kruzkov-type definition of a BV; entropy solution:

Definition 1.1 (BV; entropy solution). A measurable function u : It — R is a BV; entropy
solution of the initial value problem (1.6) if

(1.16) u € L'(Il7) N BV;(Tl7), u(z,t) € [0,1] for a.e. (z,t) € Ily;
the following Kruzkov-type entropy inequality holds for any ¢ € D(Ily), ¢ > 0:

J[ (1= clo + signtu = o (f@),) = £(3(2),0)2.) e o
(1.17) R
+ [ S 1m0 = v me) ) é(mde 20 Ve

meJ

and the initial condition is satisfied in the following strong L' sense:

(1.18) esslim/ |u(x,t) — uo(x)| dz = 0.
t0  Jp

It is standard to derive from (1.17) the weak formulation

(1.19) //H (u8t¢ + f('y(x),u)awqﬁ) dedt=0 V¢ € D(Iy).

The main purpose of this paper is prove that there exists a unique BV; entropy solution to
clarifier-thickener model (1.6), as well as providing a working numerical scheme that is supported
by a mathematical convergence proof. In passing, we remark that one can easily prove that the
weak solution constructed by front tracking in [3] is a BV; entropy solution.

1.4. Uniqueness. The entropy condition (1.17) is motivated by the work in [35]. When the flux
g(z,u) in (1.6) takes a “multiplicative” form ~(z) f(u) for a piecewise smooth scalar coefficient v(x)
and a nonlinearity f(u) that is strictly concave, the author of [35] suggests an entropy condition
that is similar to (1.17). He also proves that the entropy condition implies uniqueness for piecewise
smooth solutions. The authors of [33] study a special case where f(u) = u(l — u) and ~y(z) is
piecewise constant with one single jump discontinuity, and they improve the result in [35] by
proving uniqueness for general L> entropy solutions. We remark that the entropy condition in
[35] is not sufficient for uniqueness of L™ solutions when the coefficient (z) is varying continuously
between the jump discontinuities. In [24] we generalize the entropy condition in [35] to large class of
strongly degenerate parabolic convection-diffusion equations with a general convection flux of the
form f(v(z),u) with a vector-valued coefficient v(z) = (y1(z),.-.,7p(z)), p > 1, being piecewise
C' (possibly varying continuously between jump discontinuities). This class of PDEs contains the
hyperbolic equations (e.g., those treated in [33, 35]) as special cases. Uniqueness and L' stability
was proved under the assumption that the flux function satisfies a so-called “crossing condition”
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as well as a technical condition regarding the existence of traces of the solution at the jump
discontinuities of «y(x) (this condition was verified in several cases). The flux associated with the
clarifier-thickener model provides an example of “crossing flux discontinuities” (see Figure 2 (d)),
which generally complicate the uniqueness analysis. For a fixed pair of parameter vectors _
(left limit) and -y, (right limit) associated with a jump in «(z), the graphs of u — f(v_,u) and
u > f(v,,u) can intersect, which means that there exist one or more “crossing points”, denoted
uy (for the clarifier-thickener model there is just one such point), such that for some u < u, < v,

(f('y_,u) - f(’Y-i-:u)) (f(’Y—J’U) - f(7+;’l))) < 0.

In the general situation of crossing flux discontinuities, entropy inequalities in addition to those like
(1.17) are required in order to establish uniqueness. We plan to address this issue in an upcoming
paper. Remarkably, it turns out that the clarifier-thickener flux satisfies the crossing condition
introduced in [25], which implies uniqueness without these extra conditions. Geometrically, the
crossing condition requires that either the graphs of u — f(v_,u) and u — f(v,u) do not cross,
or if they do, then the graph of v — f(v_,u) lies above the graph of u — f(v,,u) to the left of
any crossing point. In Section 2 we apply the results from [24] to the hyperbolic clarifier-thickener
model and prove uniqueness of the BV; entropy solution. However, to carry out the proof, we have
to ensure that for such a solution u(z,t), the traces u(m¥,t) at the jump points m € J exist.
This is not obvious a priori, since we do not know that d,u € M(Ily). However, from (1.17) and
the assumption u € BV;(Ily), it is not difficult to see that (see Lemma 2.2 and [24])

(1.20) 0. F(y(z),u,c) € MIlr)  VceR,
where F': G x [0,1] x R — R is the Kruzkov entropy flux function

(1.21) F(v,u,c¢) := sign(u — ¢) (f(v,u) — f(7,0))-
We introduce the function ¥ : G x [0,1] = R — the so-called singular mapping — defined by

(1.22) Uy, u) = / | fulrw) du,

which is closely related to the Kruzkov entropy flux F(v,u,c). In fact, this close relationship
makes it possible to prove that 9,%(v(z),u) € M(IIr), which implies that the left and right
traces of ¥(v(x),u) at any point z exist for a.e. t € (0,7T). The same statement is also valid for
the argument u itself, since the singular mapping is invertible with respect to u with a continuous
inverse ¥~1(~,-). In particular, the left and right traces of u at the jump points m € J exist.
The detailed arguments can be found in Section 2. We refer to the introductory part of [24] for
a review of the relevant literature dealing with the uniqueness issue for conservation laws (and
related equations) with discontinuous coefficients.

1.5. Numerical scheme and existence. In Section 3 we analyze a simple upwind difference
scheme first proposed, but not analyzed, in the “engineering” paper [5]. The scheme is simple
since it is given by an explicit marching formula and the flux parameters vy(z) = (y!(z),v*(z))
are discretized on a spatial mesh that is staggered with respect to that of the conserved variable u,
which makes it possible to use the scalar Engquist-Osher numerical flux function [18]. In particular,
it should be compared with the complicated (but accurate) front tracking algorithm in [5], which
uses an exact 2 x 2 Riemann solver. Some numerical experiments with the difference scheme can be
found in Section 4. Again due to the presence of discontinuities in the flux parameters, it is difficult
to establish compactness of approximate solution sequences by bounding the total variation of
the difference approximations {u®}aso (with A being a collective symbol for the discretization
parameters involved). To circumvent this analytical difficulty, we use again the above singular
mapping ¥(vy(z),-) and a discrete (cell) entropy inequality satisfied by the difference scheme to
prove instead that the total variation of the transformed variable z2 := ¥(y(zx),u”) can be
bounded uniformly in A. This establishes strong L' compactness of {z*}as¢ and, since ¥(~,-)
is invertible with continuous inverse, also of {uA} A>o- Finally, it is not hard to prove that any
strongly converging limit of {u®}aso is a BV; entropy solution. This convergence result implies
immediately the existence of a BV; entropy solution to the clarifier-thickener model. Moreover,
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thanks to the uniqueness result, the whole sequence {u®}aso (not just a subsequence) converges.
The convergence proof, which is given in Section 3, follows along the lines of the ones given in
[23, 35, 36] for some simpler problems. The difficulty in obtaining total variation bounds, and
thereby convergence proofs, for approximate solutions to conservation laws (and related PDEs)
with discontinuous coefficients is well known by know, as is the singular mapping technique used
herein to circumvent this technical problem. We refer to the introductory parts of [22, 23] for a
review of the relevant literature. The convergence proof given herein is extended to vessels with
varying cross-sectional area in [7]. Also, with completely different techniques, a relaxation scheme
for the clarifier-thickener model is proposed and analyzed in [4].

2. UNIQUENESS OF BV; ENTROPY SOLUTION

We establish here for a BV; entropy solution the existence of strong traces from the left and
right at each jump of 4(x). This property is required in the uniqueness proof given later. For
this purpose, we employ the singular mapping ¥ defined in (1.22), which is closely related to the
Kruzkov entropy flux F' defined in (1.21). We start by establishing some elementary properties of
the singular mapping P.

Lemma 2.1. The singular mapping ¥ : G x [0,1] — R defined in (1.22) is Lipschitz continuous.
Specifically, for ¥ = (Y,7%) € G, v = (v4,7?) € G and u,v € [0,1], we have

(2.1) @ (v, u)| <[l full;

(2.2) [T (y,u) = ¥(v,0)| < | fulllu =],

(2:3)  [CF,u) = C(y,u)| < [F' = +INF* = 2] < max{L, I} ([7* =]+ 7% =) -
In addition, u — U (vy,u) is strictly increasing for each fized vector v € G.

Proof. Inequality (2.2) follows readily from the definition of ¥. Setting v = 0 in (2.2), and then
recalling that u € [0, 1], we obtain (2.1). To establish (2.3), we note that

9 F,u) — B(y,u)| = / fulFw )|dw—/0u|fu(7,w)|dw‘

(2.4) < / | £uly ) — Fulrsw)| dw
0
s/ |fm1ﬁ2,w)—fmlﬁz,wndw+/ Fu/ 52, 0) = fulr' 7 w)]| du.
0 0

Inequality (2.3) now follows from

Ofs _, O _y

! ) 2 :
The monotonicity property is a simple consequence of the fact that u — f, (v, «) has only finitely
many zeros. O

Lemma 2.2. Let u be a BV; entropy solution of (1.6), and consider the transformed function
2(z,t) == U (y(z),u(z,t)).

Then fOT TV (2(-,t)) dt < C for some finite constant C > 0. In other words, 8,z € M(Il7).

Proof. As in [24], from the entropy inequality (1.17), the assumption d;u € M(Il7) and the fact

that the second integral term in (1.17) is bounded by a constant times ||¢|| .« ., it follows that
(1.20) holds. Consequently,

T
(2.5) / TV(F(y(-),u(-t),¢)) dt < o, Ve e R

0
Let TV(z(-,t)|z) denote the spatial variation of 22(-,¢") measured over the interval Z. From
F(v,u,0) = qru = —¥(v,u) for £ < —1 we conclude that fOT TV (2(-,1)|{z]2<—1}) dt < 0. In a
similar way we derive fOT TV (2(-, )| (2] 2>1}) dt < o0.
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We now set out to show that

T
(2.6) /0 TV(Z(-,t){z|0<z<1}) < 0.
To this end, recall that for z € (0,1), v = (¢r,0), and
F(v,u) = qru + b(u) + (qr. — gr)ur =: f(u) + (qr. — gr)ur,

/|f |dw—/ |gr + V' (w)| dw,
F(y,u,¢) = sign(u — ¢)(f(u) = £(c)).

Due to the assumptions on gg and the form of b(u), the function f has at most two extrema for

€ (0,1), which we denote by u} and u3. If gg is chosen such that there are exactly two extrema,
then we assume that u] < u3. It is clear that f is strictly monotone on intervals not containing
extrema. In the case where f has no extremum for u € (0, 1), f is strictly increasing on (0,1), and
T(v,u) = f(u) = F(,u,0). In this case

2(,t) = ¥(y(2), u(@, 1)) = F(v(2), u(z,1),0),
and so we have (2.6), as a consequence of (2.5) with ¢ = 0. In the case of a single extremum u7,
it must be a maximum, and it is not hard to check that in this case

lIJ(77u) = f(uf) - F(’Yauaui)a
and thus (2.6) follows from (2.5) with ¢ = u}. Finally, if there are two extrema u} < w3, then

w} (u3) must be a maximum (minimum) and the function f is strictly increasing on the open
intervals (0,u}) and (u3,1), and strictly decreasing on (u},u3). In this case we use the identity

lI/("Y,U) = F(’Y,U,O) - F(’Yﬂ“;”{) + F(’)’,U,U;).
It is now evident that in this situation (2.6) follows from using (2.5) successively with ¢ = 0,
¢ =uj, and ¢ = u3.
A similar argument, which we omit, establishes that

T
/0 TV (2(,t) (2] - 1<a<0}) < 00.

At this point, we have obtained bounds for fOT TV(z(-,t)|z) dt on each of the open intervals
7= (-00,-1),Z=(-1,0),Z = (0,1), and Z = (1,00). Any contribution to the total variation
not yet accounted for is produced by jumps at the boundaries between these intervals. But such a
contribution is bounded in magnitude since ¥ is bounded for u € [0,1]. This concludes the proof
of the lemma. |

Remark 2.1. Although a BV; entropy solution u(z,t) does not belong to BV (Il), Lemma 2.2
implies that the transformed function z(z,t) does.

We shall need the following technical lemma, whose proof is standard and therefore omitted.
Lemma 2.3. If W = W(z,t) € L*(Ilr) and 3, W € M(Ilr), then, for a.e. t € (0,T), the
following limits exist for any xo € R:

W(zoF,t) := esslim W(z, t).

T—>ToF

Moreover, t = W (zoF,t) € L*(0,T). We call W(xo—,t) and W (xo+,t) the left and right traces
of u(-,t) at x = xo, respectively.

Lemma 2.4. Let u be a BV; entropy solution of (1.6). At each of the jumps in ~(zx), for
a.e. t € (0,T), the function u(-,t) has strong traces from the left and right, i.e., the following
limits exist for a.e. t € (0,T):

u(m—,t) := esslimu(z,t), u(m+,t) := esslimu(z, t), meJ.
ztm zlm
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f(v_,e) < flvg,0) fly_,0) > flvy,0)
u_ <c<uy | flyp,ug) < flrp,0) | flao,u) < fy_,0)
up <c<u | flyo,u) > flv_,0) f(7+,U+)2f(7+,)

TABLE 1. Entropy jump conditions.

Proof. Fix a time t € (0,T) such that [2(,¢)|gy(®) < co0. From Lemma 2.3, we know that
x — z(z,t) has right and left spatial limits at each z € R, in particular at each of the jumps in ~.
Now taking the inverse of ¥ with respect to the second variable, we recover u(z,t):

w(z,t) = ¥ (v(2), 2(z, 1)) .
Since ¥ and its inverse are continuous, the left and right spatial limits of the function z(-,t)
transform to left and right spatial limits of u(-, ), i.e.,

u(mE,t) = " (y(m+), z2(m+, t).
O

Let u, v be two BV; entropy solutions. When there is no danger of misunderstanding, we employ
the simplifying notation (suppressing the m-dependence)
ur =ux(t) = u(mTF,t), vy =v(t) =v(mTF,t),
T = (v3:73) = v(mF) = (v (mF),v*(mF)),
for m € J and a.e. t € (0,T). Lemma 2.4 tells us that limits on the first line in (2.7) exist.

We next state (entropy) jump conditions (induced by the discontinuities in 4) implied by the

Kruzkov-type entropy condition (1.17). These (entropy) jump conditions constitute the crux of
the uniqueness proof.

2.7)

Lemma 2.5. Let u be a BV; entropy solution in the sense of Definition 1.1. Fix one of the jumps
in vy, located at © = m with m € J. Then the following Rankine-Hugoniot condition holds for
a.e. t € (0,T):

(2.8) frpuse®) = f(v-,u_(1).
Moreover, the following entropy jump condition holds for a.e. t € (0,T) for which u_(t) # uy(t):
(29) F(’Y+,U+(t),6) _F(7—7u—(t);c) S |f(’7+7c)_f('7—ac)|7 VCERa

where F is the Kruzkov entropy fluz function defined in (1.21).
Finally, the appropriate inequality in Table 1 holds for all ¢ between u_ and u .

Proof. Equipped with Lemma 2.4, we may follow [24] for the proof. d

As mentioned in Section 1, the clarifier-thickener flux satisfies a certain crossing condition
introduced in [25], which is important for proving uniqueness. Let us now recall this condition.

Definition 2.1 (Crossing condition). For any jump in v with associated left and right limits
(v_, ’y+), we say that the crossing condition holds, if for any states u and v, the following inequal-
ities are valid:

(2.10) frpuw) = f(vo,u) <O < fyy,0) — f(vo,v) = u <o
A geometrical interpretation of the crossing condition has been given in Section 1.

Lemma 2.6. The crossing condition is satisfied at each jump m € J for the clarifier-thickener
model stated in Section 1.

Proof. For the discontinuity in 4 at = —1, we have (1.11), and thus, in light of b(-) > 0
f(v_,) < f(v4,-), ie., there is no crossing in this case. Similarly, for the discontinuity in ~(z)
at ¢ = 1, we have (1.12). There is no crossing in this case either, since f(v_,-) > f(vy,)-
Finally, for = 0, we have (1.13) and setting f(v_,u) = f(v,,u) gives a unique crossing point
at uy = up. In fact, for x = 0 we have f(v_,u) — f(v,,u) = (qu — qr)(u — ur), which shows that
flv_,u) > f(v4,u) for u < u,. This satisfies our crossing requirement. O
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We are now ready to prove that entropy solutions are L' stable and hence unique.

Theorem 2.1 (L! stability and uniqueness). Let u and v be two BV; entropy solutions in the
sense of Definition 1.1 of the initial value problem (1.6) with initial data ug and vy, respectively.
Then, for a.e. t € (0,T),

/|u(a:,t) —v(w,t)| dzx < / |u0(a:) - ’U(](.'E)| dz.
R R
In particular, there exists at most one BV entropy solution of the clarifier-thickener model (1.6).

Proof. We only sketch the proof. Following [24], we can prove for any 0 < ¢ € D(Ilr)

(2.11) =[] (1u=vlows + sientu = 0)(fx@),0) = £3(),0)2.0) e do < E.
where
T r=m-+
1) E= [ 3 [senu—o)(fr@)0) = r(@)0)] T dlm )
meJ

where the notation []2Z=71 indicates the limit from the right minus the limit from the left at

z =m, m € J. Recall that Lemma 2.4 ensures the existence of these limits.
For almost every ¢t € (0,7T), the contribution to E at the jump z = m is

T=m-+

(2.13) 8= [sign(u—0)(f(v(@)w) — f(W@))| T, med.

r=m—

Let us fix m € J and t € (0,T), and use the notation (2.7). Then

S = sign(uy — vi) (F (V4 us) = F(v4,04)) —sign(u —v ) (F(v_,u) = Fv_,v)).
Our goal at this point is to show that S < 0, which implies that £ < 0 holds since m and ¢ are
arbitrary. It is then standard to conclude from (2.11) that the theorem holds, see [24].
First consider the situation where uy = vy and u_ =wv_. It is clear that then S = 0. Suppose
now that only one of uy = vy, u— =v_ holds, say uy+ = v4. In that case

S = —sign(u_ —v_)(f(v_,u-) = f(v_,v-)),
and the quantity on the right vanishes due to the Rankine-Hugoniot condition. Now assume that
uy Zop,u # v, Ifsign(uy —vy) = sign(u_ —v_), another application of the Rankine-Hugoniot
condition gives S = 0. So, assume that uy # vy, u_ # v_ and sign(uq — vy) # sign(u_ —v_).
Without loss of generality, take u_ > v_, uy < v4. With this assumption, the Rankine-Hugoniot
condition gives two equivalent expressions for S:

S = 2(f(")’7,1)7) - f(’Y—:u*)) = 2(f('7+,1}+) - f(’)’+,U+)).

Case I. Assume that f(v,,v_) > f(v_,v_). With the assumption that u_ > v_, uy < vy, it
is easy to check that either uy < wv_ < wu_ or v4 > uy > v— must hold. If uy <wv_ < wu_, then
setting ¢ = v_ in Table 1 gives f(y_,u—) > f(v_,v—), which implies S < 0.

Now take the case where v; > uq > v_. If there is no flux crossing between v_ and w4, then
f(vy,uq) > f(v_,uy). If there is a crossing between v_ and w4, then the crossing condition
(Definition 2.1) forces v— to be on the right side. Since uy > v_, uy must also be to the right of
the crossing point. Again, f(v,,uy) > f(v_,u4), and so in either case, by Table 1 (with ¢ = u,),
there holds f(v,,u4) > f(v4,vy), which yields S <0.

Case II. Assume that f(v,,v-) < f(y_,v—). It follows from the assumption v_ < u_,
uy < vy that either uy < vy < u_ or wv_ < u_ < vy holds. First take the case where
uy < vy < u_. If there is no flux crossing between vy and v_, then f(v,,vy) < f(v_,v4),
and so Table 1 (with ¢ = vy) gives f(v,,uy) > f(v,,v4), ie.,, S < 0. If there is a crossing
between v and v_, then v_ lies to the left and vy lies to the right of the crossing point, thanks
to the crossing condition. Table 1 implies that the horizontal line connecting (v_, f(v_,v_)) with
(vy, F(74,v4)) lies below the crossing (uy, f(7,uy)). Since uy <v_ <wy <w_, the horizontal
line connecting (u, f(7v,4,u4)) to (u—_, f(v_,u_)) lies above the crossing, by Table 1 again. In
particular, f(y_,u_) > f(v_,v_), which elucidates that S < 0 holds in this case.
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Now consider the case where v < u_ < wy. If there is no crossing between u_ and v_, it
follows that f(v,,u—) < f(v_,u—), and so by Table 1 (with ¢ = u_), f(v_,u-) > f(v_,v-),
ie., S<0.

If there is a flux crossing between u_ and v_, then due to the crossing condition, u_ is on the
right side of the crossing point, and v_ is on the left side. If uy is on the right side of the crossing
point, then f(v ,uy) > f(v_,uq) and v— < ugp < vy. Then S < 0, since by Table 1 (with
c=uy), f(v4,ug) > f(v4,v4). If ug is on the left side of the crossing point, then uy < u_,
and so the horizontal line connecting (uy, f(v,,u4)) to (u—, f(v_,u_)) lies above the crossing.
At the same time, the horizontal line connecting (v_, f(v_,v-)) to (v4, f(7v,,v4)) lies below the
crossing. Thus S < 0, and the proof of Case II is complete. |

3. CONVERGENCE OF THE DIFFERENCE SCHEME

In this section we present and prove convergence of a simple upwind difference scheme for
generating approximate solutions to the clarifier thickener model. As a corollary, we obtain the
existence of a BV} entropy solution to this model.

We begin the definition of the difference scheme by discretizing the spatial domain R into cells
Ij :=[zj_1,2j11), j € L, where z, = kAz for k = 0,45, +1,+3,.... Similarly, the time interval
(0,T) is is discretized via t, = nAt for n = 0,...,N, where N = |T/At]| + 1, which results in
the time strips I"™ := [tn,tn41), n = 0,..., N — 1. Here Az > 0 and At > 0 denote the spatial
and temporal discretization parameters, respectively. The discretization parameters are chosen so
that the following CFL condition holds:

1 At

.1 ( —qL, / ) < -, = —

(3.1) A(max{—qr,qr} + [I'll ) < 5 A=
When sending A | 0 we will do so with the ratio A kept constant. Let x;(z) and x"(t) be the
characteristic functions for the intervals I; and I", respectively. Define x}(z,t) = x;(z)x"(t)

to be the characteristic function for the rectangle R} := I; x I". We denote by U} the finite
difference approximation of u(jAz,nAt).
The initial data {U]‘-)} for the difference scheme are discretized by setting

1 Ti+3 )
(3.2) U]Q = A_a:/m._l uo(z) dz, JEZL,

while the discretization of v(x) is staggered with respect to that of u:

1 Tj+1 )
(3.3) Vipi = s /w]- ¥(z) dz, jEL.
Observe that due to the averaging process, v, 1 isno longer restricted to a discrete set of points,
but may lie anywhere on the set G.

By staggering the discretizations of u and « we are able to construct our scheme using a purely
scalar numerical flux. We thus avoid having to deal with the 2 x 2 Riemann problems (as in
[3]) that arise when the discretizations are aligned. The result is that our algorithm is simple to
implement. Indeed, we compute {U]'} by the following explicit difference scheme:

(34 U3 = U7 = M(h(04,U70,UF) = oy U UF) ),

for j € Zand n = 0,...,N — 2. Here the numerical flux h(v,v,u) is the Engquist-Osher (EO
henceforth) numerical flux [18]

(35) o) = 5 (Fv) + 7)) = 5 [ 1fulev, )l

The EO numerical flux is consistent with the actual flux in the sense that h(vy,u,u) = f(v,u).
In addition, for fixed =, h(«,v,u) is a two-point monotone flux, meaning that it is nonincreasing
with respect to v, and nondecreasing with respect to u. Due to the regularity assumptions on the
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flux f, the numerical flux h is Lipschitz continuous with respect to each of its arguments, and in
fact satisfies

(3.6) fo (0,0) = hy(v,0,u) <0< hy(y,0,u) = fif (v,u),
where we use the notation

fu_(’Y:u) = min{oa fu(77 u)}; fzj_(’)’au) = max{O, fu(77 u)}

for the negative and positive parts of f,. Thus, whenever the flux u +— f(v,u) is C!, the numerical
flux is also C! as a function of the conserved variables 4 and v. The following bound on the
magnitude of the numerical flux is easily checked:

1
Ikl = mas{ [B(y, v, |7 € G, v, w e (0,11} < Il + S Full

From formula (3.6) it is clear that || f,|| is a Lipschitz constant for the numerical flux h with respect
to the conserved variables v and v.

With our choice of the EO flux (3.5), the resulting algorithm is a so-called upwind scheme, i.e.,
the differencing of the flux is biased in the direction of incoming waves. This allows resolving shocks
without excessive smearing. The choice of the EO flux is also motivated by its close functional
relationship to the Kruzkov entropy flux (1.21) and the nonlinear singular mapping (1.22). These
relationships are used to prove compactness for the sequence of numerical approximations {uA}.

The difference solution {U]'} is extended to all of II7 by defining

N-1
(37) uA(a:,t) = Z ZX?(:E,t)UJn, (Z‘,t) € llr,

n=0 jeZ
where A = At = AAgz. Similarly, the discrete parameter vector {v; +%} is extended to all of R by
defining

’YA('Z.) = ZXJ_;_%(iL')"Yﬁ%; T € R:
JEZ.

where x4 is the characteristic function for the interval I;, 1 = [j,zj41). It is clear that we
have TV(y2) = TV(y) < oco.

The formula (3.4) defines U, }‘“ as a function of the form

(38) U;H_l = G( }1+17U}L7U;L—157j+%57j—%)'
We recall that a difference scheme such as (3.4) is monotone [12, 20] if
(3.9) Up<Vi VjeZ = UM <V vjez,

where V}"H is given by (3.8) with U™ replaced by V.. We now establish properties of the difference
solutions that follow readily from the monotonicity of the scheme.

To simplify the presentation in the following, we try to avoid stating for which indices j and n
a statement holds, whenever (the authors feel that) this should be be clear from the context.

Lemma 3.1. The computed solution U} belongs to the interval [0,1]. Moreover, the difference
scheme (3.4) is monotone.

Proof. With U J’-”'l given by the function G in (3.8), the partial derivatives with respect to the
conserved variables are

ounrt! ount!
J = — — L1 n J = + .1 n
aur,, = -y (7J+§’ J+1) >0, auT, Afu (7J—§’UJ—1) >0,
nt1
e = M b ) =My 0))

Thus U j”+1 is a nondecreasing function of the conserved variables at the lower time level if

L4 My (Ve UF) = M (-4, UF) > 0.
This will hold if U € [0, 1] for all j and the CFL condition (3.1) is satisfied, see (1.9).
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Now consider the initial data Vjo =0, WJ‘.) = 1. It is easy to check that after one time step we
have

J 0 for j # 0, J 0 for j # 0.

From the CFL condition (3.1), 0 < AM(gr —q1.) < 1, and hence V}' € [0,1] and W € [0,1] for all j.
In fact, by monotonicity we have 0 < le < le <1 for all j. Continuing this way by induction,
at the nth time step we have 0 < V" < W <1 for all j. Now take any initial data U 0 with
U ](-] € [0,1] for all j. The CFL condition is satisfied, which guarantees monotonicity of the time
advance operator G, and therefore 0 < V}' < Uj < W} < 1 for all j. Continuing this way by
induction, we obtain 0 < V* <UP < W <1 for all j. This completes the proof. O

Vi {A(QR —quur forj=0, 0 {1 —AMgr —qr)(1 —urp) for j =0,

To simplify the presentation in the following, we sometimes use A, and A _ to designate the
difference operators in the z direction, e.g.,

A+f('Yj’an) = f(’7j+1, Jn-i-l) - f(’Yj’an) = A—f(7j+1’an+1)-
Lemma 3.2. There exists a constant C, independent of A and n, such that

AmZ|U;+1 —-Up| < A$Z|Uj1 —-Uj| < CAt
J J

Proof. Starting from the marching formula (3.4), we can express the time differences as follows:
1 -1 -1 -1
Ut = Uf = Uf = U™ = AA- (h Vi+ 1 Uk, Uf') = h(v4 1, U UF ))
n—3 n—3 n —1
= (1=2Cl 7 +ABI_f ) (U — Ui Y)

B (U7 - U + 06 (07 -0,

where we define

1 1
= ;:/ £ (Vg 0UTy + (L= O)UTS) d6 <0,
0

L 1
Crop = /0 (1,007 + (1= OU) d6 > 0.

Due to the CFL condition (3.1),

>0.

(3.10) 1= AC} £ +AB}~

M\»—lml’_‘

Thus, we conclude that
1

+1 n—3 1
a1 Ut~ U7 < (1-ACTf + 2B )y~ U
n—3%1rm n—1 n—3|rrn _pn—1
= ABLE|Uf = U |+ AT UL — U |-
Summing this inequality over j and multiplying by Az gives

AmZ|Uj"“ -UP < AmZ|Uj” -ur.
J J

This inequality leads to
Azy |UH = U <Az |UF - UJ).
J J

We use the triangle inequality to estimate this last sum:

(3.12) SNUF U7 =AY |A h(vp 1, U, U | <MD+ B + Is),
J J
where I, I and I3 are defined in the sequel. The first term can be estimated as follows:
L= |Af(v(=;), UD)| < TV(f(7,u0)) < |1 £ull TV (uo).

J
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The second term in (3.12) can be estimated by taking into account that || f,|| is a Lipschitz constant
for the numerical flux h(+v,v,u) with respect to the variables v and u:

I = Z|A_h(7j+1,U+1,UO) A—h(71+%’Uj0’UJQ)|
J
<20 £ull Y1ALUD| < 20 £ull TV (o).
J
Finally, the third term in (3.12) is estimated by using the Lipschitz continuity of f with respect
to v provided by (1.10):

I —ZIA F(43:U7) = A f (v(w), UD)| <2 |F (7544, U7) = f((23), U7))]
J

< 2Z(|7}+5 =M @)|+ Bl = 72@5)]) = O(TV()).
J

Combining these estimates, we obtain

S|Uk = U] < A(CrTV (o) + C2TV (),
J
which completes the proof. O

Lemma 3.3. There exists a constant C, independent of A and n, such that

(3.13) ||u < Ctp + ||u(-,0

") 1 gy < Mierwy

Proof. Using the triangle inequality and the result of Lemma 3.2 yields
0 ) oy = Ao D_|UT | < Az D JJUF = UF T 4+ Aw Y U7
J J J
< Ao Y|Ub U2+ Aw Y[
J J
Proceeding by induction, we obtain

a1 e <nAmZ|U1 U°|+AxZ|U°

By Lemma 3.2, nAz Y. |U} — U?| < nCAt < Ct,. Since Az U0 < [, |uo(x)| dz, the proof of
ilYi — Y R
(3.13) is complete. 0

Let 22(2,t) := ¥(y(z),u”(x,t)), where ¥ is defined in (1.22). To prove that the difference
scheme converges, we establish compactness for the transformed quantity z*, the critical ingredient
being a bound on its total variation. We then derive compactness for u® by appealing to the
monotonicity and continuity of .

Lemma 3.4. There exist two constants C; and Cs, independent of A and n, such that
(3.14) HZA ||L°° (R) = < G,

(3.15) |22 ottty — 22( < Co At

) my

Proof. The bound (3.14) follows from the fact that u® € [0, 1] and the estimate (2.1), while (3.15)
is an immediate consequence of Lemma 3.2 and inequality (2.2). O

In the following series of lemmas we establish that z® has bounded variation in each of the
open intervals where = is constant. Lemma 3.5 establishes that TV (zA(-, t)) is finite in each of the
intervals (—oo, —1) and (1, 00), where the flux is linear. Lemma 3.10 proves that TV (22(-,1)) is
finite in each of the intervals (—1,0) and (0, 1), where the flux is nonlinear. To achieve a variation
bound over the entire real line, we must account for the jumps in « at the interfaces of these



16 BURGER, KARLSEN, RISEBRO, AND TOWERS
intervals. Tt is not difficult to see that these jumps can be controlled. In fact, let [z2(m,t")]
denote the jump in 22(-,#") at x = m. Observe that
TV(z2(,t") < TV (22 (") (o] a<—13) + [22(=1,8)] + TV (22, ™) | (0] —1<<0})
+ [ZA(Oatn)] +TV(ZA('7tn)|{w\0<w<1}) + [ZA(Ltn)] +T\/v(zA(th)'{zlw>1})-
Since each of the jumps is uniformly bounded, i.e.,
[%(@,t")] < 2max || <20lfull,  z €,

it is clear that a uniform variation bound over the entire spatial domain R follows from the separate
bounds for the open intervals where « is constant.

Lemma 3.5. There exist two constants Cy and Cs, independent of A and n, such that

(3.16) TV (22, t"){zle<—1}) < C1, TV (22, t")|{glz>1}) < Ca.
Proof. Let z; be the mesh point with —1 € (x5 — Az/2,2; + Az/2], and observe that
(3.17) TV (22 (") [(aloc—1y) < D |@wUl — quUp|-

Jj<J-1

Rearranging the relationship
Urtt = U7 = MquUfyy —Up),  forj<J—1,

gives
(318) (U —auU}) =
For j = J — 1 we obtain
Ut = Uy = A(h(vuy UL USL) — Uy

= Uy = MaUF = aUjo) + M@UF = h(vs_3,U3,U5 ).
Rearranging (3.19) yields

uptt-up),  forj<J-1.

> =

(3.19)

1
(3200 —(@UF—aUf ) = 3 (U = U7) = (wUf —h(v,3,U5,U5 ).
Thus, combining (3.18) and (3.20), summing over j, and using the triangle inequality gives
1
S lalfn —alP| <5 3 [0 - U7 + |l — v,y US US|
j<J-1 j<J—1
1
< YNU - U |+ @l — h(vsy U3, US|
JEZ
1
< ;ZZW“ —UP[ + (lqul + [1]]) = O(1).
je

In view of the relationship (3.17) and Lemma, 3.2, the proof of the first bound in (3.16) is complete.
The proof of the second bound in (3.16) is similar, since the flux is also linear for z > 1. O

We still must prove that TV (z2) is finite when measured over the intervals (—1,0) and (0, 1).
The focus will be on carrying out the proof for the interval (0,1); the proof for (—1,0) is entirely
analogous. We start with Lemma 3.6, which is a straightforward application of the discrete entropy
flux for monotone schemes derived by Crandall and Majda [12].

Lemma 3.6. Let c € R and fix v € R%. With V(u) := |u — |, and W; computed using the EO
numerical fluz (3.5) via

(321) WJ = UJ - /\A+h(77 Uj: Uj—1)7
the following discrete entropy inequality holds:
(3:22) V(W;) <V({U;) = AALH(%,Uj, Uj-y).
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The numerical entropy flur H is defined by (suppressing the ¢ dependency)
H(v,U;,U;—1) = h(v,U; Ve, Uj—1 Ve) — h(v,U; Ae,Uj—1 Ac)

1 1 (Uit |
= 5 (F(’% Uj,C) + F(77 Uj+1,C)) - 5/ Slgn(w - C)|fu(’)’,UJ)| dw:
Uj
where F is the Kruzkov entropy fluz function (1.21) and we use the notation a V b = max{a, b},
a Ab=min{a,b}.

The following lemma, whose proof we omit, is a slightly generalized version of Lemma 3.4 of
[36]. We will need the following notation:
1 forw >e¢, 0 for w > ¢,
X+(w;c) == X-(w;c) ==

0 forw<e, 1 forw < ec.

Lemma 3.7. Fiz c € R and . For the EO numerical flux (3.5) and its associated numerical en-
tropy fluz (3.23) (which is consistent with the Kruzkov entropy fluz function (1.21)), the following
identities hold:

1
5 (AH (U U + Ash(y,U7, Uy

(3.23) U, vy
= / X+(w; o) fy (v, w) dw + / X+ (w; €) fif (, w) duw,
ur ur,
1 n n n n
) (A+H(’7, Uj an—1) - A-i-h(’)’a Uj an—l))

(324) UJ+1 U;z
_ / X (w3€) f (y,w) dw — / X (w3 ©) f (,w) du.

up ur_,

Let vg = (gr,1), i.e, let vy denote the value that « takes in the interval (0,1). Let J~
be the largest index j such that z; — Az/2 < 0, and let J* be the smallest index j such that
zj+Ax/2>1. Thus0€ I;-,1€I;+,and [0,1] C [z,- — Ax/2,z,;+ + Az/2].

Lemma 3.8. Let V and H be the functions defined in Lemma 3.6. Then the following relationships
hold for J— < j < Jt:

(3.25) UMt =UP — MA h(vg, UL, U, ) + CF,

(3.26) V(U <V(U}) — AALH (g, U Uf,) + D}, VeeR

The quantities C7 and D} are bounded independently of n and A. In fact, C7 = D} =0 for
J +2<j<Jt-2.

Proof. For J~—+2 < j < Jt—2, we have Yj+1 =7j—1 = YR, hence (3.25) holds with the CT = 0.
For j € {J~ +1,J7,J" —1,J%} we get a contribution to the term C7 from the jump in ~:

C} = _)‘(h(7j+%’ A UT) = h(’YRan"Jrlan))
+/\<h(7]—%JU]n7U‘7n;l) - h(’YR;UJnJU]nfl))

It is clear that each of the C7' terms is uniformly bounded in n and A, since |C}| < 4A|[h|[. To
prove (3.26) we use the same argument, along with the easily derived bound

1
1 2= max{|H (y,0,0)| |y € G, v, u € 0.1} <1If1l+ 51l

This results in the uniform bound |D7| < 4A||H|]. O
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Lemma 3.9. Fiz c € R and v € R?. The following inequalities are valid for J— < j < J+:
vy

Ui - + 1 n n+1 n
(3:27) o x(wio)fy (v, w) dw + o X+ (w; ) fof (7, w) dw < X(Uj —- UMY, + R},

UJ?E+1 . _ U-;" X + -1 n n+1 n
(328) - U X*(wa c)fu (77 UJ) dw — Un X*(w7 C)fu (’Yaw) dw S T(U] - U] )_ + Sj -

The quantities R} and S} are bounded independently of n and A. In fact, R? = ST = 0 for
J-+2<j<Jt -2

Proof. Rearranging (3.26) and dividing by A results in

. 1
ALH (4, U, U4 < 5 (V(UF) = V(U7) + 1 DF

1, n L pn

(3.29) = 5 ([Up —e| = U7+ —ef) + 5D

1 n+1 1
§X|U}‘—Uj |+XD;‘.
Adding (3.29) to the following rearrangement of (3.25):

(3.30) Aph(yr, U5 Ully) = 5 (UF = U*) + $CF,
dividing by two, then applying (3.23) yields
Uia Uy
| s du s [ i) ff () do
1 n n+1 1 n n
<5 (OF -U) | + 55 (CF + D).
Similarly, subtracting (3.30) from (3.29), dividing by two, then applying (3.24) gives
Uiy h
- [ o rwdw— [ T o o du
-1 n n+1 1 n n
< (UF =07 _+ 55 (D} = C7).

It is clear from these last two inequalities that

1 1
R} = ﬁ(C;’+D§’), S} = ﬁ(D?—C]’-l),
and so the uniform bounds on S} and R are a consequence of the bounds on C7' and D7. O

Lemma 3.10. There exist two constants, independent of A and n, such that
TV(22(,t"){a]-1<a<0}) < C1,  TV(Z2(,t")|(olo<o<1}) < Co-

Proof. We prove the second assertion, i.e., TV(zA(-,t")|{$|0<x<1}) < 00, and omit the proof of
the first, which is similar. When z € (0,1), (v!(z),7*(z)) = (¢r,1) = g, and by assumption
u — f(vg,u) has at most two extrema for u € (0,1). For the sake of argument, we will assume
the most complicated case, namely that there are actually two extrema, and not less. It will
become clear that a simplified version of the following proof will suffice if there are fewer than
two. So assume that there is one maximum located at u} € (0,1), and one minimum located at
us € (0,1), with ui < uj. The flux u — f(yg,u) is strictly monotone away from these critical
points. Let uf := 0, u} := 1 and for v = 0,1,2, let x”(u) be the characteristic function of the
interval [u},u; ). Define

u
(b”(’YRau) ::/ XV(’U))|fu(")’R,’U))|d’U), V:071327
0
so that ¥ (g, ) has the decomposition
W(’YRa“) = ¢0(7R7 U) + ¢1 (7R7 u) + ¢2 (7R7 u)
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In inequality (3.28), take ¢ = uj, so that u — f(vg,u) is strictly increasing on (0,u}). Then
(3.28) becomes

= [ x—(wud) £ (rmow) dw < = (UF = UPH) _ + 57

. j
ur_,

u? 1

Since fif(yg,u) = |fu(*yR7u)| for u € (0,u}), we get

n

ur U
/ X—(w;u}) fif (vg, w) dw = /U X’ ()| fu(vr, w)|dw = ¢° (v, U}') — ¢° (Vr, Uy )

n
i—1

Thus, the following inequality holds:

1
8 (v, Ujr) = 8 (9w, Up) < 5 [U7H = U7 + 57

Since the right side of this inequality is nonnegative, the following inequality also holds:
1
(3.31) —(#° (o Up) = 8y Ujr) ) < 51U - U]+ 85

Summing (3.31) over j and invoking Lemma 3.9 gives

Jt Jt
1
- (w0 - Pl ) < 3 (5l -upllsy)
j=J- j=J-
1
<Y MU = UP| 4 185 4 S5 La | + 13- ] + 85— = O)

JEZ
Since ¢° is bounded uniformly in A and n, it follows from this bound on the negative variation
that ¢° also has uniformly bounded total variation:

Z\aﬁ (v, U7) = 6" (v, V) | = 01

j=J-
from which we conclude that
(332) Tv(d’o (’YRauA(atn))|{z|0<ac<l}) = 0(1)

Now take ¢ = u} to derive a similar bound on the total variation of ¢'. Since f is increasing
on (ug,u}) and decreasing on (u},u}), (3.28) this time becomes

' (’YR7 an+1) —¢' (’YPu an) - (¢0 (’YR:UJ'n) — ¢’ (’YR; an—l))
1 n (05 n
< —X(Uj -UMY)_+ 87,
from which we derive the inequality

(¢1 (’YRa ;l+1) - ¢1 (’)’IZL;UJ'"))Jr
1
< Slop = Urt 4 7]+ 6 (v UF) = 6° v, U4)

Proceeding as before, we arrive at the following bound on the positive variation of ¢!:

Jt Jt
1
S (¢ ) — 6 m 7)), < 3 (5107 -+ s ) + 29
i=J= j=J-
1
<SP - U7+ |55+ |55  + [S5] + S5 + 97 = ().
JEZ

It follows that ¢! has uniformly bounded total variation for J~ < j < J+, and thus
(3.33) TV(8' (Yr> v (")) falo<a<1y) = O(1).
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Finally, to obtain a bound on the total variation of ¢2, we take ¢ = 3 in (3.27), which gives

Uy . 1 n
/ X (w3 u3) £ (v, w) dw < + (U = Uj 1), + R},

n
Ur_,

from which it follows that

Jt Jt
1
S (#omup) - mup ), < X (Flort - vpl+ 1Ry
j=J- j=J-
1
<3O UFT = UR |+ [RGe | + [RGe | + [R3-| + | RS- | = O1).
JEZ

Thus, ¢? has uniformly bounded positive variation, and hence also uniformly bounded total vari-
ation:

(334) TV(¢2 (7RJUA(7tn))|{m|0<w<1}) = 0(1)
Recalling that

2
22t (zlo<a<ty = D 8 (YR, 4™ (5 1™)) lalo<a<t}s

v=0

we obtain the desired total variation bound

2
TV (22 (") [gajo<a<1y) < D TV(8” (YR, u™ (51) | {zl0<2<1})
v=0

and each term in this last sum is uniformly bounded, according to (3.32), (3.33), and (3.34). This
completes the proof of the variation bound for zA(-,t)|{m‘0<$<1}. O

Before we can prove our main theorem, we need a discrete entropy inequality that ensures that
the limit solution is an entropy solution. A proof of the following lemma can be found in [21] or
[23].

Lemma 3.11. Let V and H be the functions defined in Lemma 3.6. The following cell entropy
inequality holds:

(3.35) V(UMY <V(U}) = AA_Hjp 1 + AMALf (7515,
where the numerical entropy fluz Hjy1 is defined by Hjy1 = H(7j+%, i+1,Uj).

Our main theorem states that the difference scheme (3.4) converges and that there exists a BV,
solution to the clarifier-thickener model (1.6).

Theorem 3.1 (Convergence and existence). Assume that (1.7) holds. Let u® be defined by (3.7)
and the scheme (3.2), (3.3), (3.4). Let A — 0 with A constant and the CFL condition (3.1)
satisfied. Then there exists a function u such that u™ — v in LL (TI7) and boundedly a.e. in Ilr.

The limit function u is a BV, entropy solution of the clarifier-thickener model (1.6). In particular,
there exists a (unique) BV; entropy solution to (1.6).

Proof. As a consequence of the first part of Lemma 3.1 and (2.1) in Lemma 2.1, for each ¢t > 0
the sequence {22(-,1)} 5, is uniformly bounded in L®(R) N Lj,(R). Lemma 3.10 along with

loc
the comments preceding Lemma 3.5 leads to a uniform bound on TV (22(-,¢)). The following
time continuity estimate is a direct consequence of Lemma 3.2 in conjunction with the Lipschitz
continuity relationship (2.2):

HzA(-,t +7)— zA(-,t)”Ll(R) <C(|r]+A).

Here the constant C' is independent of A and ¢. By standard compactness arguments, there is

a subsequence denoted z2¢, which converges in L} .(Il7) and pointwise a.e. to some function

z € L (TI7) N L (7). Let u(z,t) = ¥~ (v(x), z(x,t)), which is well-defined a.e. in Iy since

loc
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(v, w) is strictly increasing as a function of w. The immediate goal is to show that u converges
a.e. in IIy. Suppressing the dependence on the point (x,t), we obtain

(3.36) |U(y,u®) = Uy, u)| = |2% — 2.

Thus, since z2 —) z a.e., U(v,u®) = ¥(y,u) in a.e. in II7. Since ¥(v,-) is strictly increasing,
it follows that u® — u boundedly a.e., from which convergence in L] (II7) follows. Since each
0 < u® < 1, it is clear that 0 < u < 1. To prove that u € L'(Ilt), fix X > 0, and set
¥ := (—X, X) x (0,T). Then

// wt|dtda:<// u(z,t) — u? xt|dtdx+// [u®(z,t)| dt da
5// |u(x,t)—u (x,t)|dtd:1:+// |u (x,t)|dtd;v.
nX Iir

Utilizing first Lemma 3.3 and then letting A — 0 and subsequently X — oo, we get
// lu(z,8)| dt dz <T(CT + Ju(-, 0)l| 11 x) -
Ilr

This inequality shows that v € L!(IIT). As a result of the time continuity estimate of Lemma 3.2,
and by passing to a further subsequence if necessary, u®(-,t) — u(-,t) in L' (R) for each t € (0,T)
(see, e.g., the proof of Lemma 16.8 of [34]). Next we show that u € Lip(0,7; L'(R)). Let 7 > 0,
and apply the triangle inequality:

(3.37) [uCt+7) = u( ||L1(R) < JluC,t+7) —uB (T ||L1(]R)
+ [t + 1) —ut GO gy + 6268 = ul O ey

It is a simple consequence of Lemma 3.2 that

(3.38) |u® (-t +7) — u?( < C(r + At).

Bl <
Using (3.38) and letting A — 0 in (3.37) gives the desired L' time continuity estimate for the
limit function uw. This also proves that u € BV;(Il1) as well as (1.18).

We show now that the limit solution w is a weak solution (1.19) to the initial value problem (1.6),
for which a version of the Lax-Wendroff theorem is required. Let ¢ € D(Il7). Let ¢} := ¢(z;,t")

and A} := h(’yk, Up,UT ;). We multiply the difference scheme (3.4) by ¢7 Az and then sum
by parts
" ¢Tb+1 ¢n
(3.39) —AwALY U — Ag Ach,,,—A ¢} =0.
J’ J7

For (z,t) € R} we have that

Foo A7

ol A‘f] = ¢i(z,t) + O (At + Az), D, ¢} = ;jﬂ = ¢y (z,t) + O (At + Az),
D_¢" :— A*(ﬁ?_
~¢j = 1 = $=(2,1) + O (At + Az).

This implies

n+l _ in
(3.40) AzAtY S Ut % = / / uPdyp dt dz + O(Az + At).
n j Mr
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The remaining sum in (3.39) is rewritten as

AcAt) hiy—A_¢f = AzAt) (2hj_lD_¢j + §hj+%p+¢j>
j’n

jin

1 1
= AmAtZ (if(*yj_%,Uj")D%? + §f(’yj+%,U}”)D+¢?> +E8 &8

// u?) b, dt dr + O(Az) + E2 + £,
IIr

where

Consequently,

The term in curled brackets is estimated as follows:

U; Ui
Z/Un f;(vj_%,w)dw‘sZ/U" |f;('vj-%aw)|dw‘

J i1 J i—1
|fu Vi-pw )Idw‘=Z|‘I’(vj%=U}‘)—‘I’(w%’ 1)

(3-41) < Z|‘I’ v wa‘)aU}l) — U (y(zj-1) |+Z|‘I’ Y- Uitr) = ¥ (v(@-1), Uj))|
7

+Z|lIJ(’yj_%,U;l) - (7(x1)>UJTL)|

< TV(22(,,t") + O(TV(v)).

Thus, £2 = O(Az), and a similar calculation shows that £2 = O(Az).
Collecting the bounds above produces

(3.42) / /H <uA8t¢ + f(vA,uA)aqu) dt dz = O(A).

Letting A | 0, we thus find that u is a weak solution (1.19), and moreover that we have a linear
“weak convergence rate”.

In order to establish that the weak solution u is also an entropy solution, we proceed as above,
this time multiplying the cell entropy inequality (3.35) by a nonnegative test function ¢. The
only aspect of this calculation that differs from the one just completed is the presence of the
terms |A4 f(v;_1,c)|, which act like § functions located at m € J in the limit as the mesh size
approaches zero. This results in the term

/Z|f (m+),c) = f(v(m=),c)|¢(m,?) dt

meJ

due to the jumps in 4. Considering this term, we arrive at the entropy inequality (1.17).
The proof is now completed by appealing to the uniqueness result in Theorem 2.1. |



WELL-POSEDNESS FOR CONTINUOUS SEDIMENTATION 23

———
—

=

=

——y——

——— ——

—

R
———
——————

—_—

| \ |

==

\

ikl J Iy IWMIWW

0.0 -1.0

———————
7
—

FI1GURE 3. Example 1: Numerical solution of the clarifier-thickener problem for
gr. = =1, gr = 0.6 and up = 0.7 with Az = 0.01 and A = 1/16.

t=1 t=2 t=3
1
J= Az | approx. | convergence | approx. | convergence | approx. | convergence
T LY error rate L' error rate L' error rate
10 1.004e -1 4.949e — 2 1.064e — 2

30 3.922e — 2 0.856 1.73% — 2 0.951 3.616e — 3 0.982
50 2.526e — 2 0.861 1.345e — 2 0.502 2.185e — 3 0.986
100 1.404e — 2 0.847 9.54%¢ — 3 0.494 1.012e — 3 1.110
200 9.263e¢ — 3 0.600 7.327e — 3 0.382 5.132e — 4 0.980
300 7.412e — 3 0.550 6.740e — 3 0.205 4.397e — 4 0.381
400 6.505e — 3 0.454 6.278e — 3 0.247 4.240e — 4 0.126

TABLE 2. Example 2: Approximate L' errors.

4. NUMERICAL EXAMPLES

For the examples illustrating the numerical scheme, we choose the same parameters as in
[3, 4], so that results can be compared. Moreover, it is possible to compare the simulations with
simulations performed by Diehl [16] (which refer, however, to a different Kynch batch flux density
function, and a vessel with varying cross-sectional area).

We start from a clarifier-thickener that is initially full of water by setting ug(z) = Ofor z € R. At
t = 0, we start to fill up the clarifier-thickener with feed suspension of the concentrations up = 0.7
in Example 1 and ur = 0.8 in Example 2. In both cases, the bulk flow velocities are ¢r, = —1 and
gr = 0.6. Figures 3 and 4 show the numerical results as three-dimensional plots for both examples
obtained by choosing Az := 100 and A = 1/16. Note that here max{—qr,qr} + ||V'|| = 7.75, so
the CFL condition (3.1) leads to the bound A < 1/15.5. Furthermore, observe that the visual
grid used to display the solution coincides with the computational grid in z direction, but in ¢
direction, only every 64th profile is plotted, so that in total 100 out of 6400 profiles are displayed.
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FIGURE 4. Example 2: Numerical solution of the clarifier-thickener problem for
gr. = =1, gr = 0.6 and up = 0.8 with Az = 0.01 and A = 1/16.
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The physical interpretation of these examples is as follows [3]. In both cases, the control
parameters satisfy

urQr = uF(qR — ql)S =1.6urS >1.0-¢rS =1.0- @R,

which means that in these examples, the solids feed rate upQr always exceeds the maximally
possible solids discharge rate, which is 1.0 - Qgr (the factor “1.0” stands for the maximum solids
concentration). Thus, the clarifier-thickener is overloaded and one expects that, since the settling
zone cannot handle the solids feed flux, solids pass into the clarification zone and eventually leave
the unit through the overflow level. The main qualitative difference between Examples 1 and 2 lies
in the behaviour near the feed level x = 0 for small times. For urp = 0.7, the solution consists first
of a downwards propagating wave only, while the concentration in the clarification zone initially
remains zero. For up = 0.8, we obtain a centered wave including positive and negative speeds,
and the solids propagate immediately into the clarification zone.

Furthermore, we select Example 2 for an examination of the behaviour of the scheme on a
successively refined sequence of grids. Figures 5—7 show solution profiles for discretizations Az =
1/10,1/30, 1/50 and 1/100 at three different times, compared with the reference solution calculated
with Az = 1/2400. We have also calculated approximated L! errors produced by the scheme on
a succession of grids. These errors are approximate in that they are calculated as the L! distance
to a reference, not exact, solution; furthermore we integrate over the interval [—1.1,1.1] only. The
complete error history, together with calculated convergence rates, is given in Table 2.

Figures 5-7 show two different modes of behaviour of the scheme near discontinuities. Moving
discontinuities travelling within the intervals (—1,0) and (0,1) tend to be smeared out over a
number of grid points, while the discontinuities near z = —1 and x = 0 are sharply resolved
and the jump near z = 1 is nearly sharply resolved. This contrasts with the strongly dissipative,
or even oscillatory nature of numerical solutions obtained by central differencing second-order
schemes [29] applied to the same test problem, see [2, Figure 4]. Table 2 alerts to the well-known
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FI1GURE 5. Example 2: Numerical solution of the clarifier-thickener problem for
gL = —1, gqg = 0.6 and up = 0.8. Profile for time ¢ = 1 obtained by four different
discretizations and reference solution.

fact that the observed order of convergence of a formally first-order scheme deteriorates in the
presence of discontinuities.
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