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Understanding how electrolyte-filled porous electrodes respond to an applied potential is important to many
electrochemical technologies. Here, we consider a model supercapacitor of two blocking cylindrical pores on
either side of a cylindrical electrolyte reservoir. A stepwise potential difference 2Φ between the pores drives
ionic fluxes in the setup, which we study through the modified Poisson-Nernst-Planck equations, solved with
finite elements. We focus our discussion on the dominant timescales with which the pores charge and how
these timescales depend on three dimensionless numbers. Next to the dimensionless applied potential Φ, we
consider the ratio R/Rb of the pore’s resistance R to the bulk reservoir resistance Rb and the ratio rp/λ of
the pore radius rp to the Debye length λ. We compare our data to theoretical predictions by Aslyamov and
Janssen (Φ), Posey and Morozumi (R/Rb), and Henrique, Zuk, and Gupta (rp/λ). Through our numerical
approach, we delineate the validity of these theories and the assumptions on which they were based.

I. INTRODUCTION

The dynamics of ions in narrow conducting pores un-
derlies various technologies including biosensors1 and
capacitive energy storage2–4, energy harvesting5, and
water deionization6. Many of these technologies are
based on charging porous electrolyte-filled electrodes,
which is a multi-scale process that involves ionic cur-
rents over millimetres in electroneutral reservoirs and
micron-sized macropores, to form nanometer-sized elec-
tric double layers (EDLs) in the electrodes’ pores7. Stan-
dard electrochemical techniques such as cyclic voltam-
metry and impedance spectroscopy characterise the re-
sponse of a macroscopic electrode-electrolyte system8–10.
The microscopic processes underlying charging of pores,
possibly of different size and shape, are then mea-
sured all at once; disentangling such microscopic in-
formation is not straightforward. Experimental insight
into the charging dynamics at the single-pore level is
thus difficult, but progress has been made with nuclear
magnetic resonance experiments (albeit on macroscopic
porous electrodes)11,12 and with the surface force bal-
ance apparatus13. Molecular simulation studies face dif-
ficulties opposite to those of experiments as computa-
tional power limits simulations to idealised systems of
several nanometers at most. Specifically, many molecular
dynamics studies considered ionic liquid-filled slit pores
with pore widths comparable to the ion diameters14–18;
cylindrical pores19 and realistic (but small) porous
structures20 were also studied.
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These experiments and simulations are often inter-
preted using the transmission line (TL) model21–23. This
model asserts (i) that the charging of a mesoporous elec-
trode filled with dilute electrolyte can be characterised
through the charging of a single pore and (ii) that the
charging of such a pore can be described by an equiv-
alent circuit, the transmission line circuit, which dis-
tributes the pore’s total resistance R and capacitance
C over smaller circuit elements. In the limit of in-
finitely many, infinitesimally small resistors and capac-
itors, the TL circuit gives rise to the differential “TL
equation” [viz. Eq. (6)] for the local electrostatic poten-
tial in the pore24. The TL equation was solved for semi-
infinite pores subject to various time-dependent voltages
and currents by Ksenzhek and Stender22 and de Levie23.
They found that a step potential causes the charge Q on
the pore to increase with a power law, Q ∝

√
t. This

result can at best represent a short-time regime since,
clearly, the charge cannot continue to grow indefinitely.
Posey and Morozumi25 solved the TL equation for finite-
length pores and found that on longer timescales pores
charge exponentially with a timescale proportional to RC
[see Eq. (9)]. These authors also discussed the influence
of a bulk reservoir of resistance Rb with which the pore
is in contact. Gupta and coworkers studied a pore with
overlapping EDLs, for which they proposed and solved
an amended TL equation [see Eq. (17)]26,27.

Hundreds of articles have used the TL model and its
solutions. Yet, only a handful studied the microscopic
physics underlying the TL model—ionic currents in a
pore and the EDL formation on its surfaces26–31. Sak-
aguchi and Baba numerically solved the Poisson-Nernst-
Planck (PNP) equations to study a finite-length pore
subject to a suddenly-applied potential28. Their anal-
ysis confirmed the short-time power-law scaling but not
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the exponential relaxation regimes, presumably because
ionic charge perturbations did not yet span the entire
pore at the latest times they considered [cf. Fig. 1(c) and
(d) therein]. Mirzadeh, Gibou, and Squires31 also solved
the PNP equations numerically and showed that the TL
model accurately describes pore charging for small ap-
plied potentials, not only for cylindrical pores but also for
other geometries31. Two recent works further reinforced
the TL equation’s theoretical basis with first-principles
analytical derivations: both starting from the PNP equa-
tions, Henrique and coworkers27 derived the TL equation
and Aslyamov and Janssen32 derived the finite-length TL
results of Posey and Morozumi.

The TL model only applies to pores subject to ap-
plied potentials smaller than the thermal voltage (24mV
at room temperature). Several recent articles moved
beyond the TL model and studied the response of
electrolyte-filled pores subject to larger applied poten-
tials, Φ ∼ 1, with Φ the applied potential scaled to
the thermal voltage31,33,34. Robinson, Wu, and Jacobs
argued that, at large applied potentials, salt depletion
from the pores increases their resistivity, slowing down
charging33. Biesheuvel and Bazant also predicted that,
after initial TL-model behavior, a slower exponential re-
laxation sets in with a timescale characteristic of neutral
salt diffusion34. A charging slow-down with increasing
Φ was indeed visible in the numerical PNP solutions of
Mirzadeh and coworkers31, but the system slowed down
less than predicted by Ref.34. The authors ascribed this
discrepancy to surface conduction: for moderate Φ, the
EDLs present a shortcut for ions to bypass the dilute
center of the pore. Semi-analytical results of Aslyamov
and Janssen32 fully agreed with the numerical results of
Ref.31.

The PNP equations do not account for electrostatic
correlations and the finite size of the ions, so the va-
lidity of the mentioned numerical and analytical works
is limited to cases wherein these effects can be ignored.
The point-ion approximation is justified for dilute elec-
trolytes and for Φ ∼ 1, but not for concentrated elec-
trolytes or for larger Φ. Accordingly, Niya and An-
drews studied the charging of porous conductive carbon
materials35 through the modified Poisson-Nernst-Planck
(MPNP) equations36. Aslyamov, Sinkov, and Akhatov37

used classical density functional theory to study slit pore
charging. They unified all three known charging regimes:
the pore’s charge first increases as if it were semi-infinite
(Q ∝

√
t), then slows down and approaches its equi-

librium value exponentially with an RC time, and then
slows down even further and equilibrates exponentially
with the salt diffusion timescale37.

In this article, we report comprehensive numerical sim-
ulations of pore charging using the MPNP equations. We
consider many different pore and reservoir sizes, ion di-
ameters, ion concentrations, and applied potentials. We
focus our discussion on three dimensionless parameters:
the ratio R/Rb of the pore’s resistance R to the bulk
reservoir resistance Rb, the ratio rp/λ of the pore radius

FIG. 1. (a) Section view of the microscopic model of two
cylindrical pores of length lp and radius rp connected to a
cylindrical reservoir of length ℓr and radius rr. The setup is
filled with a 1:1 electrolyte (not shown) with ions of diameter
a at salt concentration cb. (b) Representation of a typical
mesh to numerically solve the modified Poisson-Nernst-Planck
equations. (c-g) Heat maps of the local electric potential φ(r)
inside the positive electrode pore at times t after switching
on a potential Φ = 10−3 on the electrode, for (c) t = 1 µs,
(d) t = 20 µs, (e) t = 50 µs, (f) t = 100 µs, and (g) t =
1000 µs. We used the ionic diameter a = 0.1625 nm, bulk salt
concentration cb = 0.01M, pore length ℓp = 1 µm, pore radius
rp = 50nm, and reservoir length and radius ℓr = rr = 2 µm.

rp to the Debye length λ, and the dimensionless applied
potential Φ. We compare our numerical solutions to the-
ory predictions from Refs.24,25,27,32 that have not been
tested before.

II. MODEL

A. Setup

We consider two cylindrical metallic pores of equal
length ℓp and radius rp separated concentrically by a
cylindrical bulk reservoir of length ℓr and radius rr, see
Fig. 1. At the ends of the pores are caps of length rp/5
with rounded edges of the same radius (the length of the
cap is not counted in ℓp). We also add two “connecting
regions” of smooth corners of radius rp/5 that link the
reservoir to the two pores. These regions yield faster con-
vergence of our numerical simulations but have almost no
effect on the charging, see Fig. S1 of the Supplementary
Material. For cases wherein the reservoir and pores have
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the same radius, we exclude the connecting region be-
tween the pore and reservoir. We denote the surfaces of
the two pores by S1 and S2, the boundaries of the reser-
voir by S3 and S4, and the boundary of the connecting
regions and the caps by S5 and S6. Upon applying a po-
tential between the pores, S1 and S2 will acquire opposite
electric charge, while S3 to S6 remain uncharged. We fo-
cus on the charging of the right pore and use a cylindrical
coordinate system and a position vector r = (r, θ, z) such
that r = 0 at the left edge of this pore and such that the
z-axis is aligned with the axes of the pores and reservoir.

The reservoir and pores are filled with a 1:1 elec-
trolyte at a bulk ion concentration cb. The solvent is
treated as a structureless continuum of dielectric con-
stant ε = 6.9× 10−10 Fm−1 and solvent viscosity η =
1.002× 10−3 Pa s−1 (these values are characteristic for
water) at a temperature T = 293K. The cations
and anions carry the charge +e and −e, with e the
elementary charge. We set ionic diffusivity to D =
1.34× 10−9 m2 s−1, which is typical for alkali halides in
water. For simplicity, neither the concentration depen-
dence nor the effect of confinement is taken into account
for the dielectric constant ε and the diffusivity D. For fu-
ture reference, we define two timescales that will appear
repeatedly in our discussion,

τI =
2λ

rp

ℓ2p
D
, τII =

ℓ2p
D
, (1)

where λ =
√

εkBT/(2e2cb) is the Debye length, with kB
being Boltzmann’s constant.

As our setup has cylindrical symmetry around the
z axis, all physical observables are independent of
the azimuthal angle θ. We study the time-dependent
ionic number densities ρ±(r, z, t)—the local ionic con-
centrations scaled to cb—and the dimensionless poten-
tial φ(r, z, t)—the local electrostatic potential scaled to
the thermal voltage kBT/e. From φ(r, z, t), we will de-
termine the right pore’s surface charge density

q(z, t) =
εkBT

e
∂rφ(r ∈ S2, t) , (2)

and its total surface charge,

Q(t) = 2πrp

∫

S2

dz q(z, t) . (3)

For Eq. (2), we used that n ·∇φ = −∂rφ on S2, where n
is the inward normal to the surface.

B. Governing equations

We model ρ±(r, z, t) and φ(r, z, t) through the MPNP
equations,

∇2φ = −ρ+ − ρ−
2λ2

, (4a)

∂tρ± = −∇ · j± , (4b)

j± = −D
[

∇ρ± ± ρ±∇φ+
a3ρ±∇ (ρ+ + ρ−)

1− a3 (ρ+ + ρ−)

]

,

(4c)

where Eq. (4a) represents the Poisson equation, Eq. (4b)
the continuity equation, and Eq. (4c) the modified
Nernst-Planck equation36. Here, j±(r, z, t) are the ionic
fluxes scaled to cb.

We consider the pores to be uncharged and the elec-
trolyte to be homogeneous initially. At time t = 0, we
apply a positive dimensionless potential Φ to the right
pore and a negative dimensionless potential −Φ to the
left pore. This yields the following initial and boundary
conditions:

ρ±(r, t = 0) = 1 , (5a)

φ(r ∈ S1, t > 0) = −Φ , (5b)

φ(r ∈ S2, t > 0) = Φ , (5c)

n · j±(r ∈ {S1,S2,S3,S4,S5,S6}, t) = 0 , (5d)

n ·∇φ(r ∈ {S3,S4,S5,S6}, t) = 0 . (5e)

Here, Eq. (5d) signifies that all walls are blocking;
Eq. (5e) signifies that surfaces of the caps, connecting
regions and reservoir boundaries remain uncharged.

Note that the last term in Eq. (4c)—the term that sets
MPNP apart from PNP—only contributes significantly
to j± for moderate applied potentials (Φ ∼ 1 or larger)
and is irrelevant for small applied potentials (Φ ≪ 1).

C. Numerical implementation

Numerical simulations for various system parameters
cb, a,Φ, ℓp, rp, ℓr, and rr were performed with comsol

multiphysics 5.4. We used a structured nonuniform
computational mesh [see Fig. 1(b)]: coarse in the reser-
voir domain and finer near all boundaries, where we used
a multilayer rectangular grid with a progressively finer
layer-to-layer spacing. The maximum element size was
10 µm, while the minimum ranged from 0.17 to 100 nm
in the pore domain depending on the Debye length. The
largest salt concentration we considered was cb = 0.1M,
for which λ = 0.959 nm. Hence, the EDL is resolved by
at least 5 grid points.
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III. RESERVOIR-DEPENDENT CHARGING

A. TL model

As a first example of numerically-determined pore
charging, Fig. 1(c)-(g) shows the dimensionless poten-
tial φ(r, z, t) for five successive times of an electrolyte-
filled pore with a bulk concentration cb = 0.01M (so
that λ = 3.03 nm), ion size a = 0.1625 nm, pore length
ℓp = 1 µm, pore radius rp = 50nm, and reservoir dimen-
sions ℓr = 2µm and rr = 2µm, subject to a small applied
potential Φ = 10−3. At early times, φ(r, z, t)/Φ = 1 in
most of the pore, which implies that the pore’s surface
charge density and electric field in the pore are both zero.
But near the reservoir, a finite electric field drives coun-
terions into the pore and coions out of it. At later times,
EDLs form in the nanometer vicinity of the pore surfaces,
their width set by the Debye length λ, and the potential
φ(r, z, t) decreases until is zero everywhere except in the
EDLs.
The TL model was developed to describe the charg-

ing of such pores. But instead of the full dimensionless
potential φ(r, z, t), the TL equation

RC∂tψ = ℓ2p∂
2
zψ , 0 < z < ℓp (6)

only captures the evolution of ψ(z, t) = φ(r = 0, z, t) at
the pore’s centerline. In our case of a cylindrical pore,
the pore’s resistance amounts to R = ̺ℓp/(πr

2
p), with

̺ = λ2/(εD) the electrolyte resistivity. For thin EDLs
and small Φ, the pore’s Helmholtz capacitance amounts
to C = 2πrpℓpε/λ. Their product RC equals τI as de-
fined in Eq. (1). For this reason, τI is known as the
TL timescale31. However, this is a bit misleading as the
dominant relaxation timescale of a finite-length pore ac-
tually also depends on the parameters of the reservoir
with which it is in contact24,25. Here, the bulk resistance
Rb dependence enters the problem through the boundary
conditions to which Eq. (6) is subject24,25,34, viz.

ψ(z, 0) = Φ , 0 < z < ℓp , (7a)

ℓp∂zψ(0, t) =
R

Rb
ψ(0, t) , (7b)

∂zψ(ℓp, t) = 0 . (7c)

Here, Eq. (7a) describes the initial condition, Eq. (7b)
expresses Kirchhoff’s current law at the reservoir-pore
interface, and Eq. (7c) accounts for the blocking wall at
the end of the pore.
For our setup, the bulk resistance Rb = Rr + Rc con-

sists of two parts, i.e., the resistance Rr = ̺ℓr/(2πr
2
r)

of half of the reservoir and the resistance Rc of the con-
necting region. This connecting region is bordered by
rounded edges of radius rp/5 centered around z = 0.
The z-dependent radius rc(z) of the connecting region
thus satisfies z2 + (rc − 6rp/5)

2 = r2p/5
2. To find Rc,

we view the connecting region as a stack of cylindrical
slabs of infinitesimal thickness dz and resistance ρdz/A,

with A = πr2c . We then find Rc = ̺
∫ 0

−rp/5
dz/[πrc(z)]

2,

which, upon writing z̄ = z/rp, yields

Rc =
̺

πrp

∫ 0

− 1

5

dz̄
(

6/5 +
√

1/52 − z̄2
)−2

≈ ̺

πrp
×0.109 .

(8)
We thus find Rb = Rr(1+Rc/Rr) where Rc/Rr ≈ 0.218×
r2r/(rpℓr). In our calculations below, this term varies
between Rc/Rr = 1.09 (for rr = ℓr = 1 µm and rp =
200 nm) and Rc/Rr = 54.5 (for rr = ℓr = 50 µm and
rp = 200 nm). Hence, for very wide reservoirs, the tiny
connecting region can constitute the major part of the
bulk resistance, Rb ≈ Rc. However, the pore’s resistance
is always vastly larger than that of the connecting region,
Rc ≪ R, so in cases where Rb ≈ Rc, we have Rb ≪ R.
Posey and Morozumi solved Eqs. (6) and (7) (albeit in

different notation) and found25

ψ(z, t)

Φ
=
∑

j≥1

4 sinβj cos [βj (1− z/ℓp)]

2βj + sin 2βj
exp

(

− t

τj

)

,

(9a)

with timescales τj = τI/β
2
j and βj solutions of

βj tanβj =
R

Rb
. (9b)

As discussed in Ref.24, the early-time charging behav-
ior of the TL equation (6) is not affected by the Neumann
boundary condition Eq. (7c), which, for all practical pur-
poses, can be taken towards ℓp → ∞. A solution to the
TL equation for these settings was presented in Eq. (6)
of Ref.24,

ψ(z, t)

Φ
= 1− erfc

√

z2

ℓ2p

RC

4t

+ exp

(

R

Rb

z

ℓp
+
R2

R2
b

t

RC

)

erfc

(√

z2

ℓ2p

RC

4t
+

R

Rb

√

t

RC

)

.

(10)

We find the total surface charge Q(t) = −
∫ t

0
dt′I(t′) on

the pore, with I(t) = −(kBT/e)ℓp∂zψ(0, t)/R the ionic
current into the pore, as

Q(t) =
kBT

e
CΦ

[

√

4t

πRC
− Rb

R

+
Rb

R
exp

(

R2

R2
b

t

RC

)

erfc

(

R

Rb

√

t

RC

)]

. (11)

When the bulk resistance is negligible compared to the
resistance of the pore, R≫ Rb, Eq. (11) reduces to

Q(t) =
kBT

e
CΦ

√

4t

πRC
, (12)
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ψ
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Φ
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Eq. (9)
Eq. (14)

t

10−3 s

t

10−3 s

(a)

(b)

FIG. 2. Position dependence of the relative potential on
the central axis at different times after switching on a volt-
age, in (a) for a narrow reservoir rr = rp and in (b) for a
wide reservoir rr = 50rp (b). The other parameters are set to
Φ = 10−3, rp = 200 nm, ℓp = lr = 10 µm, and cb = 0.001M.
We show numerical solutions to the MPNP equations (4) for
t = 10−7, 10−5, 10−4, 10−3, 10−2, 10−1 s (solid lines) and an-
alytical predictions from Eq. (9) (dashed lines) for the same
times. We also show a numerical solution to the Laplace
equation Eq. (14) (black), which corresponds to t = 0.

which is the ∝
√
t behavior discussed before28. When

the reservoir resistance is not small, R ∼ Rb, we find the
early-time behavior by expanding Eq. (11) for t/(RC) ≪
1,

Q(t) =
kBT

e

Φ

Rb

[

t+O(t3/2)
]

. (13)

B. Comparing numerical MPNP solutions to TL-model

predictions

We numerically solve Eqs. (4) and (5) for a narrow
reservoir (R/Rb = 2) and a wide reservoir (R/Rb =

420.16) and plot the resulting centerline potential φ(r =
0, z, t) in Fig. 2 (solid lines). In the same figure we plot
Eq. (9) (dashed lines). In both panels we see that, from
t = 10−4 s onward, Eq. (9) agrees well with the numerical
data although slightly better for the narrower reservoir.
The early times t = 10−7 s and 10−5 s are captured much
worse, especially near the pore mouth at z = 0. We also
show the centerline potential φ(r = 0, z, t = 0) (black
lines) at the moment of switching on the potential dif-
ference. To determine φ(r = 0, z, t = 0), rather than
Eqs. (4) and (5), we solved the Laplace equation

∇2φ(r, z, t) = 0 , (14a)

φ(r ∈ S1, t > 0) = −Φ , (14b)

φ(r ∈ S2, t > 0) = Φ , (14c)

n ·∇φ(r ∈ {S3,S4,S5}, t > 0) = 0 , (14d)

which is based on the right hand side of the Poisson equa-
tion (4a) being zero at t = 0. Figure 2(a) shows that
the potential in the reservoir is linear in the special case
rr = rp, but not if the reservoir is much wider than the
pore, as in Fig. 2(b). This may be one reason causing the
worse performance of the TL model for the wide reservoir,
as Refs.27,34 motivated Eq. (7b) by the potential being
linear in the reservoir. As Eq. (7b) can also be derived
directly from the TL circuit—containing a single resistor
to model the whole bulk reservoir24— we conclude that
this circuit does not capture the early-time charging of
pores coupled to wide reservoirs. Next, the black line in
Fig. 2(b) shows that potential in the pore (0 < z < ℓp)
deviates from ψ(z = 0, t) = Φ at t = 0. Hence, the ini-
tial condition Eq. (7a) used in the TL model does not
correspond to the numerical simulations. The discrep-
ancy between Eq. (9) and the MPNP at early times must
therefore at least be partially caused by the inaccurate
initial condition Eq. (7a).
Figure 3 shows the early-time behavior of Q(t) for the

same parameters as we used in Fig. 2. Here, the black
line corresponds to rr = 10µm, for which R/Rb = 420.16,
and the red line corresponds to rr = 200 nm, for which
R/Rb = 2. Square-root charging (Q ∝

√
t) is visible for

rr = 10 µm up to about t = 10−2 s, when the exponential
charging starts. This square-root charging is in line with
the theoretical prediction Eq. (12) for R/Rb ≫ 1. For
rr = 200 nm, the early-time charge accumulation scales
linearly, in line with Eq. (13) for R/Rb ∼ 1.

C. Dependence of the charging time on R/Rb

We further study the dependence of the charging time
of pore charging on the size of the reservoir. Figure 4(a)
shows the normalized surface charge Q(t)/Qeq as a func-
tion of time for different reservoir radii rr and lengths
lr; the legend is arranged in order of increasing Rr =
̺lr/(2πr

2
r). Here, Qeq is the charge Q(t) at the final

timestep. We further set rp = 200 nm and cb = 10−3 M
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FIG. 3. Log-log plots of the normalized surface charge den-
sity Q(t)/Qeq, for a wide reservoir with rr = 10 µm (black)
and a narrow reservoir with rr = 200 nm (red). The other pa-
rameters are set to cb = 10−3 molar, ℓp = 10 µm, rp = 200 nm,
Φ = 10−3, a = 0.1625 nm, and ℓr = 10 µm.

such that λ/rp = 20.7; hence, the EDLs are nonover-
lapping. In the figure we see that Q(t)/Qeq does not
vanish at t = 0, which was already suggested by the
aforementioned deviations from ψ(z = 0, t = 0) = Φ in
Fig. 2(b). Charging relaxation curves overlap for the six
smallest Rr, implying that the reservoir has no signifi-
cant influence. Conversely, for the three largest reservoir
resistances, the charging is increasingly slow. This slow-
down is also visible in Fig. 4(b), where we plot the same
data now as ln(1 − Q(t)/Qeq). The data in Fig. 4(b)
vary linearly versus time on timescales τI [Eq. (1)], in-
dicating that the surface charge relaxes exponentially on
this timescale. To characterize this exponential charging
in more detail, we introduce the instantaneous numerical
relaxation-time function

τnum(t) =

[

d ln(1−Q(t)/Qeq)

dt

]−1

. (15)

For a purely exponential charging process, τnum(t) takes
a constant value. In reality, however, τnum(t) is time de-
pendent: Fig. 5(a) shows the instantaneous relaxation
time function τnum(t) Eq. (15) for several reservoir radii
rr and lengths lr corresponding to the same parameters
of Fig. 4. We see that τnum(t) grows during the early
power-law charging (see Fig. 3) until it reaches a plateau
around t = 10−3 − 10−1 s whose height we denote by τ̄ .
(At late times, Q(t) ≈ Qeq and the numerical derivative
becomes erratic.) We found that we can effectively de-
termine τ̄ from the intersections of τnum(t) with t (red
dashed) at which time τnum = τ̄ . Figure 5(b) shows τ̄ /τI
vs. Rb/R (red triangles) determined in this way. We
see that τ̄ /τI does not depend on Rb/R for small values
thereof, and increases linearly with Rb/R at large val-
ues. In the same panel, we show the late-time relaxation

10−7 10−5 10−3 10−1 101

t(s)

0.0

0.2

0.4

0.6

0.8

1.0

Q
(t
)/
Q

eq

rr(nm) ℓr(µm)

50, 50

5, 5

1, 1

0.2, 0.2

1, 20

0.2, 1

0.2, 5

0.2, 10

0.2, 100

0 1 2 3 4 5

t/τI

−5

−4

−3

−2

−1

0

ln
(1

−
Q
(t
)/
Q

eq
)

(a)

(b)

FIG. 4. (a) The normalized surface charge density Q(t)/Qeq

versus time, and the (b) surface charge relaxation versus time
scaled by τI for different reservoir radii rr and lengths lr.
The other parameters are set to ℓp = 10 µm, rp = 200 nm,
Φ = 10−3, a = 0.1625 nm, cb = 10−3 M.

timescale τ1 = τI/β
2
1 of Eq. (9) (black line), for which

we numerically solved the transcendental equation (9b).
Reference24 showed that τ1 can also be decently approx-
imated by,

τ1 ≈ RC

(

4

π2
+
Rb

R

)

. (16)

Figure 5(b) shows that both τ1 determined numerically
from Eq. (9b) and its approximation Eq. (16) (blue
dashed line) agree well with τ̄(t).

Instead of τ1, Posey and Morozumi studied the time
at which their ψ(z = ℓp, t) curve inflected. Their Fig. 10
of this “delay time” versus log(Rb/R) is constant for
Rb/R ≪ 1 and increases Rb/R ≫ 1. Our Fig. 5(b) [and
Fig. (3) of24] is thus related but not identical to Posey
and Morozumi’s Fig. 10.
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u
m
(s
)
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Rb/R

1

5

10
τ̄ /τI [MPNP non-overlap]

τ̄ /τII [MPNP overlap]

τ1/τI [Eq. (16)]

τ1/τI [Eq. (9b)]

(a)

(b)

FIG. 5. (a) The instantaneous relaxation time τnum(t) versus
time, using the same line styles and parameters as in Fig. 4,
and (b) corresponding numerical charging timescale τ̄ scaled
by τI (red triangles), versus the ratio of reservoir resistance to
pore resistance Rb/R. The other parameters are set to ℓp =
10 µm, rp = 200 nm, Φ = 10−3, a = 0.1625 nm, cb = 10−3 M.
We also show a case with overlapping EDLs (green dots) for
which cb = 10−6 M. Last, we show theoretical predictions
from Eq. (16) (dashed blue line) and Eq. (9b)(black line).
We also show a case with overlapping EDLs (green dots) for
which cb = 10−6 M.

IV. DEPENDENCE ON EDL OVERLAP λ/rp

A. Theory

Recent work by Fernandez, Zuk, and Gupta27 gener-
alized the TL model to arbitrary values of λ/rp. They

10−7 10−5 10−3 10−1 101

t(s)

0.0

0.2

0.4

0.6

0.8

1.0

Q
(t
)/
Q

eq

cb(M)

10−6

5× 10−6

10−5

10−4

10−3

10−2

10−1

FIG. 6. The normalized surface charge density Q(t)/Qeq

versus time for various electrolyte concentrations of cb =
(10−6

− 4)M, with τI given by Eq. (1). The other param-
eters are set to ℓp = 10 µm, rp = 200 nm, a = 0.1625 nm,
Φ = 10−3, lr = 10 µm, and rr = 10 µm.

found the following centerline potential:

ψ(z, t)

Ψ
= I0

(rp
λ

)−1

+

[

1− I0

(rp
λ

)−1
]

×
∑

j≥1

4 sinβj cos [βj (1− z/ℓp)]

2βj + sin 2βj
exp

(

− t

τj

)

,

(17a)

where the timescales τj with j = 1, 2, . . . read

τj =
I1 (rp/λ)

I0 (rp/λ)

τI
β2
j

, (17b)

where I0 and I1 are modified Bessel functions of the first
kind, and where βj are the solutions of

βj tanβj =
ℓp
ℓs

r2s
r2p
. (17c)

In Eq. (17c), ℓs and rs are the length and radius of a
“stagnant diffusion layer” (SDL), a thin region in the
reservoir next to the pore over which the potential sup-
posedly drops to zero. Already noted in Ref.27, the right
hand side of Eq. (17c) is effectively a ratio R/RSDL of
the pore resistance to the SDL resistance. As we did not
account for any physical mechanisms (e.g., convection)
by which the potential would drop to zero faster than
at the center of our reservoir, in the previous section,
we preferred using the reservoir size in lieu of the SDL
width. In other words, we prefer replacing RSDL by Rb.
With this identification, we see that Eq. (17) reduces to
Eq. (9) when rp ≫ λ.
Reference27 already plotted ψ(z, t) from Eq. (17) vs.

z for several times and found good agreement with nu-
merical solutions of the PNP equations. Here, we discuss
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the dependence of the late-time relaxation time τ1 on the
various system parameters.

B. R/Rb dependence for λ/rp ≫ 1

When λ/rp ≫ 1, we have that I1 (rp/λ) /I0 (rp/λ) ≈
rp/(2λ) so that the late-time relaxation time can be de-
termined from Eq. (17b) as τ1 = τII/β

2
1 . We solved

the MPNP equations for different ℓr and rr and we set
ℓp = 10 µm, cb = 10−6 M, and rp = 200 nm so that
rp/λ = 0.66. From these numerical solutions we deter-
mined τ̄ /τII , which we plot with green dots in Fig. 5(b).
We see that these scaled data overlap with the τ̄ /τI data
determined in the previous section for λ/rp ≪ 1.

C. λ/rp dependence for R/Rb ≫ 1

Next, we considered many different cb, rp, ℓp, and a. In
all cases, R/Rb ≫ 1; the smallest value considered was
R/Rb ≈ 193.80. For such large R/Rb, we can use that in
the limit of R/Rb → ∞, Eq. (17c) is solved by β1 = π/2
and

τ1 =
4

π2

I1 (rp/λ)

I0 (rp/λ)
τI . (18)

First, we investigate how the electrolyte concentration
affects the charging dynamics. Figure 6 shows the surface
charge density Q(t)/Qeq versus time for several cb. We
see that charging goes faster at higher electrolyte con-
centration, which agrees with the τI timescale [Eq. (1)]
from TL theory. Moreover, this panel shows that the
charge data collapses for concentrations below 10−5 M,
for which Debye lengths are comparable or larger than
the pore radii.
We then drew figures similar to Fig. 6 for cases wherein

we varied ℓp, rp, and a, see panels (a), (b), (d), (e),
(g) and (h) of Fig. S2 of the Supplementary Mate-
rial. From these data, we determined the respective
numerical charging timescales τ̄ , which we collect in
Fig. 7(a). We see there that τ̄ is independent of cb
for dilute electrolytes, while τ̄ ∼ c−0.5

b for concentrated
electrolytes. Moreover, the numerical relaxation time
versus electrolyte concentration for three ion diameters
a = [0.1625, 0.3, 0.5] nm and a pore size of ℓp = 10µm
and rp = 200 nm collapse onto a single curve in Fig. 7(a).
The independence of the charging process on the ion di-
ameter is also visible in the Supplementary Material in
Fig. S2(g), (h), and (i), where Q(t)/Qeq and τ̄ are un-
affected by a over a wide a-range. This independence is
easy to understand: For the small potential Φ = 10−3

considered here and in Fig. S2, MPNP and PNP are
essentially the same, and PNP does not depend on a.
Next, Fig. 7(b) presents the same τ̄ data as Fig. 7(a),
but now normalized by τI [Eq. (1)] and now versus rp/λ.
With this scaling, data for the different pore sizes and

10−8 10−6 10−4 10−2

cb(M)

10−4

10−3

10−2

10−1

τ̄
(s
)

10−2 10−1 100 101 102 103

rp/λ

10−4

10−3

10−2

10−1

100

τ̄
/τ

I

rr(nm) ℓr(µm) a(nm)

100, 10, 0.1625

200, 5, 0.1625

200, 10, 0.1625

200, 20, 0.1625

400, 10, 0.1625

200, 10, 0.3

200, 10, 0.5

τ1/τI [Eq. (18)]

2

1

(a)

(b)

EDL Overlap

FIG. 7. (a) Numerical relaxation τ̄ of our pore setup for
Φ = 10−3 and various pore sizes and ion diameters a, plotted
against cb. Panel (b) shows the same data as (a), normalized
by τI and plotted against rp/λ. The reservoir size was set
to lr = 10 µm and rr = 10 µm. The legend in panel (b) also
applied to panel (a).

ionic diameters collapse onto a single curve that accu-
rately agrees with τ1/τI from Eq. (18). To understand
Fig. 7(b) qualitatively, note that the ratio of Bessel func-
tions in Eq. (18) behaves as

I1 (rp/λ)

I0 (rp/λ)
=

{

rp
2λ , for rp ≪ λ

1, for rp ≫ λ .
(19)

With Eq. (18) we then find

τ1
τI

=
4

π2
×
{

rp
2λ , for rp ≪ λ

1, for rp ≫ λ ,
(20)

which agrees with the scaling observed in Fig. 7(b).
The rp/λ-dependent charging dynamics of our pore-

reservoir-pore setup is reminiscent of the charging of an
electrolyte between two planar electrodes separated by a
distance L—for which L/λ is a key parameter. For the
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2
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FIG. 8. (a) Numerical relaxation τ̄ for planar electrodes
subject to Φ = 10−3 with various separated distance L plotted
against cb. (b) The same data in (a) normalized by λL/D,
plotted against L/λ.

latter setup, the linearized PNP equations can be solved
with a Laplace transformation, which was first done ap-
proximately by Bazant, Thornton, and Ajdari38 and later
exactly by Janssen and Bier39 and Palaia40. In partic-
ular, Ref.39 predicted the following late-time relaxation
timescale:

τp =
λ2

D(1 +M2
1λ

2/L2)
, (21a)

M1 ≡
{

M1, for L/λ <
√
3 ,

im̃1, for L/λ >
√
3 ,

(21b)

where M1 and m̃1 are the smallest solutions of two tran-
scendental equations,

tanM =M
(

1 +M2λ2/L2
)

, (21c)

tanh m̃ = m̃
(

1− m̃2λ2/L2
)

. (21d)

Equation (21) has the following limiting behavior:

τp =

{

4L2

π2D [1 +O(L/λ)2], for L/λ≪
√
3 ,

λL
D [1 +O(λ/L)], for L/λ≫

√
3 ,

(22)

For four values between L/λ = 11 and 32, Asta and
coworkers41 showed with Lattice Boltzmann Electroki-
netics simulations that Eq. (21) predicted the relaxation
timescale more accurately than the well-known RC time
λL/D. To our knowledge, the predictions of Refs.39,40 for
L/λ < 1 have not been numerically tested. Therefore, we
used the same MPNP implementation as before to simu-
late the charging dynamics of two flat plates over a wide
range of L and cb. Figure 8(a) shows numerical results
for the numerical charging timescale τ̄ . We observe that
τ̄ ∼ c−0.5

b for most cases except for extremely dilute elec-
trolyte in narrow confinement. Figure 8(b) shows that
the same data collapse onto a single curve when we scale
τ̄ by λL/D and plot these data against L/λ. The data
(symbols) in this panel agree excellently with the theo-
retical prediction of Eq. (21) (line).

V. CHARGING AT MODERATE APPLIED

POTENTIALS Φ ∼ 1

Porous electrodes subject to moderate to large poten-
tials are known to acquire charge “biexponentially”, that
is, the surface charge is a sum of (at least) two exponen-
tial functions with two different timescales7,14,17,34,37,42.
From the modeling point of view, relaxation of porous
electrodes on two timescales was first predicted by
Biesheuvel and Bazant34. Mirzadeh and coworkers nu-
merically solved the PNP equations and found the out-
come of biexponential charge buildup—namely, charging
slowdown—but did not disentangle the two exponential
regimes. Aslyamov and Janssen32 studied a slit pore of
width H with thin EDLs (H ≫ λ), for which they de-
rived

Q(t)

Qeq
≃ 1− 8

π2

[

exp

(

−π
2

4

1

cosh (Φ/2)

t

τI

)

+
4λ

H
sinh2

(

Φ

4

)

exp

(

−π
2

4

t

τII

)]

+O(η2) ,

(23)

where the discarded higher-order terms involve a Dukhin
number

η = 4 exp

(

Φ

2

)

λ

rp
. (24)

For the thin EDLs considered in Ref.32, τII ≫ τI
[cf. Eq. (1)], which means that Eq. (23) predicts relax-
ation on two well-separated timescales (unless Φ ≫ 1).
The second exponential term goes with exactly the same
timescale as we found in Eqs. (17) and (20). In these
equations, however, the τII timescale was caused by EDL
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(a)

(b)

FIG. 9. Surface charge relaxation at different values of
applied potentials Φ and for different reservoir sizes of (a)
rr = 10 µm and (b) rr = 200 nm. Lines represent results
from MPNP, dashed lines represent results from PNP, and
dots portray Eq. (23). Parameters are set to ℓp = 10 µm,
a = 0.1625 nm, rp = 200 nm, and cb = 10−3 M, such that
rp/λ = 20.7, i.e., nonoverlapping EDLs.

overlap, while, here, it is caused by moderate applied po-
tentials. Note that, in Eqs. (23) and (24), we replaced
the pore width H of Ref.32 by our pore radius rp. We did
this because a slit and a cylindrical pore have hydraulic
radii H/2 and rp/2

30, respectively, so that H and rp play
similar roles.

Figure 9 shows the charge buildup of our setup (lines)
for Φ = 0.001, 0.01, 0.1, 1, 2, and 4 for a wide reservoir
(rr = 10µm) (a) and a narrow reservoir (rr = 200 nm)
(b) as determined numerically solving the MPNP equa-
tions. We also plot Eq. (23) (symbols) for the same Φ.
For the wide reservoir [Fig. 9(a)], the numerics agree with
Eq. (23) well except for Φ = 4. We see that, up to about
t = 0.05 s, 1 − Q(t)/Qeq relaxes exponentially with a
Φ-dependent slope, in agreement with the first line of
Eq. (23). (For Φ = 4, the slow down is less than pre-
dicted.) Thereafter, a second, slower exponential relax-

ation emerges which becomes more important with in-
creasing Φ, in line with the sinh2 (Φ/4) term in Eq. (23).
While Eq. (23) was derived from the PNP equations,

the other data in Fig. 9 was determined numerically from
the MPNP equations. For comparison, we also show nu-
merical solutions of the PNP equations [Eq. (4) without
the last term of Eq. (4c)] with dashed lines in Fig. 9(a).
The data for 1−Q(t)/Qeq is almost the same for PNP and
MPNP. This is not surprising as, for the a = 0.1625 nm
and cb = 10−3 M considered here, we have volume frac-
tion v = 2a3cb = 5.17× 10−6; Fig. (5) of Ref.43 shows
that the capacitance of modified and regular Poisson
Boltzmann theory hardly differ for Φ < 10 for such a
small v. Concluding, the difference between PNP and
MPNP does not explain the discrepancy between the dots
and lines in Fig. 9(a) at Φ = 4.
From Eq. (24) we see that the accuracy of Eq. (23) de-

pends both on the surface potential and the EDL overlap.
For Φ = 2 we find the smallish Dukhin number η = 0.52,
which explains the decent agreement between the analyt-
ical and numerical results observed in Fig. 9(a) for that
Φ value. Conversely, Φ = 4 yields η = 1.43, and O(η2)
terms are thus no-longer small compared to the other
terms in Eq. (23), which are of O(η) and O(1). This
explains the discrepancies in Fig. 9(a) between Eq. (23)

and the numerical solutions at Φ = 4. As η ∝ c
−1/2
b , one

would expect the agreement between Eq. (23) and the
numerical solutions to improve with increasing cb, which
we indeed observe below (cf. Fig. 11).
For the narrow reservoir (R/Rb = 2), the agreement

in Fig. 9(b) between the numerics and Eq. (23) is much
worse than in Fig. 9(a). This was already anticipated
in Ref.32. The model therein did not explicitly treat the
reservoir but instead postulated the ionic number density
at the pore mouth (z = 0) to instantaneously adapt to
the equilibrium Gouy-Chapman solution

ρ±(x) =

(

1 + tanh(Φ/2) exp(−x/λ)
1− tanh(Φ/2) exp(−x/λ)

)∓2

, (25)

with x the distance from the electrode surface. Ref-
erence32 suggested that this postulate would work bet-
ter the larger R/Rb—which we indeed observe now in
Fig. 9—as this implies that the reservoir is essentially in
quasi-equilibrium while the pore charges. To explicitly
check the validity of the postulate in Ref.32, in Fig. 10,
we compare Eq. (25) for x = rp−r to MPNP density pro-
files at the orifice (z = 0) for the case of (a) a wide and (b)
a narrow reservoir. We see that ρ±(rp−r, z = 0, t) indeed
approach their steady-state profiles much faster for the
wide than for the narrow reservoir. For the wide reser-
voir, the density profiles at the orifice are almost equili-
brated at t = 10−8 s, while the rest of the pore relaxes
five orders of magnitude slower with τ1 = 2.89× 10−3 s.
From the point of view of the rest of the pore, the ori-
fice thus relaxes instantaneously. Last, we note that the
late-time ion densities are closer to the Gouy-Chapman
prediction for the narrow than for the wide reservoir.
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FIG. 10. Evolution of normalized cation (solid lines) and
anion (dashed lines) densities along the r axis at the orifice for
different reservoir size of (a) rr = 10 µm and (b) rr = 200 nm
under applied potentials Φ for electrolyte concentration of
cb = 10−3 M. The other parameters are set to ℓp = 10 µm,
rp = 200 nm, ℓp = 10 µm, Φ = 10−3 and a = 0.1625 nm.

While postulating instantaneously-relaxed ion densities
at the orifice may thus be justified when R ≫ Rb, these
densities may deviate slightly from those deeper in the
pore.
In Fig. 11 we again consider various potentials, now for

three different cb. As anticipated, Eq. (23) describes the
numerical solutions better at higher cb. For cb = 10−2 M,
we see in Fig. 11(a) that the pore relaxes biexponentially
with two vastly different timescales. Here, Eq. (23) de-
scribes the numerical solutions even at Φ = 4, for which,
now, η = 0.45 is indeed still smallish. For cb = 10−4 M,
we see in Fig. 11(b) that the pore still relaxes biexpo-
nentially, but that two timescales differ less than for
cb = 10−6 M [Fig. 11(c)]. We understand this with
Eq. (23), wherein τI decreases with cb, while τII does
not depend on it. For cb = 10−6 M, we see analytical
and numerical predictions for 1−Q(t)/Qeq do not agree
at all.

VI. CONCLUSIONS

Numerically solving the modified Poisson-Nernst-
Planck (MPNP) equations, we have studied the charging
dynamics of two cylindrical electrolyte-filled pores on ei-
ther side of a cylindrical electrolyte reservoir, subject to
a sudden potential difference. The pores charge expo-
nentially with different timescales, whose dependence on
the various system parameters we scrutinized.

For small applied potentials, we found quantitative
agreement between our numerical solutions of the MPNP
equations and the analytical result by Janssen24 for the
bulk-resistance dependence of the TL timescale, both for
overlapping and nonoverlapping EDLs. We showed that,
contrary to conventional wisdom27,34, the potential in the
reservoir is not linear when the reservoir is wider than
the pore: it decays much faster into the reservoir. We
also discussed the influence of the reservoir resistance
on the early-time charging behavior of our system: for
R/Rb ≫ 1, we recovered the known Q ∝

√
t charging of

Ref.28; for R/Rb ∼ 1, we found a new linear scaling be-
havior Q ∝ t. In several ways, our work thus highlights
the importance of the electrolyte reservoir on the pore’s
charging dynamics, which was ignored in many prior
studies. Further, we compared Posey and Morozumi’s
TL equation solution to our MPNP data and found that
their solution generally works well at late times and in
the interior of the pore; differences between the MPNP
data and the TL model were visible at early times and es-
pecially near the pore’s orifice. Future TL models should
thus pay close attention to the boundary and initial con-
ditions used.

For moderately strong applied potentials, we compared
our numerical solutions to a recent theoretical predic-
tion of Aslyamov and Janssen32. We found good agree-
ment between these methods for small Dukhin numbers
η, but only if the pore resistance R was vastly greater
than the reservoir resistance Rb. Discrepancies between
these methods for R ∼ Rb were traced to the postulate in
Ref.32 that the density profiles at the pore’s orifice relax
instantaneously, which we showed to be reasonable only
for R≫ Rb. Future work could thus try to generalize the
findings of Ref.32 for cases where R ∼ Rb. We hope that
the insights from our numerical study motivate further
work, not only on improved theoretical models, but also
on new experiments that probe porous electrode charging
at the single-pore level.

SUPPLEMENTARY MATERIAL

See supplementary material for the effects of the pore
cap, pore size parameters and ionic diameter on the pore
charging process.
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FIG. 11. Surface charge relaxation at different values of applied potentials Φ at electrolyte concentrations of (a) 10−2 M,
(b) 10−4 M, and (c) 10−6 M. The other parameters are set to ℓp = 10 µm, rp = 200 nm, and a = 0.1625 nm.
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