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Optimal stochastic impulse control with
delayed reaction
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Abstract

We study impulse control problems of jump diffusions with delayed
reaction. This means that there is a delay § > 0 between the time
when a decision for intervention is taken and the time when the inter-
vention is actually carried out. We show that under certain conditions
this problem can be transformed into a sequence of iterated no-delay
optimal stopping problems and there is an explicit relation between
the solutions of these two problems. The results are illustrated by an
example where the problem is to find the optimal times to increase
the production capacity of a firm, assuming that there are transaction
costs with each new order and the increase takes place ¢ time units
after the (irreversible) order has been placed.
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1 Introduction

Suppose that — if there are no interventions — the state Y (¢) € R* is described
by a stochastic differential equation driven by a Brownian motion B <t)~ e R™

and the compensated Poisson random measure N(-,-) = Ny(-,-), ..., Ny (-, )
of an m-dimensional Lévy process n(t), as follows:

(1.1)  dY(t) = b(Y (¢))dt+o (Y (t))dB(t)+ / V(Y (t),2)N(dt,dz); t>0
Y(0) =y € R

Here b : R* — R, 0 : R¥ — R¥™ and ~ : R¥ x R* — R¥™ are given
functions. We assume that B(t) and 7(t) are defined on a filtered probability
space (2, F,{F}t0, P).

An impulse control on the process Y'(+) is a double sequence

V= (71772a"';617§2a"'>

where 71 < 1 < -+ are Fy-stopping times (representing the times of inter-
vention) and (i, , ... are the corresponding intervention sizes. We assume
that (; € Z, a given set, and that

¢ = G(w) is Fr-measurable.

If the impulse control v is applied to the process Y (-) we assume that the
resulting process Y (*)(t) gets the following dynamics:

AY O () =b(Y O (2))dt+o (Y (£))dB(t)+ [ (YO (t), 2) N (dt, dz)

(1.2) T SU<Tjn

YO (r) =T(Y"N(70),G); =12,

where
''Rfx Z SR

is a given function, describing the state immediately after the time 7,4, of
the intervention, as a function of the state right before, Y (7, ), and the size
¢; of the intervention. Here

YO (7)) =Y (r55,) + AnY (7511),
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where ANY (7;41) is the (possible) jump of Y due to the jump measure N(-, -)
of n only. The performance functional associated to the impulse control

v= (1,72, ...;(1,C,...) is assumed to have the form
N

(1.3)  JY(y Ey /f t))dt + g(Y"(7s)) +ZK(Y<v>(TJf),¢j)]
j=1

where f : R¥ - R, g : R* — R and K : R¥ x Z — R are given functions,
N < 00 is the number of interventions and

(1.4) 75 = inf{t > 0; YV (t) ¢ S} (the bankruptcy time)

where S C R is a given open set (the solvency region). The functions f, g
and K represent the profit rate, terminal payoff and payoff due to interven-
tion, respectively. We interpret g(Y (*)(7,)) as 0 if 7, = oo.

We call the impulse control v admissible and write v € V if

1) B[ [ IO+ lgv© |+Z|KY<”> .G <00

The classical impulse control problem is the following:

Problem 1.1 Find ®(y) and v* € V such that

(1.6) o(y) =sup J(y) = S (y).
veY

We refer to [?] for more information about impulse control in this setting.

In many situations there is a delay (or a time lag) between the stopping
time 7 when a decision for intervention/action is taken, and the time 7 + o
when this action is carried out. Here ¢ > 0 is a constant. For example, if a
shipping company decides to order a new ship, it may take a couple of years
before the ship is actually delivered. In this situation the impulse control
gets the form

(17) U5:(Tl+577_2+57“';g17<27"‘)'
Note that if 7: Q — [0, 00| is an F-stopping time, then

(1.8) a:=7+0d:Q — [0,00]
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is an F;_s-stopping time (and hence in particular an F;-stopping time also).
Indeed, we have

{wya(w) <t} ={w;T(w)+ 6 <t} ={w;T(w) <t -0} € Fr_s.

Conversely, every F;_s-stopping time « is of the form (1.8).
We let 75 denote the set of all F;_s-stopping times a. In particular, 7 is
the set of classical F;-stopping times 7. Now define

(1.9) Vs ={vs:=(m+6,12+09,...;(,Coy .. );0:=(T1,T25 .- 5 (1, Cay - - ) EVE

For vs € Vs define

Ts+6
) ) =B [ @) g s+ )

N

+ D KE (75 +0)7).6)]

J=1

where we put 75 + 0 = oo if 75 = o0.
In this paper we study the following delayed reaction impulse control
problem:

Problem 1.2 Find ®s5(y) and vi € Vs such that

(1.11) Os(y) = sup J"(y) = IV ().

v5EVs

We are also interested in this problem under the constraint that at most
n interventions are allowed. Thus we define

(112) V" = {os= (146, 7240, . .., T +0;C1, Cor -+ Cm) € Vs m < 1}
and the n-intervention problem is:

Problem 1.3 Find 3" (y) and v; € V") such that

(1.13) M (y) = sup S (y) = S ().

Vs EV‘gn)



It is known (see e.g. [?] and [?] that in the no-delay case (6 = 0) this
n-intervention problem can be reduced to a sequence of iterated optimal
stopping problems. In Section 7?7 we will prove a similar result for the de-
layed n-intervention case under the assumption that Y'(-) is I'-homogeneous
(Definition ??). In Section ?? we consider the case with no constraints on
the number of interventions and in Section ?? we illustrate the result by
considering a specific example.

The optimal stopping version of Problem ?? can be found in [?]. A related
impulse control problem with delivery lags has been studied in [?]. Other
related papers are [?] and [?]. The recent paper [?] also deals with impulse
control with execution delay. That paper does not assume that Y'(-) is I'-
homogeneous. On the other hand, it only deals with the finite horizon and
diffusion case, and it assumes that the number of pending orders is uniformly
bounded.

None of the above mentioned papers deal with jumps, and to the best of
our knowledge our paper is the first to deal with impulse control with delayed
reaction for jump diffusions. Our proofs also work in the case when there are
no jumps. But the jumps do of course influence the value function and the
optimal strategy, as illustrated in our example in Section ?? (Theorem ?77).

2 The case with at most n interventions
We first introduce some notation:

Definition 2.1 For § > 0 let Hs denote the set of all measurable functions
h:RF — R such that EY[|h(Y (§))|] < oo for all y, where Y (-) is the process
without intervention, given by (1.1). Then we define L : Hs — Ho by

(2.1) Lh(y) = EY[R(Y(9))]; h € Hs.
We will use the following notation:

(2.2) LK(y,¢) = EY[K(Y(6),()]  and
2.3) L(#oT)(y,¢) = EY((Y(9), ()]

if  : R* — R is such that o ' € H.
Note that in these cases £ acts only on the first variable of K(-,() and

o(I'(-,C))-



Definition 2.2 Let L, K, Hy be as above. Then we define the intervention
operators M : Hy — Ho and My : Hy — Hy as follows:

(2.4) Mh(y) = igg{h(F(y, Q)+ K, 0} h e H,
(2.5) Mch(y) = igg{h(F(y, Q) +LK(y,¢)};  heH.

We will also need the following concept:

Definition 2.3 Let YY(t) be the state process without interventions and with
starting point YY(0) = y € R*. Let T' : R¥ x Z — R be the intervention
function (see (1.2)). We say that Y is I"-homogeneous if

(2.6) D(YY(t),0) =YW @) forallt >0,y eRF, ¢ € Z.
Example 2.4 (i) If
(2.7) YU(t) =y +n(t),
where 7 is a k-dimensional Lévy process and
(2.8) L(y.Q)=y+¢  yeR, (eR
then (?7?) holds, because
DY¥(t),0) = Y¥(t) + ¢ =y + ¢ +n(t) =Ty, Q) +n(t) = YO ).
(ii) Similarly, if
(2.9) I(y.Q)=y¢;  y.¢€(0,00)

and

o) Ay (t) = YY(t ) [u(t)dt + o(t)dB(t) + [ ~(t, 2)N(dt, d2)]
' Y¥0) =y eR

where the processes pu(t), o(t) and (¢, z) > —1 do not depend on Y¥(¢), then
(??) holds also. To see this, note that in this case we have

Y(t) = yexp R(t)
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R(t):/t ) — 1o +/log (s, 2)) — (s, z))y(dz)}ds

t

+/a(s)dB(s)+/log(1+7(s,z))ﬁ(ds,dz).

0

Hence

I(Y¥(t),¢) =Y (t)¢ = yCexp R(t) = I'(y, () exp R(t)
= YT®9(t), as claimed.

Lemma 2.5 Suppose the process YY(t) is I'-homogeneous. Let M and M
be as in Definition ?7?7. Then

(2.11) LIMR)(y) = Me(Lh)(y):  heHo, yeRE

Proor. For ( € Z we have

LMB)(y) = £(sup{h(T(y,0)) + K(3,0}) (v)

= iggf[eﬁih(F(-7 Q)+ K(O)y)}

- ?35{ EY[h(T(Y(6), )] + LK (y,¢)}

- 325{ E[R(I(YY(5),())] + LK (y,()}

- ig{E[h(Y”y’“(ém +LK(y.Q)}

= EEE{E“”" [(Y(0)] + LK (y, ()}

= itellzb{ﬁh(F(y, Q) + LK (y, ()} = Mc(Lh(y)).

Lemma 2.6 Suppose Y is I'-homogeneous. Then

(2.12) L(0oI)(y,C) = (L) o T'(y, ()
for all § € Hs, ¢ € Z and y € R*.



PrRoOOF. By (2.1) and (2.6) we have

L(0oT)(y,¢) = EY[O(T(Y(9),¢)] = EOT(Y(5),())]
= BlO(Y"9(8))] = E"O[0(Y (8))] = (£O)(T(y, C)).
O

We now consider the case when at most n interventions are allowed, as
described in Problem ??. Define a sequence of delayed reaction optimal
stopping problems as follows:

7’5+(5
(213) olw) = B[ [ $ @)t + oY (75 + )
0
and inductively, for j =1,...,n,
T+9
(2.14) 6,(y) = sup Ey / fY(2)dt + MO, (Y (7’—}—5))}
T€To

Here Y (t) is the process defined in (?7?), i.e. without interventions. Then,
similar to the no-delay case, we have the following result:

Theorem 2.7 Suppose that
(2.15) Y () s I'-homogeneous.

Moreover, suppose that for j = 1,...,n there exists an optimal stopping time
7; for the delay optimal stopping problem (??) for 0;. Moreover, suppose that
forall j =1,...,n and all y there exists

(2.16) Gi(y) € Argmax{L£0;_1(I'(y,¢)) + LK(y.(); ¢ € Z}
and that the map

Yy — éj(y) has a measurable selection.

Then

(2.17) Ou(y) =0 (y);  yeS



and the delayed reaction impulse control

(2.18) b= (P40, Pt 03 C )
18 optimal, where

(2.19) G=GY () 1<j<n

Proor. This follows by induction on n, combined with the strong Markov
property. The details are as follows:

n = 1: First assume there is only one intervention allowed. If we decide at
time 7 € 7y to make an intervention of size ( € Z, then the intervention
is carried out at time 7+9. The corresponding state process is denoted by
Y ®)(t), where v = (7+9,¢). Note that Y (t) = Y (t) for 0 <t < (7+0)~
and YO (7 4+0) =T(Y (7 +6)) = (YW ((1 + 6)7)). Hence by (1.13) and
the strong Markov property

Ts+06

o)) =sup B[ [ SrO®)de+ (s + ) + KT +5)),0

748 7548
—swp /[ [ fv@ar+ [ FEO )+ v+ 6)
0 )
+K(Y(r +),0)]
T+6 Ts+6
= sup Ey / FY(£))dt + EY(st0) [ / fY@)dt+ g(Y(rs + 5))]
+ K(Y(r +9),|

T+6

—supEy /f ))dt + 0o(Y (”)(7—+5))+K(Y(T+5),C)}

(2.20)
T+0

< sup 27 / FY(6))dt + MB(Y (7 + 5))].

T

0



Here equality holds if we chose ¢ = (; such that
(2.21)  EY[o(D(Y (7 +0),6) + K(Y (7 +6),41) — MO(Y (7 +5))] = 0,
i.e.

EY[EYD[0y(T(Y(5)),$1) + K (Y (), &) — Mby(Y (5))] = 0,

or

EY[L(60 0 D)(Y (1), G1) + LK(Y (1), (1) — L(M8) (Y (7))] = 0.

To achieve this it suffices to choose ¢, = & (Y (7)), where ¢; = (y) satisfies
the equation

LB oT)(y, () + LE(y, 1) = LIMOo)(y) =0;  y€S.
By (?7?) and (??) this is equivalent to
LO6(I(y, (1) + LK (. C1) = Me(LO)(y) = 0; y€S.

This is achieved by (??), because by Definition ??, (??), applied to h = L6,
we have

(2.22) M(LOo)(y) = sup{LO(I'(y,C)) + LK (y,(); ¢ € Z}.

ez

This proves that with this choice {; = (Y (7)) equality holds in (??) and
hence the theorem is proved for n = 1.

n > 1: The proof in this case is similar to the case n = 1. For v = (11 + ¢,
e Ta A 0iC . G) €V weput = (7146, .. T+ 05 Car ., Cn) €
Vén_l). By the induction hypothesis (Dgn_l)(y) = 0,_1(y). Hence by the

dynamic programming principle (see e.g. [?], Prop. 3.2) we get
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T5+§

() = swp B[ [ FO0dt+ g7+ )

UEV(gn)

+ Y KO (7+0)). 6]

=1
T1+0
= swp B[ [ FY )+ KV (7 48).6) % 0,0 (YO, +.0)
1,61,V 0

T1+96

< sup B / FOY(0))dt + MO, (Y (7 +9))].
T1 0
From here on the proof proceeds as in the case n = 1. We omit the details.

OJ

In [?] it is proved that any delay optimal stopping problem can be trans-
formed to a no-delay optimal stopping problem (without assuming I’-homogeneity),
as follows:

fél%Ey[ / FOY@)dt + g(Y(r + 5))]
(2.23) = sup B [ / FOY(0)dt + (Lg + F)(Y ()
where
(2.24) Fotw) = | [ v e,
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Using this we see that the iterated delay optimal stopping problems (?77)—(?7)
are equivalent to the following no-delay iterated optimal stopping problems:

(2.25) Ey /f ))dt + (Lg + F5) (Y (7. ))}
(2.26) 6,(y) = sup Ey /f ))dt + ( (Mej—1)+F5)(Y(T))]
T€To

forj=1,2,...,n

3 The general case

In the case when there are no bounds on the number of interventions, we
have the following result:

Theorem 3.1 Suppose the conditions of Theorem 77 hold. Define 6;(y);
Jj=1,2,... by the iterative procedure (77)-(??) or, equivalently, (77)-(?7?).
(i) Then

(3.1) 0;(y) — Ps(y) as j — 0o.

(ii) Moreover, ®s(y) is a solution of the following non-linear delay optimal
stopping problem

T+

(3.2) Bs(y) = sup BV /f )t + Ms(Y ( +5))|

7€y

PROOF. This is proved in [?] in the case of no delay. The same proof works
in the delay case, in view of Theorem 77. O

In view of (??) we also have

Theorem 3.2 Suppose the conditions of Theorem 7?7 hold. Then ®s(y) is a
solution of the following non-linear, no-delay optimal stopping problem:

(3.3)  ®s(y) = sup Ey /f ))dt + (L(MP5) + F5)(Y (1))

T€Ty
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where, as before,

Fily) = Y| / £ (0]

Remark To the best of our knowledge general existence and uniqueness
results for non-linear optimal stopping problems of this form are not known.
We will not pursue this question here.

4 An example

We consider a delay version of Example 6.5 in [?]:

Suppose the difference X (*)(t) between the demand and the supply for a
freight shipping company is modelled by

(dX(”)(t) =adt+odB(t)+ [ 2N(dt,dz); T;+8<t<Ti1+9
Ro
(4.1) | (where a, o are constants and z < 0 a.s. v)

X (11 +0) = XO((rj01 +0)7) = Gps §=0,1,2,...
| XW(07)=z€R

Here v = (14 + 6,72 +6,...;(1, (2, ...) is a delay impulse control, 7; repre-
sents time number j when we decide to intervene by ordering more shipping
capacity, and (; denotes the additional capacity ordered. The cost of such
an intervention at time ¢ is assumed to be

(4.2) K(t,¢) =e " (c+ X))

where p > 0, ¢ > 0 and A > 0 are constants. The expected total cost
associated to such an impulse v is assumed to be

[e.o]

N
(43) Ty = B / e HD(XO (1) 2+ 3 e e 4 0G)]
0 j=1

where NN is the number of interventions. Suppose only one intervention is
allowed. Then the problem is to find Q)gl)(y) and v* € Vél) such that

(4.4) @gl)(y) = sup JO(y) = J)(y), where N = 1.

vEV(gl)
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To put this problem in the context of this paper we define

v S + t v
45 vou =i e® vt = e =r00
and put
(4.6) Fy) = fly o) = ey
and
(4.7) K(y,¢) =e ™ (c+ ), m’= /Zzy(dz)-
Ro
Then
5 5
Rty = 2| [ sl = 2] [ e noxtal
0 0
5
= /e Pt (12 4 2axt + a®t? 4 (0 4+ m?)t]dt
0
(4.8) = e P[Ax* + Cx + D),
where
2a

(4 9) A= A(; = %(1 - e_p‘s), C = C(s ? [A5 5€_p6]
and

D =D;s= %[(02 +m?)(—de " + %(1 —e ")
(4.10) +a?(— 0% — 2—36”)5 + %(1 —e )]

By (??) we have
Oo(y) = /e—p(s+t)[$2+ (2az + o2 + m?)t + a*t2]dt

0
(4.11) =e " [%362 + (2ax + 0 + mZ)p% + 2(12%3}.
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Hence

M0Oy(y) = inf{Oy(x — () + e " (c+ N();¢ > 0}
AL

— 1,.2 2az+o2+m? 2a217. Ap a
7P [La? 4 o 4 Taztodm® | 20]. g lp o

(4.12) —

hS)

which is attained at

(4.13) C(=G=(z+2-2)"
Put K R )
G(s,x) = e [2(x = () + Z(z — Q) + A
Then
L{(Mbo)(y) = EY[Mby(Y (9))]
(4.14) = EY[G(Y (6)) + M] = LG(y) + M,
where
(4.15) M=c+ it 4 202

Hence (?7) gives the optimal stopping problem

T

01(y) = inf B / e P X2 (t)dt + LG(Y (7))
T€7o
0

(4.16) + e M AX(T) + CX(r) + D)| + M.

This is a classical optimal stopping problem, which can be solved by the
usual method of variational inequalities. See e.g. [@S, Chapter 2.

Our conclusion is the following, based on Theorem ?? and (7?7)—(?7):

Theorem 4.1 Let 7 € 7y be an optimal stopping time for the problem (77).
Define )
T=7"49 and le(X(T*)+9—%)+.

p

Then (7, él) s an optimal tmpulse control for the delayed reaction impulse
control (?77)-(?7?).
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